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Abstract

In this paper we study arithmetic computations over non-associative, and non-commutative
free polynomials ring F{x1, x2, . . . , xn}. Prior to this work, the non-associative arithmetic model
of computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10]. They were
interested in completeness and explicit lower bound results.

We focus on two main problems in algebraic complexity theory: Polynomial Identity Testing
(PIT) and polynomial factorization over F{x1, x2, . . . , xn}. We show the following results.

1. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn} of
degree d, we give a deterministic poly(n, s, d) algorithm to decide if f is identically zero
polynomial or not. Our result is obtained by a suitable adaptation of the PIT algorithm
of Raz-Shpilka [RS05] for non-commutative ABPs.

2. Given an arithmetic circuit C of size s computing a polynomial f ∈ F{x1, x2, . . . , xn}
of degree d, we give an efficient deterministic algorithm to compute the circuits for the
irreducible factors of f in time poly(n, s, d) when F = Q. Over finite fields of characteristic
p, our algorithm runs in time poly(n, s, d, p).

1 Introduction

Non-commutative computation, introduced in complexity theory by Hyafil [Hya77] and Nisan
[Nis91], is a central field of algebraic complexity theory. The main algebraic structure of inter-
est is the free non-commutative ring F〈X〉 over a field F, where X = {x1, x2, · · · , xn} is a set of free
non-commuting variables. One of the main problems in the subject is non-commutative Polynomial
Identity Testing. The problem can be stated as follows:

Let f ∈ F〈X〉 be a polynomial represented by a non-commutative arithmetic circuit C. The
polynomial f can be either given by a black-box for C (using which we can evaluate C on matrices
with entries from F or an extension field), or the circuit C may be explicitly given. The algorithmic
problem is to check if the polynomial computed by C is identically zero.

We recall the formal definition of a non-commutative arithmetic circuit.
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Definition 1. A non-commutative arithmetic circuit C over a field F and indeterminates
x1, x2, · · · , xn is a directed acyclic graph (DAG) with each node of indegree zero labeled by a variable
or a scalar constant from F: the indegree 0 nodes are the input nodes of the circuit. Each internal
node of the DAG is of indegree two and is labeled by either a + or a × (indicating that it is a plus
gate or multiply gate, respectively). Furthermore, the two inputs to each × gate are designated as
left and right inputs which is the order in which the gate multiplication is done. A gate of C is
designated as output. Each internal gate computes a polynomial (by adding or multiplying its input
polynomials), where the polynomial computed at an input node is just its label. The polynomial
computed by the circuit is the polynomial computed at its output gate.

Since the cancellation of terms are restricted by non-commutativity, it is generally believed that
the polynomial identity question could be easier in non-commutative setting than identity testing
problem in commutative setting. This is partially supported by the deterministic polynomial-time
white-box PIT algorithm for non-commutative ABP [RS05]. Such a result in commutative setting
will be a huge breakthrough 1. Yet, the progress towards a deterministic PIT result for general
non-commutative arithmetic circuits is very slow. For example, such an algorithm is missing even
for non-commutative skew circuits. In this work, we show that it is the property of associativity
that makes the problem hard. In particular consider the non-commutative and non-associative
ring of polynomials F{x1, x2, . . . , xn} 2 where every monomial comes with a bracketing order of
multiplication. For example, in this model (x1(x2x1)) is different from ((x1x2)x1) where as a
non-commutative monomial they are the same. Previously, the non-associative arithmetic model
of computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10]. They showed
completeness and explicit lower bound results for this model. We show the following result about
PIT.

Theorem 1. Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit
of size s. Then in deterministic poly(s, n, d) time we can test if f is an identically zero polynomial
in F{X}.

Remark 1. We note that our algorithm in Theorem 1 does not depend on the choice of the field
F. A recent result of Lagarde et al. [LMP16], among other results, show an exponential lower
bound, and a deterministic polynomial-time PIT algorithm over R for non-commutative circuits
where all parse trees in the circuit are isomorphic. We also note that Arvind et al. [AR16] show
an exponential lower bound for set-multilinear arithmetic circuits where for each monomial, all its
parse trees are unique, but two distinct monomials can have distinct parse tree structures.

Next, we consider the polynomial factorization problem over F{X}. Over usual commutative
setting the polynomial factorization problem is defined as follows: Given an arithmetic circuit C
computing a multivariate polynomial f(x1, x2, . . . , xn) ∈ F[X] of degree d, find circuits for the
irreducible factors of f efficiently. A remarkable result of Kaltofen [Kal] solves the problem in
randomized poly(n, s, d) time and finding a deterministic solution is an outstanding open problem.
Recently, it has been proved that the complexity of deterministic polynomial factorization problem
and the PIT problem are polynomially equivalent [KSS15]. A natural question is to study the
problem over F〈X〉. A key feature of non-commutative ring of polynomial is that F〈X〉 is not

1The situation is similar even in the lower bound case where Nisan proved that non-commutative determinant or
permanent polynomial would require exponential-size algebraic branching program [Nis91].

2Sometime we denote it by F{X}.
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even an unique factorization domain. A recent result of Arvind et al. [AJR15] shows that with
additional promise that the factors are variable disjoint, one can solve the problem efficiently and
such a restriction ensures that the irreducible factorization is unique. In this paper we observe that
F{X} is an unique factorization domain and we can solve the problem of finding irreducible factors
(by circuits) in deterministic polynomial time.

Theorem 2. Let f(x1, x2, . . . , xn) ∈ F{X} be a degree d polynomial given by an arithmetic circuit of
size s. Then if F = Q, in deterministic poly(s, n, d) time we can output the circuits for the irreducible
factors of f . Over positive characteristic fields F where char(F) = p, we get a deterministic
poly(s, n, d, p) time algorithm.

Outline of the proofs

• Identity Testing Result: The algorithm is based on a suitable adaptation of white-box
PIT algorithm for non-commutative ABPs [RS05]. We note that like Raz-Shpilka [RS05] PIT
algorithm, if given circuit computes a nonzero polynomial f ∈ F{X}, then this algorithm
output a certificate monomial m such that coefficient of m in f is nonzero. We first sketch
the main steps of the algorithm in [RS05] in a way that fits to our purpose. This view of their
algorithm was also used in designing non-commutative ABP interpolation algorithm [AMS10].

The algorithm processes the ABP layer by layer. At layer i of the ABP, algorithm maintains
a set Bi of linearly independent coefficients vector of monomials and their size is bounded by
width of the layer. The set Bi has the property that all the coefficients vector for monomials
at the layer i can be written as a linear combination of the vectors in Bi. The construction
of Bi+1 from Bi can be done efficiently. Clearly the identity testing problem can be solved
by observing the set Bd where d is the depth of the ABP.

Now we describe the main steps of our PIT algorithm for polynomials over F{X} given by
circuits. Let f be the input polynomial given by the circuit C. It is an easy observation that
we can think the monomials of f are encoded over F〈X, (, )〉 preserving the multiplication
structure (Observation 1). Also, w.l.o.g assume that the × gates are of fan-in two and the
+ gates are of unbounded fan-in. We can also compute different homogeneous degree parts
{Cj : 1 ≤ j ≤ d} from the given circuit efficiently and it is enough to test each of the circuits
Cj for identity. So we only sketch the identity testing steps for a homogeneous degree d
polynomial given by a circuit C.

For each degree j ≤ d such that there is a degree j gate in the circuit C, algorithm maintains
a set Bj of linearly independent coefficients vector of monomials such that for all other
monomial of degree j computed by the circuit C, its coefficients vector can be written as a
linear combination of basis vectors Bj . Clearly the size of Bj is bounded by the size of the
circuit. Then we show how to obtain the set Bj+1 from all the sets {Bi : 1 ≤ i ≤ j}. For each
of the basis vectors we also keep track of the indexing monomials. In the non-associative
model a degree d monomial m = (m1m2) can be generated in unique way. So to prove that
the coefficient vector for such a monomial is in the span of Bd it is enough to look at the
vectors generated from the span of Bd1 and Bd2 where d1 = deg(m1) and d2 = deg(m2). This
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is a crucial difference from a general non-commutative circuit.

• Polynomial Factorization Over Non-associative Free Rings:

The factoring algorithm builds on the PIT algorithm outlined above. In an earlier paper,
Arvind et al. observed that given a monomial m and a homogeneous non-commutative
circuit C, one can compute the formal left and right derivatives of C with respect to m
efficiently [AJR15]. We need this result too in our algorithm. To sketch the algorithm,
consider an easy case when the given polynomial f can be factored as f = gh with the
additional promise that the constant terms of f, g, h are zero. Let the degrees of f, g, h are
d, d1, d2 respectively. Clearly fd = gd1hd2 where these are homogeneous degree d, d1, d2 parts.
Invoking the PIT algorithm over Cd we recover any nonzero monomial m = (m1 m2) of degree
d in fd along with its coefficient cm(f)3. Then clearly, for a nontrivial factorization m1 is a
nonzero monomial in g and m2 is a nonzero monomial in h. Notice that the left derivative of
Cd with respect to m1 gives cm1(g) hd2 and the right derivative of Cd with respect to m2 gives
cm2(h) gd1 . We use these derivative circuits and the non-associative structure of the circuit,
to gradually build circuits for different homogeneous parts of g and h. The case where f , g,
and h may have nonzero constant terms, is technically more complicated but the essential
ideas are similar.

Organization

The paper is organized as follows. In Section 2, we state and prove some simple properties of
non-associative and non-commutative polynomials useful for our proofs. In Section 3 we prove
Theorem 1. In Section 4 we prove Theorem 2. We state a few open problems in Section 5.

2 Preliminaries

For an arithmetic circuit C, a parse tree for a monomial m is a multiplicative sub-circuit of C
rooted at the output gate defined by the following process starting from the output gate:

• At each + gate retain exactly one of its input gates.

• At each × gate retain both its input gates.

• Retain all inputs that are reached by this process.

• The resulting subcircuit is multiplicative and computes a monomial m (with some coefficient).

Over the non-associative model F{X}, the same definition for the parse tree of a monomial
applies and as already mentioned in the introduction that each such parse tree (or the generation
of the monomial) comes with a bracketing order of multiplication. It is convenient to view a
polynomial in F{x1, . . . , xn} as an element in the non-commutative ring F〈x1, . . . , xn, (, )〉 where
we introduce two auxiliary variables ( and ) (for left and right bracketing) to encode the parse tree
structure of any monomial. We illustrate the encoding by the following example.

3For any polynomial f and a monomial m we use the notation cm(f) to denote the coefficient of m in f .
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Consider the following example of a monomial in non-associative model whose parse tree is
shown in Figure 1a. The encoding of the monomial in F〈x1, . . . , xn, (, )〉 is simply (( x y ) y ) and
shown in Figure 1b.

×

×

x y

y

(a) A non-associative and non-commutative monomial
xyy

×

×

×

( x

×

y )

×

y )

(b) Corresponding non-commutative bracketed mono-
mial ((xy) y).

Figure 1: Non-associative & non-commutative monomial and its corresponding non-commutative
bracketed monomial

Consider a polynomial f ∈ F{X} given by an arithmetic circuit C. One can easily get an
equivalent polynomial f̃ ∈ F〈X, (, )〉 computed by a circuit C̃ by just introducing the bracketing
structure in each multiplication gate in C from the bottom of the circuit. For example, see Figure
2a and Figure 2b where fi, gi, hi’s are polynomials computed by sub-circuits. Clearly the bracket
variables preserve the parse tree structure and does not trigger any new cancellations. The following
fact is immediate.

+

×

f1 f2

×

g1 g2

×

h1 h2

(a) C computing a non-associative,
non-commutative polynomial.

+

×

×

( f1

×

f2 )

×

×

( g1

×

g2 )

×

×

( h1

×

h2 )

(b) C̃ computing the non commutative polynomial cor-
responding C.

Figure 2: Non-associative circuit and its corresponding non-commutative bracketed circuit

Observation 1. f ∈ F{X} 6= 0 if and only if f̃ ∈ F〈X, (, )〉 6= 0.

A free non-commutative ring F〈X〉 is not a unique factorization domain (U.F.D). Consider the
following standard example : xyx+x = x(yx+1) = (xy+1)x. In contrast, the non-associative free
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ring F{X} is U.F.D. This property is crucial to even define the polynomial factorization problem
studied in this paper.

Proposition 1. Over any field F the non associative free ring F{X} is a unique factorization
domain.

The proof of the proposition follows simply from the fact that each monomial in F{X} can
be generated in a unique way. Given a non-commutative circuit C computing a homogeneous
polynomial in F〈X〉 and a monomial m over X, one can talk of the left and right derivatives of C
w.r.t m. This notion was first considered by Arvind et al. in [AJR15]. The polynomial f computed
by C can be expressed as follows:

f =
∑
α

aαm ·mα +Rm.

The first part contains all the monomials of the form m ·mα where aα ∈ F and the other monomials
form the polynomial Rm. Then the left derivative

∂LC

∂m
=

∑
α

aαmα.

Similarly we can define the right derivative. We note that circuits for left and right derivatives can
be efficiently computed from the given circuit C. In [AM08, AMS10, AJR15], ideas similar to this
were implicit. We briefly recall this in the following lemma.

Lemma 1. Given a non-commutative circuit C of size s computing a homogeneous polynomial
f of degree d in F〈X〉 and monomial m, the left and right derivatives ∂LC

∂m and ∂RC
∂m can be com-

puted deterministically in time poly(n, d, s) and the algorithm outputs the circuits Cm,L and Cm,R
representing such derivatives.

Proof. We explain the ideas only for left derivative, as similar ideas can be used for right derivative.
Let m be a degree d′ monomial and the homogeneous polynomial f of degree d computed by the
circuit C as before. Now we can construct a small substitution deterministic finite automaton
(DFA) A with d′+2 states, which recognizes set of all strings of length d with prefix m (i.e., strings
of the form m ·Xd−d′) and substitutes 1 for prefix m. The transition matrices of the DFA can be
represented by (d′+ 2)× (d′+ 2) matrices. Now evaluating the circuit C on the transition matrices

we recover the circuit for ∂LC
∂m in the (1, d

′
+ 1)th entry of the final output matrix.

Similarly we can define derivative of non-homogeneous polynomial f . The same matrix substi-
tution works for non-homogeneous polynomials as well. We first remove constant term from f if
any (e.g., by homogenization) and then evaluating the resulting circuit C on the transition matrices

we recover the circuit for ∂LC
∂m in the (1, d

′
+ 1)th entry of the final output matrix.

As discussed above, the non-associative circuits can be encoded as non-commutative circuits
over the variables {X, (, )}, the left and right derivatives with respect to a given monomial can
be efficiently computed. We use this in Section 4. We also note the following simple fact (see
e.g., [SY10]) that the homogeneous parts of any non-commutative polynomial f given by a circuit
C can be computed efficiently.
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Lemma 2. Given a non-commutative circuit C of size s computing a non-commuative polynomial
f of degree d in F〈X〉, one can compute homogeneous circuits Cj (where each gate computes a
homogeneous polynomial) for jth homogeneous part fj of f , where 0 ≤ j ≤ d, deterministically in
time poly(n, d, s).

3 Identity Testing Over Non-associative Free Rings

In this section we describe our identity testing algorithm. By Lemma 2, we assume that the given
circuit C is homogenized (i.e. every gate computes a homogeneous polynomial). Also, the × gates
have fan-in 2, + gates have unbounded fan-in and the top gate is a sum gate. We also assume
w.l.o.g that + and × gates alternate in the circuit (otherwise we introduce sum gates with fan-in
1).

We define the jth-layer to be the set of sum gates in the circuit computing degree j homogeneous
polynomials. Let s+ be the total number of sum gates in C. The idea is to consider a vector of
coefficients Vm ∈ Fs+ corresponding to a monomial m indexed by sum gates of g in C.

Vm[g] = coeffm(fg)

where fg is the polynomial computed at the sum gate g.

We maintain a set of linearly independent basis vectors Bj for each j ∈ [d]-layer. The sets of
vectors we construct inductively. Note that |Bj | ≤ s. Obviously the set B1 can be easily constructed.
Inductively we assume that all the sets Bj : 1 ≤ j ≤ d − 1 are already constructed. We show the
construction of Bd. It is clear that the identity testing follows directly once we can construct Bd.

We now describe the construction for the d-layer assuming we have basis Bj for every j < d.
Consider a × gate with its children computing homogeneous polynomials of degree d1 and d2
respectively. Notice that d = d1 + d2 and 0 < d1, d2 < d. Then consider the monomial set

M = {m1m2 | Vm1 ∈ Bd1 and Vm2 ∈ Bd2}

We construct vectors {Vm | m ∈M} as follows.

Vm1m2 [g] =
∑

(gd1 ,gd2 )

Vm1 [gd1 ]Vm2 [gd2 ]

where g is a + gate in the d-layer, gd1 is a + gate in the d1-layer and gd2 is a + gate in the
d2-layer and there is a × gate which is input to g and computes the product of gd1 and gd2 . Let
Bd1,d2 be a maximal linearly independent subset of {Vm | m ∈ M}. Then we let Bd be a maximal
linearly independent subset of ⋃

d1+d2=d

Bd1,d2 .

Claim 1. For every monomial m of degree d, Vm is in the span of Bd.
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Proof. Let m = m1m2 and the degree of m1 is d1 and the degree of m2 is d2
4. By Induction

Hypothesis Vm1 and Vm2 are in the span of Bd1 and Bd2 respectively and hence

Vm1 =

D1∑
i=1

αiVmi Vmi ∈ Bd1

Vm2 =

D2∑
j=1

βjVm′j Vm′j ∈ Bd2

where Di is the size of Bdi . Now, for a gate g in the d-layer,

Vm[g] =
∑

(gd1 ,gd2 )

Vm1 [gd1 ]Vm2 [gd2 ]

=
∑

gd1 ,gd2

(

D1∑
i=1

αiVmi [gd1 ])(

D2∑
j=1

βjVm′j [gd2 ]) Induction Hypothesis

=

D1∑
i=1

D2∑
j=1

αiβj
∑

gd1 ,gd2

Vmi [gd1 ]Vm′j [gd2 ]

=

D1∑
i=1

D2∑
j=1

αiβjVmim′j [g] by construction

Thus Vm is in the span of Bd1,d2 and hence in the span of Bd.

Now given a circuit C of size s computing a polynomial f ∈ F{X} of degree ≤ d, we compute
the homogeneous circuits Cj : 0 ≤ j ≤ d (Lemma 2) efficiently and run the above algorithm on
each of the circuits Cj to check whether f is identically zero. This completes the proof of Theorem
1.

4 Polynomial Factorization Over Non-associative Free Rings

In this section we give an efficient factorization algorithm for polynomials in F{x1, x2, . . . , xn} which
outputs the factors of the input polynomial upto a scalar multiple. The algorithm uses the PIT
algorithm over F{x1, x2, . . . , xn} as a main ingredient. It also crucially use the fact that the free
ring F{X} is U.F.D by Proposition 1. Before giving the complete proof we discuss an easy case
first.

Lemma 3. Let f ∈ F{X} be given by a circuit C of size s and f = g · h where the degree of f, g, h
are d, d1, d2 respectively. Additionally, it is promised that the constant terms in f, g, h are all zero.
Then in deterministic poly(n, d, s) time we can compute the circuits for g and h.

4Here a crucial point is that for a non-associative monomial of degree d, such a choice for d1 and d2 is unique.
This is a place where a general non-commutative circuit behaves very differently.
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Proof. Using Lemma 2, we first compute the circuits Cj : 1 ≤ j ≤ d for the homogeneous jth part
of the polynomial f which is fj . Clearly fd = gd1hd2 . We run the PIT algorithm on the circuit
Cd to extract a monomial m of degree d along with its coefficient cm(fd) in fd. Notice that the
monomial m is of the form m = (m1 m2). If g and h are nontrivial factors of f then it must be the
case that m1 and m2 are monomials in g and h respectively. Compute the circuits for the left and
right derivatives with respect to m1 and m2.

∂LCd
∂m1

= cm1(gd1) · hd2

∂RCd
∂m2

Cd = cm2(hd2) · gd1

In general the (i+ d2)
th : i ≤ d− d2 homogeneous part of f can be expressed as follows.

fi+d2 = gihd2 +

i+d2−1∑
t=i+1

gthd2 − (t−i)

We depict the circuit Ci+d2 for the polynomial fi+d2 in Figure 3. The top gate of the circuit is a
sum of polynomial fan-in under which there are product gates. From Ci+d2 , we construct another
circuit C ′i+d2 by just keeping the product gates whose left degree is i and right degree is d2. The
resulting circuit is shown in Figure 4. The circuit C ′i+d2 must compute gihd2 . By taking the right
partial of C ′i+d2 with respect to m2, we obtain the circuit for cm2(hd2) gi.

∑
∏

i d2

∏

k l

∏

i d2

Figure 3: Circuit Ci+d2 of i+ d2th homogeneous part of f

∑
∏

i d2

∏

i d2

Figure 4: C ′i+d2 obtained by keeping only degree (i, d2) type product gates, this computes gihd2
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We repeat the above construction for each i ∈ [d1] to obtain circuits for cm2(hd2)gi for 1 ≤ i ≤ d1.
Similarly we can get the circuits for cm1(gd1)hi for each i ∈ [d2] using the left derivatives with respect
to the monomial m1.

By adding the above circuits we get the circuits Cg and Ch for cm2(hd2)g and cm1(gd1)h re-

spectively. We set Cg =
cm2 (hd2 )

cm(f) g so that CgCh = f . Using PIT algorithm one can easily check
whether g and h are nontrivial factors. In that case we further recurse on g and h to obtain their
irreducible factors.

Now we tackle the general case where in f, g, h the constant terms can be arbitrary. In the
subsequent proofs we assume deg(g) ≥ deg(h) for clarity and recover the circuits for g and h.
The case when deg(g) < deg(h) can be handled in an analogous way by changing the role of left
derivatives to right derivatives. We handle the case deg(g) = deg(h) separately as follows.

Lemma 4. Let f = (g+α)(h+ β) and deg(g) = deg(h). Given f by a circuit C we can efficiently
compute γ1g and γ2h, where γ1 = cm2(h) and γ2 = cm1(g).

Proof. We note that f = (g + α)(h + β) = g h + β g + α h + α β. Using the PIT algorithm
on the highest degree homogeneous part of f , we get a maximum degree monomial m in f . Let
m be of the structure m = (m1 m2). Left deriving the circuit w.r.t the monomial m1 we get
cm1(g)h + βcm1(g) + αcm1(h), removing the constant term we get a circuit for cm1(g)h = γ2h.
Similarly right deriving w.r.t m2 we get cm2(h)g+ βcm2(g) +αcm2(h), removing the constant term
we get a circuit for cm2(h)g = γ1g.

When deg(g) > deg(h) we can recover h + β entirely (upto a scalar factor) and we need to
obtain the homogeneous parts of g separately.

Lemma 5. Let f = (g + α) (h + β) be a polynomial of degree d in F{X} given by a circuit C of
size s. Let deg(g) > deg(h). Then we can efficiently generate the circuit C ′ for γ2(h + β) where
γ2 = cm1(g).

Proof. Using PIT algorithm on the highest degree homogeneous part of f we get a monomial m ∈ f
of degree d such that m = (m1m2). Notice that f = g h+α h+ β g+α β. Since deg(g) > deg(h),
if we take the left partial derivative of f with respect to m1, we will get cm1(g) (h + β). So, C ′

computes cm1(g) (h+ β) and it can be efficiently constructed in time poly(n, s, d).

By extracting homogeneous parts from the circuit C ′ obtained above we get circuits for {γ2hi :
i ∈ [d2]}. We also get the constant term γ2β. Now we obtain the homogeneous components of g as
follows.

Lemma 6. Let f = (g + α) (h + β) of degree d, and α, β ∈ F , degree of g is d1 and degree of h
is d2 . Let the polynomial f be given by a circuit and also assume that d1 > d2. Let m be a degree
d monomial present in f such that m = (m1 m2). Then one can efficiently compute circuits for
{γ1gi : i ∈ [d1 − d2 + 1, d1]}, where γ1 = cm2(h).

Proof. Fix any i ∈ [d1 − d2 + 1, d1], and compute the homogeneous (i+ d2)
th part of f by a circuit

Ci+d2 . Similar to Lemma 3, we focus on the sub-circuits of Ci+d2 formed by × gate of the degree
type (i, d2). Since i is at least d1 − d2 + 1, such gates can compute the multiplication of a degree i
polynomial with a degree d2 polynomial. Then, by taking the right partial derivative with respect
to m2 we recover the circuits for cm2(hd2) gi for any i ∈ [d1 − d2 + 1, d1].
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Now the goal is to recover the circuits for gi where 1 ≤ i ≤ d1 − d2 (upto a scalar multiple)
and also the constant terms α and β. When i ≤ d1 − d2 a product gate of type (i, d2) can entirely
come from g and so the above technique does not work directly.

Claim 2. The (d2 + i)th homogeneous part of f is given by fd2+i =
∑d2−1

j=0 gd2+i−j hj + gi hd2
for 1 ≤ i ≤ d1 − d2. From the circuit Cd2+i of fd2+i, we can efficiently compute the circuits for
{γ1gi : 1 ≤ i ≤ d1 − d2}, where γ1 = cm2(hd2), and h0 = β.

Proof. For simplicity we describe the case when i = d1 − d2. Then

fd1 = βgd1 +

d2−1∑
j=1

gd1−j hj + gd1−d2 hd2 .

From Lemma 5 we have a circuit C ′ for γ2(h+ β), extracting the constant term we get γ2β. From
Lemma 6 we have a circuit C̃ for γ1gd1 , multiplying these we get a circuit C∗ for γ1γ2βgd1 . Since
γ1γ2 = cm(f) we can divide by cm(f) and get a circuit for βgd1 . Note that we have circuits for
every term appearing in the sum (only degree more that d1 − d2 homogeneous parts of g appear
in the sum) except gd1−d2 . Subtracting out βgd1 +

∑d2−1
j=1 gd1−j hj from the circuit Cd1 we are

left with the circuit for the polynomial gd1−d2hd2 . Right deriving the resulting circuit w.r.t m2

(obtained from PIT algorithm as m = m1m2) we get a circuit for cm2(h)gd1−d2 .

For gi , 1 ≤ i < d1 − d2, note that we will have circuits for all the terms appearing in the sum.
Again subtracting and deriving we will get a circuit for γ1gi

Now we have circuits for γ1(
∑d1

i=1 gi) and γ2(
∑d2

i=1 hi) in the case deg(g) > deg(h). If
deg(g) < deg(h) then one can simply interchange left and right partial derivatives in the above
lemmas and get circuits for γ1(

∑d1
i=1 gi) and γ2(

∑d2
i=1 hi). When deg(g) = deg(h) cases we have

circuits for γ1g and γ2h by Lemma 4. Now we explain how to compute the constant terms of the
individual factors.

First we recall that given a monomial m and a non-commutative circuit C, the coefficient of
m in C can be computed in deterministic polynomial time [AMS10]. We know that f0 = α · β.
We compute the coefficient of the monomial m1 in the circuits γ1γ2gh, γ1g, and in γ2h. Let those
coefficients be a, b, c respectively. Moreover, we know that δ = γ1γ2 is the coefficient of (m1 m2) in
f which we can compute. Also, let the coefficient of m1 in f be γ.

Now equating the coefficient of m1 from both side of the equation f = (g + α)(h + β), we get
the following expression

f0 ·
b

γ1
+ α · (a

δ
− γ) + α2 · c

γ2
= 0

On further simplification we obtain that

f0bδ + (αγ1) · (a− γδ) + c · (αγ1)2 = 0

One can think the above as a quadratic equation in A where A = αγ1 as

c ·A2 + (a− γδ) ·A+ f0bδ = 0
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By solving the above quadratic equation we get two solutions A1 and A2 for αγ1. Notice that
γ2β = δf0

A . This clearly provides circuits for (g + α) and (h + β) and the circuits depend on the
value of A. Then we can run the PIT algorithm to decide the correct value of A that to be used.

Over Q we can just solve the quadratic equation in deterministic polynomial time using standard
method. Over finite field F = Fq were q = pr, one can solve this problem deterministically in
time poly(p, r) [vzGS92]. Using randomness, one can solve this problem in time poly(log q) using
Berlekamp’s factoring algorithm [Ber71]. This also completes the proof of Theorem 2.

5 Conclusion

The result of Hrubes, Wigderson, and Yehudayoff [HWY10] shows an exponential circuit-size lower
bound for an explicit polynomial in non-associative and commutative arithmetic circuit model. It
will be very interesting to complement their result in PIT domain, i.e. design an efficient white-box
polynomial identity testing algorithm for non-associative but commutative circuit model. To the
best of our understanding, even a randomized polynomial-time algorithm is not known.

The PIT algorithm presented in this paper is white-box. Can one design an efficient black-
box (even randomized) identity testing algorithm for non-associative, and non-commutative circuit
model? Of course, for such an algorithm one should be allowed to evaluate the circuit over any
algebra even non-associative. In particular, there is no known Amitsur-Levitzki type theorem
[AL50] for this model which can be algorithmically useful, although the theory of non-associative
algebra is well-studied in mathematics.
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