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Abstract

We study the general problem of testing whether an unknown discrete distribution belongs
to a given family of distributions. More specifically, given a class of distributions P and sample
access to an unknown distribution P, we want to distinguish (with high probability) between the
case that P ∈ P and the case that P is ε-far, in total variation distance, from every distribution
in P. This is the prototypical hypothesis testing problem that has received significant attention
in statistics and, more recently, in theoretical computer science.

The sample complexity of this general problem depends on the underlying family P. We are
interested in designing sample-optimal and computationally efficient algorithms for this task.
The main contribution of this work is a new and simple testing technique that is applicable to
distribution families whose Fourier spectrum approximately satisfies a certain sparsity property.
As the main applications of our Fourier-based testing technique, we obtain the first non-trivial
testers for two fundamental families of discrete distributions: Sums of Independent Integer
Random Variables (SIIRVs) and Poisson Multinomial Distributions (PMDs). Our testers for
these families are nearly sample-optimal and computationally efficient. We also obtain a tester
with improved sample complexity for discrete log-concave distributions. To the best of our
knowledge, ours is the first use of the Fourier transform in the context of distribution testing.
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1 Introduction

1.1 Background and Motivation The prototypical inference question in the area of distri-
bution property testing [BFR+00] is the following: Given a set of samples from a collection of
probability distributions, can we determine whether these distributions satisfy a certain prop-
erty? During the past two decades, this broad question – whose roots lie in statistical hypothe-
sis testing [NP33, LR05] – has received considerable attention by the computer science commu-
nity, see [Rub12, Can15] for two recent surveys. After two decades of study, for many properties
of interest there exist sample-optimal testers (matched by information-theoretic lower bounds)
[Pan08, CDVV14, VV14, DKN15, DK16].

In this work, we focus on the problem of testing whether the unknown distribution belongs to a
given family of discrete structured distributions. Let P be a family of discrete distributions over a
total order (e.g., [n]) or a partial order (e.g., [n]k). The problem of membership testing for P is the
following: Given sample access to an unknown distribution P (effectively supported on the same
domain as P), we want to distinguish between the case that P ∈ P versus dTV (P,P) ≥ ε. (Here,
dTV denotes the total variation distance between distributions.) The sample complexity of this
problem depends on the underlying family P. For example, if P contains a single distribution over
a domain of size n, the sample complexity of the testing problem is Θ(n1/2/ε2) [CDVV14, DKN15].

In this work, we give a general technique to test membership in various distribution families over
discrete domains. Before we state our results in full generality, we present concrete applications to
a number of well-studied distribution families.

1.2 Our Results Our first concrete application is a nearly sample-optimal algorithm for testing
sums of independent integer random variables (SIIRVs). Formally, an (n, k)-SIIRV is a sum of
independent integer random variables each supported in {0, 1, . . . , k − 1}. SIIRVs comprise a rich
class of distributions that arise in many settings. The special case of k = 2, SIIRVn,2, was
first considered by Poisson [Poi37] as a non-trivial extension of the Binomial distribution, and
is known as Poisson binomial distribution (PBD). In application domains, SIIRVs have many
uses in research areas such as survey sampling, case-control studies, and survival analysis, see
e.g., [CL97] for a survey of the many practical uses of these distributions. We remark that these
distributions are of fundamental interest and have been extensively studied in probability and
statistics [Che52, Hoe63, DP09b, Pre83, Kru86, BHJ92, CL10, CGS11]. We show the following:

Theorem 1.1 (Testing SIIRVs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to a
distribution P over N, there exists an algorithm (Algorithm 1) which outputs either accept or reject,
and satisfies the following:

1. if P ∈ SIIRVn,k, then it outputs accept with probability at least 3/5;

2. if dTV (P,SIIRVn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takes O
(
kn1/4

ε2
log1/4 1

ε + k2

ε2
log2 k

ε

)
samples from P, and runs in time

n(k/ε)O(k log(k/ε)).

Prior to our work, no non-trivial tester was known for (n, k)-SIIRVs for any k > 2. [CDGR16]

showed a sample lower bound of Ω
(
k1/2n1/4

ε2

)
, but their techniques did not yield a corresponding

sample upper bound. The special case of PBDs (k = 2) was studied by Acharya and Daskalakis [AD15]
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who obtained a tester with sample complexity O
(
n1/4

ε2

√
log 1/ε+ log5/2 1/ε

ε6

)
(and running time

O
(
n1/4

ε2

√
log 1/ε+ (1/ε)O(log2 1/ε)

)
and a sample lower bound of Ω(n1/4/ε2). Our techniques also

yield the following corollary:

Theorem 1.2 (Testing PBDs). Given parameters n ∈ N, ε ∈ (0, 1], and sample access to a
distribution P over N, there exists an algorithm (Algorithm 1) which outputs either accept or
reject, and satisfies the following.

1. if P ∈ PBDn, then it outputs accept with probability at least 3/5;

2. if dTV (P,PBDn) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takes O
(
n1/4

ε2
log1/4 1

ε + log2 1/ε
ε2

)
samples from P, and runs in time n1/4 ·

Õ
(
1/ε2

)
+ (1/ε)O(log log(1/ε)).

The sample complexity in the theorem above follows from Theorem 1.1, for k = 2. The improved
running time relies on a more efficient computational “projection step” in our general framework,
which builds on the geometric structure of Poisson Binomial distributions and allows us to avoid
an (1/ε)O(log(1/ε)) dependence. In summary, as a special case of Theorem 1.1, we obtain a tester
for PBDs whose sample complexity is optimal as a function of both n and 1/ε (up to a logarithmic
factor).

We further remark that the guarantees provided by the above two theorems are actually stronger
than the usual property testing one; namely, whenever the algorithm returns accept, then it also
provides a (proper) hypothesis H such that dTV (P,H) ≤ ε with probability at least 3/5.

An alternate generalization of PBDs to the high-dimensional setting is the family of Poisson
Multinomial Distributions (PMDs). Formally, an (n, k)-PMD is any random variable of the form
X =

∑n
i=1Xi, where the Xi’s are independent random vectors supported on the set {e1, e2, . . . , ek}

of standard basis vectors in Rk. PMDs comprise a broad class of discrete distributions of funda-
mental importance in computer science, probability, and statistics. A large body of work in the
probability and statistics literature has been devoted to the study of the behavior of PMDs un-
der various structural conditions [Bar88, Loh92, BHJ92, Ben03, Roo99, Roo10]. PMDs generalize
the familiar multinomial distribution, and describe many distributions commonly encountered in
computer science (see, e.g., [DP07, DP08, Val08, VV11]). Recent years have witnessed a flurry
of research activity on PMDs and related distributions, from several perspectives of theoretical
computer science, including learning [DDS12, DDO+13, DKS16a, DKT15, DKS16b], property test-
ing [Val08, VV10, VV11], computational game theory [DP07, DP08, BCI+08, DP09a, DP14, GT14],
and derandomization [GMRZ11, BDS12, De15, GKM15].

Theorem 1.3 (Testing PMDs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to
a distribution P over N, there exists an algorithm (Algorithm 7) which outputs either accept or
reject, and satisfies the following.

1. if P ∈ PMDn,k, then it outputs accept with probability at least 3/5;

2. if dTV (P,PMDn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takes O
(
n(k−1)/4k2k log(k/ε)k

ε2

)
samples from P, and runs in time nO(k3) ·

(1/ε)
O(k3

log(k/ε)
log log(k/ε)

)k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2).
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We also show a nearly matching sample lower bound1 of Ωk(n
(k−1)/4/ε2) (Theorem 10.1). Fi-

nally, we demonstrate the versatility of our techniques by obtaining in Section 9 a testing algorithm
for discrete log-concavity with sample complexity O(

√
n/ε2 + (log(1/ε)/ε)5/2); improving on the

previous bounds of O
(√
n/ε2 + 1/ε5

)
[ADK15] and Õ

(√
n/ε7/2

)
[CDGR16].

1.3 Our Techniques and Comparison to Previous Work The common property of these
distribution families P that allows for our unified testing approach is the following: Let P be the
probability mass function of any distribution in P. Then the Fourier transform of P is approxi-
mately sparse, in a well-defined sense.

For concreteness and due to space limitations, we elaborate for the case of SIIRVs. The start-
ing point of our approach is the observation from [DKS16a] that (n, k)-SIIRVs, in addition to
having a relatively small effective support, also enjoy an approximately sparse Fourier representa-
tion. Roughly speaking, most of their Fourier mass is concentrated on a small subset of Fourier
coefficients, which can be computed efficiently.

This suggests the following natural approach to testing (n, k)-SIIRVs: first, identify the effective
support I of the distribution P and check that it is as small as it ought to be. Then, compute the
corresponding small subset S of the Fourier domain, and check that almost no Fourier mass of P
lies outside S (otherwise, one can safely reject, as this is a certificate that P is not an (n, k)-SIIRV).
Combining the two, one can show that learning (in L2 norm) the Fourier transform of P on this
small subset S only, is sufficient to learn P itself in total variation distance. The former goal can
be performed with relatively few samples, as S is sufficiently small.

Doing so results in a distribution H, represented succinctly by its Fourier transform on S, such
that P and H are close in total variation distance. It only remains to perform a computational
“projection step” to verify that H itself is close to some (n, k)-SIIRV. This will clearly be the case
if indeed P ∈ SIIRVn,k.

We note that although the above idea is at the core of the SIIRV testing algorithm of Algo-
rithm 4, the actual tester has to address separately the case where P has small variance, which
can be handled by a brute-force learning-and-testing approach. Our main contribution is thus to
describe how to efficiently perform the second step, i.e., the Fourier sparsity testing. This is done
in Theorem 4.1, which describes a simple algorithm to perform this step: essentially, by considering
the Fourier coefficients of the empirical distribution obtained by taking a small number of samples.
Interestingly, the main idea underlying Theorem 4.1 is to avoid analyzing directly the behavior of
these Fourier coefficients – which would naively require too high a time complexity. Instead, we
rely on Plancherel’s identity and reduce the problem to the analysis of a different task: that of the
sample complexity of L2 identity testing (Proposition 4.2). By a tight analysis of this L2 tester, we
get as a byproduct that several Fourier quantities of interest (of our empirical distribution) simul-
taneously enjoy good concentration – while arguing concentration of each of these terms separately
would yield a suboptimal time complexity.

A nearly identical method works for PMDs as well. Moreover, our approach can be abstracted
to yield a general testing framework, as we explain in Section 7. It is interesting to remark that the
Fourier transform has been used to learn PMDs and SIIRVs [DKS16a, DKT15, DKS16b, DDKT16],
and therefore it may not be entirely surprising that it has applications to testing as well. However,
testing membership to a class using the Fourier transform is significantly more challenging than

1Here, we use the notation Ωk(·), Ok(·) to indicate that the parameter k is seen as a constant, focusing on the
asymptotics with regard to n, ε.
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learning: a fundamental reason being that, in contrast to the learning setting, we need to handle
distributions that are not SIIRVs and PMDs (but, indeed, are far from those). The learning
algorithms, on the other hand, work under the promise that the distribution is in the class, and thus
can leverage the specific structure of SIIRVs and PMDs. Moreover, our Fourier testing techniques
gives improved algorithms for other structured families as well, e.g., log-concavity, for which no
Fourier learning algorithm was known.

Learning and testing the Fourier transform: the advantage One may wonder how the
detour via the Fourier transform enables us to obtain better sample complexity than an approach
purely based on L2 testing. Indeed, all distributions in the classes we consider, crucially, have a
small L2 norm: for testing identity to such a distribution P, the standard L2 identity tester (see,
e.g., [CDVV14] or Proposition 4.2), which works by checking how large the L2 distance between
the empirical and the hypothesis distribution is, will be optimal. We can thus test membership of
a class of such distributions by (i) learning P assuming it belongs to the class, and then (ii) test
whether what we learned is indeed close to P using the L2 identity tester. The catch is to get
guarantees in L1 distance out of this, applying Cauchy–Schwarz would require us to learn to very
small L2 distance. Namely, if P has support size n, we would have to learn to L2 distance ε√

n
in

(i), and then in (ii) test that we are within L2 distance ε√
n

of the learned hypothesis.

However, if a distribution P has a sparse discrete Fourier transform whose effective support is
known, then it is enough to estimate only these few Fourier coefficients [DKS16a, DKS16c]. This
enables us to learn P in (i) not just to within L1 distance ε but indeed crucially within L2 distance
ε√
n

with good sample complexity. Additionally, the identity tester algorithm can be put into a

simpler form for a hypothesis with sparse Fourier transform, as previously mentioned. Now, the
tester has a higher sample complexity, roughly

√
n/ε2; but if it passes, then we have learned the

distribution P to within ε total variation distance, with much fewer samples than the Ω
(
n/ε2

)
required for arbitrary distributions over support size n.

Lastly, we note that instead of
√
n/ε2 in the sample complexity above, we can get n1/4/ε2 for

(n, k)-SIIRVs by considering the effective support of the distribution.

2 Preliminaries

Distributions and metrics For m ∈ N, we write [m] for the set {0, 1, . . . ,m − 1}, and log
(resp. ln) for the binary logarithm (resp. the natural logarithm). A probability distribution over

(discrete) domain Ω is a function P : Ω → [0, 1] such that ‖P‖1
def
=
∑

ω∈Ω P(ω) = 1; we denote by
∆(Ω) the set of all probability distributions over domain Ω.

Recall that for two probability distributions P,Q ∈ ∆(Ω), their total variation distance (or

statistical distance) is defined as dTV (P,Q)
def
= supS⊆Ω(P(S) −Q(S)) = 1

2

∑
ω∈Ω |P(ω)−Q(ω)| ,

i.e. dTV (P,Q) = 1
2‖P−Q‖1. Given a subset P ⊆ ∆(Ω) of distributions, the distance from P to P

is then defined as dTV (P,P)
def
= infQ∈P dTV (P,Q). If dTV (P,P) > ε, we say that P is ε-far from

P; otherwise, it is ε-close.

Property testing We work in the standard setting of distribution testing: a testing algorithm
for a property P ⊆ ∆(Ω) is an algorithm which, granted access to independent samples from an
unknown distribution P ∈ ∆(Ω) as well as distance parameter ε ∈ (0, 1], outputs either accept or
reject, with the following guarantees.
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• if P ∈ P, then it outputs accept with probability at least 2/3;

• if dTV (P,P) > ε, then it outputs reject with probability at least 2/3.

The two measures of interest here are the sample complexity of the algorithm (i.e., the number of
samples from the distribution it takes in the worst case), and its running time.

Classes (properties) of distributions We now recall the definition of the three classes of
discrete distributions central to this work, which all extend the family of Binomial distributions:
the first two, by allowing each summand to be non-identically distributed:

Definition 2.1. Fix any k ≥ 0. We say a random variable X is a (n, k)-Sum of Independent Integer
Random Variables ((n, k)-SIIRV) with parameter n ∈ N if it can be written as X =

∑n
j=1Xj , where

X1 . . . , Xn are independent, non-necessarily identically distributed random variables taking value
in [k] = {0, 1, . . . , k − 1}. We denote by SIIRVn,k the class of all such (n, k)-SIIRVs.

(The class of Poisson Binomial Distributions, denoted PBDn, corresponds to the case k = 2, that
is 2-SIIRVS. Equivalently, this is the generalization of Binomials where each Bernoulli summand is
allowed to have its own parameter). A different type of generalization is that of Poisson Multinomial
Distributions, where each summand is a random variable supported on the k vectors of the standard
basis of Rk, instead of [k]:

Definition 2.2. Fix any k ≥ 0. We say a random variable X is a (n, k)-Poisson Multinomial
Distribution ((n, k)-PMD) with parameter n ∈ N if it can be written as X =

∑n
j=1Xj , where

X1 . . . , Xn are independent, non-necessarily identically distributed random variables taking value
in {e1, . . . , ek} (where (ei)i∈[k] is the canonical basis of Rk). We denote by PMDn,k the class of all
such (n, k)-PMDs.

Lastly, we recall the definition of discrete log-concavity.

Definition 2.3. A distribution P over Z is said to be log-concave if it satisfies the following
conditions: (i) for any i < j < k such that P(i)P(k) > 0, P(j) > 0; and (ii) for all k ∈ Z,
P(k)2 ≥ P(k− 1)P(k+ 1). We write LCV for the class of all log-concave distributions over Z, and
LCVn ⊆ LCV for that of all log-concave distributions over [n].

Discrete Fourier transform For our SIIRV testing algorithm, we will need the following defi-
nition of the Fourier transform.

Definition 2.4 (Discrete Fourier Transform). For x ∈ R, we let e(x)
def
= exp(−2iπx). The Discrete

Fourier Transform (DFT) modulo M of a function F : [n]→ C is the function F̂ : [M ]→ C defined
as

F̂ (ξ) =

n−1∑
j=0

e

(
ξj

M

)
F (j)

for ξ ∈ [M ]. The DFT modulo M of a distribution P, P̂, is then the DFT modulo M of its
probability mass function (note that one can then equivalently see P̂(ξ) as the expectation P̂(ξ) =

EX∼F [e
(
ξX
M

)
], for ξ ∈ [M ]).
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The inverse DFT modulo M onto the range [m,m + M − 1] of F̂ : [M ] → C, is the function
F : [m,m+M − 1] ∩ Z→ C defined by

F (j) =
1

M

M−1∑
ξ=0

e

(
− ξj
M

)
F̂ (ξ),

for j ∈ [m,m+M − 1] ∩ Z.

Note that the DFT (modulo M) is a linear operator; moreover, we recall the standard fact
relating the norms of a function and of its Fourier transform, that we will use extensively:

Theorem 2.5 (Plancherel’s Theorem). For M ≥ 1 and F,G : [n]→ C, we have (i)
∑n−1

j=0 F (j)G(j) =

1
M

∑M−1
ξ=0 F̂ (ξ)Ĝ(ξ); and (ii) ‖F‖2 = 1√

M
‖F̂‖2, where F̂ , Ĝ are the DFT modulo M of F,G, re-

spectively.

(The latter equality is sometimes referred to as Parseval’s theorem.) We also note that, for our PMD
testing, we shall need the appropriate generalization of the Fourier transform to the multivariate
setting. We leave this generalization to the corresponding section, Section 8.

Tools from Probability We finally recall a classical inequality for sums of independent random
variables, due to Bennett [BLM13, Chapter 2]:

Theorem 2.6 (Bennett’s inequality). Let X =
∑n

i=1Xi, where X1, . . . , Xn are independent random
variables such that (i) E[Xi] = 0 and (ii) |Xi| ≤ α almost surely for all 1 ≤ i ≤ n. Letting
σ2 = Var[X], we have, for every t ≥ 0,

Pr[X > t] ≤ exp

(
−Var[X]

α2
ϑ

(
αt

Var[X]

))
where ϑ(x) = (1 + x) ln(1 + x)− x.

3 Some useful structural results

To establish the completeness of our algorithms, we shall rely on this lemma from [DKS16a]:

Lemma 3.1 ([DKS16a, Lemma 2.3]). Let P ∈ SIIRVn,k with
√

VarX∼P[X] = s, 1/2 > δ > 0,

and M ∈ Z+ with M > s. Let P̂ be the discrete Fourier transform of P modulo M . Then, we have

(i) Let L = L(δ,M, s)
def
=

{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)

2s

}
.

Then, |P̂(ξ)| ≤ δ for all ξ ∈ [M−1]\L. That is, |P̂(ξ)| > δ for at most |L| ≤Mk2s−1
√

log(1/δ)
values of ξ .

(ii) At most 4Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤M − 1 have |P̂(ξ)| > δ .

We then provide a simple structural lemma, bounding the L2 norm of any (n, k)-SIIRV as a
function of k and its variance only:

Lemma 3.2 (Any (n, k)-SIIRV modulo M has small L2 norm). If P ∈ Sn,k has variance s2, then

the distribution P′ defined as P′
def
= P mod M satisfies ‖P′‖2 ≤

√
8k
s .
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Proof of Lemma 3.2. By Plancherel, we have ‖P′‖22 = 1
M

∑M−1
ξ=0 |P̂′(ξ)|2 = 1

M

∑M−1
ξ=0 |P̂(ξ)|2, the

second equality due to the definition of P̂′. Indeed, for any ξ ∈ [M ],

P̂′(ξ) =

M−1∑
j=0

e−2iπ jξ
M P′(j) =

M−1∑
j=0

e−2iπ jξ
M

∑
j′∈N

j′=j mod M

P(j′) =
M−1∑
j=0

∑
j′∈N

j′=j mod M

e−2iπ j
′ξ
M P(j′)

=
∑
j∈N

e−2iπ j
′ξ
M P(j′) = P̂(ξ)

as u 7→ e−2iπu is 1-periodic. Since
∣∣∣P̂(ξ)

∣∣∣ ≤ 1 for every ξ ∈ [M ] (as P̂(ξ) = Ej∼P[e−2iπ jξ
M ]), we can

upper bound the RHS as

1

M

M−1∑
ξ=0

|P̂(ξ)|2 ≤ 1

M

∑
r≥0

∑
ξ: 1

2r+1<|P̂(ξ)|≤ 1
2r

∣∣∣P̂(ξ)
∣∣∣2 ≤ 1

M

∑
r≥0

1

22r

∣∣∣∣{ ξ ∈ [M ] :
1

2r+1
<
∣∣∣P̂(ξ)

∣∣∣ }∣∣∣∣ .
Invoking Lemma 3.1(ii) with parameter δ set to 1

2r+1 , we get that
∣∣∣{ ξ ∈ [M ] : 1

2r+1 <
∣∣∣P̂(ξ)

∣∣∣ }∣∣∣ ≤
4Mks−1

√
r + 1, from which

‖P′‖22 ≤
4k

s

∑
r≥0

√
r + 1

22r
≤ 8k

s

as desired.

4 Testing Effective Fourier Support

In this section, we prove the following theorem, which will be invoked as a crucial ingredient of
our testing algorithms. Broadly speaking, the theorem ensures one can efficiently test whether an
unknown distribution Q has its Fourier transform concentrated on some (small) effective support
S (and if this is the case, learn the vector Q̂1S , the restriction of this Fourier transform to S, in
L2 distance).

Theorem 4.1. Given parameters M ≥ 1, ε, b ∈ (0, 1], as well as a subset S ⊆ [M ] and sample
access to a distribution Q over [M ], Algorithm 1 outputs either reject or a collection of Fourier

coefficients Ĥ′ = (Ĥ′(ξ))ξ∈S such that with probability at least 7/10, all the following statements
hold simultaneously.

1. if ‖Q‖22 > 2b, then it outputs reject;

2. if ‖Q‖22 ≤ 2b and every function Q∗ : [M ] → R with Q̂∗ supported entirely on S is such that
‖Q−Q∗‖2 > ε, then it outputs reject;

3. if ‖Q‖22 ≤ b and there exists a function Q∗ : [M ] → R with Q̂∗ supported entirely on S such
that ‖Q−Q∗‖2 ≤

ε
2 , then it does not output reject;

4. if it does not output reject, then ‖Q̂1S − Ĥ′‖2 ≤
ε
√
M

10 and the inverse Fourier transform

(modulo M) H′ of the Fourier coefficients Ĥ′ it outputs satisfies ‖Q−H′‖2 ≤
6ε
5 .
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Moreover, the algorithm takes m = O
(√

b
ε2

+ |S|
Mε2

+
√
M
)

samples from Q, and runs in time

O (m |S|).

Note that the rejection condition in Item 2 is equivalent to ‖Q̂1S̄‖2 > ε
√
M , that is to having

Fourier mass more than ε2 outside of S; this is because for any Q∗ supported on S,

M‖Q−Q∗‖22 = ‖Q̂− Q̂∗‖
2

2 = ‖Q̂1S − Q̂∗1S‖
2

2 + ‖Q̂1S̄ − Q̂∗1S̄‖
2

2 ≥ ‖Q̂1S̄ − Q̂∗1S̄‖
2

2 = ‖Q̂1S̄‖
2

2

and the inequality is tight for Q∗ being the inverse Fourier transform (modulo M) of Q̂1S .

High-level idea. Let Q be an unknown distribution supported on M consecutive integers (we

will later apply this to Q
def
= P mod M), and S ⊆ [M ] be a set of Fourier coefficients (symmetric

with regard to M : ξ ∈ S implies −ξ mod M ∈ S) such that 0 ∈ S. We can further assume that we
know b ≥ 0 such that ‖Q‖22 ≤ b.

Given Q, we can consider its “truncated Fourier expansion” (with respect to S) Ĥ = Q̂1S
defined as

Ĥ(ξ)
def
=

{
Q̂(ξ) if ξ ∈ S
0 otherwise

for ξ ∈ [M ]; and let H be the inverse Fourier transform (modulo M) of Ĥ. Note that H is no
longer in general a probability distribution.

To obtain the guarantees of Theorem 4.1, a natural idea is to take some number m of samples
from Q, and consider the empirical distribution Q′ they induce over [M ]. By computing the
Fourier coefficients (restricted to S) of this Q′, as well as the Fourier mass “missed” when doing so

(i.e., the Fourier mass ‖Q̂′1S̄‖
2

2 that Q′ puts outside of S) to sufficient accuracy, one may hope to
prove Theorem 4.1 with a reasonable bound on m.

The issue is that analyzing separately the behavior of ‖Q̂′1S̄‖
2

2 and ‖Q̂′1S − Q̂′1S‖
2

2 to show
that they are both estimated sufficiently accurately, and both small enough, is not immediate.
Instead, we will get a bound on both at the same time, by arguing concentration in a different
manner – namely, by analyzing a different tester for tolerant identity testing in L2 norm.

In more detail, letting H be as above, we have by Plancherel that

∑
i∈[M ]

(Q′(i)−H(i))2 = ‖Q′ −H‖22 =
1

M
‖Q̂′ − Ĥ‖

2

2 =
1

M

M−1∑
ξ=0

|Q̂′(ξ)− Ĥ(ξ)|2

and, expanding the definition of Ĥ and using Plancherel again, this can be rewritten as

M
∑
i∈[M ]

(Q′(i)−H(i))2 = ‖Q̂1S − Q̂′1S‖
2

2 + ‖Q′‖22 − ‖Q̂′1S‖
2

2.

(The full derivation will be given in the proof.) The left-hand side has two non-negative compound

terms: the first, ‖P̂1S − Q̂′1S‖
2

2, corresponds to the L2 error obtained when learning the Fourier

coefficients of Q on S. The second, ‖Q′‖22 − ‖Q̂′1S‖
2

2 = ‖Q̂′1S̄‖
2

2, is the Fourier mass that our
empirical Q′ puts “outside of S.”

So if the LHS is small (say, order ε2), then in particular both terms of the RHS will be small
as well, effectively giving us bounds on our two quantities in one shot. But this very same LHS is

8



Algorithm 1 Testing the Fourier Transform Effective Support

Require: parameters M ≥ 1, b, ε ∈ (0, 1]; set S ⊆ [M ]; sample access to distribution Q over [M ]

1: Set m←
⌈
C(
√
b
ε2

+ |S|
Mε2

+
√
M)
⌉

. C > 0 is an absolute constant

2: Draw m′ ← Poi(m); if m′ > 2m, return reject
3: Draw m′ samples from Q, and let Q′ be the corresponding empirical distribution over [M ]

4: Compute ‖Q′‖22, Q̂′(ξ) for every ξ ∈ S, and ‖Q̂′1S‖
2

2 . Takes time O (m |S|)
5: if m′2‖Q′‖22 −m′ >

3
2bm

2 then return reject

6: else if ‖Q′‖22 −
1
M ‖Q̂′1S‖

2

2 ≥ 3ε2
(
m′

m

)2
+ 1

m′ then return reject

7: else
8: return Ĥ′ = (Q̂′(ξ))ξ∈S
9: end if

very reminiscent of a known statistic [CDVV14] for testing identity of distributions in L2. So, one
can analyze the number of samples required by analyzing such an L2 tester instead. This is what
we will do in Proposition 4.2.

Proof of Theorem 4.1. Given m′ ∼ Poi(m) samples from Q, let Q′ be the empirical distribution
they define. We first observe that with probability 2−Ω(ε2m/b) < 1

100 , we have m′ ∈ [1 ± ε
100
√
b
]m

and thus the algorithm does not output reject in Step 1 (this follows from standard concentration
bounds on Poisson random variables). We will afterwards assume this holds. By Plancherel, we
have ∑

i∈[M ]

(Q′(i)−H(i))2 = ‖Q′ −H‖22 =
1

M
‖Q̂′ − Ĥ‖

2

2 =
1

M

M−1∑
ξ=0

|Q̂′(ξ)− Ĥ(ξ)|2

and, expanding the definition of Ĥ, this yields∑
i∈[M ]

(Q′(i)−H(i))2 =
1

M

∑
ξ∈S
|Q̂′(ξ)− Ĥ(ξ)|2 +

1

M

∑
ξ /∈S

|Q̂′(ξ)|2

=
1

M

∑
ξ∈S
|Q̂′(ξ)− Q̂(ξ)|2 +

1

M

M−1∑
ξ=0

|Q̂′(ξ)|2 − 1

M

∑
ξ∈S
|Q̂′(ξ)|2

=
1

M

(
‖Q̂1S − Q̂′1S‖

2

2 + ‖Q̂′‖
2

2 − ‖Q̂′1S‖
2

2

)
=

1

M
‖Q̂1S − Q̂′1S‖

2

2 + ‖Q′‖22 −
1

M
‖Q̂′1S‖

2

2 (1)

where in the last step we invoked Plancherel again to argue that 1
M ‖Q̂′‖

2

2 = ‖Q′‖22.
To analyze the correctness of the algorithm (specifically, the completeness), we will adopt the

point of view suggested by (1) and analyze instead the statistic
∑

i∈[M ](Q
′(i) −H(i))2, when H

is an explicit (pseudo) distribution on [M ] assumed known, and Q′ is the empirical distribution
obtained by drawing Poi(m) samples from some unknown distribution Q. (Namely, we want to see
this as a tolerant L2 identity tester between Q and H.)
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• We first show that, given thatm′ = Ω
(
|S|
Mε2

)
, with probability at least 99

100 we have ‖Q̂1S − Ĥ′‖2 ≤
√
Mε
10 . We note that m′Q̂′(ξ) is an sum of m′ i.i.d. numbers each of absolute value 1 and mean

Q̂(ξ) (which has absolute value less than 1). If X is one of these numbers, |X − Q̂(ξ)| ≤ 2
with probability 1 and so the variance of the real and imaginary parts of X is at most 4.
Thus the variance of the real and imaginary parts of m′Q̂′(ξ) is at most 4m′. Then we have

E[|Q̂(ξ)− Q̂′(ξ)|2] = E[(<(Q̂(ξ)− Q̂′(ξ)))2 + (=(Q̂(ξ)− Q̂′(ξ)))2] ≤ 8/m′. Summing over S,
using that Q′ and H′ have the same Fourier coefficients there, yields

E

∑
ξ∈S

∣∣∣Q̂(ξ)− Ĥ′(ξ)
∣∣∣2
 ≤ 8|S|

m′
≤ Mε2

10000

and by Markov’s inequality we get Pr
[
‖Q̂1S − Ĥ′‖

2

2 ≤
Mε2

100

]
= Pr

[∑
ξ∈S

∣∣∣Q̂(ξ)− Ĥ′(ξ)
∣∣∣2 ≤ Mε2

100

]
≥

1
100 , concluding the proof.

• Then, let us consider Item 1: assume ‖Q‖22 > 2b, and set X
def
= m′2‖Q′‖22 −m′. Then,

E[X] =

M∑
i=1

E[m′2Q′(i)2]−
M∑
i=1

E[m′Q′(i)] =

M∑
i=1

(mQ(i) +m2Q(i)2)−
M∑
i=1

mQ(i) = m2‖Q‖22

since the m′Q′(i) are distributed as Poi(mQ(i)). As all m′Q′(i)’s are independent by Pois-
sonization, we also have

Var[X] =

M∑
i=1

Var[m′2Q′(i)2−m′Q′(i)] =

M∑
i=1

(2m2Q(i)2 + 4m3Q(i)3) = 2m2‖Q‖22 + 4m3‖Q‖33

and by Chebyshev,

Pr[X ≤ 3

2
m2b] ≤ Pr

[
|X − E[X]| > 1

4
E[X]

]
≤ 16

Var[X]

E[X]2
≤ 32

m2‖Q‖22
+

64‖Q‖33
m‖Q‖42

Since Q is supported on [M ], ‖Q‖22 ≥
1
M and the first term is at most 32M

m2 . The second term,

by monotonicity of `p-norms, is at most
64‖Q‖32
m‖Q‖42

= 48
m‖Q‖2

≤ 48
√
M

m . The RHS is then at most

1
100 for a large enough choice of C > 0 in the definition of m. Thus, with probability at least

1− 1
100 we have m′2‖Q′‖22 −m′ >

3
2b, and the algorithm outputs reject in Step 5.

Moreover, if ‖Q‖22 ≤ b, then the same analysis shows that

Pr[X >
3

2
m2b] ≤ Pr

[
|X − E[X]| > 1

2
E[X]

]
≤ 4

Var[X]

E[X]2
≤ 1

100

and with probability at least 1− 1
100 the algorithm does not output reject in Step 4.

• Turning now to Items 2 to 4: we assume that the algorithm does not output reject in Step 4
(which by the above happens with probability 99/100 if ‖Q‖22 ≤ b; and can be assumed

10



without loss of generality otherwise, since we then want to argue that the algorithm does
reject at some point in that case).

By the remark following the statement of the theorem, it is sufficient to show that the algo-

rithm outputs reject (with high probability) if ‖Q̂1S̄‖
2

2 > ε2M , and that if both ‖Q‖22 ≤ b

and ‖Q̂1S̄‖
2

2 ≤
ε2

4 M then it does not output reject; and that whenever the algorithm does not

output reject, then ‖Q̂− Ĥ‖2 ≤ ε2M .

Observe that calling Algorithm 2 with our m′ = Poi(m) samples from Q (distribution over

[M ]), parameters ε
2 and 2b, and the explicit description of the pseudo distribution P∗

def
= m′

m H

(which one would obtain for H being the inverse Fourier transform of Q̂1S) would result

by Proposition 4.2 (since m ≥ c
√

2b
(ε/2)2

= 244
√

2
√
b
ε2

, where c is as in Proposition 4.2) in having

the following guarantees on
√
Z
m , where Z is the statistic defined in Algorithm 2

– if ‖Q−P∗‖2 ≤
ε
2 , then

√
Z
m ≤

√
2.9ε with probability at least 3/4;

– if ‖Q−P∗‖2 ≥ ε, then
√
Z
m ≥

√
3.1ε with probability at least 3/4;

as ‖Q‖22 ≤ 2b (note that then ‖H‖22 ≤ b as well). Since
√
M‖Q−P∗‖2 = ‖Q̂− P̂∗‖2 =

‖Q̂− m
m′ Q̂1S‖2 and

Z

m′2
=

M∑
i=1

(
(Q′(i)− m

m′
P∗(i))2 − Q′(i)

m′

)
=

M∑
i=1

(Q′(i)−H(i))2 − 1

m′

which is equal to 1
M ‖Q̂1S − Q̂′1S‖

2

2 + ‖Q′‖22 −
1
M ‖Q̂′1S‖

2

2 −
1
m′ by Eq. (1), we thus get the

following.

– if ‖Q̂1S̄‖
2

2 ≤
ε2M

9 , then ‖Q̂− Q̂1S‖2 ≤
ε
3

√
M , and

√
M‖P∗ −Q‖2 = ‖P̂∗ − Q̂‖2 ≤ ‖P̂∗ − Q̂1S‖2+‖Q̂1S − Q̂‖2 =

∣∣∣m
m′
− 1
∣∣∣ ‖Q̂1S‖2+‖Q̂− Q̂1S‖2

Since we have m′ ∈ [1 ± ε
100
√
b
]m by the above discussion and ‖Q̂1S‖2 ≤

√
2b
√
M ,

the RHS is upper bounded by ε
6

√
M + ε

3

√
M = ε

2

√
M , and ‖P∗ −Q‖2 ≤

ε
2 . Then

1
M ‖Q̂1S − Q̂′1S‖

2

2 +‖Q′‖22−
1
M ‖Q̂′1S‖

2

2 = Z
m′2 + 1

m′ ≤ 2.9ε2
(
m′

m

)2
+ 1

m′ with probability

at least 3/4, and in particular ‖Q′‖22−
1
M ‖Q̂′1S‖

2

2 ≤ 2.9ε2
(
m′

m

)2
+ 1

m′ < 3ε2
(
m′

m

)2
+ 1

m′ ;

– if ‖Q̂1S̄‖
2

2 > ε2M , then 1
M ‖Q̂1S − Q̂′1S‖

2

2+‖Q′‖22−
1
M ‖Q̂′1S‖

2

2 = Z
m′2 + 1

m′ > 3.1ε2
(
m′

m

)2
+

1
m′ with probability at least 3/4; since by the first part we established we have ‖Q̂1S − Q̂′1S‖

2

2 ≤
ε2M
100 , this implies ‖Q′‖22 −

1
M ‖Q̂′1S‖

2

2 > 3.1ε2
(
m′

m

)2
+ 1

m′ −
ε2

100 > 3ε2
(
m′

m

)2
+ 1

m′ .

This immediately takes care of Items 2 and 3; moreover, this implies that whenever Algo-
rithm 1 does not output reject, then the inverse Fourier transform H′ of the collection of
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Fourier coefficients it returns (which are supported on S) satisfies

‖Q−H′‖22 =
1

M
‖Q̂− Ĥ′‖

2

2 =
1

M
‖Q̂1S − Ĥ′‖

2

2 +
1

M
‖Q̂1S̄‖

2

2

≤ ε2

100
+

1

M
‖Q̂1S̄‖

2

2

≤ ε2

100
+ ε2 =

101

100
ε2

and thus ‖Q−H′‖2 ≤
√

101
100ε <

6
5ε which establishes Item 4. Finally, by a union bound, all

the above holds except with probability 1
100 + 1

100 + 1
100 + 1

4 <
3
10 . This concludes the proof.

4.1 A tolerant L2 tester for identity to a pseudodistribution As previously mentioned,
one building block in the proof of Theorem 4.1 (and a result that may be of independent interest)
is an optimal L2 identity testing algorithm. Our tester and its analysis are very similar to the
tolerant L2 closeness testing algorithm of Chan et al. [CDVV14], with the obvious simplifications
pertaining to identity (instead of closeness). The main difference is that we emphasize here the
fact that P∗ need not be an actual distribution: any P∗ : [r] → R would do, even taking negative
values. This will turn out to be crucial for our applications.

Algorithm 2 Tolerant L2 identity tester

Require: ε ∈ (0, 1), m samples from distributions P over [r], with Xi denoting the number of
occurrences of the i-th domain elements in the samples from P, and P∗ being a fixed, known
pseudo distribution over [r].

Ensure: Returns accept if ‖P−P∗‖2 ≤ ε and reject if ‖P−P∗‖2 ≥ 2ε.
Define Z =

∑r
i=1(Xi −mP∗(i))2 −Xi. . Can actually be computed in O(m) time

Return reject if
√
Z
m >

√
3ε, accept otherwise.

Proposition 4.2. There exists an absolute constant c > 0 such that the above algorithm (Al-
gorithm 2), when given Poi(m) samples drawn from a distribution P and an explicit function
P∗ : [r] → R will, with probability at least 3/4, distinguishes between (a) ‖P−P∗‖2 ≤ ε and (b)

‖P−P∗‖2 ≥ 2ε provided that m ≥ c
√
b
ε2

, where b is an upper bound on ‖P‖22, ‖P∗‖
2
2. (Moreover,

one can take c = 61.)
Moreover, we have the following stronger statement: in case (a), the statistic Z computed in the

algorithm satisfies
√
Z
m ≤

√
2.9ε with probability at least 3/4, while in case (b) we have

√
Z
m ≥

√
3.1ε

with probability at least 3/4.

Proof. Letting Xi denote the number of occurrences of the i-th domain element in the samples from
P, define Zi = (Xi−mP∗(i))2−Xi. Since Xi is distributed as Poi(m·pi), E[Zi] = m2(P(i)−P∗(i))2;
thus, Z is an unbiased estimator for m2‖P−P∗‖22. (Note that this holds even when P∗ is allowed
to take negative values.)
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We compute the variance of Zi via a straightforward calculation involving standard expressions
for the moments of a Poisson distribution: getting

Var[Z] =
r∑
i=1

Var[Zi] =
r∑
i=1

(
4m3(P(i)−P∗(i))2P(i) + 2m2P(i)2

)
.

By Cauchy–Schwarz, and since
∑r

i=1 P(i)2 ≤ b by assumption, we have

r∑
i=1

(P(i)−P∗(i))2P(i) =
r∑
i=1

(P(i)−P∗(i)) · (P(i)−P∗(i))P(i)

≤

√√√√ r∑
i=1

(P(i)−P∗(i))2

r∑
i=1

P(i)2(P(i)−P∗(i))2

≤

√√√√ r∑
i=1

(P(i)−P∗(i))2b

r∑
i=1

(P(i)−P∗(i))2 =
√
b‖P−P∗‖22

and so
Var[Z] ≤ 4m3

√
b‖P−P∗‖22 + 2m2b.

For convenience, let η
def
= 1

10 , and write ρ
def
=
‖P−P∗‖2

ε – so that we need to distinguish ρ ≤ 1 from
ρ ≥ 2. If ρ ≤ 1, i.e. E[Z] ≤ m2ε2, then

Pr[Z > (3− η)m2ε2] = Pr[|Z − E[Z]| > m2ε2(((3− η)− γ)− ρ2)]

while if ρ ≥ 2, i.e. E[Z] ≥ 4m2ε2, then

Pr[Z < (3+η)m2ε2] = Pr[E[Z]−Z > m2(‖p−q‖22−(3+η)ε2)] ≤ Pr[|Z−E[Z]| > m2ε2(ρ2−(3+η))].

In both cases, by Chebyshev’s inequality, the test will be correct with probability at least 3/4
provided m ≥ c

√
b/ε2 for some suitable choice of c > 0, since (where

Pr[|Z − E[Z]| > m2ε2|ρ2 − (3± η)|] ≤ Var[Z]

m4ε4(ρ2 − (3± η))2

≤ 4m3
√
bρ2ε2 + 2m2b

m4ε4(ρ2 − (3± η))2
=

ρ2

(ρ2 − (3± η))2
· 4
√
b

mε2
+

1

(ρ2 − (3± η))2
· 2b

m2ε4

≤ 20
√
b

mε2
+

5b

2m2ε4
≤ 20

c
+

5

2c2
≤ 1

3

as maxρ∈[0,1]
ρ2

(ρ2−(3±η))2
≤ 5 and maxρ∈[0,1]

1
(ρ2−(3±η))2

≤ 5
4 and the last inequality holds for c ≥

61.

5 The Projection Subroutine

5.1 The projection step for (n, k)-SIIRVs We can use the proper ε-cover given in [DKS16a]
to find a (n, k)-SIIRV near P by looking at Ĥ.
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Algorithm 3 Algorithm Project-k-SIIRV

Require: Parameters n,ε; the approximate Fourier coefficients (Ĥ(ξ))ξ∈S modulo M , of a distri-
bution P known to be effectively supported on I and to have a Fourier transform effectively
supported on S of the form given in Step 13 of Algorithm 4, with σ̃2 and µ̃, an approximation
to EX∼P[X] to within half a standard deviation.

1: Compute C, an ε

5
√
|S|

-cover in total variation distance of all (n, k)-SIIRVs.

2: for each Q ∈ C do
3: if the mean µQ and variance σQ of Q satisfy |µ̃−µQ| ≤ σ̃ and 2(σQ+1) ≥ σ̃+1 ≥ (σQ+1)/2

then
4: Compute Q̂(ξ) for ξ ∈ S.

5: if
∑

ξ∈S |Ĥ− Q̂|2 ≤ ε2

5 then return accept
6: end if
7: end if
8: end for
9: return reject . we did not return accept for any Q ∈ C

Lemma 5.1. If Algorithm Project-k-SIIRV is given inputs that satisfy its assumptions and we
have that

∑
ξ∈S |Ĥ− P̂|2 ≤ (3ε/25)2, dTV (P,H) ≤ 6ε/25, and that if P ∈ SIIRVn,k then σ̃2 is a

factor-1.5 approximation to VarX∼P[X] + 1, then it distinguishes between (i) P ∈ SIIRVn,k and

(ii) dTV (P,SIIRVn,k) > ε. The algorithm runs in time n (k/ε)O(k log(k/ε)).

Proof. By Theorem 3.7 of [DKS16a], there is an algorithm that can compute an ε-cover of all

(n, k)-SIIRVs of size n (k/ε)O(k log(1/ε)) that runs in time n (k/ε)O(k log(1/ε)). Note the way the cover
is given, allows us to compute the Fourier coefficients Q̂(ξ) for any ξ for each Q ∈ C in time
poly(k/ε).

Since ε/
√
|S| = 1/poly(k/ε), Step 1 takes time n (k/ε)O(k log(k/ε)) and outputs a cover of size

n (k/ε)O(k log(k/ε)). As each iteration takes time |S|, the whole algorithm takes n (k/ε)O(k log(k/ε))

time.
Note that each Q that passes Step 3 is effectively supported on I by (3) and has Fourier

transform supported on S by Claim 6.5.

• Suppose that P ∈ SIIRVn,k. Then there is a (n, k)-SIIRV Q ∈ C with dTV (P,Q) ≤
ε/5
√
|S|. We need to show that if the algorithm considers Q, it accepts. From standard

concentration bounds, one gets that the expectations of P and Q are within O(ε
√

log(1/ε))
standard deviations of P and the variances of P and Q are within O(ε log(1/ε)) multiplicative
error. Thus Q passes the condition of Step 3. Since dTV (P,Q) ≤ ε/(5

√
|S|), we have that

|P̂(ξ) − Q̂(ξ)| ≤ ε/(5
√
|S|) for all ξ. In particular, we have

∑
ξ∈S |Ĥ − Q̂|2 ≤ ε2/25. Thus

by the triangle inequality for L2 norm, we have
∑

ξ∈S |Ĥ− Q̂|2 ≤ (ε/5 + 3ε/25)2 ≤ (ε/
√

5)2.
Thus the algorithm accepts.

• Now suppose that the algorithm accepts. We need to show that P has total variation distance
at most ε from some (n, k)-SIIRV. We will show that dTV (P,Q) ≤ ε for the Q which causes
the algorithm to accept. Since the algorithm accepts,

∑
ξ∈S |Ĥ − Q̂|2 ≤ ε2/25. For x /∈ S,

Ĥ(ξ) = 0 and so
∑

ξ /∈S |Ĥ − Q̂|2 =
∑

ξ /∈S |Q̂|2 ≤ ε2/100 by Claim 6.5. By Plancherel, the
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distributions Q′
def
= Q mod M , H′

def
= H mod M satisfy

‖Q′ −H′‖22 =
1

M

M−1∑
ξ=0

|Ĥ− Q̂|2 ≤ ε2

20M
.

Thus dTV (Q′,H′) ≤ ε
4 . By definition H has probability 0 outside I and by (3), Q has at

most ε
5 probability outside I, Thus dTV (Q,H) ≤ ε

4 + ε
5 ≤

ε
2 and by the triangle inequality

dTV (P,Q) ≤ dTV (Q,H) + dTV (P,H) ≤ ε/2 + 6ε/25 ≤ ε as required.

5.2 The case k = 2 For the important case of Poisson Binomial distributions, that is (n, 2)-
SIIRVs, we can dispense with using a cover at all. [DKS16b] gives an algorithm that can properly
learn Poisson binomial distributions in time (1/ε)O(log log 1/ε). The algorithm works by first learning
the Fourier coefficients in S, which we have already computed here, and checks if one of many
systems of polynomial inequalities has a solution: if the Fourier coefficients are close to those of a
(n, 2)-SIIRV, then there will be a solution to one of these systems. This allows us to test whether
or not we are close to a (n, 2)-SIIRV.

More precisely, we can handle this in two cases: the first, when the variance s2 of P is relatively
small, corresponding to σ̃ ≤ α/ε2 (for some absolute constant α > 0).

Lemma 5.2. Let P be a distribution with variance O(1/ε2). Let µ̃ and σ̃2 be approximations to
the mean µ and variance s2 of P with |µ̃− µ| ≤ σ̃ and 2(σ + 1) ≥ σ̃ + 1 ≥ (σ + 1)/2. Suppose that
P is effectively supported on an interval I and that its DFT modulo M is effectively supported on

S, the set of integers ξ ≤ ` def
= O(log(1/ε)). Let Ĥ(ξ) be approximations to P̂(ξ) for all ξ ∈ S with∑

ξ∈S |Ĥ(ξ) − P̂(ξ)|2 ≤ ε2

16 . There is an algorithm that, given n,ε,µ̃, σ̃ and Ĥ(ξ), distinguishes

between (i) P ∈ PBDn and (ii) dTV (P,PBDn) > ε, in time at most (1/ε)O(log log 1/ε).

Proof. We use Steps 4 and 5 of Algorithm Proper-Learn-PBD in [DKS16b]. Step 5 checks if one of
a system of polynomials has a solution. If such a solution is found, it corresponds to an (n, 2)-SIIRV
Q that has

∑
|ξ|≤` |Ĥ(ξ) − Q̂(ξ)|2 ≤ ε2/4 and so we accept. If no systems have a solution, then

there is no such (n, 2)-SIIRV and so we reject. The conditions of this lemma are enough to satisfy
the conditions of Theorem 11 of [DKS16b], though we need that the constant C ′ used to define |S|
is sufficiently large to cover the ` = O(log(1/ε) from that paper. This theorem means that if P is
a (n, 2)-SIIRV, then we accept.

We need to show that if the algorithm finds a solution, then it is within ε of a Poisson Binomial
distribution. The system of equations ensures that

∑
|ξ|≤` |Ĥ(ξ)−Q̂(ξ)|2 ≤ ε2/4. Now the argument

is similar to that for (n, k)-SIIRVs. For x /∈ S, Ĥ(ξ) = 0 and so
∑

ξ /∈S |Ĥ − Q̂|2 =
∑

ξ /∈S |Q̂|2 ≤
ε2/100 by Claim 6.5. By Plancherel, the distributions Q′

def
= Q mod M , H′

def
= H mod M satisfy

‖Q′ −H′‖22 =
1

M

M−1∑
ξ=0

|Ĥ− Q̂|2 ≤ ε2

20M
.

Thus dTV (Q′,H′) ≤ ε
4 . By definition H has probability 0 outside I and by (3), Q has at most ε

5
probability outside I, Thus dTV (Q,H) ≤ ε

4 + ε
5 ≤

ε
2 and by the triangle inequality dTV (P,Q) ≤

dTV (Q,H) + dTV (P,H) ≤ ε/2 + 6ε/25 ≤ ε as required.
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If σ̃ ≥ α/ε2 (corresponding to a “big variance” s2 = Ω(1/ε2)), then we take an additional
O(|S|/ε2) samples from P and use them to learn a shifted binomial using algorithms Learn-Poisson
and Locate-Binomial from [DDS15] that is within O(ε/

√
|S|) total variation distance from P. If

these succeed, we can check if its Fourier coefficients are close using the method in Algorithm 3
(Project-k-SIIRV). As we can compute the Fourier coefficients of a shifted binomial easily, this
overall takes time poly(1/ε).

6 The SIIRV Tester

We are now ready to describe the algorithm behind Theorem 1.1, and establish the theorem.

Algorithm 4 Algorithm Test-SIIRV

Require: sample access to a distribution P ∈ ∆(N), parameters n, k ≥ 1 and ε ∈ (0, 1]
1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw O(k) samples from P and compute as in Claim 6.2: (a) σ̃2, a tentative factor-2 approx-

imation to VarX∼P[X] + 1, and (b) µ̃, a tentative approximation to EX∼P[X] to within one
standard deviation.

3: if If σ̃ > 2k
√
n then

4: return reject . Blatant violation of (n, k)-SIIRV-iness
5: end if

6: if σ̃ ≤ 2k
√

ln 10
ε then

7: Set M ← 1 + 2
⌈
15k ln 10

ε

⌉
, and let I ← [bµ̃c − M−1

2 , bµ̃c+ M−1
2 ]; and S ← [M ]

8: Draw O(1/ε) samples from P, to distinguish between P(I) ≤ 1 − ε
4 and P(I) > 1 − ε

5 . If
the former is detected, return reject

9: Take N = C
(
|S|
ε2

)
= O

(
k
ε2

log 1
ε

)
samples from P to get an empirical distribution H

10: else
11: Set M ← 1 + 2

⌈
4σ̃
√

ln(4/ε)
⌉
, and let I ← [bµ̃c − M−1

2 , bµ̃c+ M−1
2 ]

12: Draw O(1/ε) samples from P, to distinguish between P(I) ≤ 1 − ε
4 and P(I) > 1 − ε

5 . If
the former is detected, return reject

13: Let δ ← ε

C′′
√
k log k

ε

, and

S ←

{
ξ ∈ [M − 1] : ∃a, b ∈ Z, 0 ≤ a ≤ b < k s.t. |ξ/M − a/b| ≤ C ′

√
ln(1/δ)

4σ̃

}
.

14: Simulating sample access to P′
def
= P mod M , call Algorithm 1 on P′ with parameters M ,

ε
5
√
M

, b = 16k
σ̃ , and S. If it outputs reject, then return reject; otherwise, let Ĥ = (Ĥ(ξ))ξ∈S

denote the collection of Fourier coefficients it outputs, and H their inverse Fourier transform
(modulo M) . Do not actually compute H

15: end if
16: Projection Step: Check whether dTV (H,SIIRVn,k) ≤ ε

2 (as in Section 5), and return accept
if it is the case. If not, return reject. . Mostly computational step
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6.1 Analyzing the subroutines We start with a simple fact, that we will use to bound the
running time of our algorithm and which follows immediately from [DKS16a, Claim 2.4]:

Fact 6.1. For S as defined in Step 13, we have

|S| ≤Mk2C
′

2σ̃

√
ln

1

δ
≤ 100C ′k2

√
ln

4

ε

√
ln
k

ε
+ log log

k

ε
+

1

2
ln(16C ′′) ≤ C ′′k2 log2 k

ε

for a suitably large choice of the constant C ′′ > 0; from which we get δ ≤ 1

4
√
|S|

.

We then argue that with high probability, the estimates obtained in Step 2 will be accurate
enough for our purposes. (The somewhat odd statement below, stating two distinct guarantees
where the second implies the first, is due to the following: Eq. (2) will be the guarantee that (the
completeness analysis of) our algorithm relies on, while the second, slightly stronger one, will only
be used in the particular implementation of the “projection step” (Step 16) from Section 5.)

Claim 6.2 (Estimating the first two moments (if P is a SIIRV)). With probability at least 19/20
over the O(k) draws from P in Step 2, the following holds. If P ∈ SIIRVn,k, the estimates
σ̃, µ̃ defined as the empirical mean and (unbiased) empirical variance meet the guarantees stated in
Step 2 of the algorithm, namely

1

2
≤ σ̃2

VarX∼P[X] + 1
≤ 2, |µ̃− EX∼P[X]| ≤

√
VarX∼P[X] (2)

We even have a quantitatively slightly stronger guarantee: 2
3 ≤

σ̃2

VarX∼P[X]+1 ≤
3
2 , and |µ̃− EX∼P[X]| ≤

1
2

√
VarX∼P[X].

Proof. We handle the estimation of the mean and variance separately.

Estimating the mean. µ̃ will be the usual empirical estimator, namely µ̃
def
= 1

m

∑m
i=1Xi for

X1, . . . , Xm independently drawn from P. Since E[µ̃] = EX∼P[X] and Var[µ̃] = 1
m VarX∼P[X],

Chebyshev’s inequality guarantees that

Pr[|µ̃− EX∼P[X]| > 1

2

√
VarX∼P[X]] ≤ 4

m

which can be made at most 1/200 by choosing m ≥ 800.

Estimating the variance. The variance estimation is exactly the same as in [DDS15, Lemma 6],
observing that their argument only requires that P be the distribution of a sum of independent
random variables (not necessarily a Poisson Binomial distribution). Namely, they establish

that,2 letting σ̃2 def
= 1

m−1

∑m
i=1(Xi − 1

m

∑m
j=1Xj)

2 be the (unbiased) sample variances, and

s2 def
= VarX∼P[X],

Pr[
∣∣σ̃2 − s2

∣∣ > α(1 + s2)] ≤ 4s4 + k2s2

α2(1 + s2)2

1

m
≤ 4s4 + s2

α2(1 + s2)2
· k

2

m
≤ 4k2

α2m

which for α = 1/3 is at most 9/200 by choosing m ≥ 800k.

2[DDS15, Lemma 6] actually only deals with the case k = 2; but the bound we state follows immediately from
their proof and the simple observation that the excess kurtosis κ of an (n, k)-SIIRV with variance s2 is at most k2/s2.

17



A union bound completes the proof, giving a probability of error at most 1
200 + 9

200 = 1
20 .

Claim 6.3 (Checking the effective support). With probability at least 19/20 over the draws from
P in Step 12, the following holds.

• if P ∈ SIIRVn,k and (2) holds, then P(I) ≥ 1− ε
5 and the algorithm does not output reject

in Step 8 nor 12;

• if P puts probability mass more than ε
4 outside of I, then the algorithm outputs reject in Step 8

or 12.

Proof. Suppose first P ∈ SIIRVn,k and (2) holds, and set s
def
=
√

VarX∼P[X] and µ
def
= EX∼P[X]

as before. By Bennett’s inequality applied to X, we have

Pr[X > µ+ t] ≤ exp

(
− s

2

k2
ϑ

(
kt

s2

))
(3)

for any t > 0, where ϑ : R∗+ → R is defined by ϑ(x) = (1 + x) ln(1 + x)− x.

• If the algorithm reaches Step 8, then s ≤ 4k
√

ln 10
ε . Setting t = α · k ln 10

ε in Eq. (3) (for α >

to be determined shortly), and u = kt
s2

= αk
2

s2
ln 10

ε ≥
α
16 ,

s2

k2
ϑ

(
kt

s2

)
= α ln

10

ε
· ϑ (u)

u
≥
(

16ϑ
( α

16

))
ln

10

ε
≥ ln

10

ε

since ϑ(x)
x ≥ ϑ(α/16)

α/16 for all x ≥ α
16 ; the last inequality for α ≥ α∗ ' 2.08 chosen to be the

solution to 16ϑ
(
α∗

16

)
= 1. Thus, Pr[X > µ+ t] ≤ ε

10 . Similarly, we have Pr[X < µ− t] ≤ ε
10 .

As µ− 2t ≤ µ− s ≤ µ̃ ≤ µ+ s ≤ µ+ 2t, we get Pr[X ∈ I] ≥ 1− ε
5 as claimed.

• If the algorithm reaches Step 12, then s ≥ k
√

ln 10
ε and M = 1 + 2

⌈
6σ̃
√

ln 10
ε )
⌉
≥ 1 +

2
⌈
3s
√

ln 10
ε )
⌉
. Setting t = βs

√
ln 10

ε in Eq. (3) (for β > to be determined shortly), and

u = kt
s2

= β ks

√
ln 10

ε ≤ β,

s2

k2
ϑ

(
kt

s2

)
=
t2

s2
· ϑ (u)

u2
= β2 ln

10

ε
· ϑ (u)

u2
≥ ln

10

ε

since ϑ(x)
x2
≥ ϑ(β)

β2 for all x ∈ (0, β]; the last inequality for β = e − 1 ' 1.72 chosen to be the

solution to ϑ (β) = 1. Thus, Pr[X > µ+ t] ≤ ε
10 . Similarly, it holds Pr[X < µ− t] ≤ ε

10 . Now

note that bµ̃c + (M − 1)/2 ≥ (µ − s) + d2s
√

ln 10
ε )e ≥ µ + t and bµ̃c − (M − 1)/2 ≤ µ − t,

implying that X is in [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2] with probability at least 1− ε
5 as

desired.

To conclude and establish the conclusion of the first item, as well as the second item, recall that
distinguishing with probability 19/20 between the cases P(Ī) ≤ ε

5 and P(Ī) > ε
4 can be done with

O(1/ε) samples.
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Claim 6.4 (Learning when the effective support is small). If P satisfies P(I) ≥ 1 − ε
4 , and the

“If” statement at Step 6 holds, then with probability at least 19/20 the empirical distribution H

obtained in Step 9 satisfies (i) dTV (P,H) ≤ ε
2 and (ii) ‖P̂− Ĥ‖2 ≤

ε2

100 .

Proof. The first item, (i), follows from standard bounds on the rate of convergence of the empirical
distribution (namely, that O(r/ε2) samples suffice for it to approximate an arbitrary distribution
over support of size r up to total variation distance ε). Recalling that in this branch of the algorithm,
S = [M ] with M = O(k log(1/ε)), the second item, (ii), is proven by the same argument as in (the
first bullet in) the proof of Theorem 4.1.

Claim 6.5 (Any (n, k)-SIIRV puts near all its Fourier mass in S). If P ∈ SIIRVn,k and (2) holds,

then ‖P̂1S̄‖
2

2 =
∑

ξ /∈S |P̂(ξ)|2 ≤ ε2

100 .

Proof. Since P ∈ SIIRVn,k, our assumptions imply that (with the notations of Lemma 3.1) the

set of large Fourier coefficients satisfies
{
ξ ∈ [M − 1] :

∣∣∣P̂(ξ)
∣∣∣ > δ

}
⊆ L(δ,M, s) ⊆ S. Therefore,

ξ /∈ S implies |P̂(ξ)| ≤ δ. We then can conclude as follows: applying Lemma 3.1 (ii) with parameter
δ2−r−1 for each r ≥ 0, this is at most∑

r≥0

(δ2−r)2
∣∣∣{ ξ : |P̂(ξ)| > δ2−r−1

}∣∣∣ ≤ 4Mkδ2

s

∑
r≥0

4−r
√

log(2r+2/δ)

≤ 4Mkδ2

s

√
log

1

δ

∑
r≥0

4−r
√

log(2r+1)

≤ 12Mkδ2

s

√
log

1

δ
= O

(
ε2
)

(4)

again at most ε2

100 for big enough C ′′ in the definition of δ.

6.2 Putting it together In what follows, we implicitly assume that I (as defined in Step 11
of Algorithm 4) is equal to [M ]. This can be done without loss of generality, as this is just a shifting
of the interval and all our Fourier arguments are made modulo M .

Lemma 6.6 (Putting it together: completeness). If P ∈ SIIRVn,k, then the algorithm outputs
accept with probability at least 3/5.

Proof. Assume P ∈ SIIRVn,k. We condition on the estimates obtained in Step 2 to meet their
accuracy guarantees, which by Claim 6.2 holds with probability at least 19/20: that is, we hereafter
assume Eq. (2) holds. Since the variance of any (n, k)-SIIRV is at most s2 ≤ nk2, we consequently
have σ̃ ≤ 2k

√
n and the algorithm does not output reject in Step 3.

• Case 1: the branch in Step 6 is taken. In this case, by Claim 6.3 the algorithm does not
output reject in Step 8 with probability 19/20. Since P(I) ≥ 1 − ε

4 , by Claim 6.4 we get
that with probability at least 19/20 it is the case that dTV (P,H) ≤ ε

2 , and therefore the
computational check in Step 16 will succeed, and return accept. Overall, by a union bound
the algorithm is successful with probability at least 1− 3/20 > 3/5.
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• Case 2: the branch in Step 10 is taken. In this case, by Claim 6.3 the algorithm does
not output reject in Step 12 with probability 19/20. From Lemma 3.2, we know that P′ as
defined in Step 14 satisfies ‖P′‖22 ≤

8k
s ≤

16k
σ̃ = b. Moreover, Claim 6.5 guarantees that

‖P̂′1S̄‖2 ≤
ε

10
√
M

= ε′

2 (for ε′ = ε
5
√
M

). Since Step 14 calls Algorithm 1 with parameters

M, ε′, b, and S, Item 3 of Theorem 4.1 ensures that (with probability at least 7/10) the
algorithm will not output reject in Step 14, but instead return the S-sparse Fourier transform
of some H supported on [M ] with ‖P′ −H‖2 ≤

6
5ε
′ = 6ε

25
√
M

.

By Cauchy–Schwarz, we then have ‖P′ −H‖1 ≤
√
M‖P′ −H‖2 ≤

6ε
25 , i.e. dTV (P′,H) ≤ 3ε

25 .
But since dTV (P,P′) ≤ ε

4 , we get dTV (P,H) ≤ ε
4 + 3ε

25 < ε
2 , and the computational check

in Step 16 will succeed, and return accept. Overall, by a union bound the algorithm accepts
with probability at least 1− (1/20 + 1/20 + 3/10) = 3/5.

Lemma 6.7 (Putting it together: soundness). If dTV (P,SIIRVn,k) > ε, then the algorithm
outputs reject with probability at least 3/5.

Proof. We will proceed by contrapositive, and show that if the algorithm returns accept with
probability at least 3/5 then dTV (P,SIIRVn,k) ≤ ε. Depending on the branch of the algorithm
followed, we assume the samples taken either in

• Steps 2, 8, 9, meet the guarantees of Claims 6.2 to 6.4 (by a union bound, this happens with
probability at least 1− 3/20 > 2/3); or

• Steps 2, 12, 14 meet the guarantees of Claims 6.2 and 6.3 and Theorem 4.1 (by a union bound,
this happens with probability at least 1− (1/20 + 1/20 + 3/10) = 3/5).

In particular, we hereafter assume that σ̃ ≤ 2k
√
n.

• Case 1: the branch in Step 6 is taken.

By the above discussion, we have P(I) ≥ 1− ε
4 by Claim 6.3 so Claim 6.4 and our conditioning

ensure that the empirical distribution H is such that dTV (P,H) ≤ ε
2 . Since the algorithm

did not reject in Step 16, there exists a (n, k)-SIIRV P∗ such that dTV (H,P∗) ≤ ε
2 : by the

triangle inequality, dTV (P,SIIRVn,k) ≤ dTV (P,Q∗) ≤ ε.

• Case 2: the branch in Step 10 is taken.

In this case, we have P(I) ≥ 1− ε
4 by Claim 6.3. Furthermore, as the algorithm did not output

reject on Step 14, by Theorem 4.1 we know that the inverse Fourier transform (modulo M) H
of the S-sparse collection of Fourier coefficients Ĥ returned satisfies ‖H−P′‖2 ≤

6ε
25
√
M

which

by Cauchy–Schwarz implies, as both H and P′ are supported on [M ], that ‖H−P′‖1 ≤
6ε
25 ,

or equivalently dTV (H,P′) ≤ 3ε
25 .

Finally, since the algorithm outputted accept in Step 16, there exists P∗ ∈ SIIRVn,k (sup-
ported on [M ]) such that dTV (H,P∗) ≤ ε

2 , and by the triangle inequality

dTV (P,P∗) ≤ dTV (P,P′) + dTV (H,P′) + dTV (H,P∗) ≤ ε

4
+

3ε

25
+
ε

2
≤ ε

and thus dTV (P,SIIRVn,k) ≤ dTV (P,P∗) ≤ ε.
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Lemma 6.8 (Putting it together: sample complexity). The algorithm has sample complexity

O
(
kn1/4

ε2
log1/4 1

ε + k2

ε2
log2 k

ε

)
.

Proof. Algorithm 4 takes samples in Steps 2, 8, 12, and 14. The sample complexity is dominated
by Steps 9 and 14, which take respectively N and

O

( √
b

(ε/
√
M)2

+
|S|

M(ε/
√
M)2

+
√
M

)
= O

(√
kσ̃

ε2
4

√
log

1

ε
+
|S|
ε2

+
√
σ̃

4

√
log

1

ε

)

= O

(
kn1/4

ε2
log1/4 1

ε
+
k2

ε2
log2 k

ε

)

samples; recalling that Step 3 ensured that σ̃ ≤ 2k
√
n and that |S| = O

(
k2 log2 k

ε

)
by Fact 6.1.

Lemma 6.9 (Putting it together: time complexity). The algorithm runs in time O
(
k4n1/4

ε2
log4 k

ε

)
+

T (n, k, ε), where T (n, k, ε) = n(k/ε)O(k log(k/ε)) is the running time of the projection subroutine of
Step 16.

Proof. The running time, depending on the branch taken, is either O(N) + T (n, k, ε) for the first

or O
(
|S|
(
kn1/4

ε2
log1/4 1

ε + k2

ε2
log2 k

ε

))
+ T (n, k, ε) for the second (the latter from the running time

of Algorithm 1). Recalling that |S| = O
(
k2 log2 k

ε

)
by Fact 6.1 yields the claimed running time.

7 The General Tester

In this section, we abstract the ideas underlying the (n, k)-SIIRV from Section 6, to provide a
general testing framework. In more detail, our theorem (Theorem 7.1) has the following flavor: if
P is a property of distributions such that every P ∈ P has both (i) small effective support and (ii)
sparse effective Fourier support, then one can test membership to P with O(

√
sM/ε2+s/ε2) samples

(where M and s are the bounds on the effective support and effective Fourier support, respectively).
As a caveat, we do require that the sparse effective Fourier support S be independent of P ∈ P,
i.e., is a characteristic of the class P itself.

The high-level idea is then quite simple: the algorithm proceeds in three stages, namely the
effective support test, the Fourier effective support test, and the projection step. In the first, it takes
some samples from P to identify what should be the effective support I of P, if P did have the
property: and then checks that indeed |I| ≤ M (as it should) and that P puts probability mass
1−O(ε) on I.

In the second stage, it invokes the Fourier testing algorithm of Section 4 to verify that P̂ indeed
puts very little Fourier mass outside of S; and, having verified this, learns very accurately the set
of Fourier coefficients of P on this set S, in L2 distance.

At this point, either the algorithm has detected that P violates some required characteristic of
the distributions in P, in which case it has rejected already; or is guaranteed to have learned a good
approximation H of P, by the Fourier learning performed in the second stage. It only remains to
perform the third stage, which “projects” this good approximation H of P onto P to verify that
H is close to some distribution P∗ ∈ P (as it should if indeed P ∈ P).
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Algorithm 5 Algorithm Test-Fourier-Sparse-Class

Require: sample access to a distribution P ∈ ∆(N), parameter ε ∈ (0, 1], b ∈ (0, 1], functions
S : (0, 1]→ 2N, M : (0, 1]→ N, qI : (0, 1]→ N, and procedure ProjectP as in Theorem 7.1

1: Effective Support
2: Take qI(ε) samples from P to identify a “candidate set” I. . Guaranteed to work w.p.

19/20 if P ∈ P.
3: Draw O(1/ε) samples from P, to distinguish between P(I) ≥ 1− ε

5 and P(I) < 1− ε
4 . .

Correct w.p. 19/20.
4: if |I| > M(ε) or we detected that P(I) > ε

4 then
5: return reject
6: end if
7:

8: Fourier Effective Support

9: Simulating sample access to P′
def
= P mod M(ε), call Algorithm 1 on P′ with parameters

M(ε), ε

5
√
M(ε)

, b, and S(ε).

10: if Algorithm 1 returned reject then
11: return reject
12: end if
13: Let Ĥ = (Ĥ(ξ))ξ∈S(ε) denote the collection of Fourier coefficients it outputs, and H their

inverse Fourier transform (modulo M(ε)) . Do not actually compute H here.
14:

15: Projection Step
16: Call ProjectP on parameters ε and H, and return accept if it does, reject otherwise.
17:

Theorem 7.1 (General Testing Statement). Assume P ⊆ ∆(N) is a property of distributions
satisfying the following. There exist S : (0, 1] → 2N, M : (0, 1] → N, and qI : (0, 1] → N such that,
for every ε ∈ (0, 1],

1. Fourier sparsity: for all P ∈ P, the Fourier transform (modulo M(ε)) of P is concentrated on

S(ε): namely, ‖P̂1
S(ε)
‖

2

2
≤ ε2

100 .

2. Support sparsity: for all P ∈ P, there exists an interval I(P) ⊆ N with |I(P)| ≤ M(ε) such
that (i) P is concentrated on I(P): namely, P(I(P)) ≥ 1− ε

5 and (ii) I(P) can be identified
with probability at least 19/20 from qI(ε) samples from P.

3. Projection: there exists a procedure ProjectP which, on input ε ∈ (0, 1] and the explicit
description of a distribution H ∈ ∆(N), runs in time T (ε); and outputs accept if dTV (H,P) ≤
2ε
5 , and reject if dTV (H,P) > ε

2 (and can answer either otherwise).

4. (Optional) L2-norm bound: there exists b ∈ (0, 1] such that, for all P ∈ P, ‖P‖22 ≤ b.

Then, there exists a testing algorithm for P, in the usual standard sense: it outputs either accept
or reject, and satisfies the following.

1. if P ∈ P, then it outputs accept with probability at least 3/5;
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2. if dTV (P,P) > ε, then it outputs reject with probability at least 3/5.

The algorithm takes

O

(√
|S(ε)|M(ε)

ε2
+
|S(ε)|
ε2

+ qI(ε)

)

samples from P (if Item 4 holds, one can replace the above bound by O
(√

bM(ε)
ε2

+ |S(ε)|
ε2

+ qI(ε)
)

);

and runs in time O (m |S|+ T (ε)), where m is the sample complexity.
Moreover, whenever the algorithm outputs accept, it also learns P; that is, it provides a hypoth-

esis H such that dTV (P,H) ≤ ε with probability at least 3/5.

We remark that the statement of Theorem 7.1 can be made slightly more general; specifically,
one can allow the procedure ProjectP to have sample access to P and err with small probability,
and further provide it with the Fourier coefficients Ĥ learnt in the previous step.

Proof of Theorem 7.1. For convenience, we hereafter write S and M instead of S(ε) and M(ε),
respectively. Before establishing the theorem, which will be a generalization of (the second branch
of) Algorithm 4, we note that it is sufficient to prove the version including Item 4. This is because,

if no bound b is provided, one can fall back to setting b
def
= |S|+1

M : indeed, for any P ∈ P,

‖P‖22 = ‖P̂‖
2

2 = ‖P̂1S‖
2

2 + ‖P̂1S̄‖
2

2 =
1

M

∑
ξ∈S
|P̂(ξ)|2 + ‖P̂1S̄‖

2

2 ≤
|S|
M

+
ε2

100M
=
|S|+ ε2

100

M
(5)

from Item 1 and the fact that |P̂(ξ)| ≤ 1 for any ξ ∈ [M ]. Then, we have
√
bM ≤

√
2 |S|MM =√

2 |S|M , concluding the remark.
The algorithm is given in Algorithm 5. Its sample complexity and running time are immediate

from the assumptions on the input parameters, and its description; we thus focus on establishing
its correctness.

• Completeness: suppose P ∈ P. Then, by definition of qI and M (Item 2 of the theorem),
we have that with probability at least 19/20 the interval I identified in Step 2 satisfies
P(I) ≥ 1 − ε

5 and |I| ≤ M . In this case, also with probability at least 19/20 the check in
Step 3 succeeds, and the algorithm does not output reject there.

The call to Algorithm 1 in Step 9 then, with probability at least 7/10, does not output reject,
but instead Fourier coefficients Ĥ (supported on S) of some H such that H′ = H mod M
satisfies ‖H′ −P′‖2 ≤

6
5 ·

ε
5
√
M

= 6ε
25
√
M

(this is because of the definition of b and Item 1, which

ensure the assumptions of Theorem 4.1 are met). Thus ‖H′ −P′‖1 ≤
√
M‖H′ −P′‖2 ≤

6ε
25 .

Since ‖P−P′‖2 ≤ 2 · ε4 (as P(I) ≥ 1− ε
4 and P′ = P mod M), by the triangle inequality

dTV (P,H′) =
1

2
‖H′ −P′‖1 ≤

3ε

25
+
ε

4
<

2ε

5

and the algorithm returns accept in Step 16 (as promised by Item 3).

Overall, by a union bound the algorithm is correct with probability at least 1−( 1
20 + 1

20 + 3
10) ≥

3
5 .
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• Soundness: we proceed by contrapositive, and show that if the algorithm returns accept with
probability at least 3/5 then dTV (P,P) ≤ ε. We hereafter assume the guarantees of Steps 2, 3,
and 9 hold, which by a union bound is the case with probability at least 1−( 1

20 + 1
20 + 3

10) ≥ 3
5 .

Since the algorithm passed Step 5, we have P(I) ≥ 1 − ε
4 and |I| ≤ M . Furthermore, as

the algorithm did not output reject on Step 9, by Theorem 4.1 we know that the inverse
Fourier transform (modulo M) H of the S-sparse collection of Fourier coefficients Ĥ returned

satisfies, for H′
def
= H mod M ,

‖H′ −P′‖2 ≤
6ε

25
√
M

which by Cauchy–Schwarz implies that ‖H−P′‖1 ≤
6ε
25 , or equivalently dTV (H,P′) ≤ 3ε

25 .

Finally, since the algorithm outputted accept in Step 16, there exists P∗ ∈ P (supported on
[M ]) such that dTV (H,P∗) ≤ ε

2 , and by the triangle inequality

dTV (P,P∗) ≤ dTV (P,P′) + dTV (H,P′) + dTV (H,P∗) ≤ ε

4
+

3ε

25
+
ε

2
≤ ε

and thus dTV (P,P) ≤ dTV (P,P∗) ≤ ε.

8 The PMD Tester

In this section, we generalize our Fourier testing approach to higher dimensions, and leverage it
to design a testing algorithm for the class of Poisson Multinomial distributions – thus establish-
ing Theorem 1.3 (restated below).

Theorem 8.1 (Testing PMDs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to
a distribution P over N, there exists an algorithm (Algorithm 7) which outputs either accept or
reject, and satisfies the following.

1. if P ∈ PMDn,k, then it outputs accept with probability at least 3/5;

2. if dTV (P,PMDn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takes O
(
n(k−1)/4k2k log(k/ε)k

ε2

)
samples from P, and runs in time nO(k3) ·

(1/ε)
O(k3

log(k/ε)
log log(k/ε)

)k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2
.

The reason for the two different running times is that, for the projection step, one can use
either the cover given by [DKS16b] or that given by [DDKT16], which yield the two statements.
In contrast to Section 6 and Section 7, for PMDs we will have to use a multidimensional Fourier
transform, which is a little more complicated – and we define next.

Let M ∈ Zk×k be an integer k×k matrix. We consider the integer lattice L = L(M) = MZk def
=

{p ∈ Zk | p = Mq, q ∈ Zk}, and its dual lattice L∗ = L∗(M)
def
=
{
ξ ∈ Rk : ξ · x ∈ Z for all x ∈ L

}
.

Note that L∗ = (MT )−1Zk, and that L∗ is not necessarily integral. The quotient Zk/L is the set of
equivalence classes of points in Zk such that two points x, y ∈ Zk are in the same equivalence class
if, and only if, x− y ∈ L. Similarly, the quotient L∗/Zk is the set of equivalence classes of points in
L∗ such that any two points x, y ∈ L∗ are in the same equivalence class if, and only if, x− y ∈ Zk.
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The Discrete Fourier Transform (DFT) modulo M , M ∈ Zk×k, of a function F : Zk → C
is the function F̂M : L∗/Zk → C defined as F̂M (ξ)

def
=
∑

x∈Zk e(ξ · x)F (x). (We will omit the
subscript M when it is clear from the context.) Similarly, for the case that F is a probability
mass function, we can equivalently write F̂ (ξ) = EX∼F [e(ξ ·X)] . The inverse DFT of a function
Ĝ : L∗/Zk → C is the function G : A→ C defined on a fundamental domain A of L(M) as follows:
G(x) = 1

| det(M)|
∑

ξ∈L∗/Zk Ĝ(x)e(−ξ·x). Note that these operations are inverse of each other, namely

for any function F : A→ C, the inverse DFT of F̂ is identified with F .
With this in hand, Algorithm 1 easily generalizes to high dimension:

Algorithm 6 Testing the Fourier Transform Effective Support in high dimension

Require: parameters, a k × k matrix M , b, ε ∈ (0, 1]; a fundamental domain A of L(M); sample
access to distribution Q over A

1: Set m←
⌈
C(
√
b
ε2

+
√

det(M))
⌉

. C > 0 is an absolute constant; C = 2000 works.

2: Draw m′ ← Poi(m); if m′ > 2m, return reject
3: Draw m′ samples from Q, and let Q′ be the corresponding empirical distribution over [M ]

4: Compute ‖Q′‖22, Q̂′(ξ) for every ξ ∈ S, and ‖Q̂′1S‖
2

2 . Takes time O (m |S|)
5: if m′2‖Q′‖22 −m′ >

3
2bm

2 then return reject

6: else if ‖Q′‖22 − ‖Q̂′1S‖
2

2 ≥ 3ε2 + 1
m′ then return reject

7: else
8: return (Q̂′(ξ))ξ∈S
9: end if

Crucially, we observe that the proof of Theorem 4.1 nowhere requires that [M ] be a set of
M consecutive integers, but only that it is a fundamental domain of the lattice used in the DFT.
Consequently, Theorem 4.1 also applies in this high dimensional setting, with appropriate notation.
Note that the size of any fundamental domain is det(M) which appears in place of M in the sample
complexity.

The proof of correctness of Algorithm 7 is very similar to that of Algorithm 4, except that
we need results from the proof of correctness of the PMD Fourier learning algorithm of [DKS16c];
we will only sketch these ingredients here. That I is an effective support of a PMD whose mean
and covariance matrix we have estimated to within approprate error with high probability follows
from Lemmas 3.3–3.6 of [DKS16c], the last of which gives that the probability mass outside of
I is at most ε/10, smaller than that claimed for I in the (n, k)-SIIRV algorithm. Lemma 3.3
gives, if P is a PMD, that the mean and covariance satisfy (µ̂ − µ)T (Σ + I)−1(µ̂ − µ) = O(1)
and 2(ΣQ + I) ≥ Σ̂ + I ≥ (Σq + I)/2. Again, with more samples, we can strengthen this to

(µ̂− µ)T (Σ + I)−1(µ̂− µ) = 1
2 and (3/2)(Σ + I) ≥ Σ̂ + I ≥ (Σ + I)/(3/2) with O(k4) samples.

The effective support of the Fourier transform of a PMD is given by the following proposition:

Proposition 8.2 (Proposition 2.4 of [DKS16c]). Let S be as in the algorithm. With probability at
least 99/100, the Fourier coefficients of P outside S satisfy

∑
ξ∈(L∗/Zk)\S |P̂(ξ)| < ε/10.

This holds not just for P, but any (n, k)-PMD Q whose mean µQ and covariance matrix ΣQ

satisfy (µ̂− µQ)T (Σ + I)−1(µ̂− µ) = O(1) and 2(ΣQ + I) ≥ Σ̂ + I ≥ (ΣQ + I)/2.

We need to show that this L1 bound is stronger than the L2 bound we need. Since every
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Algorithm 7 Algorithm Test-PMD

Require: sample access to a distribution P ∈ ∆
(
Nk
)
, parameters n, k ≥ 1 and ε ∈ (0, 1]

1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw m0 = O(k4) samples from X, and let µ̂ be the sample mean and Σ̂ the sample covariance

matrix.
3: Compute an approximate spectral decomposition of Σ̂, i.e., an orthonormal eigenbasis vi with

corresponding eigenvalues λi, i ∈ [k].
4: Set M ∈ Zk×k to be the matrix whose ith column is the closest integer point to the vector

C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
vi.

5: Set I ← Zk ∩ (µ̂+M · (−1/2, 1/2]k)
6: Draw O(1/ε) samples from P, and return reject if any falls outside of I
7: Let S ⊆ (R/Z)k to be the set of points ξ = (ξ1, . . . , ξk) of the form ξ = (MT )−1 · v+Zk, for

some v ∈ Zk with ‖v‖2 ≤ C2k2 log(k/ε).
8: Define P mod M to be the distribution obtained by sampling X from P and if it lies outside

in I, returning X, else returning X +Mb for the uniwue b ∈ Zk such that X +Mb ∈ I.

9: Simulating sample access to P′
def
= P mod M , call Algorithm 6 on P′ with parameters M ,

ε

5
√

det(M)
, b = |S|+1

det(M) , and S. If it outputs reject, then return reject; otherwise, let Ĥ =

(Ĥ(ξ))ξ∈S denote the collection of Fourier coefficients it outputs, and H their inverse Fourier
transform (modulo M) onto I. . Do not actually compute H

10: Compute a proper ε/6
√
|S|-cover C of all PMDs using the algorithm from [DKS16c].

11: for each Q ∈ C do
12: if the mean µQ and covariance matrix ΣQ satisfy (µ̂ − µQ)T (Σ + I)−1(µ̂ − µQ) ≤ 1 and

2(ΣQ + I) ≥ Σ̂ + I ≥ (ΣQ + I)/2. then

13: Compute Q̂(ξ) for ξ ∈ S.
14: if

∑
ξ∈S |Ĥ− Q̂|2 ≤ ε2/16 then return accept

15: end if
16: end if
17: end for
18: return reject if we do not accept for any Q ∈ C.

individual ξ /∈ S has |P̂(ξ)| < ε/10, we have∑
ξ∈(L∗/Zk)\S

|P̂(ξ)|2 ≤
∑

ξ∈(L∗/Zk)\S

ε|P̂(ξ)|/10 ≤ ε2/100

and so S is an effective support of the DFT modulo M .
To show that the value of b is indeed a bound on ‖P‖22, we can use (5), yielding that ‖P‖22 ≤

(|S|+ 1)/ det(M) = b, where det(M) here is indeed the size of I.
The proof of correctness of the algorithm and the projection step is now very similar to the

(n, k)-SIIRV case. We need to get bounds on the sample and time complexity. We can bound the
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size of S using

|S| ≤
∣∣∣{ v ∈ Zk : ‖v‖2 ≤ C2k2 log(k/ε)

}∣∣∣ ≤ ∣∣∣{ v ∈ Zk : ‖v‖∞ ≤ C2k2 log(k/ε)
}∣∣∣

=
(
1 + 2bC2k2 log(k/ε)c

)k
= O(k2 log(k/ε))k

We can bound det(M) in terms of the L2 norms of its columns using Hadamard’s inequality

det(M) ≤
k∏
i=1

‖Mi‖2 ≤
k∏
i=1

(
C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
+
√
k

)

recalling that λi are the eigenvalues of Σ̂ which satisfies 2(ΣQ + I) ≥ Σ̂ + I. We need a bound on
‖Σ‖2. Each individual summand k-CRV (categorical random variable) is supported on unit vectors,
the distance between any two of which is

√
2. Therefore we have that ‖Σ‖2 ≤ 2n. Then λi ≤ 4n+1

for every 1 ≤ i ≤ k; moreover, since the k coordinates must sum to n, Σ̂ has rank at most k − 1
and so at least one of the λi’s is zero. Combining these observations, we obtain

det(M) ≤
√
k2 log2 k

ε
·
(
C2k(4n+ 2) log

k

ε
+ k2 log2 k

ε

) k−1
2

= k log
k

ε
·O
(
nk2 log

k

ε

) k−1
2

.

With high constant probability, the number of samples we need is then

O

(√
|S| detM

ε2
+
|S|
ε2

+ qI(ε)

)
=

1

ε2

√
k log

k

ε
·O
(
nk2 log

k

ε

) k−1
4

+
O(k2 log(k/ε))k

ε2
+O(k4)

= O(n(k−1)/4k2k log(k/ε)k/ε2)

The time complexity of the algorithm is dominated by the projection step. By Proposition 4.9
and Corollary 4.12 of [DKS16c], we can produce a proper ε-cover of PMDn,k of size nO(k3) ·
(1/ε)

O(k3
log(k/ε)

log log(k/ε)
)k−1

in time also nO(k3) ·(1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

. Note that producing an (ε/6
√
|S|)-

cover, as = ε/O(k2 log(k/ε))k/2, takes time nO(k3) ·(1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

(which is also the size of the

resulting cover). Hence the running time of the algorithm is at most nO(k3) · (1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

.

Alternatively, [DDKT16] gives an ε-cover of size nO(k) ·min 2poly(k/ε), 2O(k5k log(1/ε)k+2
that can

also be constructed in polynomial time. By using this result, one needs to take time n|S|poly(log(1/ε))
to compute the Fourier coefficients. Applying this to get an ε/O(k2 log(k/ε))k/2-cover means that
unfortunately we are always doubly exponential in k. In this case, the running time of the algorithm
is nO(k) · 2O(k5k log(1/ε)k+2

.

9 The Discrete Log-Concavity Tester

Theorem 9.1 (Testing Log-Concavity). Given parameters n ∈ N, ε ∈ (0, 1], and sample access to
a distribution P over Z, there exists an algorithm which outputs either accept or reject, and satisfies
the following.

1. if P ∈ LCVn, then it outputs accept with probability at least 3/5;

2. if dTV (P,LCVn) > ε, then it outputs reject with probability at least 3/5.
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where LCVn denotes the class of (discrete) log-concave distributions over {0, . . . , n− 1}. Moreover,
the algorithm takes O(

√
n/ε2) + Õ

(
(log(n/ε)/ε)5/2

)
samples from P; and runs in time O(

√
n ·

poly(1/ε)).

We will sketch the proof and algorithm here. We first remark that the Maximum Likelihood
Estimator (MLE) for log-concave distributions can be formulated as a convex program [DR11],
which can be solved in sample polynomial time. One advantage of the MLE for log-concave distri-
butions is that it properly learns log-concave distributions (over support size M) to within Hellinger
distance ε using Õ

(
(logM)/ε5/2

)
samples3. Note that the squared Hellinger distance satisfies:

dH (P,Q)2 =
∑
x

(
√

(P(x)−
√

Q(x))2 =
∑
x

(P(x)−Q(x))2

(
√

P +
√

Q)2
≥

‖P−Q‖2
2 max{P(x),Q(x)}

.

Further, it is known that a log-concave distribution with variance σ2 is effectively supported in an
interval of length M = O(log(1/ε)σ) centered at the mean, and that its maximum probability is
O(1/σ) (See Fact 9.6). Thus, by learning a log-concave distribution properly to within ε/ log(1/ε)
Hellinger distance, one also learns it to within ε√

M
L2-distance.

A log-concave distribution P has L2 norm bounded by ‖P‖22 ≤ maxx P(x) ≤ O(1/σ). It is easy
to show using standard concentration bounds that P mod M also has L2 norm O(1/

√
σ). We will

prove in Proposition 9.2 that its DFT modulo M is effectively supported on a known set S of size
|S| = O(log(1/ε)2/ε2).

Thus our algorithm will work as follows: First we estimate the mean and variance under the
assumption of log-concavity. We construct an interval I of length M = O(log(1/ε)σ) which would
be containing the effective support if we were log-concave; and reject if it is not the case, i.e., too
much probability mass falls outside I. Then we properly learn P to within ε/ log(1/ε) Hellinger
distance using the MLE of Õ

(
(logM)/ε5/2

)
samples,4 giving a hypothesis H. At this point, we

reject if our estimates for the mean and variance are far from that of H. Then we run an L2 identity
tester between P and H, i.e., test whether the empirical distribution Q of O(M/σε2) samples is

large. To do this efficiently, we compute ‖Q‖22 − ‖Q̂1S‖
2

2/M + ‖Q̂1S − Ĥ1S‖
2

2/M (since we know

Ĥ is supported on S).
To do this in time O(

√
n ·poly(1/ε), we need to compute the Fourier coefficients efficiently. The

MLE for log-concave distributions is a piecewise exponential distribution with a number of pieces
at most the number of samples [DR11], which is Õ

(
(logM)/ε5/2

)
in this case. Using the expression

for the integral of an exponential function gives a simple closed-form expression for H(ξ) that we
can compute in time Õ

(
(logM)/ε5/2

)
.

Proposition 9.2. Let P be a discrete log-concave distribution with variance σ2 and M = O(log(1/ε)σ)
be the size of its effective support. Then its Discrete Fourier transform is effectively supported on
a known set S of size |S| = O(log(1/ε)2/ε2).

3We note that a similar, slightly stronger result is already known for continuous log-concave distributions, which
can be learned to Hellinger distance ε from only O(ε−5/2) samples [KS16]. The proof of this result, however, does not
seem to generalize to discrete log-concave distributions, which is our focus here; thus, we establish in Appendix A
the learning result we require, namely an upper bound on the sample complexity of the MLE estimator for learning
the class of log-concave distributions over {0, . . . ,M − 1} in Hellinger distance (Theorem A.1).

4Note that we here invoke the MLE estimator not on the full domain, but on the effective support, which contains
at least 1−O(ε2) probability mass. This conditioning overall does not affect the sample complexity nor the distances,
as it can only cause O(ε2) error in total variation (and thus O(ε) in Hellinger distance).
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Proof. First we show that for any unimodal distribution, we can relate the maximum probability
to the size of the effective support.

Lemma 9.3. Let P be a unimodal distribution supported on Z such that the probability of the mode
is Pmax. Then the DFT modulo M of P at ξ ∈ [−M/2,M/2) has P̂(ξ) = O(PmaxM/|ξ|).

Proof. Let m be the mode of P. Then we have

P̂(ξ) =

m−1∑
j=−∞

P(j) exp

(
−2πi

ξj

M

)
+

∞∑
j=m

P(j) exp

(
−2πi

ξj

M

)
.

We will apply summation by parts to these two series. Let g(x) =
∑x

j=m+1 exp(−2πiξj/M) and

g(m) = 0. By a standard result on geometric series, we have g(x) = − exp(−2πiξ(x+1)/M)−exp(−2πiξ(m+1)/M)
1−exp(−2πiξ/M) .

Claim 9.4. |g(x)| = O(M/ξ) for all integers x ≥ m.

Proof. The modulus of the numerator | exp(−2πiξ(x+ 1)/M)− exp(−2πiξ(m+ 1)/M)| is at most
2. We thus only need to find a lower bound for |1− exp(−2πiξ/M |.

|1− exp(−2πiξ/M)|2 = (1− cos(2πξ/M))2 + sin(2πξ/M)2 = 2− 2 cos(2πξ/M) = Ω((ξ/M)2) ,

and so |g(x)| ≤ 2/
√

Ω((ξ/M)2) = O(M/|ξ|).

Now consider the following, for any n > m:

n∑
j=m+1

P(j)(g(j)− g(j − 1)) +
n∑

j=m+1

g(j)(P(j + 1)−P(j)) = P(n+ 1)g(n)−P(m+ 1)g(m) .

Now g(m) = 0 and P(n+ 1) → 0 as n → ∞ while g(n+ 1) is bounded for all n. Hence, the RHS
tends to 0 as n→∞ and we have:

|
∞∑

j=m+1

P(j) exp(−2πiξj/M)| = |
∞∑

j=m+1

P(j)(g(j)− g(j − 1))| = |
∞∑

j=m+1

g(j)(P(j + 1)−P(j))|

≤ O(M/ξ) ·
∞∑

j=m+1

(P(j)−P(j + 1)) = O(PmaxM/ξ) .

Similarly, we can show that
∑m−1

j=−∞P(j) exp(−2πiξj/M) = O(PmaxM/ξ) since P is monotone
there as well.

Then we can get a bound on the size of the effective support:

Lemma 9.5. Let P be a unimodal distribution supported on Z such that the probability of the
mode is Pmax and let ε ≤ 1/M . Then the DFT modulo M of P has

∑
|ξ|>` |P̂|2 ≤ ε2/100, where

` = Θ(P2
maxM

2/ε2).
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Proof.

∑
|ξ|>`

|P̂ |2 ≤ 2

M/2∑
ξ=`+1

O(PmaxM/ξ)2 ≤ O(PmaxM)2
∞∑

ξ=`+1

1/ξ2 ≤ O(P2
maxM

2/`) ≤ ε2

100
.

For log-concave distributions, we can relate Pmax and M as follows,

Fact 9.6. Let P be a discrete log-concave distribution with mean µ and variance σ2. Then

• P is unimodal;

• its probability mass function satisfies P(x) = exp(−O((x− µ)/σ))/σ; and

• Pr[|X − µ| ≥ Ω(σ log(1/ε))] ≤ ε.

Since Pmax = O(1/σ), we can take M = O(σ log(1/ε))) = O(log(1/ε)/Pmax). Substituting this
into Lemma 9.5 completes the proof of the proposition.

10 Lower Bound for PMD Testing

In this section, we obtain a lower bound to complement our upper bound for testing Poisson
Multinomial Distributions. Namely, we prove the following:

Theorem 10.1. There exists an absolute constant c ∈ (0, 1) such that the following holds. For any

k ≤ nc, any testing algorithm for the class of PMDn,k must have sample complexity Ω
((

4π
k

)k/4 n(k−1)/4

ε2

)
.

The proof will rely on the lower bound framework of [CDGR16], reducing testing PMDn,k to
testing identity to some suitable hard distribution P∗ ∈ PMDn,k. To do so, we need to (a) choose
a convenient P∗ ∈ PMDn,k; (b) prove that testing identity to P∗ requires that many samples
(we shall do so by invoking the [VV14] instance-by-instance lower bound method); (c) provide an
agnostic learning algorithm for PMDn,k with small enough sample complexity, for the reduction
to go through. Invoking [CDGR16, Theorem 18] with these ingredients will then conclude the
argument.

Proof of Theorem 10.1. In what follows, we choose our “hard instance” P∗ ∈ PMDn,k to be the
PMD obtained by summing n i.i.d. random variables, all uniformly distributed on {e1, . . . , ek}.
This takes care of point (a) above.

To show (b), we will rely on a result of Valiant and Valiant, which showed in [VV14] that testing
identity to any discrete distribution P required Ω

(
‖P−max
−ε ‖2/3/ε2

)
samples, where P−max

−ε is the
vector obtained by zeroing out the largest entry of P, as well as a cumulative ε mass of the smallest
entries. Since ‖P−max

−ε ‖2/3 is rather cumbersome to analyze, we shall instead use a slightly looser
bound, considering ‖P‖2 as a proxy.

Fact 10.2. For any discrete distribution P, we have ‖P‖2/3 ≥ 1
‖P‖2

. More generally, for any vector

x we have ‖x‖2/3 ≥
‖x‖21
‖x‖2

.
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Proof. It is sufficient to prove the second statement, which implies the first. This is in turn a

straightforward application of Hölder’s inequality, with parameters (4, 4
3): ‖x‖1 =

∑
i |x|

1/2
i |x|

1/2
i ≤(∑

i |x|
2
i

)1/4 (
|x|2/3i

)3/4
. Squaring both sides yields the claim.

Fact 10.3. For our distribution P∗, we have ‖P∗‖2 = Θ
(

kk/4

(4πn)(k−1)/4

)
.

Proof. It is not hard to see that, from any n = (n1, . . . , nk) ∈ Nk such that
∑k

i=1 ni = n, P∗(n) =
1
kn

(
n

n1,...,nk

)
(where

(
n

n1,...,nk

)
denotes the multinomial coefficient). From there, we have

‖P∗‖22 =
1

k2n

∑
n1+···+nk=n

(
n

n1, . . . , nk

)2

∼
n→∞

1

k2n
· k2n kk/2

(4πn)(k−1)/2

where the equivalent is due to Richmond and Shallit [RS08].

However, from Fact 10.2 we want to get a hold on ‖P∗−max
−ε ‖

2
, not ‖P∗‖2 (since ‖P∗−max

−ε ‖2
1
≥

1 − Ω(ε), we then will have our lower bound on ‖P∗−max
−ε ‖2/3). Fortunately, the two are related:

namely, ‖P∗−max
−ε ‖

2
≤ ‖P∗‖2, so 1

‖P∗−max
−ε ‖

2

≥ 1
‖P∗‖2

which is the direction we need.

Combining the three facts above establishes (b), providing a lower bound of qhard(n, k, ε) = Ω
(

(4πn)(k−1)/4

kk/4ε2

)
for testing identity to P∗. It only remains to establish (c):

Lemma 10.4. There exists a (not necessarily efficient) agnostic learner for PMDn,k, with sample

complexity qagn(n, k, ε) = 1
ε2

(
O(k2 log n) +O

(
k log(k/ε)

log log(k/ε)

)k)
.

Proof. This is implied by a result of [DKS16c], which establishes the existence of a (proper) ε-cover

Mn,k,ε of PMDn,k such that |Mn,k,ε| ≤ nO(k2) · (1/ε)O
(
k log(k/ε)
log log(k/ε)

)k−1

. By standard arguments, this

yields information-theoretically an agnostic learner with sample complexity O

(
log|Mn,k,ε|

ε2

)
.

Having (a), (b), and (c), an application of [CDGR16, Theorem 18] yields that, as long as
qagn(n, k, ε) = o(qhard(n, k, ε)) then testing membership to PMDn,k requires Ω (qhard(n, k, ε)) sam-
ples as well. This in particular holds for k = o(nc) (where e.g. c < 1/9) and ε = 1/2O(n).
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A Learning Discrete Log-Concave Distributions in Hellinger Distance

Recall that the Hellinger distance between two probability distributions over a domain D is defined
as

dH (p, q)
def
=

1√
2
‖√p−√q‖2

where the 2- norm is to be interpreted as either the `2 distance or L2 distance between the pmf or
pdf’s of p, q, depending on whether D is Z or R. In particular, one can extend this metric to the
set of pseudo-distributions over D, relaxing the requirement that the measures sum to one. We let
FD denote the set of pseudo-distributions over D. The bracketing entropy of a family of functions
G ⊆ RD with respect to the Hellinger distance (for parameter ε) if then the minimum cardinality
of a collection C of pairs (gL, gU ) ∈ F2

D such that every f ∈ G is “bracketed” between the elements
of some pair in C:

N[](ε,G,dH)
def
= min

{
N ∈ N : ∃C ⊆ F2

D, |C| = N, ∀f ∈ G,∃(gL, gU ) ∈ C s.t. gL ≤ f ≤ gU and dH (gL, gH) ≤ ε
}

Theorem A.1. Let p̂m denote the maximum likelihood estimator (MLE) for discrete log-concave
distributions on a sample of size m. Then, the minimax supremum risk satisfies

sup
p∈LCVn

Ep[dH (p̂m, p)
2] = O

(
log4/5(mn)

m4/5

)
.

Note that it is known that for continuous log-concave distributions over R, the rate of the MLE
is O(m−4/5) [KS16]; this result, however, does not generalize to discrete log-concavity, as it crucially
relies on a scaling argument which does not work in the discrete case. On the other hand, one can
derive a rate of convergence to learn discrete log-concave distributions in total variation distance
(using another estimator than the MLE), getting again O(m−4/5) in that case [DKS16a]. However,
due to the loose upper bound relating total variation and Hellinger distance, this latter result only
implies an O(m−2/5) convergence rate in Hellinger distance, which is quadratically worse than what
we would hope for.

Thus, the result above, while involving a logarithmic dependence on the support size, has the
advantage of getting the “right” rate of convergence. (While this additional dependence does not
matter for our purposes, we believe a modification of our techniques would allow one to get rid of
it, obtaining a rate of Õ

(
m−4/5

)
instead.)

In order to prove Theorem A.1, we obtain along the way several interesting results on discrete
(and continuous) log-concave distributions, namely a bound on their bracketing entropy (Theo-
rem A.2) and an approximation result (Theorem A.3), which we believe are of independent interest.

In what follows, D will denote either R or Z; we let LCV(D) denote the set of log-concave
distributions over D, and LCVn ⊆ LCV(Z) be the subset of log-concave distributions supported on
{0, . . . , n− 1}.

Theorem A.2. For every ε ∈ (0, 1),

N[](ε,LCVn, dH) ≤
(n
ε

)O(1/
√
ε)

A crucial element in to establish Theorem A.2 will be the following theorem, which shows
that log-concave distributions are well-approximated (in Hellinger distance) by piecewise-constant
pseudo-distributions with few pieces:
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Theorem A.3. Let D be either R or Z. For every p ∈ LCV(D) and ε ∈ (0, 1), there exists a
pseudo-distribution g such that (i) g is piecewise-linear with O (1/

√
ε) pieces; (ii) g is supported on

an interval [a, b] with p(D \ [a, b]) = O(ε2); and (iii) dH (p, g) ≤ ε. (Moreover, one can choose to
enforce g ≤ p, or p ≤ g, on [a, b]).

The proof of Theorem A.3 will be very similar to that of [DKS16a, Theorem 12]; specifically,
we will use the following (reformulation of a) lemma due to Diakonikolas, Kane, and Stewart:

Lemma A.4 ([DKS16a, Lemma 14], rephrased). Let D be either R or Z. Let f be a log-concave
function defined on an interval I ⊆ D, and suppose that f(I) ⊆ [a, 2a] for some constant a > 0.
Furthermore, suppose that the logarithmic derivative of f (or, if D = Z, the log-finite difference of
f) varies by at most 1/ |I| on I; then, for any ε ∈ (0, 1) there exists two piecewise linear functions
g`, gu : I 7→ R with O (1/

√
ε) pieces such that∣∣f(x)− gj(x)

∣∣ = O (ε)f(x), j ∈ {`, u} (6)

for all x ∈ I, and with g` ≤ f ≤ gu.

Proof. Observe that it suffices to establish Eq. (6) for a piecewise linear function g : I 7→ R with
O (1/

√
ε) pieces; indeed, then in order to obtain g`, gu from g, it will be sufficient to scale it by

respectively (1 + αε)−1 and (1 + αε) (for a suitably big absolute constant α > 0), thus ensuring
both Eq. (6) and g` ≤ f ≤ gu. We therefore focus hereafter on obtaining such a pseudo-distribution
g.

For ease of notation, we write h for the logarithmic derivative (or log-finite difference) of f (e.g.,
in the continuous case, h = (ln f)′). By rescaling f , we may assume without loss of generality that
a = 1. Note that h is then bounded on I, i.e. |h| ≤ c/|I| for some absolute constant c > 0. We
now partition I into subintervals J1, J2, . . . , J` so that (i) each Ji has length at most ε1/2 |I|, and
(ii) h varies by at most ε1/2/ |I| on each Ji. This can be achieved with ` = O (1/

√
ε) by placing an

interval boundary every ε1/2 |I| distance as well as every time h passes a multiple of ε1/2/ |I|.
We now claim that on each interval Ji there exists a linear function gi so that |gi(x)− f(x)| =

O(ε)f(x) for all x ∈ Ji. Letting g be gi on Ji will complete the proof. Fix any i, and write
Ji = [si, ti]. Letting α0 ∈ h(Ji) be an arbitrary value in the range spanned by h on Ji, observe that
for any x ∈ Ji there exists αx ∈ h(Ji) such that

f(x) = f(si)e
αx(x−si)

from which we have

f(x) = f(si)e
α0(x−si)+(αx−α0)(x−si) = f(si)e

α0(x−si)e(αx−α0)(x−si)

= f(si) (1 + α0(x− si) +O(ε)) (1 +O((αx − α0)(x− si)))
= f(si) (1 + α0(x− si) +O(ε)) (1 +O(ε))

= f(si) + α0f(si)(x− si) +O(ε)

recalling that |α0| , |αx| = O(1/ |I|), |x− si| ≤ ε1/2 |I|, and |αx − α0| ≤ ε1/2/ |I|, so that |α0(x− si)| =
O(ε1/2) and |(αx − α0)(x− si)| = O(ε). This motivates defining the affine function gi as

gi(x)
def
= f(si) + α0f(si)(x− si), x ∈ Ji
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from which∣∣∣∣f(x)− gi(x)

f(x)

∣∣∣∣ =

∣∣∣∣1− f(si) + α0f(si)(x− si)
f(si)eαx(x−si)

∣∣∣∣ =

∣∣∣∣1− 1 + α0(x− si)
eαx(x−si)

∣∣∣∣
=

∣∣∣∣1− 1 + α0(x− si)
1 + αx(x− si) +O(ε)

∣∣∣∣ = |1− (1 + α0(x− si)) (1− αx(x− si) +O(ε))|

= |(αx − α0)(x− si) +O(ε)| = O(ε)

as claimed. This concludes the proof.

We will also rely on the following proposition, from the same paper:

Proposition A.5 ([DKS16a, Proposition 15]). Let f be a log-concave distribution on D (as before,
either R or Z). Then there exists a partition of D into disjoint intervals I1, I2, . . . and a constant
C > 0 such that

• f satisfies the hypotheses of Lemma A.4 on each Ii.

• For each m, there are most Cm values of i so that f(Ii) > 2−m.

We are now ready to prove Theorem A.3:

Proof of Theorem A.3. Fix any ε ∈ (0, 1), and p ∈ LCV(D). We divide D into intervals as described
in Proposition A.5. Call these intervals I1, I2, . . . sorted so that p(Ii) is decreasing in i. Therefore,
we have that p(Im) ≤ 2−m/C .

For 1 ≤ m ≤M def
= 2C log(1/ε), let εm

def
= ε2m/(3C); we use Lemma A.4 to approximate p in Im

by two piecewise linear functions g`m, g
u
m so that (i) gjm has at most O(1/

√
εm) pieces and (ii) p and

gjm are, on Im, within a multiplicative (1 ± O(εm)) factor with g`m ≤ p ≤ gum. For j ∈ {`, u}, let
gj be the piecewise linear function that is gjm on Im for 1 ≤ m ≤ M , and 0 elsewhere. gj is then
piecewise linear on

M∑
m=1

O(ε−1/2
m ) =

M∑
m=1

O
(
ε−1/22−

m
6C

)
= O(ε−1/2)

intervals.
Let I = [a, b] be defined as the smallest interval such that

⋃M
m=1 Im ⊆ I. By definition, g is 0

outside of I, and moreover the total mass of p there is

∞∑
m=M+1

p(Im) ≤
∞∑

m=M+1

1

2m/C
= O

(
2−M/C

)
= O

(
ε2
)

By replacing gj by max(gj , 0), we may ensure that it is non-negative (while at most doubling the
number of pieces without increasing the distance from p). This establishes the first two items of
the theorem; we now turn to the third.
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The Hellinger distance between p and gj satisfies, letting J
def
=
⋃M
m=1 Im,

2dH

(
p, gj

)2
= ‖√p−

√
gj‖

2

2 =

∫
D

(√
p(x)−

√
gj(x)

)2

µ(dx)

=

∫
D\J

(√
p(x)−

√
gj(x)

)2

µ(dx) +

∫
J

(√
p(x)−

√
gj(x)

)2

µ(dx)

=

∫
D\J

p(x)µ(dx) +
M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

≤ O(ε2) +
M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

= O(ε2) +
M∑
m=1

∫
Im

p(x)O(ε2m)µ(dx) = O(ε2) +
M∑
m=1

O
(
ε2mp(Im)

)
= O(ε2) +

M∑
m=1

O
(
ε22

2m
3C 2

−m
C

)
= O(ε2) +

M∑
m=1

O
(
ε22

−m
3C

)
= O(ε2) +O(ε2) = O(ε2)

establishing the third item. (By dividing ε by a sufficiently big absolute constant before applying
the above, one gets (i), (ii), and (iii) with dH

(
p, gj

)
≤ ε as desired.) It then only remains to choose

g to be either g` or gu, depending on whether one wants a lower- or upperbound on f (on [a, b]).

We can finally prove Theorem A.2:

Proof of Theorem A.2. We can slightly strengthen the proof of Theorem A.3 for the case of LCVn,
by imposing some restriction on the form of the ‘approximating distributions” g. Namely, for any
ε ∈ (0, 1), fix any p ∈ LCVn and consider the construction of g`, gu as in the proof of Theorem A.3.
Clearly, we can assume [a, b] ⊆ {0, . . . , n− 1}.

Now, we modify gj as follows (for j ∈ {`, u}): for 1 ≤ m ≤ M , consider the interval Im =
[am, bm], and the corresponding “piece” gjm of g on Im. We let g̃jm be the pseudo-distribution
defined from gjm as follows: it is affine on Im, with

g̃um(am)
def
=

⌈
gu(am)

M |Im|
2ε2

⌉
2ε2

M |Im|
, g̃um(am)

def
=

⌈
gu(bm)

M |Im|
2ε2

⌉
2ε2

M |Im|

and

g̃`m(am)
def
=

⌊
g`(am)

M |Im|
2ε2

⌋
2ε2

M |Im|
, g̃`m(am)

def
=

⌊
g`(bm)

M |Im|
2ε2

⌋
2ε2

M |Im|

i.e. gjm is g “rounded up” (resp. down) to the near multiple of ε2

M |Im| on the endpoints. We then

let g̃j be the correspond piecewise-affine pseudo-distribution defined by piecing together the g̃jm’s.
Clearly, by construction g̃` and g̃u still satisfies (i) and (ii) of Theorem A.3, and g̃` ≤ p ≤ g̃u. As

for (iii), observe that at all 1 ≤ m ≤M and k ∈ Im we have
∣∣g̃j(k)− gj(k)

∣∣ ≤ 2ε2

M |Im| , from which

dH

(
p, g̃j

)
≤ dH

(
p, gj

)
+ dH

(
g, g̃j

)
≤ ε+

√
dTV (gj , g̃j) ≤ ε+

√√√√1

2

M∑
m=1

|Im| ·
2ε2

M |Im|
= 2ε
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showing that we get (up to a constant factor loss in the distance) (iii) as well. Given this, we get
that specifying (g̃`, g̃u) can be done by the list of the O(1/

√
ε) endpoints along with the value of each

g̃j for all of these endpoints. Now, given the two endpoints, one gets the size of the corresponding
interval Im (which is at most n), and the two values to specify are a multiple of ε2/(M |Im|) in
[0, 1]. (If we were to stop here, we would get the existence of an ε-cover C′ε of LCVn in Hellinger
distance of size (n/ε)O(1/

√
ε).)

One last step: outside [a, b]. To get the bracketing bound we seek, we need to do one last
modification to our pair (g̃`, g̃u). Specifically, in the above we have one issue when approximating
p: namely, that outside of their common support {a, . . . , b}, both g̃j ’s are 0. While this is fine for
the lower bound g̃`, this is not for g̃u, as it needs to dominate p outside of {a, . . . , b} as well, where
p may have O(ε2) probability mass. Thus, we need to adapt the construction above, as follows (we
treat the setting of g̃u on {b+1, . . . , n}, the definition on {0, . . . , a−1} is similar): for b+1 ≤ k ≤ n,
set

g̃u(k)
def
= αeβ(k−(b+1))

where α
def
=
⌈
p(b+ 1) n

2ε2

⌉
2ε2

n and β
def
=
⌈
n
ε ln p(b+1)

p(b+2)

⌉
ε
n . Then g̃u(b + 1) ≥ p(b + 1), and for b + 1 <

k ≤ n
g̃u(k)

g̃u(k − 1)
= eβ ≥ p(b+ 1)

p(b+ 2)
≥ p(k)

p(k − 1)

(the last inequality due to the log-concavity of p). This implies g̃u ≥ p on {b + 1, . . . , n} as
desired; and, thanks to the rounding, there are only O(n/ε2) different possibilities for the tail
of g̃u. Moreover, the Hellinger distance between p and g̃u added by this modification is upper
bounded by the (square root) of the total variation distance this added, which (recalling that
p({b+ 1, . . . , n}) = O(ε2)) is at most

√
O(ε2) +O(α/β) = O(ε).

We are, at last, ready to prove our main theorem:

Proof of Theorem A.1. Recall the following theorem, due to Wong and Shen [WS95] (see also [vdG00,
Theorem 7.4], [KS16, Theorem 17]):

Theorem A.6 ([WS95, Theorem 2]). There exist positive constants τ1, τ2, τ3, τ4 > 0 such that, for
all ε ∈ (0, 1), if ∫ √2ε

ε2/28

√
N[](u/τ1,G,dH) du ≤ τ2m

1/2ε2 (7)

and p̃n is an estimator that approximates p̂m within error η (i.e., solves the maximization problem
within additive error η) with η ≤ τ3ε

2, then

Pr [ dH (p̃m, p) ≥ ε ] ≤ 5 exp(−τ4mε
2).

To apply this theorem, define the function Jn : (0, 1) → R by J(x)
def
=
∫ x
x2

√
ln n

uu
−1/4 du. By

(tedious) computations, one can verify that Jn(x) ∼x→0
4
3x

3/4
√

ln n
x ; this, combined with the bound

of Theorem A.2, yields that for any ε ∈ (0, 1)∫ √2ε

ε2/28

√
N[](u/τ1,LCVn,dH) du = O

(
ε3/4

√
ln
n

ε

)
.

40



Thus, setting, for m ≥ 1, εm
def
= Cm−2/5(ln(mn))2/5 for a sufficiently big absolute constant C > 0

ensures that εm satisfies (7). Let ρm
def
= 1/εm. It follows that any estimator which, on a sample of

size m, approximates the log-concave MLE to within an additive ηm
def
= τ3ε

2
m has minimax error

ρ2
m sup
p∈LCVn

Ep[dH (p̃m, p)
2] = sup

p∈LCVn

∫ ∞
0

Pr
[
ρ2
mdH (p̃n, p)

2 ≥ t
]
dt

= sup
p∈LCVn

∫ ∞
0

Pr
[

dH (p̃n, p) ≥
√
tρ−1
m

]
dt

≤ 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH (p̃n, p) ≥
√
tρ−1
m

]
dt

= 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH (p̃n, p) ≥
√
tεm

]
dt

≤= 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4mtε
2
m) dt

= 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4Cm
1/2 ln(mn)t) dt

= O(1)

where we used the fact that if εt > εm, then εt satisfies (7) as well (and applied it to εt =
√
tεm).

This concludes the proof.
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