
Better Complexity Bounds for Cost Register
Machines∗

Eric Allender1, Andreas Krebs2, and Pierre McKenzie3

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA,
allender@cs.rutgers.edu

2 WSI, Universität Tübingen, Germany, mail@krebs-net.de
3 DIRO, Université de Montréal, Québec, Canada, mckenzie@iro.umontreal.ca

Abstract
Cost register automata (CRAs) are one-way finite automata whose transitions have the side

effect that a register is set to the result of applying a state-dependent semiring operation to a pair
of registers. Here it is shown that CRAs over the tropical semiring (N∪{∞},min,+) can simulate
polynomial time computation, proving along the way that a naturally defined width-k circuit
value problem over the tropical semiring is P-complete. Then the copyless variant of the CRA,
requiring that semiring operations be applied to distinct registers, is shown no more powerful than
NC1 when the semiring is (Z,+,×) or (Γ∗ ∪ {⊥},max, concat). This relates questions left open
in recent work on the complexity of CRA-computable functions to long-standing class separation
conjectures in complexity theory, such as NC versus P and NC1 versus GapNC1.
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1 Introduction

The Cost Register Automaton (CRA) model of computation was defined by Alur et al. and
studied in a series of papers, including [4, 6, 5]. This model has application in the field of
computer-aided verification. Much previous work has focused on the so-called “copyless”
variant of the CRA model (CCRA). Complexity bounds for functions computable in this
model were presented in [1], and this line of inquiry was extended in [18, 21, 20, 13, 12, 11].
The purpose of this paper is to improve some of the bounds that were presented in [1].

In particular, the closing section of [1] listed the following four open questions:
Are there any CCRA functions over (Z,+,×) that are complete for GapNC1?
Are there any CCRA functions over the tropical semiring that are hard for #NC1

trop?
The gap between the upper and lower bounds for CCRA functions over (Γ∗,max, ◦) is
quite large (NC1 versus OptLogCFL ⊆ AC1). Can this be improved?
Is there an NC upper bound for CRA functions (without the copyless restriction) over
the tropical semiring?

In this paper, we essentially answer all of these questions, modulo long-standing open
questions in complexity theory. We show that CCRA functions over each of (Z,+,×),
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Figure 1 Prior state of knowledge, from [1]. When a class of CRA functions and a complexity
class appear together, it means that containment of the CRA class in the complexity class is tight,
since some of the CRA functions are complete for the complexity class.

(Γ∗,max, ◦), and the tropical semiring are all computable in NC1. We thus give the im-
provement asked for in the third question, and we show that the answers to the first two
questions are equivalent to NC1 = GapNC1 and NC1 = #NC1

trop, respectively. We also provide
a negative answer to the fourth question (assuming NC 6= P), by reducing a P-complete
problem to the computation of a CRA function over the tropical semiring. It follows from
the latter that for any k larger than a small constant, the width-k circuit value problem over
structures such as (N,max,+) and (N,min,+) is P-complete under AC0-Turing reductions.
(See Section 2 for the precise definition of the problem and then Corollary 5.)

Figures 1 and 2 diagram the state of our knowledge before this work, and after.

2 Preliminaries

A structure (A,+,×) is a semiring if (A,+) is a commutative monoid with an additive identity
element 0, and (A,×) is a (not necessarily commutative) monoid with a multiplicative identity
element 1, such that, for all a, b, c, we have a×(b+c) = (a×b)+(a×c), (b+c)×a = (ba×ca),
and 0× a = a× 0 = 0.

We assume familiarity with some common complexity classes and with basic notions of
circuit complexity, such as can be found in any textbook on complexity theory.

Recall that a language A ⊆ {0, 1}∗ is accepted by a Boolean circuit family (Cn)∈N if for
all x it holds that x ∈ A iff C|x|(x) = 1. Circuit families encountered in this paper will be
uniform. Uniformity is a somewhat messy issue because of subtleties encountered at low
complexity levels. We will not be concerned with such subtleties, but for definiteness we
will assume a circuit family (Cn)n≥0 to be UE-uniform (see [25, Sect. 4.5]), which means,
informally, that there is a linear-time machine that takes inputs of the form (n, g, h, p) and
determines if p encodes a path from gate h to gate g in Cn, and also determines what type
of gate g and h are. We will encounter the following circuit complexity classes.
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Figure 2 Update of the preceding figure, showing the improved state of our knowledge re-
garding CRA(N, min, +) and the copyless CRA classes CCRA(N, min, +), CCRA(Z, +, ×), and
CCRA(Γ∗, max, ◦). All bounds listed are now tight.

NCi = {A : A is accepted by a UE-uniform family of circuits of bounded fan-in AND,
OR and NOT gates, having size nO(1) and depth O(logi n)}.
ACi = {A : A is accepted by a UE-uniform family of circuits of unbounded fan-in AND,
OR and NOT gates, having size nO(1) and depth O(logi n)}.
TCi = {A : A is accepted by a UE-uniform family of circuits of unbounded fan-in
MAJORITY gates, having size nO(1) and depth O(logi n)}.

We remark that, for constant-depth classes such as AC0 and TC0, UE-uniformity coincides
with UD-uniformity, which is also frequently called DLOGTIME-uniformity.

Following the standard convention, we also use these same names to refer to the associated
classes of functions computed by the corresponding classes of circuits. For instance, the
function f is said to be in NC1 if there is UE-uniform family of circuits {Cn} of bounded
fan-in AND, OR and NOT gates, having size nO(1) and depth O(logn), where Cn has
several output gates, and on input x of length n, Cn outputs an encoding of f(x). (We say
that an “encoding” of the output is produced, to allow the possibility that there are strings x
and y of length n, such that f(x) and f(y) have different lengths.) It is easy to observe that,
if the length of f(x) is polynomial in |x|, then f is in (say) NC1 if and only if the language
{(x, i, b) : the i-th symbol of f(x) is b} is in NC1.

I Definition 1. An arithmetic circuit over a semiring (S,+,×) is a directed acyclic graph.
Each vertex of the graph is called a “gate”; each gate is labeled with a “type” from the set
{+,×, input, constant}, where each input gate is labeled by one of the inputs x1, . . . , xn, and
each constant gate is labeled with an element of S. The size of a circuit is the number of
gates, and the depth of the circuit is the length of the longest path in the circuit. We shall
also need to refer to the width of a circuit, and here we use the notion of circuit width that
was provided by Pippenger [23]: We will consider layered circuits, which means that the set
of gates is partitioned into layers, where wires connect only gates in adjacent layers. The
width of a circuit is the largest number of gates that occurs in any layer.
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If an arithmetic circuit Cn over (S,+,×) has n input gates, then Cn computes a function
f : Sn → S in the obvious way.

I Definition 2. A straight-line program over a semiring R consists of a sequence of statements
of the form ri ← rj � rk where � is one of the semiring operations, and each r` comes from a
finite set of registers (or from R, or from the set of input variables). Straight-line programs
have been studied at least as far back as [19], and they are frequently used as an alternative
formulation of arithmetic circuits. Note that each line in a straight-line program can be
viewed as a gate in an arithmetic circuit.

I Definition 3. The width-k circuit value problem over a semiring R is that of determining,
given a width-k arithmetic circuit C over R (where C has no input gates, and hence all gates
with indegree zero are labeled by a constant in R), and given a pair (i, b) whether the i-th
bit of the binary representation of the output of C is b.

#NC1
S is the class of functions f :

⋃
n S

n → S for which there is a UE-uniform family of
arithmetic circuits {Cn} of logarithmic depth, such that Cn computes f on Sn.
By convention, when there is no subscript, #NC1 denotes #NC1

N, with the additional
restriction that the functions in #NC1 are considered to have domain

⋃
n{0, 1}n. That

is, we restrict the inputs to the Boolean domain. (Boolean negation is also allowed at the
input gates.)
GapNC1 is defined as #NC1 − #NC1; that is: the class of all functions that can be
expressed as the difference of two #NC1 functions. It is the same as #NC1

Z restricted to
the Boolean domain. See [25, 2] for more on #NC1 and GapNC1.

The following inclusions are known:

NC0 ⊆ AC0 ⊆ TC0 ⊆ NC1 ⊆ #NC1 ⊆ GapNC1 ⊆ L ⊆ AC1 ⊆ P.

All inclusions are straightforward, except for GapNC1 ⊆ L [15].

2.1 Cost-register automata
A cost-register automaton (CRA) is a deterministic finite automaton (with a read-once input
tape) augmented with a fixed finite set of registers that store elements of some algebraic
domain A. At each step in its computation, the machine

consumes the next input symbol (call it a),
moves to a new state (based on a and the current state (call it q)),
based on q and a, updates each register ri using updates of the form ri ← f(r1, r2, . . . , rk),
where f is an expression built using the registers r1, . . . , rk using the operations of the
algebra A.

There is also an “output” function µ defined on the set of states; µ is a partial function
– it is possible for µ(q) to be undefined. Otherwise, if µ(q) is defined, then µ(q) is some
expression of the form f(r1, r2, . . . , rk), and the output of the CRA on input x is µ(q) if the
computation ends with the machine in state q.

More formally, here is the definition as presented by Alur et al. [4].
A cost-register automaton M is a tuple (Σ, Q, q0, X, δ, ρ, µ), where
Σ is a finite input alphabet.
Q is a finite set of states.
q0 ∈ Q is the initial state.
X is a finite set of registers.
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δ : Q× Σ→ Q is the state-transition function.
ρ : Q×Σ×X → E is the register update function (where E is a set of algebraic expressions
over the domain A and variable names for the registers in X).
µ : Q→ E is a (partial) final cost function.

A configuration of a CRA is a pair (q, ν), where ν maps each element of X to an algebraic
expression over A. The initial configuration is (q0, ν0), where ν0 assigns the value 0 to
each register (or some other “default” element of the underlying algebra). Given a string
w = a1 . . . an, the run of M on w is the sequence of configurations (q0, ν0), . . . (qn, νn) such
that, for each i ∈ {1, . . . , n} δ(qi−1, ai) = qi and, for each x ∈ X, νi(x) is the result of
composing the expression ρ(qi−1, ai, x) to the expressions in νi−1 (by substituting in the
expression νi−1(y) for each occurrence of the variable y ∈ X in ρ(qi−1, ai, x)). The output
of M on w is undefined if µ(qn) is undefined. Otherwise, it is the result of evaluating the
expression µ(qn) (by substituting in the expression νn(y) for each occurrence of the variable
y ∈ X in µ(qn)).

It is frequently useful to restrict the algebraic expressions that are allowed to appear in
the transition function ρ : Q× Σ×X → E. One restriction that is important in previous
work [4] is the “copyless” restriction.

A CRA is copyless if, for every register r ∈ X, for each q ∈ Q and each a ∈ Σ, the
variable “r” appears at most once in the multiset {ρ(q, a, s) : s ∈ X}. In other words, for a
given transition, no register can be used more than once in computing the new values for the
registers. Following [5], we refer to copyless CRAs as CCRAs. Over many algebras, unless
the copyless restriction is imposed, CRAs compute functions that can not be computed in
polynomial time. For instance, CRAs that can concatenate string-valued registers and CRAs
that can multiply integer-valued registers can perform “repeated squaring” and thereby
obtain results that require exponentially-many symbols to write down.

3 CRAs over the Tropical Semiring

CRAs without the copyless restriction over the tropical semiring still yield only functions
that are computable in polynomial time. The “repeated squaring” operation, when the
“multiplicative” operation is +, yields only numbers whose binary representation remains
linear in the length of the input. In this section, we show that some CRA functions over the
tropical semiring are hard for P.

The name “tropical semiring” is used to refer to several related algebras. Most often it
refers to (R∪ {∞},min,+) (that is, the “additive” operation is min, and the “multiplicative”
operation is +. However, frequently (R ∪ {−∞},max,+) is used instead. In discrete
applications, R is frequently replaced with Q, Z, or even N. For more details, we refer the
reader to [22]. We will not need to make any use of ∞ or −∞ in our hardness argument,
and we will prove P-hardness over N, which thus implies hardness for the other settings as
well. Our arguments will be slightly different for both the max and the min versions, and
thus we will consider both.

The standard reference for P-completeness, [14], credits Venkateswaran with the proof
that the Min-plus Circuit Value Problem is P-complete. This shows that evaluating straight-
line programs over (N,min,+) is a P-complete problem, as long as they are allowed to have
an unbounded number of registers.

Our focus will be more on straight-line programs with a bounded number of registers.
Ben-Or and Cleve [10] showed that straight-line programs with O(1) registers can simulate
arithmetic formulae, and Koucky [17] has shown that these models are in fact equivalent, if
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the straight-line programs are restricted to compute only formal polynomials whose degree is
bounded by a polynomial in the number of variables. It is observed in [1] that arithmetic
formulae over the tropical semiring can be evaluated in logspace. Our P-completeness
result demonstrates that, in the absence of any degree restriction, restricting straight-line
programs over the tropical semiring to have only O(1) registers does not result in a decrease
in computational complexity.

We will present a reduction from the P-complete problem Iterated Mod (problem A.8.5 in
[14]), which was shown to be P-complete under logspace reductions by Karloff and Ruzzo [16].
The proof in [16] actually shows that the problem is complete under many-one reductions
computable by dlogtime-uniform AC0 circuits. (Incidentally, the proof sketch in [14] has a
minor error, in that some indices are listed in the wrong order. The reader is advised to
consult the original [16] proof.)

The input to the Iterated Mod problem is a list of natural numbers v,m1,m2, . . . ,mn,
and the question is to determine if ((· · · ((v mod m1) mod m2) · · · ) mod mn) = 0.

Let c be chosen so that 2c is greater than any of the numbers v,m1,m2, . . . ,mn. Then
the naïve division algorithm that one would use to compute v mod m can be seen to involve
computing the following sequence:

v0 = v

vi = vi−1 −max(0, vi−1 −m · 2c−i)
By induction, one can see that each vi ≡ v (mod m) and vi < m2c−i, and hence vc is the
remainder when one divides v by m.

Thus v mod m can be seen to be computed by the following straight-line program over Z
with operations +,−,max:

1: for i ≤ c do
2: shift_of_m ← m

3: for k ≤ c− i do
4: shift_of_m ← shift_of_m + shift_of_m
5: end for
6: {At end of this loop, shift_of_m = m2c−i}
7: temp← v−shift_of_m
8: temp← max(0, temp)
9: v ← v − temp

10: end for

Of course, by definition, straight-line programs contain no loop statements, but the
algorithm can be computed by a program described by an AC0-computable sequence of
symbols from the 5-letter alphabet {shift_of_m← m, temp← v− shift_of_m, v ← v−temp,
shift_of_m ← shift_of_m + shift_of_m, temp← max(0, temp)}.

A number v, presented as a sequence of b binary digits vi, can be loaded into a register r
by initially setting r to 0, and then executing b instructions of the form r ← r+ r+ vi. Thus,
the naïve polynomial-time algorithm for computing Iterated Mod can be implemented via a
polynomial-size straight-line program over Z with operations +,−,max, by first inputting
the numbers v and m1, executing the algorithm above to compute v mod m1, then inputting
m2, repeating the procedure to compute ((v mod m1) mod m2), etc.

We observe next that max(a, b) = (−1) · min(−a,−b). Thus there is a polynomial-
size straight-line program over Z with operations +,−,min that outputs 0 if and only if
(v,m1, . . . ,mn) is a positive instance of Iterated Mod, where the process to input a number
in binary has each instruction r ← r + r + vi replaced by r ← r + r − vi. Similarly, in
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the code to compute v mod m, each occurrence of the instruction temp← max(0, temp) is
replaced by temp← min(0, temp), and each occurrence of r ← v − s for {r, s} ⊆ {v, temp,
shift_of_m} is replaced by r ← s− v.

The next observation is that, given any straight-line program Q over Z, it is easy to build
a straight-line program Q′ over Z, such that each register of Q′ always holds a nonnegative
integer, and such that the value of each register r of Q at the end of the computation is
equal to the value of the difference r − r0 of Q′ at the end, where r0 is a new special register
of Q′. We accomplish this by initially setting r0 to 2c (using repeated addition), where 2c is
larger than any value that is stored by any register of Q during its computation. (This is
possible by taking c to be larger than the length of Q.) Then for every other register r 6= r0,
perform the operation r ← r0. Now we will maintain the invariant that the value of register
r of Q is obtained by subtracting r0 from the value of register r of Q′. This is accomplished
as follows: Replace any assignment r ← b where b is a constant, with r ← r0 + b. Replace
each operation r ← s− u by r ← s− u+ r0, and replace each operation r ← s+ u by the
operations: r ← s+ u; r′ ← s+ r0 (for every r′ 6= r); r0 ← r0 + r0.

The final step is to replace every straight-line programQ over (Z,max,+,−) or (Z,min,+,−)
where every register holds only nonnegative values by a new program Q′ over (N,max,+) or
(N,min,+), where the value of every register r of Q at the end is equal to the value of the
difference r − r−1 of registers of Q′, where r−1 is a new register of Q′. Initially, r−1 ← 0.
Operations that involve min or max need no modification. If Q has the operation r ← s+ u,
then Q′ has the operations r ← s+u; r′ ← s+r−1 (for every r′ 6= r); r−1 ← r−1 +r−1. (This
is exactly the same replacement as was used in the preceding paragraph.) Finally, if Q has
the operation r ← s−u, then Q′ has the operations: r ← s+ r−1; r−1 ← r−1 +u; r′ ← r′+u

for every r′ 6∈ {r, u} (including r′ = r−1); and then u← u+ u. A straightforward induction
shows that the invariant is maintained, that each register r of Q has the value r − r−1 of Q′.

Thus, given an instance y of Iterated Mod, an AC0 reduction can produce a straight-line
program Q over (N,min,+) or (N,max,+), such that y ∈ Iterated Mod iff the output register
of Q has a value equal to the value of r0.

Note that there is a CRA that takes as input strings over an alphabet whose symbols
encode straight-line program instructions with O(1) registers, and simulates the operation of
the straight-line program. We have thus proved the following theorem:

I Theorem 4. There is a function f computable by a CRA operating over the tropical
semiring (either (N ∪ {∞},min,+) or (N ∪ {−∞},max,+)) such that computing f is hard
for P under AC0-Turing reductions.

I Corollary 5. Let R be the semiring (N∪ {∞},min,+) or (N∪ {−∞},max,+). There is a
constant c such that for every k ≥ c, the width-k circuit value problem over R is P-complete
under AC0-Turing reductions.

Proof. The P upper bounds are clear since each semiring operation is polynomial-time
computable. Hardness follows by appealing to the straight-line programs with a bounded
number of registers that are constructed in the proof of Theorem 4. A further AC0-Turing
reduction can transform a straight-line program that uses k registers into an arithmetic
circuit of width O(k). (Each layer in the arithmetic circuit contains a gate for each register,
as well as gates for each constant that is used in the next time step. If a register r is not
changed at time t, then the gate for register r in layer t is simply set to 0 + the value of
register r at in layer t− 1.) J

Completeness under AC0-many-one reductions (or even logspace many-one reductions) is
still open.
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4 CCRAs over Commutative Semirings

In this section, we study two classes of functions defined by CCRAs operating over commut-
ative algebras with two operations satisfying the semiring axioms:

CRAs operating over the commutative ring (Z,+,×)
CRAs operating over the tropical semiring, that is, over the commutative semiring
(Z ∪ {∞},min,+).

I Theorem 6. Let (A,+,×) be a commutative semiring such that the functions (x1, x2, . . . , xn) 7→∑
i xi and (x1, x2, . . . , xn) 7→

∏
i xi can be computed in NC1. Then CCRA(A) ⊆ NC1.

We remark that both the tropical semiring and the integers satisfy this hypothesis. We
refer the reader to [25, 15] for more details about the inclusions:

unbounded-fan-in min ∈ AC0.
unbounded-fan-in + ∈ TC0.
unbounded-fan-in × ∈ TC0.

Proof. Let M = (Q,Σ, δ, q0, X, ρ, µ) be a copyless CRA operating over A. Let M have k
registers r1, . . . , rk.

As in the proof of [1, Theorem 1], it is straightforward to see that the following functions
are computable in NC1:

(x, i) 7→ q, such that M is in state q after reading the prefix of x of length i. Note that
this also allows us to determine the state q that M is in while scanning the final symbol
of x, and thus we can determine whether the output µ(q) is defined.
(x, i) 7→ Gi, where Gi is a labeled directed bipartite graph on [2k]× [k], with the property
that there is an edge from j on the left-hand side to ` on the right hand side, if the register
update operation that takes place when M consumes the i-th input symbol includes the
update r` ← α ⊗ β where rj ∈ {α, β} and ⊗ ∈ {+,×}. In addition, vertex ` is labeled
with the operation ⊗. If one of {α, β} is a constant c (rather than being a register),
then label vertex k + ` in the left-hand column with the constant c, and add an edge
from vertex k + ` in the left-hand column to ` in the right-hand column. (To see that
this is computable in NC1, note that by the previous item, in NC1 we can determine the
state q that M is in as it consumes the i-th input symbol. Thus Gi is merely a graphical
representation of the register update function corresponding to state q.) Note that the
outdegree of each vertex in Gi is at most one, because M is copyless. (The indegree is at
most two.) To simplify the subsequent discussion, define Gn+1 to be the graph resulting
from the “register update function” r` ← µ(q) for 1 ≤ ` ≤ k, where q is the state that M
is in after scanning the final symbol xn.

Now consider the graph G that is obtained by concatenating the graphs Gi (by identifying
the left-hand side of Gi+1 with the first k vertices of the right-hand side of Gi for each
i). This graph shows how the registers at time i+ 1 depend on the registers at time i. G
is a constant-width graph, and it is known that reachability in constant-width graphs is
computable in NC1 [7, 8].

The proof of the theorem proceeds by induction on the number of registers k = |X|.
When k = 1, note that the graph G consists of a path of length n+ 1, where each vertex vi

on the path is connected to two vertices on the preceding level, one of which is a leaf. (Here,
we are ignoring degenerate cases, where the path back from the output node does not extend
all the way back to the start, but instead stops at some vertex vi where the corresponding
register assignment function sets the register to a constant. An NC1 computation can find
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where the path actually does start.) That is, when k = 1, the graph G has width two. We
will thus really do our induction on the width of the graph G, starting with width two.

In TC0 ⊆ NC1, we can partition the index set I = {0, . . . , n + 1} into consecutive
subsequences S1, P1, S2, P2, . . . , Sm, Pm, where i ∈ Sj implies that vertex vi on the path is
labeled with +, and i ∈ Pj implies that vertex vi on the path is labeled with ×. (Assume
for convenience that the first operation on the path is + and the last one is ×; otherwise
add dummy initial and final operations that add 0 and multiply by 1, respectively.) That is,
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + ci−1, and i ∈ Pj implies that
the i-th operation is of the form vi ← vi−1 × ci−1 for some sequence of constants c0, . . . , cn.

In NC1 we can compute the values sj =
∑

i∈Sj
ci−1 and pj =

∏
i∈Pj

ci−1. Thus the
output computed by M on x is

(. . . (((s1 × p1) + s2)× p2) . . .× pm) =
∑

j

sj

∏
`≥j

p`.

This expression can also be evaluated in NC1. This completes the proof of the basis case,
when k = 1.

Now assume that functions expressible in this way when the width of the graph G is at
most k can be evaluated in NC1. Consider the case when G has width k + 1, and assume
that vertex 1 in the final level is the vertex that evaluates to the value of the function. In
NC1 we can identify a path of longest length leading to the output. Let this path start in
level i0. Since there is no path from a vertex in any level i < i0 to the output, we can ignore
everything before level i0 and just deal with the part of G starting at level i0. Thus, for
simplicity, assume that i0 = 0. Let the vertices appearing on this path be v1, v2, . . . , vn+1,
where each vertex vi is labeled with the operation vi ← vi−1⊗i wi for some operation ⊗i and
some vertex wi. Let Hi be the subgraph consisting of all vertices that have a path to vertex
wi. Since the outdegree of each vertex in G is one, and since no wi appears on the path, it
follows that each Hi has width at most k, and thus the value computed by wi (which we
will also denote by wi) can be computed in NC1. (This is the only place where we use the
restriction that M is a copyless CRA.)

Now, as before partition this path into subsequences S1, P1, S2, P2, . . . , Sm, Pm, where
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + wi−1, and i ∈ Pj implies
that the i-th operation is of the form vi ← vi−1 × wi−1 for some NC1-computable sequence
of values w0, . . . , wn.

Thus, as above, in NC1 we can compute the values sj =
∑

i∈Sj
wi−1 and pj =

∏
i∈Pj

wi−1.
Thus the output computed by M on x is

(. . . (((s1 × p1) + s2)× p2) . . .× pm) =
∑

j

sj

∏
`≥j

p`.

This expression can also be evaluated in NC1. J

5 CCRAs over Noncommutative Semirings

In this section, show that the techniques of the preceding section can easily be adapted to
work for noncommutative semirings.

The canonical example of such a semiring is (Γ∗ ∪ {⊥},max, ◦). Here, the max operation
takes two strings x, y in Γ∗ as input, and produces as output the lexicographically-larger of
the two. (Lexicographic order on Γ∗ is defined as usual, where x < y if |x| < |y| or (|x| = |y|
and x precedes y, viewed as the representation of a number in |Γ|-ary notation). ⊥ is the
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additive identity element. (One obtains a similar example of a noncommutative semiring, by
using min in place of max.)

It is useful to describe how elements of Γ∗ will be represented in an NC1 circuit, in a way
that allows efficient computation. For an input length n, let m = nO(1) be the maximum
number of symbols in any string that will need to be manipulated while processing inputs of
length n. Then a string y of length j will be represented as a sequence of logm+m log |Γ| bits,
where the first logm bits store the number j, followed by m blocks of length log |Γ|, where
the first j blocks store the symbols of y. It is easy to verify that, in TC0, given a sequence
of strings l1, r1, l2, r2, . . . , ls, r2 represented in this way, one can compute the representation
of the string lsls−1 . . . l2l1r1r2 . . . rs−1rs, since the i-th symbol of the concatenated string is
equal to the j-th symbol of the `-th string in this list, where j and ` are easy to compute by
performing iterated addition on the lengths of the various strings, and comparing the result
with i. In the max, ◦ semiring, where concatenation is the “multiplicative” operation, this
corresponds to iterated product, and it is computable in TC0 ⊆ NC1.

I Theorem 7. Let (A,+,×) be a (possibly noncommutative) semiring such that the functions
(x1, x2, . . . , xn) 7→

∑
i xi and (x1, x2, . . . , xn) 7→

∏
i xi can be computed in NC1. Then

CCRA(A) ⊆ NC1.

Proof. The proof is a slight modification of the proof in the commutative case.
Given a CCRA M , we build the same graph G. Again, the proof proceeds by induction

on the width of G (related to the number of registers in M).
Let us consider the basis case, where G has width two.
In TC0 ⊆ NC1, we can partition the index set I = {0, . . . , n + 1} into consecutive

subsequences S1, P1, S2, P2, . . . , Sm, Pm, where i ∈ Sj implies that vertex vi on the path is
labeled with +, and i ∈ Pj implies that vertex vi on the path is labeled with ×. (Assume
for convenience that the first operation on the path is + and the last one is ×; otherwise
add dummy initial and final operations that add 0 and multiply by 1, respectively.) That is,
i ∈ Sj implies that the i-th operation is of the form vi ← vi−1 + ci−1, and i ∈ Pj implies
that the i-th operation is of the form vi ← vi−1× ci−1 or vi ← ci−1× vi−1 for some sequence
of constants c0, . . . , cn.

In NC1 we can compute the value sj =
∑

i∈Sj
ci−1. The product segments Pj require

just a bit more work. Let lj,1, lj,2, . . . , lj,mjl
be the list of indices, such that lj,s is the s-th

element of {i ∈ Pj : the multiplication operation at vi is of the form vi ← ci−1 × vi−1}, and
similarly let rj,1, rj,2, . . . , rj,mjr

be the list of indices, such that rj,s is the s-th element of
{i ∈ Pj : the multiplication operation at vi is of the form vi ← vi−1 × ci−1}.

Let
lj = clj,mjl

−1 × clj,mjl
−1−1 × . . . clj,2−1 × clj,1−1

and let
rj = crj,1−1 × crj,2−1 × crj,mjr

−1−1 × crj,mjr
−1.

Then if the value of the path when it enters segment Pj is y, it follows that the value
computed when the path leaves segment Pj is ljyrj . Note that this value can be computed
in NC1.

Thus the output computed by M on x is

l1 × ((l2 × (. . . (l2 × ((l1 × s1 × r1) + s2)× r2) . . .)× r2) + s1)× r1

which is equal to ∑
j

(
∏
`≥j

lj)sj(
∏
`≥j

r`).
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This expression can be evaluated in NC1. This completes the proof of the basis case, when G
has width two.

The proof for the inductive step is similar to the commutative case, combined with the
algorithm for the basis case. J

6 Conclusion

We have obtained a polynomial time lower bound, conditional on NC 6= P, for some functions
computed by CRAs over (N,min,+) and other tropical semirings. This was done by proving
that a straight-line program over such semirings using O(1) registers can solve a P-complete
problem. It followed that for some small k, the “width-k circuit value problem” over
(N,min,+) is P-complete. We have also shown that any function computed by a copyless
CRA over such semirings belongs to (functional) NC1.

An open question of interest would be to characterize the semirings (S,+,×) over which
the width-k circuit value problem is P-complete. Given the P-completeness of the circuit
value problem over the group A5 [9], one possible approach would be to try to map S onto
A5 in such a way that iterating the evaluation of a fixed semiring expression over S would
allow retrieving the result of a linear number of compositions of permutations from A5.

A future direction in the study of copyless CRAs might be to refine our NC1 analysis
by restricting the algebraic properties of the underlying finite automaton, along the lines
described in the context of ordinary finite automata (see Straubing [24] for a broader
perspective). The way to proceed is not immediately clear however since merely restricting
the finite automaton (say to an aperiodic automaton) would not reduce the strength of the
model unless the interplay between the registers is also restricted.
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