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Abstract

We study the general problem of testing whether an unknown distribution belongs to a specified
family of distributions. More specifically, given a distribution familyP and sample access to an unknown
discrete distribution P, we want to distinguish (with high probability) between the case that P ∈ P and
the case that P is ε-far, in total variation distance, from every distribution in P . This is the prototypical
hypothesis testing problem that has received significant attention in statistics and, more recently, in
theoretical computer science.

The sample complexity of this general inference task depends on the underlying family P . The
gold standard in distribution property testing is to design sample-optimal and computationally efficient
algorithms for this task. The main contribution of this work is a simple and general testing technique that
is applicable to all distribution families whose Fourier spectrum satisfies a certain approximate sparsity
property. To the best of our knowledge, ours is the first use of the Fourier transform in the context of
distribution testing.

We apply our Fourier-based framework to obtain near sample-optimal and computationally efficient
testers for the following fundamental distribution families: Sums of Independent Integer Random Vari-
ables (SIIRVs), Poisson Multinomial Distributions (PMDs), and Discrete Log-Concave Distributions.
For the first two, ours are the first non-trivial testers in the literature, vastly generalizing previous work
on testing Poisson Binomial Distributions. For the third, our tester improves on prior work in both
sample and time complexity.
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1 Introduction
1.1 Background and Motivation The prototypical inference question in the area of distribution property
testing [BFR+00] is the following: Given a set of samples from a collection of probability distributions,
can we determine whether these distributions satisfy a certain property? During the past two decades, this
broad question – whose roots lie in statistical hypothesis testing [NP33, LR05] – has received considerable
attention by the computer science community, see [Rub12, Can15] for two recent surveys. After two decades
of study, for many properties of interest there exist sample-optimal testers (matched by information-theoretic
lower bounds) [Pan08, CDVV14, VV14, DKN15, ADK15, DK16].

In this work, we focus on the problem of testing whether an unknown distribution belongs to a given
family of discrete structured distributions. Let P be a family of discrete distributions over a total order
(e.g., [n]) or a partial order (e.g., [n]k). The problem of membership testing for P is the following: Given
sample access to an unknown distribution P (effectively supported on the same domain as P), we want to
distinguish between the case that P ∈ P versus dTV (P,P) > ε. (Here, dTV denotes the total variation
distance between distributions.) The sample complexity of this problem depends on the underlying family
P . For example, if P contains a single distribution over a domain of size n, the sample complexity of the
testing problem is Θ(n1/2/ε2) [CDVV14, VV14, DKN15, ADK15].

In this work, we give a general technique to test membership in various distribution families over discrete
domains, i.e., to solve the following task:

T(P, ε): given a family of discrete distributions P over some partially or totally ordered set, parameter
ε ∈ (0, 1], and sample access to an unknown distribution P over the same domain, how many samples
are required to distinguish, with probability 3/5, between the case that P ∈ P versus dTV (P,P) > ε?

Before we state our results in full generality, we present concrete applications to a number of well-studied
distribution families.

1.2 Our Results Our first result is a nearly sample-optimal testing algorithm for sums of independent
integer random variables (SIIRVs). Formally, an (n, k)-SIIRV is a sum of n independent integer random
variables each supported in {0, 1, . . . , k − 1}. We will denote the set of (n, k)-SIIRVs by SIIRVn,k.
SIIRVs comprise a rich class of distributions that arise in many settings. The special case of k = 2 was
first considered by Poisson [Poi37] as a non-trivial extension of the Binomial distribution, and is known as
Poisson binomial distribution (PBD). In application domains, SIIRVs have many uses in research areas such
as survey sampling, case-control studies, and survival analysis, see e.g., [CL97] for a survey of the many
practical uses of these distributions. In addition to their practical applications, SIIRVs are of fundamental
probabilistic interest and have been extensively studied in the theory of probability and statistics [Che52,
Hoe63, DP09b, Pre83, Kru86, BHJ92, CL10, CGS11]. We prove:

Theorem 1.1 (Testing SIIRVs). Given parameters k, n ∈ N and sample access to a distribution over N,
there exists an algorithm (Algorithm 1) for T(SIIRVn,k, ε) which takes

O

(
kn1/4

ε2
log1/4 1

ε
+
k2

ε2
log2 k

ε

)

samples, and runs in time n(k/ε)O(k log(k/ε)).
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Prior to our work, no non-trivial1 tester was known for (n, k)-SIIRVs for any k > 2. [CDGR17] showed
a sample lower bound of Ω

(
k1/2n1/4/ε2

)
, but their techniques did not yield any non-trivial sample upper

bound.
For the special case of PBDs (k = 2), Acharya and Daskalakis [AD15] gave a tester with sample

complexity O
(
n1/4

ε2

√
log 1/ε+ log5/2 1/ε

ε6

)
, running time O

(
n1/4

ε2

√
log 1/ε+ (1/ε)O(log2 1/ε)

)
, and also

showed a sample lower bound of Ω(n1/4/ε2). The special case of our Theorem 1.1 for k = 2 yields an
improvement over [AD15] in both sample size and runtime:

Theorem 1.2 (Testing PBDs). Given parameter n ∈ N and sample access to a distribution over N, there
exists an algorithm (Algorithm 1) for T(PBDn, ε) which takes

O

(
n1/4

ε2
log1/4 1

ε
+

log2 1/ε

ε2

)
samples, and runs in time n1/4 · Õ

(
1/ε2

)
+ (1/ε)O(log log(1/ε)).

Note that the sample complexity of our algorithm is n1/4 · Õ(1/ε2), matching the information-theoretic
lower bound up to a logarithmic factor in 1/ε. In particular, our algorithm does not incur the extrane-
ous Ω(1/ε6) term of [AD15]. Moreover, our runtime has a (1/ε)O(log log(1/ε)) dependence, as opposed to
(1/ε)O(log2 1/ε). The improved running time relies on a more efficient computational “projection step” in
our general framework, which leverages the geometric structure of Poisson Binomial distributions.

We remark that the guarantees provided by the above two theorems are actually stronger than the usual
property testing one. Namely, whenever the algorithm returns accept, then it also provides a (proper)
hypothesis H such that dTV (P,H) ≤ ε with probability at least 3/5.

A broad generalization of PBDs to the high-dimensional setting is the family of Poisson Multinomial
Distributions (PMDs). Formally, an (n, k)-PMD is any random variable of the form X =

∑n
i=1Xi, where

the Xi’s are independent random vectors supported on the set {e1, e2, . . . , ek} of standard basis vectors
in Rk. We will denote by PMDn,k the set of (n, k)-PMDs. PMDs comprise a broad class of discrete
distributions of fundamental importance in computer science, probability, and statistics. A large body of
work in the probability and statistics literature has been devoted to the study of the behavior of PMDs
under various structural conditions [Bar88, Loh92, BHJ92, Ben03, Roo99, Roo10]. PMDs generalize the
familiar multinomial distribution, and describe many distributions commonly encountered in computer sci-
ence (see, e.g., [DP07, DP08, Val08, VV11]). Recent years have witnessed a flurry of research activity
on PMDs and related distributions, from several perspectives of theoretical computer science, including
learning [DDS12, DDO+13, DKS16b, DKT15, DKS16c], property testing [Val08, VV10, VV11], computa-
tional game theory [DP07, DP08, BCI+08, DP09a, DP14, GT14, CDS17], and derandomization [GMRZ11,
BDS12, De15, GKM15]. We prove the following:

Theorem 1.3 (Testing PMDs). Given parameters k, n ∈ N and sample access to a distribution over Nk,
there exists an algorithm (Algorithm 7) for T(PMDn,k, ε) which takes

O

(
n(k−1)/4k2k

ε2
log(k/ε)k

)

samples, and runs in time nO(k3) · (1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2).
1By the term “non-trivial” here we refer to a testing algorithm that uses fewer samples than just learning the unknown distribution

and then checking whether it is close to a distribution in the family.
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For the sake of intuition, we note that Theorem 1.3 is particularly interesting in the regime that n is large
and k is small. Indeed, the sample complexity of testing PMDs is inherently exponential in k: We prove a
sample lower bound of Ωk(n

(k−1)/4/ε2) (Theorem 8.1),2 nearly-matching our upper bound for constant k.
Finally, we demonstrate the versatility of our techniques by obtaining (Section 7) a testing algorithm

for discrete log-concavity. Log-concave distributions constitute a broad and flexible non-parametric family
that is extensively used in modeling and inference [Wal09]. In the discrete setting, log-concave distributions
encompass a range of fundamental types of discrete distributions, including binomial, negative binomial,
geometric, hypergeometric, Poisson, Poisson Binomial, hyper-Poisson, Pólya-Eggenberger, and Skellam
distributions. Log-concave distributions have been studied in a wide range of different contexts including
economics [An95], statistics and probability theory (see [SW14] for a recent survey), theoretical computer
science [LV07], and algebra, combinatorics and geometry [Sta89]. We will denote by LCVn the class of
log-concave distributions over [n]. We prove:

Theorem 1.4 (Testing Log-Concavity). Given a parameter n ∈ N and sample access to a distribution over
N, there exists an algorithm (Algorithm 8) for T(LCVn, ε) which takes

O

(√
n

ε2

)
+ Õ

(
1

ε5/2

)
samples, and runs in time O(

√
n · poly(1/ε)).

Our discrete log-concavity tester improves on previous work in terms of both sample and time com-
plexity. Specifically, [ADK15] gave a log-concavity tester with sample complexity O

(√
n/ε2 + 1/ε5

)
,

while [CDGR17] obtained a tester with sample complexity Õ
(√
n/ε7/2

)
. Our sample complexity domi-

nates both these bounds, and is significantly better when ε is small. The algorithms in [ADK15, CDGR17]
run in poly(n/ε) time, as they involve solving a linear program of poly(n/ε) size. In contrast, the running
time of our algorithm is sublinear in n.

1.3 Our Techniques and Comparison to Previous Work All the testing algorithms in this paper follow
from a simple and general technique that may be of broader interest. The common property of the underlying
distribution families P that allows for our unified testing approach is the following: Let P be the probability
mass function of any distribution in P . Then, the Fourier transform of P is approximately sparse, in a
well-defined sense.

For concreteness, we elaborate on our technique for the case of SIIRVs. The starting point of our
approach is the observation from [DKS16b] that (n, k)-SIIRVs – in addition to having a relatively small ef-
fective support – also have an approximately sparse Fourier representation. Roughly speaking, most of their
Fourier mass is concentrated on a small subset of Fourier coefficients, which can be computed efficiently.

This suggests the following natural approach to testing (n, k)-SIIRVs: first, identify the effective support
I of the distribution P and check that it is appropriately small. If it is not, then reject. Then, compute the
corresponding small subset S of the Fourier domain, and check that almost no Fourier mass of P lies outside
S. Otherwise, one can safely reject, as this is a certificate that P is not an (n, k)-SIIRV. Combining the two
steps, one can show that learning the Fourier transform of P (in L2-norm) on this small subset S only, is
sufficient to learn P itself in total variation distance. The former goal can be performed with relatively few
samples, as S is sufficiently small.

At this point, we have obtained a distribution H – succinctly represented by its Fourier transform on
S – such that P and H are close in total variation distance. It only remains to perform a computational

2Here, we use the notation Ωk(·), Ok(·) to indicate that the parameter k is seen as a constant.
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“projection step” to verify that H itself is close to some (n, k)-SIIRV. This will clearly be the case if indeed
P ∈ SIIRVn,k.

Although the aforementioned approach forms the core of our SIIRV testing algorithm (Algorithm 3),
the actual tester has to address separately the case where P has small variance, which can be handled by
a testing-via-learning approach. Our main contribution is thus to describe how to efficiently perform the
second step, i.e., the Fourier sparsity testing. This is done in Theorem 3.1, which describes a simple algo-
rithm to perform this step. The algorithm proceeds by essentially considering the Fourier coefficients of the
empirical distribution (obtained by taking a small number of samples). Interestingly, the main idea under-
lying Theorem 3.1 is to avoid analyzing directly the behavior of these Fourier coefficients – which would
naively require too high a time complexity. Instead, we rely on Plancherel’s identity and reduce the problem
to the analysis of a different task: that of the sample complexity of L2 identity testing (Proposition 3.2).
By a tight analysis of this L2 tester, we get as a byproduct that several Fourier quantities of interest (of our
empirical distribution) simultaneously enjoy good concentration – while arguing concentration of each of
these terms separately would yield a suboptimal time complexity.

A nearly identical method works for PMDs as well. Moreover, our approach can be abstracted to yield a
general testing framework, as we explain in Section 5. It is interesting to remark that the Fourier transform
has been used to learn PMDs and SIIRVs [DKS16b, DKT15, DKS16c, DDKT16], and therefore it may
not be entirely surprising that it has applications to testing as well. Notably, our Fourier testing technique
gives an improved and nearly-optimal algorithms for log-concavity, for which no Fourier learning algorithm
was known. More generally, testing membership to a class using the Fourier transform is significantly
more challenging than learning. A fundamental difference is that in the testing setting we need to handle
distributions that do not belong to the class (e.g., SIIRVs, PMDs), but are far from the class in an arbitrary
way. In contrast, learning algorithms work under the promise that the distribution is in the underlying class,
and thus can leverage the specific structure.

Testing via the Fourier Transform: the Advantage One may wonder how the detour via the Fourier
transform enables us to obtain better sample complexity than an approach purely based on L2 testing. In-
deed, all distributions in the classes we consider, crucially, have small L2 norm. For testing identity to such
a distribution P, the standard L2 identity tester (see, e.g., [CDVV14] or Proposition 3.2), which works by
checking how large the L2-distance between the empirical and the hypothesis distribution is, will be opti-
mal. We can thus test membership of a class of such distributions by (i) learning P assuming it belongs to
the class, and then (ii) test whether what we learned is indeed close to P using the L2 identity tester. The
catch is that, in order to get guarantees in L1-distance using this approach, would require us to learn to very
small L2 distance (because of the Cauchy–Schwarz inequality). In particular, if the unknown distribution
P has support size N , we would have to learn to L2 distance ε/

√
N in (i), and then in (ii) test that we are

within L2-distance ε/
√
N of the learned hypothesis.

However, if a distribution P has a sparse discrete Fourier transform (whose effective support is known),
then suffices h to estimate only these few Fourier coefficients [DKS16b, DKS16d]. This step enables us
to learn P in (i) not just to within L1-distance ε, but indeed (crucially) within L2-distance ε√

N
with good

sample complexity. Additionally, the identity testing algorithm can be put into a simpler form for a hypoth-
esis with sparse Fourier transform, as previously mentioned. Now, the tester has higher sample complexity,
roughly

√
N/ε2; but if it accepts, then we have learned the distribution P to within ε total variation distance,

with much fewer samples than the Ω
(
N/ε2

)
required for arbitrary distributions over support sizeN . Lastly,

we note that we can replace the support size N in the above description by the size of the effective support,
i.e., the smallest set that contains 1−O(ε) fraction of the mass. Doing so for the case of (n, k)-SIIRVs leads
to a sample complexity proportional to n1/4, instead of n1/2.
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1.4 Organization The rest of the paper is organized as follows: In Section 2, we set up notations and
provide definitions as well as standard results relevant to our purposes. Section 3 contains the details of one
of the main subroutines our testers rely on, namely for Fourier sparsity testing. We then give and analyze
in Section 4 our Fourier-based tester for SIIRVs. In Section 5, we abstract and generalize this approach to
obtain a general tester applicable to any class of distributions which enjoys good Fourier sparsity. Section 6
then contains our tester for Poisson Multinomial Distributions, which we get by extending our general
technique to higher dimensions (this tester is complemented in Section 8 by our sample complexity lower
bound on testing PMDs). Finally, we focus in Section 7 on the class of log-concave distributions, leveraging
our Fourier-based tools to obtain a tester for this class.

All omitted proofs can be found in Appendix A. In Appendix B, we analyze the sample complexity of
learning discrete log-concave distributions via the Maximum Likelihood Estimator, a result that we use for
our log-concavity tester and which may be of independent interest.

2 Preliminaries
We begin with some standard notations and definitions, as well as basics of Fourier analysis and results from
Probability that we shall use throughout the paper. We also state two structural results on SIIRVs, which
will be useful to us in Section 4. For m ∈ N, we write [m] for the set {0, 1, . . . ,m− 1}, and log (resp. ln)
for the binary logarithm (resp. the natural logarithm).

Distributions and Metrics A probability distribution over (discrete) domain Ω is a function P : Ω →
[0, 1] such that ‖P‖1

def
=
∑

ω∈Ω P(ω) = 1; we denote by ∆(Ω) the set of all probability distributions over
domain Ω. Recall that for two probability distributions P,Q ∈ ∆(Ω), their total variation distance (or

statistical distance) is defined as dTV (P,Q)
def
= supS⊆Ω(P(S) −Q(S)) = 1

2

∑
ω∈Ω |P(ω)−Q(ω)| , i.e.

dTV (P,Q) = 1
2‖P−Q‖1. Given a subset P ⊆ ∆(Ω) of distributions, the distance from P to P is then

defined as dTV (P,P)
def
= infQ∈P dTV (P,Q). If dTV (P,P) > ε, we say that P is ε-far from P; otherwise,

it is ε-close.

Property Testing We work in the standard setting of distribution testing: a testing algorithm for a property
P ⊆ ∆(Ω) is an algorithm which, granted access to independent samples from an unknown distribution
P ∈ ∆(Ω) as well as distance parameter ε ∈ (0, 1], outputs either accept or reject, with the following
guarantees.

• if P ∈ P , then it outputs accept with probability at least 3/5;

• if dTV (P,P) > ε, then it outputs reject with probability at least 3/5.

The two measures of interest here are the sample complexity of the algorithm (i.e., the number of samples
from the distribution it takes in the worst case), and its running time.

Classes (Properties) of Distributions We now recall the definition of the three classes of discrete distri-
butions central to this work, which all extend the family of Binomial distributions: the first two, by allowing
each summand to be non-identically distributed:

Definition 2.1. Fix any k ≥ 2. We say a random variableX is a (n, k)-Sum of Independent Integer Random
Variables ((n, k)-SIIRV) with parameter n ∈ N if it can be written as X =

∑n
j=1Xj , where X1 . . . , Xn are
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independent, non-necessarily identically distributed random variables taking value in [k] = {0, 1, . . . , k−1}.
We denote by SIIRVn,k the class of all such (n, k)-SIIRVs.

(The class of Poisson Binomial Distributions, denoted PBDn, corresponds to the case k = 2, that is 2-
SIIRVS. Equivalently, this is the generalization of Binomials where each Bernoulli summand is allowed to
have its own parameter). A different type of generalization is that of Poisson Multinomial Distributions,
where each summand is a random variable supported on the k vectors of the standard basis of Rk, instead
of [k]:

Definition 2.2. Fix any k ≥ 2. We say a random variable X is a (n, k)-Poisson Multinomial Distribution
((n, k)-PMD) with parameter n ∈ N if it can be written as X =

∑n
j=1Xj , where X1 . . . , Xn are indepen-

dent, non-necessarily identically distributed random variables taking value in {e1, . . . , ek} (where (ei)i∈[k]

is the canonical basis of Rk). We denote by PMDn,k the class of all such (n, k)-PMDs.

Lastly, we recall the definition of discrete log-concavity.

Definition 2.3. A distribution P over Z is said to be log-concave if it satisfies the following conditions: (i)
for any i < j < k such that P(i)P(k) > 0, P(j) > 0; and (ii) for all k ∈ Z, P(k)2 ≥ P(k−1)P(k+1). We
write LCV for the class of all log-concave distributions over Z, and LCVn ⊆ LCV for that of all log-concave
distributions over [n].

Discrete Fourier Transform For our SIIRV testing algorithm, we will need the following definition of
the Fourier transform.

Definition 2.4 (Discrete Fourier Transform). For x ∈ R, we let e(x)
def
= exp(−2iπx). The Discrete Fourier

Transform (DFT) modulo M of a function F : [n]→ C is the function F̂ : [M ]→ C defined as

F̂ (ξ) =

n−1∑
j=0

e

(
ξj

M

)
F (j)

for ξ ∈ [M ]. The DFT modulo M of a distribution P, P̂, is then the DFT modulo M of its probability
mass function (note that one can then equivalently see P̂(ξ) as the expectation P̂(ξ) = EX∼F [e

(
ξX
M

)
], for

ξ ∈ [M ]).
The inverse DFT moduloM onto the range [m,m+M−1] of F̂ : [M ]→ C, is the function F : [m,m+

M − 1] ∩ Z→ C defined by

F (j) =
1

M

M−1∑
ξ=0

e

(
− ξj
M

)
F̂ (ξ),

for j ∈ [m,m+M − 1] ∩ Z.

Note that the DFT (modulo M ) is a linear operator; moreover, we recall the standard fact relating the
norms of a function and of its Fourier transform, that we will use extensively:

Theorem 2.5 (Plancherel’s Theorem). For M ≥ 1 and F,G : [n] → C, we have (i)
∑n−1

j=0 F (j)G(j) =

1
M

∑M−1
ξ=0 F̂ (ξ)Ĝ(ξ); and (ii) ‖F‖2 = 1√

M
‖F̂‖2, where F̂ , Ĝ are the DFT modulo M of F,G, respectively.

(The latter equality is sometimes referred to as Parseval’s theorem.) We also note that, for our PMD testing,
we shall need the appropriate generalization of the Fourier transform to the multivariate setting. We leave
this generalization to the corresponding section, Section 6.
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Tools from Probability We finally recall a classical inequality for sums of independent random variables,
due to Bennett [BLM13, Chapter 2]:

Theorem 2.6 (Bennett’s inequality). Let X =
∑n

i=1Xi, where X1, . . . , Xn are independent random vari-
ables such that (i) E[Xi] = 0 and (ii) |Xi| ≤ α almost surely for all 1 ≤ i ≤ n. Letting σ2 = Var[X], we
have, for every t ≥ 0,

Pr[X > t] ≤ exp

(
−Var[X]

α2
ϑ

(
αt

Var[X]

))
where ϑ(x) = (1 + x) ln(1 + x)− x.

Structural Results on SIIRVs To establish the completeness of our algorithms, we will rely on this lemma
from [DKS16b]:

Lemma 2.7 ([DKS16b, Lemma 2.3]). Let P ∈ SIIRVn,k with
√

VarX∼P[X] = s, 1/2 > δ > 0, and
M ∈ Z+ with M > s. Let P̂ be the discrete Fourier transform of P modulo M . Then, we have

(i) LetL = L(δ,M, s)
def
=

{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)

2s

}
.

Then, |P̂(ξ)| ≤ δ for all ξ ∈ [M − 1] \ L. That is, |P̂(ξ)| > δ for at most |L| ≤Mk2s−1
√

log(1/δ)
values of ξ .

(ii) At most 4Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤M − 1 have |P̂(ξ)| > δ .

We also provide a simple structural lemma, bounding the L2 norm of any (n, k)-SIIRV as a function of
k and its variance only:

Lemma 2.8 (Any (n, k)-SIIRV modulo M has small L2 norm). If P ∈ Sn,k has variance s2, then the

distribution P′ defined as P′ def
= P mod M satisfies ‖P′‖2 ≤

√
8k
s .

The proof of this lemma is deferred to Appendix A.

3 Testing Effective Fourier Support
In this section, we prove the following theorem, which will be invoked as a crucial ingredient of our testing
algorithms. Broadly speaking, the theorem ensures one can efficiently test whether an unknown distribution
Q has its Fourier transform concentrated on some (small) effective support S (and if this is the case, learn
the vector Q̂1S , the restriction of this Fourier transform to S, in L2 distance).

Theorem 3.1. Given parameters M ≥ 1, ε, b ∈ (0, 1], as well as a subset S ⊆ [M ] and sample access to
a distribution Q over [M ], Algorithm 1 outputs either reject or a collection of Fourier coefficients Ĥ′ =

(Ĥ′(ξ))ξ∈S such that with probability at least 7/10, all the following statements hold simultaneously.

1. if ‖Q‖22 > 2b, then it outputs reject;

2. if ‖Q‖22 ≤ 2b and every function Q∗ : [M ] → R with Q̂∗ supported entirely on S is such that
‖Q−Q∗‖2 > ε, then it outputs reject;

3. if ‖Q‖22 ≤ b and there exists a function Q∗ : [M ] → R with Q̂∗ supported entirely on S such that
‖Q−Q∗‖2 ≤

ε
2 , then it does not output reject;

7



4. if it does not output reject, then ‖Q̂1S − Ĥ′‖2 ≤
ε
√
M

10 and the inverse Fourier transform (modulo
M ) H′ of the Fourier coefficients Ĥ′ it outputs satisfies ‖Q−H′‖2 ≤

6ε
5 .

Moreover, the algorithm takes m = O
(√

b
ε2

+ |S|
Mε2

+
√
M
)

samples from Q, and runs in time O (m |S|).

Note that the rejection condition in Item 2 is equivalent to ‖Q̂1S̄‖2 > ε
√
M , that is to having Fourier

mass more than ε2 outside of S; this is because for any Q∗ supported on S,

M‖Q−Q∗‖22 = ‖Q̂− Q̂∗‖
2

2 = ‖Q̂1S − Q̂∗1S‖
2

2 + ‖Q̂1S̄ − Q̂∗1S̄‖
2

2 ≥ ‖Q̂1S̄ − Q̂∗1S̄‖
2

2 = ‖Q̂1S̄‖
2

2

and the inequality is tight for Q∗ being the inverse Fourier transform (modulo M ) of Q̂1S .

High-level idea. Let Q be an unknown distribution supported on M consecutive integers (we will later
apply this to Q

def
= P mod M ), and S ⊆ [M ] be a set of Fourier coefficients (symmetric with regard to M :

ξ ∈ S implies −ξ mod M ∈ S) such that 0 ∈ S. We can further assume that we know b ≥ 0 such that
‖Q‖22 ≤ b.

Given Q, we can consider its “truncated Fourier expansion” (with respect to S) Ĥ = Q̂1S defined as

Ĥ(ξ)
def
=

{
Q̂(ξ) if ξ ∈ S
0 otherwise

for ξ ∈ [M ]; and let H be the inverse Fourier transform (modulo M ) of Ĥ. Note that H is no longer in
general a probability distribution.

To obtain the guarantees of Theorem 3.1, a natural idea is to take some number m of samples from
Q, and consider the empirical distribution Q′ they induce over [M ]. By computing the Fourier coefficients
(restricted to S) of this Q′, as well as the Fourier mass “missed” when doing so (i.e., the Fourier mass
‖Q̂′1S̄‖

2

2 that Q′ puts outside of S) to sufficient accuracy, one may hope to prove Theorem 3.1 with a
reasonable bound on m.

The issue is that analyzing separately the behavior of ‖Q̂′1S̄‖
2

2 and ‖Q̂′1S − Q̂′1S‖
2

2 to show that they
are both estimated sufficiently accurately, and both small enough, is not immediate. Instead, we will get a
bound on both at the same time, by arguing concentration in a different manner – namely, by analyzing a
different tester for tolerant identity testing in L2 norm.

In more detail, letting H be as above, we have by Plancherel that

∑
i∈[M ]

(Q′(i)−H(i))2 = ‖Q′ −H‖22 =
1

M
‖Q̂′ − Ĥ‖

2

2 =
1

M

M−1∑
ξ=0

|Q̂′(ξ)− Ĥ(ξ)|2

and, expanding the definition of Ĥ and using Plancherel again, this can be rewritten as

M
∑
i∈[M ]

(Q′(i)−H(i))2 = ‖Q̂1S − Q̂′1S‖
2

2 + ‖Q′‖22 − ‖Q̂′1S‖
2

2.

(The full derivation will be given in the proof.) The left-hand side has two non-negative compound terms:
the first, ‖P̂1S − Q̂′1S‖

2

2, corresponds to the L2 error obtained when learning the Fourier coefficients of Q

on S. The second, ‖Q′‖22 − ‖Q̂′1S‖
2

2 = ‖Q̂′1S̄‖
2

2, is the Fourier mass that our empirical Q′ puts “outside
of S.”
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So if the LHS is small (say, order ε2), then in particular both terms of the RHS will be small as well,
effectively giving us bounds on our two quantities in one shot. But this very same LHS is very reminiscent
of a known statistic [CDVV14] for testing identity of distributions in L2. So, one can analyze the number of
samples required by analyzing such an L2 tester instead. This is what we will do in Proposition 3.2.

Algorithm 1 Testing the Fourier Transform Effective Support
Require: parameters M ≥ 1, b, ε ∈ (0, 1]; set S ⊆ [M ]; sample access to distribution Q over [M ]

1: Set m←
⌈
C(
√
b
ε2

+ |S|
Mε2

+
√
M)
⌉

. C > 0 is an absolute constant

2: Draw m′ ← Poi(m); if m′ > 2m, return reject
3: Draw m′ samples from Q, and let Q′ be the corresponding empirical distribution over [M ]

4: Compute ‖Q′‖22, Q̂′(ξ) for every ξ ∈ S, and ‖Q̂′1S‖
2

2 . Takes time O (m |S|)
5: if m′2‖Q′‖22 −m′ >

3
2bm

2 then return reject

6: else if ‖Q′‖22 −
1
M ‖Q̂′1S‖

2

2 ≥ 3ε2
(
m′

m

)2
+ 1

m′ then return reject
7: else
8: return Ĥ′ = (Q̂′(ξ))ξ∈S
9: end if

Proof of Theorem 3.1. Given m′ ∼ Poi(m) samples from Q, let Q′ be the empirical distribution they de-
fine. We first observe that with probability 2−Ω(ε2m/b) < 1

100 , we have m′ ∈ [1 ± ε
100
√
b
]m and thus the

algorithm does not output reject in Step 1 (this follows from standard concentration bounds on Poisson
random variables). We will afterwards assume this holds. By Plancherel, we have

∑
i∈[M ]

(Q′(i)−H(i))2 = ‖Q′ −H‖22 =
1

M
‖Q̂′ − Ĥ‖

2

2 =
1

M

M−1∑
ξ=0

|Q̂′(ξ)− Ĥ(ξ)|2

and, expanding the definition of Ĥ, this yields∑
i∈[M ]

(Q′(i)−H(i))2 =
1

M

∑
ξ∈S
|Q̂′(ξ)− Ĥ(ξ)|2 +

1

M

∑
ξ /∈S

|Q̂′(ξ)|2

=
1

M

∑
ξ∈S
|Q̂′(ξ)− Q̂(ξ)|2 +

1

M

M−1∑
ξ=0

|Q̂′(ξ)|2 − 1

M

∑
ξ∈S
|Q̂′(ξ)|2

=
1

M

(
‖Q̂1S − Q̂′1S‖

2

2 + ‖Q̂′‖
2

2 − ‖Q̂′1S‖
2

2

)
=

1

M
‖Q̂1S − Q̂′1S‖

2

2 + ‖Q′‖22 −
1

M
‖Q̂′1S‖

2

2 (1)

where in the last step we invoked Plancherel again to argue that 1
M ‖Q̂′‖

2

2 = ‖Q′‖22.
To analyze the correctness of the algorithm (specifically, the completeness), we will adopt the point

of view suggested by (1) and analyze instead the statistic
∑

i∈[M ](Q
′(i) −H(i))2, when H is an explicit

(pseudo) distribution on [M ] assumed known, and Q′ is the empirical distribution obtained by drawing
Poi(m) samples from some unknown distribution Q. (Namely, we want to see this as a tolerant L2 identity
tester between Q and H.)
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• We first show that, given that m′ = Ω
(
|S|
Mε2

)
, with probability at least 99

100 we have ‖Q̂1S − Ĥ′‖2 ≤
√
Mε
10 . We note that m′Q̂′(ξ) is an sum of m′ i.i.d. numbers each of absolute value 1 and mean

Q̂(ξ) (which has absolute value less than 1). If X is one of these numbers, |X − Q̂(ξ)| ≤ 2 with
probability 1 and so the variance of the real and imaginary parts of X is at most 4. Thus the variance
of the real and imaginary parts of m′Q̂′(ξ) is at most 4m′. Then we have E[|Q̂(ξ) − Q̂′(ξ)|2] =

E[(<(Q̂(ξ)− Q̂′(ξ)))2 +(=(Q̂(ξ)− Q̂′(ξ)))2] ≤ 8/m′. Summing over S, using that Q′ and H′ have
the same Fourier coefficients there, yields

E

∑
ξ∈S

∣∣∣Q̂(ξ)− Ĥ′(ξ)
∣∣∣2
 ≤ 8|S|

m′
≤ Mε2

10000

and by Markov’s inequality we get Pr
[
‖Q̂1S − Ĥ′‖

2

2 ≤
Mε2

100

]
= Pr

[∑
ξ∈S

∣∣∣Q̂(ξ)− Ĥ′(ξ)
∣∣∣2 ≤ Mε2

100

]
≥

1
100 , concluding the proof.

• Then, let us consider Item 1: assume ‖Q‖22 > 2b, and set X def
= m′2‖Q′‖22 −m′. Then,

E[X] =

M∑
i=1

E[m′2Q′(i)2]−
M∑
i=1

E[m′Q′(i)] =

M∑
i=1

(mQ(i) +m2Q(i)2)−
M∑
i=1

mQ(i) = m2‖Q‖22

since them′Q′(i) are distributed as Poi(mQ(i)). As allm′Q′(i)’s are independent by Poissonization,
we also have

Var[X] =
M∑
i=1

Var[m′2Q′(i)2 −m′Q′(i)] =
M∑
i=1

(2m2Q(i)2 + 4m3Q(i)3) = 2m2‖Q‖22 + 4m3‖Q‖33

and by Chebyshev,

Pr[X ≤ 3

2
m2b] ≤ Pr

[
|X − E[X]| > 1

4
E[X]

]
≤ 16

Var[X]

E[X]2
≤ 32

m2‖Q‖22
+

64‖Q‖33
m‖Q‖42

Since Q is supported on [M ], ‖Q‖22 ≥
1
M and the first term is at most 32M

m2 . The second term, by

monotonicity of `p-norms, is at most 64‖Q‖32
m‖Q‖42

= 48
m‖Q‖2

≤ 48
√
M

m . The RHS is then at most 1
100 for a

large enough choice of C > 0 in the definition of m. Thus, with probability at least 1− 1
100 we have

m′2‖Q′‖22 −m′ >
3
2b, and the algorithm outputs reject in Step 5.

Moreover, if ‖Q‖22 ≤ b, then the same analysis shows that

Pr[X >
3

2
m2b] ≤ Pr

[
|X − E[X]| > 1

2
E[X]

]
≤ 4

Var[X]

E[X]2
≤ 1

100

and with probability at least 1− 1
100 the algorithm does not output reject in Step 4.

• Turning now to Items 2 to 4: we assume that the algorithm does not output reject in Step 4 (which
by the above happens with probability 99/100 if ‖Q‖22 ≤ b; and can be assumed without loss of
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generality otherwise, since we then want to argue that the algorithm does reject at some point in that
case).

By the remark following the statement of the theorem, it is sufficient to show that the algorithm
outputs reject (with high probability) if ‖Q̂1S̄‖

2

2 > ε2M , and that if both ‖Q‖22 ≤ b and ‖Q̂1S̄‖
2

2 ≤
ε2

4 M then it does not output reject; and that whenever the algorithm does not output reject, then
‖Q̂− Ĥ‖2 ≤ ε2M .

Observe that calling Algorithm 2 with our m′ = Poi(m) samples from Q (distribution over [M ]),

parameters ε
2 and 2b, and the explicit description of the pseudo distribution P∗

def
= m′

mH (which one
would obtain for H being the inverse Fourier transform of Q̂1S) would result by Proposition 3.2
(since m ≥ c

√
2b

(ε/2)2
= 244

√
2
√
b
ε2

, where c is as in Proposition 3.2) in having the following guarantees

on
√
Z
m , where Z is the statistic defined in Algorithm 2

– if ‖Q−P∗‖2 ≤
ε
2 , then

√
Z
m ≤

√
2.9ε with probability at least 3/4;

– if ‖Q−P∗‖2 ≥ ε, then
√
Z
m ≥

√
3.1ε with probability at least 3/4;

as ‖Q‖22 ≤ 2b (note that then ‖H‖22 ≤ b as well). Since
√
M‖Q−P∗‖2 = ‖Q̂− P̂∗‖2 =

‖Q̂− m
m′ Q̂1S‖2 and

Z

m′2
=

M∑
i=1

(
(Q′(i)− m

m′
P∗(i))2 − Q′(i)

m′

)
=

M∑
i=1

(Q′(i)−H(i))2 − 1

m′

which is equal to 1
M ‖Q̂1S − Q̂′1S‖

2

2+‖Q′‖22−
1
M ‖Q̂′1S‖

2

2−
1
m′ by Eq. (1), we thus get the following.

– if ‖Q̂1S̄‖
2

2 ≤
ε2M

9 , then ‖Q̂− Q̂1S‖2 ≤
ε
3

√
M , and

√
M‖P∗ −Q‖2 = ‖P̂∗ − Q̂‖2 ≤ ‖P̂∗ − Q̂1S‖2+‖Q̂1S − Q̂‖2 =

∣∣∣m
m′
− 1
∣∣∣ ‖Q̂1S‖2+‖Q̂− Q̂1S‖2

Since we havem′ ∈ [1± ε
100
√
b
]m by the above discussion and ‖Q̂1S‖2 ≤

√
2b
√
M , the RHS is

upper bounded by ε
6

√
M + ε

3

√
M = ε

2

√
M , and ‖P∗ −Q‖2 ≤

ε
2 . Then 1

M ‖Q̂1S − Q̂′1S‖
2

2 +

‖Q′‖22 −
1
M ‖Q̂′1S‖

2

2 = Z
m′2 + 1

m′ ≤ 2.9ε2
(
m′

m

)2
+ 1

m′ with probability at least 3/4, and in

particular ‖Q′‖22 −
1
M ‖Q̂′1S‖

2

2 ≤ 2.9ε2
(
m′

m

)2
+ 1

m′ < 3ε2
(
m′

m

)2
+ 1

m′ ;

– if ‖Q̂1S̄‖
2

2 > ε2M , then 1
M ‖Q̂1S − Q̂′1S‖

2

2+‖Q′‖22−
1
M ‖Q̂′1S‖

2

2 = Z
m′2 + 1

m′ > 3.1ε2
(
m′

m

)2
+

1
m′ with probability at least 3/4; since by the first part we established we have ‖Q̂1S − Q̂′1S‖

2

2 ≤
ε2M
100 , this implies ‖Q′‖22 −

1
M ‖Q̂′1S‖

2

2 > 3.1ε2
(
m′

m

)2
+ 1

m′ −
ε2

100 > 3ε2
(
m′

m

)2
+ 1

m′ .

This immediately takes care of Items 2 and 3; moreover, this implies that whenever Algorithm 1 does
not output reject, then the inverse Fourier transform H′ of the collection of Fourier coefficients it
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returns (which are supported on S) satisfies

‖Q−H′‖22 =
1

M
‖Q̂− Ĥ′‖

2

2 =
1

M
‖Q̂1S − Ĥ′‖

2

2 +
1

M
‖Q̂1S̄‖

2

2

≤ ε2

100
+

1

M
‖Q̂1S̄‖

2

2

≤ ε2

100
+ ε2 =

101

100
ε2

and thus ‖Q−H′‖2 ≤
√

101
100ε <

6
5ε which establishes Item 4. Finally, by a union bound, all the

above holds except with probability 1
100 + 1

100 + 1
100 + 1

4 <
3
10 . This concludes the proof.

3.1 A Tolerant L2 Tester for Identity to a Pseudodistribution As previously mentioned, one building
block in the proof of Theorem 3.1 (and a result that may be of independent interest) is an optimal L2 identity
testing algorithm. Our tester and its analysis are very similar to the tolerant L2 closeness testing algorithm
of Chan et al. [CDVV14], with the obvious simplifications pertaining to identity (instead of closeness).
The main difference is that we emphasize here the fact that P∗ need not be an actual distribution: any
P∗ : [r]→ R would do, even taking negative values. This will turn out to be crucial for our applications.

Algorithm 2 Tolerant L2 identity tester
Require: ε ∈ (0, 1), Poi(m) samples from distributions P over [r], with Xi denoting the number of oc-

currences of the i-th domain elements in the samples from P, and P∗ being a fixed, known pseudo
distribution over [r].

Ensure: Returns accept if ‖P−P∗‖2 ≤ ε and reject if ‖P−P∗‖2 ≥ 2ε.
Define Z =

∑r
i=1(Xi −mP∗(i))2 −Xi. . Can actually be computed in O(m) time

Return reject if
√
Z
m >

√
3ε, accept otherwise.

Proposition 3.2. There exists an absolute constant c > 0 such that the above algorithm (Algorithm 2),
when given Poi(m) samples drawn from a distribution P and an explicit function P∗ : [r] → R will, with
probability at least 3/4, distinguishes between (a) ‖P−P∗‖2 ≤ ε and (b) ‖P−P∗‖2 ≥ 2ε provided that
m ≥ c

√
b
ε2

, where b is an upper bound on ‖P‖22, ‖P∗‖
2
2. (Moreover, one can take c = 61.)

Moreover, we have the following stronger statement: in case (a), the statistic Z computed in the algo-
rithm satisfies

√
Z
m ≤

√
2.9ε with probability at least 3/4, while in case (b) we have

√
Z
m ≥

√
3.1ε with

probability at least 3/4.

4 The SIIRV Tester
We are now ready to describe the algorithm behind Theorem 1.1, and establish the theorem.

4.1 Analyzing the Subroutines We start with a simple fact, that we will use to bound the running time of
our algorithm and which follows immediately from [DKS16b, Claim 2.4]:

Fact 4.1. For S as defined in Step 13, we have

|S| ≤Mk2C
′

2σ̃

√
ln

1

δ
≤ 100C ′k2

√
ln

4

ε

√
ln
k

ε
+ log log

k

ε
+

1

2
ln(16C ′′) ≤ C ′′k2 log2 k

ε
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Algorithm 3 Algorithm Test-SIIRV

Require: sample access to a distribution P ∈ ∆(N), parameters n, k ≥ 1 and ε ∈ (0, 1]
1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw O(k) samples from P and compute as in Claim 4.2: (a) σ̃2, a tentative factor-2 approximation to

VarX∼P[X] + 1, and (b) µ̃, a tentative approximation to EX∼P[X] to within one standard deviation.
3: if If σ̃ > 2k

√
n then

4: return reject . Blatant violation of (n, k)-SIIRV-iness
5: end if
6: if σ̃ ≤ 2k

√
ln 10

ε then
7: Set M ← 1 + 2

⌈
15k ln 10

ε

⌉
, and let I ← [bµ̃c − M−1

2 , bµ̃c+ M−1
2 ]; and S ← [M ]

8: Draw O(1/ε) samples from P, to distinguish between P(I) ≤ 1 − ε
4 and P(I) > 1 − ε

5 . If the
former is detected, return reject

9: Take N = C
(
|S|
ε2

)
= O

(
k
ε2

log 1
ε

)
samples from P to get an empirical distribution H

10: else
11: Set M ← 1 + 2

⌈
4σ̃
√

ln(4/ε)
⌉

, and let I ← [bµ̃c − M−1
2 , bµ̃c+ M−1

2 ]

12: Draw O(1/ε) samples from P, to distinguish between P(I) ≤ 1 − ε
4 and P(I) > 1 − ε

5 . If the
former is detected, return reject

13: Let δ ← ε

C′′
√
k log k

ε

, and

S ←

{
ξ ∈ [M − 1] : ∃a, b ∈ Z, 0 ≤ a ≤ b < k s.t. |ξ/M − a/b| ≤ C ′

√
ln(1/δ)

4σ̃

}
.

14: Simulating sample access to P′
def
= P mod M , call Algorithm 1 on P′ with parameters M , ε

5
√
M

,

b = 16k
σ̃ , and S. If it outputs reject, then return reject; otherwise, let Ĥ = (Ĥ(ξ))ξ∈S denote the

collection of Fourier coefficients it outputs, and H their inverse Fourier transform (modulo M ) . Do
not actually compute H

15: end if
16: Projection Step: Check whether dTV (H,SIIRVn,k) ≤ ε

2 (as in Section 4.3), and return accept if
it is the case. If not, return reject. . Mostly computational step

for a suitably large choice of the constant C ′′ > 0; from which we get δ ≤ 1

4
√
|S|

.

We then argue that with high probability, the estimates obtained in Step 2 will be accurate enough for our
purposes. (The somewhat odd statement below, stating two distinct guarantees where the second implies the
first, is due to the following: Eq. (2) will be the guarantee that (the completeness analysis of) our algorithm
relies on, while the second, slightly stronger one, will only be used in the particular implementation of the
“projection step” (Step 16) from Section 4.3.)

Claim 4.2 (Estimating the first two moments (if P is a SIIRV)). With probability at least 19/20 over the
O(k) draws from P in Step 2, the following holds. If P ∈ SIIRVn,k, the estimates σ̃, µ̃ defined as the
empirical mean and (unbiased) empirical variance meet the guarantees stated in Step 2 of the algorithm,
namely

1

2
≤ σ̃2

VarX∼P[X] + 1
≤ 2, |µ̃− EX∼P[X]| ≤

√
VarX∼P[X] (2)
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We even have a quantitatively slightly stronger guarantee: 2
3 ≤

σ̃2

VarX∼P[X]+1 ≤
3
2 , and |µ̃− EX∼P[X]| ≤

1
2

√
VarX∼P[X].

Proof. We handle the estimation of the mean and variance separately.

Estimating the mean. µ̃ will be the usual empirical estimator, namely µ̃ def
= 1

m

∑m
i=1Xi for X1, . . . , Xm

independently drawn from P. Since E[µ̃] = EX∼P[X] and Var[µ̃] = 1
m VarX∼P[X], Chebyshev’s

inequality guarantees that

Pr[|µ̃− EX∼P[X]| > 1

2

√
VarX∼P[X]] ≤ 4

m

which can be made at most 1/200 by choosing m ≥ 800.

Estimating the variance. The variance estimation is exactly the same as in [DDS15, Lemma 6], observ-
ing that their argument only requires that P be the distribution of a sum of independent random
variables (not necessarily a Poisson Binomial distribution). Namely, they establish that,3 letting
σ̃2 def

= 1
m−1

∑m
i=1(Xi − 1

m

∑m
j=1Xj)

2 be the (unbiased) sample variances, and s2 def
= VarX∼P[X],

Pr[
∣∣σ̃2 − s2

∣∣ > α(1 + s2)] ≤ 4s4 + k2s2

α2(1 + s2)2

1

m
≤ 4s4 + s2

α2(1 + s2)2
· k

2

m
≤ 4k2

α2m

which for α = 1/3 is at most 9/200 by choosing m ≥ 800k.

A union bound completes the proof, giving a probability of error at most 1
200 + 9

200 = 1
20 .

Claim 4.3 (Checking the effective support). With probability at least 19/20 over the draws from P in
Step 12, the following holds.

• if P ∈ SIIRVn,k and (2) holds, then P(I) ≥ 1 − ε
5 and the algorithm does not output reject in

Step 8 nor 12;

• if P puts probability mass more than ε
4 outside of I , then the algorithm outputs reject in Step 8 or 12.

Proof. Suppose first P ∈ SIIRVn,k and (2) holds, and set s def
=
√

VarX∼P[X] and µ def
= EX∼P[X] as

before. By Bennett’s inequality applied to X , we have

Pr[X > µ+ t] ≤ exp

(
− s

2

k2
ϑ

(
kt

s2

))
(3)

for any t > 0, where ϑ : R∗+ → R is defined by ϑ(x) = (1 + x) ln(1 + x)− x.

• If the algorithm reaches Step 8, then s ≤ 4k
√

ln 10
ε . Setting t = α · k ln 10

ε in Eq. (3) (for α > 0 to

be determined shortly), and u = kt
s2

= αk
2

s2
ln 10

ε ≥
α
16 ,

s2

k2
ϑ

(
kt

s2

)
= α ln

10

ε
· ϑ (u)

u
≥
(

16ϑ
( α

16

))
ln

10

ε
≥ ln

10

ε

since ϑ(x)
x ≥ ϑ(α/16)

α/16 for all x ≥ α
16 ; the last inequality for α ≥ α∗ ' 2.08 chosen to be the solution

to 16ϑ
(
α∗

16

)
= 1. Thus, Pr[X > µ + t] ≤ ε

10 . Similarly, we have Pr[X < µ − t] ≤ ε
10 . As

µ− 2t ≤ µ− s ≤ µ̃ ≤ µ+ s ≤ µ+ 2t, we get Pr[X ∈ I] ≥ 1− ε
5 as claimed.

3[DDS15, Lemma 6] actually only deals with the case k = 2; but the bound we state follows immediately from their proof and
the simple observation that the excess kurtosis κ of an (n, k)-SIIRV with variance s2 is at most k2/s2.

14



• If the algorithm reaches Step 12, then s ≥ k
√

ln 10
ε andM = 1+2

⌈
6σ̃
√

ln 10
ε )
⌉
≥ 1+2

⌈
3s
√

ln 10
ε )
⌉

.

Setting t = βs
√

ln 10
ε in Eq. (3) (for β > 0 to be determined shortly), and u = kt

s2
= β ks

√
ln 10

ε ≤ β,

s2

k2
ϑ

(
kt

s2

)
=
t2

s2
· ϑ (u)

u2
= β2 ln

10

ε
· ϑ (u)

u2
≥ ln

10

ε

since ϑ(x)
x2
≥ ϑ(β)

β2 for all x ∈ (0, β]; the last inequality for β = e− 1 ' 1.72 chosen to be the solution
to ϑ (β) = 1. Thus, Pr[X > µ + t] ≤ ε

10 . Similarly, it holds Pr[X < µ − t] ≤ ε
10 . Now note that

bµ̃c+ (M − 1)/2 ≥ (µ− s) + d2s
√

ln 10
ε )e ≥ µ+ t and bµ̃c − (M − 1)/2 ≤ µ− t, implying that

X is in [bµ̃c − (M − 1)/2, bµ̃c+ (M − 1)/2] with probability at least 1− ε
5 as desired.

To conclude and establish the conclusion of the first item, as well as the second item, recall that dis-
tinguishing with probability 19/20 between the cases P(Ī) ≤ ε

5 and P(Ī) > ε
4 can be done with O(1/ε)

samples.

Claim 4.4 (Learning when the effective support is small). If P satisfies P(I) ≥ 1− ε
4 , and the “If” statement

at Step 6 holds, then with probability at least 19/20 the empirical distribution H obtained in Step 9 satisfies
(i) dTV (P,H) ≤ ε

2 and (ii) ‖P̂− Ĥ‖2 ≤
ε2

100 .

Proof. The first item, (i), follows from standard bounds on the rate of convergence of the empirical dis-
tribution (namely, that O(r/ε2) samples suffice for it to approximate an arbitrary distribution over support
of size r up to total variation distance ε). Recalling that in this branch of the algorithm, S = [M ] with
M = O(k log(1/ε)), the second item, (ii), is proven by the same argument as in (the first bullet in) the proof
of Theorem 3.1.

Claim 4.5 (Any (n, k)-SIIRV puts near all its Fourier mass in S). If P ∈ SIIRVn,k and (2) holds, then

‖P̂1S̄‖
2

2 =
∑

ξ /∈S |P̂(ξ)|2 ≤ ε2

100 .

Proof. Since P ∈ SIIRVn,k, our assumptions imply that (with the notations of Lemma 2.7) the set of

large Fourier coefficients satisfies
{
ξ ∈ [M − 1] :

∣∣∣P̂(ξ)
∣∣∣ > δ

}
⊆ L(δ,M, s) ⊆ S. Therefore, ξ /∈ S

implies |P̂(ξ)| ≤ δ. We then can conclude as follows: applying Lemma 2.7 (ii) with parameter δ2−r−1 for
each r ≥ 0, this is at most∑

r≥0

(δ2−r)2
∣∣∣{ ξ : |P̂(ξ)| > δ2−r−1

}∣∣∣ ≤ 4Mkδ2

s

∑
r≥0

4−r
√

log(2r+2/δ)

≤ 4Mkδ2

s

√
log

1

δ

∑
r≥0

4−r
√

log(2r+1)

≤ 12Mkδ2

s

√
log

1

δ
= O

(
ε2
)

(4)

again at most ε2

100 for big enough C ′′ in the definition of δ.
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4.2 Putting It Together In what follows, we implicitly assume that I (as defined in Step 11 of Algo-
rithm 3) is equal to [M ]. This can be done without loss of generality, as this is just a shifting of the interval
and all our Fourier arguments are made modulo M .

Lemma 4.6 (Putting it together: completeness). If P ∈ SIIRVn,k, then the algorithm outputs accept with
probability at least 3/5.

Proof. Assume P ∈ SIIRVn,k. We condition on the estimates obtained in Step 2 to meet their accuracy
guarantees, which by Claim 4.2 holds with probability at least 19/20: that is, we hereafter assume Eq. (2)
holds. Since the variance of any (n, k)-SIIRV is at most s2 ≤ nk2, we consequently have σ̃ ≤ 2k

√
n and

the algorithm does not output reject in Step 3.

• Case 1: the branch in Step 6 is taken. In this case, by Claim 4.3 the algorithm does not output reject
in Step 8 with probability 19/20. Since P(I) ≥ 1 − ε

4 , by Claim 4.4 we get that with probability at
least 19/20 it is the case that dTV (P,H) ≤ ε

2 , and therefore the computational check in Step 16 will
succeed, and return accept. Overall, by a union bound the algorithm is successful with probability at
least 1− 3/20 > 3/5.

• Case 2: the branch in Step 10 is taken. In this case, by Claim 4.3 the algorithm does not output
reject in Step 12 with probability 19/20. From Lemma 2.8, we know that P′ as defined in Step 14
satisfies ‖P′‖22 ≤

8k
s ≤

16k
σ̃ = b. Moreover, Claim 4.5 guarantees that ‖P̂′1S̄‖2 ≤

ε
10
√
M

= ε′

2 (for
ε′ = ε

5
√
M

). Since Step 14 calls Algorithm 1 with parameters M, ε′, b, and S, Item 3 of Theorem 3.1
ensures that (with probability at least 7/10) the algorithm will not output reject in Step 14, but instead
return the S-sparse Fourier transform of some H supported on [M ] with ‖P′ −H‖2 ≤

6
5ε
′ = 6ε

25
√
M

.

By Cauchy–Schwarz, we then have ‖P′ −H‖1 ≤
√
M‖P′ −H‖2 ≤

6ε
25 , i.e. dTV (P′,H) ≤ 3ε

25 . But
since dTV (P,P′) ≤ ε

4 , we get dTV (P,H) ≤ ε
4 + 3ε

25 <
ε
2 , and the computational check in Step 16

will succeed, and return accept. Overall, by a union bound the algorithm accepts with probability at
least 1− (1/20 + 1/20 + 3/10) = 3/5.

Lemma 4.7 (Putting it together: soundness). If dTV (P,SIIRVn,k) > ε, then the algorithm outputs reject
with probability at least 3/5.

Proof. We will proceed by contrapositive, and show that if the algorithm returns accept with probability at
least 3/5 then dTV (P,SIIRVn,k) ≤ ε. Depending on the branch of the algorithm followed, we assume
the samples taken either in

• Steps 2, 8, 9, meet the guarantees of Claims 4.2 to 4.4 (by a union bound, this happens with probability
at least 1− 3/20 > 2/3); or

• Steps 2, 12, 14 meet the guarantees of Claims 4.2 and 4.3 and Theorem 3.1 (by a union bound, this
happens with probability at least 1− (1/20 + 1/20 + 3/10) = 3/5).

In particular, we hereafter assume that σ̃ ≤ 2k
√
n.
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• Case 1: the branch in Step 6 is taken.

By the above discussion, we have P(I) ≥ 1 − ε
4 by Claim 4.3 so Claim 4.4 and our conditioning

ensure that the empirical distribution H is such that dTV (P,H) ≤ ε
2 . Since the algorithm did not

reject in Step 16, there exists a (n, k)-SIIRV P∗ such that dTV (H,P∗) ≤ ε
2 : by the triangle inequality,

dTV (P,SIIRVn,k) ≤ dTV (P,Q∗) ≤ ε.

• Case 2: the branch in Step 10 is taken.

In this case, we have P(I) ≥ 1− ε
4 by Claim 4.3. Furthermore, as the algorithm did not output reject

on Step 14, by Theorem 3.1 we know that the inverse Fourier transform (modulo M ) H of the S-
sparse collection of Fourier coefficients Ĥ returned satisfies ‖H−P′‖2 ≤

6ε
25
√
M

which by Cauchy–

Schwarz implies, as both H and P′ are supported on [M ], that ‖H−P′‖1 ≤
6ε
25 , or equivalently

dTV (H,P′) ≤ 3ε
25 .

Finally, since the algorithm outputted accept in Step 16, there exists P∗ ∈ SIIRVn,k (supported on
[M ]) such that dTV (H,P∗) ≤ ε

2 , and by the triangle inequality

dTV (P,P∗) ≤ dTV (P,P′) + dTV (H,P′) + dTV (H,P∗) ≤ ε

4
+

3ε

25
+
ε

2
≤ ε

and thus dTV (P,SIIRVn,k) ≤ dTV (P,P∗) ≤ ε.

Lemma 4.8 (Sample complexity). The algorithm has sample complexity O
(
kn1/4

ε2
log1/4 1

ε + k2

ε2
log2 k

ε

)
.

Proof. Algorithm 3 takes samples in Steps 2, 8, 12, and 14. The sample complexity is dominated by Steps 9
and 14, which take respectively N and

O

( √
b

(ε/
√
M)2

+
|S|

M(ε/
√
M)2

+
√
M

)
= O

(√
kσ̃

ε2
4

√
log

1

ε
+
|S|
ε2

+
√
σ̃

4

√
log

1

ε

)

= O

(
kn1/4

ε2
log1/4 1

ε
+
k2

ε2
log2 k

ε

)

samples; recalling that Step 3 ensured that σ̃ ≤ 2k
√
n and that |S| = O

(
k2 log2 k

ε

)
by Fact 4.1.

Lemma 4.9 (Time complexity). The algorithm runs in timeO
(
k4n1/4

ε2
log4 k

ε

)
+T (n, k, ε), where T (n, k, ε) =

n(k/ε)O(k log(k/ε)) is the running time of the projection subroutine of Step 16.

Proof. The running time, depending on the branch taken, is either O(N) + T (n, k, ε) for the first or
O
(
|S|
(
kn1/4

ε2
log1/4 1

ε + k2

ε2
log2 k

ε

))
+T (n, k, ε) for the second (the latter from the running time of Algo-

rithm 1). Recalling that |S| = O
(
k2 log2 k

ε

)
by Fact 4.1 yields the claimed running time.

4.3 The Projection Subroutines
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Algorithm 4 Algorithm Project-k-SIIRV

Require: Parameters n,ε; the approximate Fourier coefficients (Ĥ(ξ))ξ∈S modulo M , of a distribution P
known to be effectively supported on I and to have a Fourier transform effectively supported on S of
the form given in Step 13 of Algorithm 3, with σ̃2 and µ̃, an approximation to EX∼P[X] to within half
a standard deviation.

1: Compute C, an ε

5
√
|S|

-cover in total variation distance of all (n, k)-SIIRVs.

2: for each Q ∈ C do
3: if the mean µQ and variance σQ of Q satisfy |µ̃− µQ| ≤ σ̃ and 2(σQ + 1) ≥ σ̃+ 1 ≥ (σQ + 1)/2

then
4: Compute Q̂(ξ) for ξ ∈ S.
5: if

∑
ξ∈S |Ĥ− Q̂|2 ≤ ε2

5 then return accept
6: end if
7: end if
8: end for
9: return reject . we did not return accept for any Q ∈ C

4.3.1 The Projection Step for (n, k)-SIIRVs We can use the proper ε-cover given in [DKS16b] to find a
(n, k)-SIIRV near P by looking at Ĥ.

Lemma 4.10. If Algorithm Project-k-SIIRV is given inputs that satisfy its assumptions and we have
that

∑
ξ∈S |Ĥ − P̂|2 ≤ (3ε/25)2, dTV (P,H) ≤ 6ε/25, and that if P ∈ SIIRVn,k then σ̃2 is a

factor-1.5 approximation to VarX∼P[X] + 1, then it distinguishes between (i) P ∈ SIIRVn,k and (ii)
dTV (P,SIIRVn,k) > ε. The algorithm runs in time n (k/ε)O(k log(k/ε)).

4.3.2 The Case k = 2 For the important case of Poisson Binomial distributions, that is (n, 2)-SIIRVs, we
can dispense with using a cover at all. [DKS16c] gives an algorithm that can properly learn Poisson binomial
distributions in time (1/ε)O(log log 1/ε). The algorithm works by first learning the Fourier coefficients in S,
which we have already computed here, and checks if one of many systems of polynomial inequalities has a
solution: if the Fourier coefficients are close to those of a (n, 2)-SIIRV, then there will be a solution to one
of these systems. This allows us to test whether or not we are close to a (n, 2)-SIIRV.

More precisely, we can handle this in two cases: the first, when the variance s2 of P is relatively small,
corresponding to σ̃ ≤ α/ε2 (for some absolute constant α > 0). In this case, we use the following lemma:

Lemma 4.11. Let P be a distribution with variance O(1/ε2). Let µ̃ and σ̃2 be approximations to the mean
µ and variance s2 of P with |µ̃− µ| ≤ σ̃ and 2(σ + 1) ≥ σ̃ + 1 ≥ (σ + 1)/2. Suppose that P is effectively
supported on an interval I and that its DFT modulo M is effectively supported on S, the set of integers
ξ ≤ ` def

= O(log(1/ε)). Let Ĥ(ξ) be approximations to P̂(ξ) for all ξ ∈ S with
∑

ξ∈S |Ĥ(ξ)− P̂(ξ)|2 ≤ ε2

16

. There is an algorithm that, given n,ε,µ̃, σ̃ and Ĥ(ξ), distinguishes between (i) P ∈ PBDn and (ii)
dTV (P,PBDn) > ε, in time at most (1/ε)O(log log 1/ε).

If σ̃ ≥ α/ε2 (corresponding to a “big variance” s2 = Ω(1/ε2)), then we take an additional O(|S|/ε2)
samples from P and use them to learn a shifted binomial using algorithms Learn-Poisson and Locate-Binomial
from [DDS15] that is within O(ε/

√
|S|) total variation distance from P. If these succeed, we can check

if its Fourier coefficients are close using the method in Algorithm 4 (Project-k-SIIRV). As we can
compute the Fourier coefficients of a shifted binomial easily, this overall takes time poly(1/ε).
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5 The General Tester
In this section, we abstract the ideas underlying the (n, k)-SIIRV from Section 4, to provide a general
testing framework. In more detail, our theorem (Theorem 5.1) has the following flavor: if P is a property
of distributions such that every P ∈ P has both (i) small effective support and (ii) sparse effective Fourier
support, then one can test membership to P with O(

√
sM/ε2 + s/ε2) samples (where M and s are the

bounds on the effective support and effective Fourier support, respectively). As a caveat, we do require that
the sparse effective Fourier support S be independent of P ∈ P , i.e., is a characteristic of the class P itself.

The high-level idea is then quite simple: the algorithm proceeds in three stages, namely the effective
support test, the Fourier effective support test, and the projection step. In the first, it takes some samples
from P to identify what should be the effective support I of P, if P did have the property: and then checks
that indeed |I| ≤M (as it should) and that P puts probability mass 1−O(ε) on I .

In the second stage, it invokes the Fourier testing algorithm of Section 3 to verify that P̂ indeed puts
very little Fourier mass outside of S; and, having verified this, learns very accurately the set of Fourier
coefficients of P on this set S, in L2 distance.

At this point, either the algorithm has detected that P violates some required characteristic of the distri-
butions in P , in which case it has rejected already; or is guaranteed to have learned a good approximation
H of P, by the Fourier learning performed in the second stage. It only remains to perform the third stage,
which “projects” this good approximation H of P onto P to verify that H is close to some distribution
P∗ ∈ P (as it should if indeed P ∈ P).

Algorithm 5 Algorithm Test-Fourier-Sparse-Class

Require: sample access to a distribution P ∈ ∆(N), parameter ε ∈ (0, 1], b ∈ (0, 1], functions S : (0, 1]→
2N, M : (0, 1]→ N, qI : (0, 1]→ N, and procedure PROJECTP as in Theorem 5.1

1: Effective Support
2: Take qI(ε) samples from P to identify a “candidate set” I . . Guaranteed to work w.p. 19/20 if

P ∈ P .
3: Draw O(1/ε) samples from P, to distinguish between P(I) ≥ 1− ε

5 and P(I) < 1− ε
4 . . Correct

w.p. 19/20.
4: if |I| > M(ε) or we detected that P(I) > ε

4 then
5: return reject
6: end if
7:

8: Fourier Effective Support
9: Simulating sample access to P′

def
= P mod M(ε), call Algorithm 1 on P′ with parameters M(ε),

ε

5
√
M(ε)

, b, and S(ε).

10: if Algorithm 1 returned reject then
11: return reject
12: end if
13: Let Ĥ = (Ĥ(ξ))ξ∈S(ε) denote the collection of Fourier coefficients it outputs, and H their inverse

Fourier transform (modulo M(ε)) . Do not actually compute H here.
14:

15: Projection Step
16: Call PROJECTP on parameters ε and H, and return accept if it does, reject otherwise.
17:
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Theorem 5.1 (General Testing Statement). Assume P ⊆ ∆(N) is a property of distributions satisfying the
following. There exist S : (0, 1]→ 2N, M : (0, 1]→ N, and qI : (0, 1]→ N such that, for every ε ∈ (0, 1],

1. Fourier sparsity: for all P ∈ P , the Fourier transform (modulo M(ε)) of P is concentrated on S(ε):

namely, ‖P̂1
S(ε)
‖

2

2
≤ ε2

100 .

2. Support sparsity: for all P ∈ P , there exists an interval I(P) ⊆ N with |I(P)| ≤M(ε) such that (i)
P is concentrated on I(P): namely, P(I(P)) ≥ 1− ε

5 and (ii) I(P) can be identified with probability
at least 19/20 from qI(ε) samples from P.

3. Projection: there exists a procedure PROJECTP which, on input ε ∈ (0, 1] and the explicit description
of a distribution H ∈ ∆(N), runs in time T (ε); and outputs accept if dTV (H,P) ≤ 2ε

5 , and reject if
dTV (H,P) > ε

2 (and can answer either otherwise).

4. (Optional) L2-norm bound: there exists b ∈ (0, 1] such that, for all P ∈ P , ‖P‖22 ≤ b.

Then, there exists a testing algorithm for P , in the usual standard sense: it outputs either accept or reject,
and satisfies the following.

1. if P ∈ P , then it outputs accept with probability at least 3/5;

2. if dTV (P,P) > ε, then it outputs reject with probability at least 3/5.

The algorithm takes

O

(√
|S(ε)|M(ε)

ε2
+
|S(ε)|
ε2

+ qI(ε)

)

samples from P (if Item 4 holds, one can replace the above bound by O
(√

bM(ε)
ε2

+ |S(ε)|
ε2

+ qI(ε)
)

); and
runs in time O (m |S|+ T (ε)), where m is the sample complexity.

Moreover, whenever the algorithm outputs accept, it also learns P; that is, it provides a hypothesis H
such that dTV (P,H) ≤ ε with probability at least 3/5.

We remark that the statement of Theorem 5.1 can be made slightly more general; specifically, one can
allow the procedure PROJECTP to have sample access to P and err with small probability, and further
provide it with the Fourier coefficients Ĥ learnt in the previous step.

Proof of Theorem 5.1. For convenience, we hereafter write S andM instead of S(ε) andM(ε), respectively.
Before establishing the theorem, which will be a generalization of (the second branch of) Algorithm 3, we
note that it is sufficient to prove the version including Item 4. This is because, if no bound b is provided, one
can fall back to setting b def

= |S|+1
M : indeed, for any P ∈ P ,

‖P‖22 = ‖P̂‖
2

2 = ‖P̂1S‖
2

2 + ‖P̂1S̄‖
2

2 =
1

M

∑
ξ∈S
|P̂(ξ)|2 + ‖P̂1S̄‖

2

2 ≤
|S|
M

+
ε2

100M
=
|S|+ ε2

100

M
(5)

from Item 1 and the fact that |P̂(ξ)| ≤ 1 for any ξ ∈ [M ]. Then, we have
√
bM ≤

√
2 |S|MM =

√
2 |S|M ,

concluding the remark.
The algorithm is given in Algorithm 5. Its sample complexity and running time are immediate from the

assumptions on the input parameters, and its description; we thus focus on establishing its correctness.
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• Completeness: suppose P ∈ P . Then, by definition of qI andM (Item 2 of the theorem), we have that
with probability at least 19/20 the interval I identified in Step 2 satisfies P(I) ≥ 1− ε

5 and |I| ≤M .
In this case, also with probability at least 19/20 the check in Step 3 succeeds, and the algorithm does
not output reject there.

The call to Algorithm 1 in Step 9 then, with probability at least 7/10, does not output reject, but instead
Fourier coefficients Ĥ (supported on S) of some H such that H′ = H mod M satisfies ‖H′ −P′‖2 ≤
6
5 ·

ε
5
√
M

= 6ε
25
√
M

(this is because of the definition of b and Item 1, which ensure the assumptions

of Theorem 3.1 are met). Thus ‖H′ −P′‖1 ≤
√
M‖H′ −P′‖2 ≤

6ε
25 . Since ‖P−P′‖2 ≤ 2 · ε4 (as

P(I) ≥ 1− ε
4 and P′ = P mod M ), by the triangle inequality

dTV (P,H′) =
1

2
‖H′ −P′‖1 ≤

3ε

25
+
ε

4
<

2ε

5

and the algorithm returns accept in Step 16 (as promised by Item 3).

Overall, by a union bound the algorithm is correct with probability at least 1− ( 1
20 + 1

20 + 3
10) ≥ 3

5 .

• Soundness: we proceed by contrapositive, and show that if the algorithm returns accept with proba-
bility at least 3/5 then dTV (P,P) ≤ ε. We hereafter assume the guarantees of Steps 2, 3, and 9 hold,
which by a union bound is the case with probability at least 1− ( 1

20 + 1
20 + 3

10) ≥ 3
5 .

Since the algorithm passed Step 5, we have P(I) ≥ 1− ε
4 and |I| ≤M . Furthermore, as the algorithm

did not output reject on Step 9, by Theorem 3.1 we know that the inverse Fourier transform (modulo
M ) H of the S-sparse collection of Fourier coefficients Ĥ returned satisfies, for H′ def

= H mod M ,

‖H′ −P′‖2 ≤
6ε

25
√
M

which by Cauchy–Schwarz implies that ‖H−P′‖1 ≤
6ε
25 , or equivalently dTV (H,P′) ≤ 3ε

25 .

Finally, since the algorithm outputted accept in Step 16, there exists P∗ ∈ P (supported on [M ])
such that dTV (H,P∗) ≤ ε

2 , and by the triangle inequality

dTV (P,P∗) ≤ dTV (P,P′) + dTV (H,P′) + dTV (H,P∗) ≤ ε

4
+

3ε

25
+
ε

2
≤ ε

and thus dTV (P,P) ≤ dTV (P,P∗) ≤ ε.

6 The PMD Tester
In this section, we generalize our Fourier testing approach to higher dimensions, and leverage it to design a
testing algorithm for the class of Poisson Multinomial distributions – thus establishing Theorem 1.3 (restated
below).

Theorem 6.1 (Testing PMDs). Given parameters k, n ∈ N, ε ∈ (0, 1], and sample access to a distribution
P over N, there exists an algorithm (Algorithm 7) which outputs either accept or reject, and satisfies the
following.

1. if P ∈ PMDn,k, then it outputs accept with probability at least 3/5;

21



2. if dTV (P,PMDn,k) > ε, then it outputs reject with probability at least 3/5.

Moreover, the algorithm takesO
(
n(k−1)/4k2k log(k/ε)k

ε2

)
samples from P, and runs in time nO(k3)·(1/ε)O(k3

log(k/ε)
log log(k/ε)

)k−1

or alternatively in time nO(k) · 2O(k5k log(1/ε)k+2
.

The reason for the two different running times is that, for the projection step, one can use either the cover
given by [DKS16c] or that given by [DDKT16], which yield the two statements. In contrast to Section 4
and Section 5, for PMDs we will have to use a multidimensional Fourier transform, which is a little more
complicated – and we define next.

Let M ∈ Zk×k be an integer k× k matrix. We consider the integer lattice L = L(M) = MZk def
= {p ∈

Zk | p = Mq, q ∈ Zk}, and its dual lattice L∗ = L∗(M)
def
=
{
ξ ∈ Rk : ξ · x ∈ Z for all x ∈ L

}
. Note

that L∗ = (MT )−1Zk, and that L∗ is not necessarily integral. The quotient Zk/L is the set of equivalence
classes of points in Zk such that two points x, y ∈ Zk are in the same equivalence class if, and only if,
x− y ∈ L. Similarly, the quotient L∗/Zk is the set of equivalence classes of points in L∗ such that any two
points x, y ∈ L∗ are in the same equivalence class if, and only if, x− y ∈ Zk.

The Discrete Fourier Transform (DFT) moduloM ,M ∈ Zk×k, of a function F : Zk → C is the function
F̂M : L∗/Zk → C defined as F̂M (ξ)

def
=
∑

x∈Zk e(ξ · x)F (x). (We will omit the subscript M when it is
clear from the context.) Similarly, for the case that F is a probability mass function, we can equivalently
write F̂ (ξ) = EX∼F [e(ξ ·X)] . The inverse DFT of a function Ĝ : L∗/Zk → C is the function G : A→ C
defined on a fundamental domain A of L(M) as follows: G(x) = 1

| det(M)|
∑

ξ∈L∗/Zk Ĝ(x)e(−ξ · x). Note

that these operations are inverse of each other, namely for any function F : A→ C, the inverse DFT of F̂ is
identified with F .

With this in hand, Algorithm 1 easily generalizes to high dimension:

Algorithm 6 Testing the Fourier Transform Effective Support in high dimension
Require: parameters, a k × k matrix M , b, ε ∈ (0, 1]; a fundamental domain A of L(M); sample access to

distribution Q over A
1: Set m←

⌈
C(
√
b
ε2

+
√

det(M))
⌉

. C > 0 is an absolute constant; C = 2000 works.

2: Draw m′ ← Poi(m); if m′ > 2m, return reject
3: Draw m′ samples from Q, and let Q′ be the corresponding empirical distribution over [M ]

4: Compute ‖Q′‖22, Q̂′(ξ) for every ξ ∈ S, and ‖Q̂′1S‖
2

2 . Takes time O (m |S|)
5: if m′2‖Q′‖22 −m′ >

3
2bm

2 then return reject

6: else if ‖Q′‖22 − ‖Q̂′1S‖
2

2 ≥ 3ε2 + 1
m′ then return reject

7: else
8: return (Q̂′(ξ))ξ∈S
9: end if

Crucially, we observe that the proof of Theorem 3.1 nowhere requires that [M ] be a set ofM consecutive
integers, but only that it is a fundamental domain of the lattice used in the DFT. Consequently, Theorem 3.1
also applies in this high dimensional setting, with appropriate notation. Note that the size of any fundamental
domain is det(M) which appears in place of M in the sample complexity.

The proof of correctness of Algorithm 7 is very similar to that of Algorithm 3, except that we need
results from the proof of correctness of the PMD Fourier learning algorithm of [DKS16d]; we will only
sketch these ingredients here. That I is an effective support of a PMD whose mean and covariance matrix we
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Algorithm 7 Algorithm Test-PMD

Require: sample access to a distribution P ∈ ∆
(
Nk
)
, parameters n, k ≥ 1 and ε ∈ (0, 1]

1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Drawm0 = O(k4) samples fromX , and let µ̂ be the sample mean and Σ̂ the sample covariance matrix.
3: Compute an approximate spectral decomposition of Σ̂, i.e., an orthonormal eigenbasis vi with corre-

sponding eigenvalues λi, i ∈ [k].
4: Set M ∈ Zk×k to be the matrix whose ith column is the closest integer point to the vector

C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
vi.

5: Set I ← Zk ∩ (µ̂+M · (−1/2, 1/2]k)
6: Draw O(1/ε) samples from P, and return reject if any falls outside of I
7: Let S ⊆ (R/Z)k to be the set of points ξ = (ξ1, . . . , ξk) of the form ξ = (MT )−1 · v+Zk, for some
v ∈ Zk with ‖v‖2 ≤ C2k2 log(k/ε).

8: Define P mod M to be the distribution obtained by sampling X from P and if it lies outside in I ,
returning X , else returning X +Mb for the uniwue b ∈ Zk such that X +Mb ∈ I .

9: Simulating sample access to P′
def
= P mod M , call Algorithm 6 on P′ with parameters M , ε

5
√

det(M)
,

b = |S|+1
det(M) , and S. If it outputs reject, then return reject; otherwise, let Ĥ = (Ĥ(ξ))ξ∈S denote the

collection of Fourier coefficients it outputs, and H their inverse Fourier transform (modulo M ) onto I .
. Do not actually compute H

10: Compute a proper ε/6
√
|S|-cover C of all PMDs using the algorithm from [DKS16d].

11: for each Q ∈ C do
12: if the mean µQ and covariance matrix ΣQ satisfy (µ̂− µQ)T (Σ + I)−1(µ̂− µQ) ≤ 1 and 2(ΣQ +

I) ≥ Σ̂ + I ≥ (ΣQ + I)/2. then
13: Compute Q̂(ξ) for ξ ∈ S.
14: if

∑
ξ∈S |Ĥ− Q̂|2 ≤ ε2/16 then return accept

15: end if
16: end if
17: end for
18: return reject if we do not accept for any Q ∈ C.

have estimated to within appropriate error with high probability follows from Lemmas 3.3–3.6 of [DKS16d],
the last of which gives that the probability mass outside of I is at most ε/10, smaller than that claimed for
I in the (n, k)-SIIRV algorithm. Lemma 3.3 gives, if P is a PMD, that the mean and covariance satisfy
(µ̂−µ)T (Σ + I)−1(µ̂−µ) = O(1) and 2(ΣQ + I) ≥ Σ̂ + I ≥ (Σq + I)/2. Again, with more samples, we
can strengthen this to (µ̂− µ)T (Σ + I)−1(µ̂− µ) = 1

2 and (3/2)(Σ + I) ≥ Σ̂ + I ≥ (Σ + I)/(3/2) with
O(k4) samples.
The effective support of the Fourier transform of a PMD is given by the following proposition:

Proposition 6.2 (Proposition 2.4 of [DKS16d]). Let S be as in the algorithm. With probability at least
99/100, the Fourier coefficients of P outside S satisfy

∑
ξ∈(L∗/Zk)\S |P̂(ξ)| < ε/10.

This holds not just for P, but any (n, k)-PMD Q whose mean µQ and covariance matrix ΣQ satisfy
(µ̂− µQ)T (Σ + I)−1(µ̂− µ) = O(1) and 2(ΣQ + I) ≥ Σ̂ + I ≥ (ΣQ + I)/2.

We need to show that this L1 bound is stronger than the L2 bound we need. Since every individual
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ξ /∈ S has |P̂(ξ)| < ε/10, we have∑
ξ∈(L∗/Zk)\S

|P̂(ξ)|2 ≤
∑

ξ∈(L∗/Zk)\S

ε|P̂(ξ)|/10 ≤ ε2/100

and so S is an effective support of the DFT modulo M .
To show that the value of b is indeed a bound on ‖P‖22, we can use (5), yielding that ‖P‖22 ≤ (|S| +

1)/ det(M) = b, where det(M) here is indeed the size of I .
The proof of correctness of the algorithm and the projection step is now very similar to the (n, k)-SIIRV

case. We need to get bounds on the sample and time complexity. We can bound the size of S using

|S| ≤
∣∣∣{ v ∈ Zk : ‖v‖2 ≤ C2k2 log(k/ε)

}∣∣∣ ≤ ∣∣∣{ v ∈ Zk : ‖v‖∞ ≤ C2k2 log(k/ε)
}∣∣∣

=
(
1 + 2bC2k2 log(k/ε)c

)k
= O(k2 log(k/ε))k

We can bound det(M) in terms of the L2 norms of its columns using Hadamard’s inequality

det(M) ≤
k∏
i=1

‖Mi‖2 ≤
k∏
i=1

(
C

(√
k log(k/ε)λi + k2 log2(k/ε)

)
+
√
k

)

recalling that λi are the eigenvalues of Σ̂ which satisfies 2(ΣQ + I) ≥ Σ̂ + I . We need a bound on ‖Σ‖2.
Each individual summand k-CRV (categorical random variable) is supported on unit vectors, the distance
between any two of which is

√
2. Therefore we have that ‖Σ‖2 ≤ 2n. Then λi ≤ 4n+1 for every 1 ≤ i ≤ k;

moreover, since the k coordinates must sum to n, Σ̂ has rank at most k − 1 and so at least one of the λi’s is
zero. Combining these observations, we obtain

det(M) ≤
√
k2 log2 k

ε
·
(
C2k(4n+ 2) log

k

ε
+ k2 log2 k

ε

) k−1
2

= k log
k

ε
·O
(
nk2 log

k

ε

) k−1
2

.

With high constant probability, the number of samples we need is then

O

(√
|S| detM

ε2
+
|S|
ε2

+ qI(ε)

)
=

1

ε2

√
k log

k

ε
·O
(
nk2 log

k

ε

) k−1
4

+
O(k2 log(k/ε))k

ε2
+O(k4)

= O(n(k−1)/4k2k log(k/ε)k/ε2)

The time complexity of the algorithm is dominated by the projection step. By Proposition 4.9 and Corollary

4.12 of [DKS16d], we can produce a proper ε-cover of PMDn,k of size nO(k3) · (1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

in

time also nO(k3)·(1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

. Note that producing an (ε/6
√
|S|)-cover, as = ε/O(k2 log(k/ε))k/2,

takes time nO(k3) · (1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

(which is also the size of the resulting cover). Hence the running

time of the algorithm is at most nO(k3) · (1/ε)O(k3
log(k/ε)

log log(k/ε)
)k−1

.
Alternatively, [DDKT16] gives an ε-cover of size nO(k) ·min 2poly(k/ε), 2O(k5k log(1/ε)k+2

that can also be
constructed in polynomial time. By using this result, one needs to take time n|S|poly(log(1/ε)) to compute
the Fourier coefficients. Applying this to get an ε/O(k2 log(k/ε))k/2-cover means that unfortunately we are
always doubly exponential in k. In this case, the running time of the algorithm is nO(k) · 2O(k5k log(1/ε)k+2

.
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7 The Discrete Log-Concavity Tester
Theorem 7.1 (Testing Log-Concavity). Given parameters n ∈ N, ε ∈ (0, 1], and sample access to a
distribution P over Z, there exists an algorithm which outputs either accept or reject, and satisfies the
following.

1. if P ∈ LCVn, then it outputs accept with probability at least 3/5;

2. if dTV (P,LCVn) > ε, then it outputs reject with probability at least 3/5.

where LCVn denotes the class of (discrete) log-concave distributions over {0, . . . , n − 1}. Moreover, the
algorithm takes O(

√
n/ε2 + log(1/ε)/ε5/2) samples from P; and runs in time O(

√
n · poly(1/ε)).

We will sketch the proof and algorithm here. We first remark that the Maximum Likelihood Estimator
(MLE) for log-concave distributions can be formulated as a convex program [DR11], which can be solved in
sample polynomial time. One advantage of the MLE for log-concave distributions is that it properly learns
log-concave distributions (over support size M ) to within Hellinger distance ε using O(log(M/ε)/ε5/2)
samples4. Note that the squared Hellinger distance satisfies:

dH (P,Q)2 =
∑
x

(
√

P(x)−
√
Q(x))2 =

∑
x

(P(x)−Q(x))2

(
√
P +

√
Q)2

≥
‖P−Q‖2

2 max{P(x),Q(x)}
.

Further, it is known that a log-concave distribution with variance σ2 is effectively supported in an interval of
lengthM = O(log(1/ε)σ) centered at the mean, and that its maximum probability isO(1/σ) (See Fact 7.6).
Thus, by learning a log-concave distribution properly to within ε/ log(1/ε) Hellinger distance, one also
learns it to within ε√

M
L2-distance.

A log-concave distribution P has L2 norm bounded by ‖P‖22 ≤ maxxP(x) ≤ O(1/σ). It is easy
to show using concentration bounds(Fact 7.6) that P mod M also has L2 norm O(1/

√
σ). We will prove

in Proposition 7.2 that its DFT moduloM is effectively supported on a known set S of size |S| = O(log(1/ε)2/ε2).

Thus our algorithm (Algorithm 8) will work as follows: First we estimate the mean and variance under
the assumption of log-concavity. We construct an interval I of length M = O(log(1/ε)σ) which would
be containing the effective support if we were log-concave; and reject if it is not the case, i.e., too much
probability mass falls outside I . Then we properly learn P to within ε/ log(1/ε) Hellinger distance using
the MLE of O(log(M/ε)/ε5/2) samples,5 giving a hypothesis H. At this point, we reject if our estimates
for the variance is far from that of H. Then we run an L2 identity tester between P and H, i.e., test whether
the empirical distribution Q of O(M/σε2) samples is far in L2 from H using Proposition 3.2 . To do this

efficiently, we compute ‖Q′‖22 − ‖Q̂1S‖
2

2/M + ‖Q̂′1S − Ĥ1S‖
2

2/M which is close to ‖Q′ −H‖22 since
Ĥ is effectively supported on S as it is a log-concave distribution whose stamdard deviation is at least half
of our estimate.

4We note that a similar, slightly stronger result is already known for continuous log-concave distributions, which can be learned
to Hellinger distance ε from only O(ε−5/2) samples [KS16]. The proof of this result, however, does not seem to generalize
to discrete log-concave distributions, which is our focus here; thus, we establish in Appendix B the learning result we require,
namely an upper bound on the sample complexity of the MLE estimator for learning the class of log-concave distributions over
{0, . . . ,M − 1} in Hellinger distance (Theorem B.1).

5Note that we here invoke the MLE estimator not on the full domain, but on the effective support, which contains at least
1−O(ε2) probability mass. This conditioning overall does not affect the sample complexity nor the distances, as it can only cause
O(ε2) error in total variation (and thus O(ε) in Hellinger distance).
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Algorithm 8 Algorithm Test-log-concave

Require: sample access to a distribution P ∈ ∆(N), parameter ε ∈ (0, 1]
1: . Let C,C ′, C ′′ be sufficiently large universal constants
2: Draw O(1) samples from P and compute their mean µ̃ and let σ̃ be 1 plus their standard deviation.
3: Set M ← 1 + 2 dCσ̃ ln(1/ε)e, and let I ← [bµ̃c − M−1

2 , bµ̃c+ M−1
2 ]

4: DrawO(1/ε2) samples from P, to distinguish between P(I) ≤ 1− ε2

4 and P(I) > 1− ε2

5 . If the former
is detected, return reject

5: Draw O(log(M/ε)/ε5/2) samples from P and let T be the subset of these samples in I . Compute the
MLE H over all discrete log-concave distributions for T using a convex program.

6: Compute the standard deviation σH of H. If 1 + σH ≤ σ̃/2 or σH ≥ 2σ̃, then return reject.
7: Set S ←

{
ξ ∈ [M − 1] : |ξ| ≤ C ′ log(1/ε)2/ε2

}
8: Let m = C ′′/(ε2

√
σ̃) and draw m′ from Poi(m). Take m′ samples from P and let Q′ be their empirical

distibution.
9: Compute Q̂′(ξ) and Ĥ(ξ) for every ξ ∈ S.

10: if ‖Q′‖22 − ‖Q̂′1S‖
2

2/M + ‖Q̂′1S − Ĥ1S‖
2

2/M > 3m2ε2 then
11: return reject
12: else
13: return accept
14: end if

To do this in time O(
√
n · poly(1/ε)), we need to compute the Fourier coefficients efficiently. The

MLE for log-concave distributions is a piecewise exponential distribution with a number of pieces at most
the number of samples [DR11], which is O(log(M/ε)/ε5/2) in this case. Using the expression for the
sum of a geometric series gives a simple closed-form expression for Ĥ(ξ) that we can compute in time
O(log(M/ε)/ε5/2).

Proposition 7.2. Let P be a discrete log-concave distribution with variance σ2 and M = O(log(1/ε)σ) be
the size of its effective support. Then its Discrete Fourier transform is effectively supported on a known set
S of size |S| = O(log(1/ε)2/ε2).

Proof. First we show that for any unimodal distribution, we can relate the maximum probability to the size
of the effective support.

Lemma 7.3. Let P be a unimodal distribution supported on Z such that the probability of the mode is Pmax.
Then the DFT modulo M of P at ξ ∈ [−M/2,M/2) has P̂(ξ) = O(PmaxM/|ξ|).

Proof. Let m be the mode of P. Then we have

P̂(ξ) =
m−1∑
j=−∞

P(j) exp

(
−2πi

ξj

M

)
+
∞∑
j=m

P(j) exp

(
−2πi

ξj

M

)
.

We will apply summation by parts to these two series. Let g(x) =
∑x

j=m+1 exp(−2πiξj/M) and g(m) =

0. By a standard result on geometric series, we have g(x) = − exp(−2πiξ(x+1)/M)−exp(−2πiξ(m+1)/M)
1−exp(−2πiξ/M) .

Claim 7.4. |g(x)| = O(M/ξ) for all integers x ≥ m.
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Proof. The modulus of the numerator | exp(−2πiξ(x+ 1)/M)− exp(−2πiξ(m+ 1)/M)| is at most 2. We
thus only need to find a lower bound for |1− exp(−2πiξ/M |.

|1− exp(−2πiξ/M)|2 = (1− cos(2πξ/M))2 + sin(2πξ/M)2 = 2− 2 cos(2πξ/M) = Ω((ξ/M)2) ,

and so |g(x)| ≤ 2/
√

Ω((ξ/M)2) = O(M/|ξ|).

Now consider the following, for any n > m:

n∑
j=m+1

P(j)(g(j)− g(j − 1)) +

n∑
j=m+1

g(j)(P(j + 1)−P(j)) = P(n+ 1)g(n)−P(m+ 1)g(m) .

Now g(m) = 0 and P(n + 1) → 0 as n → ∞ while g(n + 1) is bounded for all n. Hence, the RHS tends
to 0 as n→∞ and we have:

|
∞∑

j=m+1

P(j) exp(−2πiξj/M)| = |
∞∑

j=m+1

P(j)(g(j)− g(j − 1))| = |
∞∑

j=m+1

g(j)(P(j + 1)−P(j))|

≤ O(M/ξ) ·
∞∑

j=m+1

(P(j)−P(j + 1)) = O(PmaxM/ξ) .

Similarly, we can show that
∑m−1

j=−∞P(j) exp(−2πiξj/M) = O(PmaxM/ξ) since P is monotone there as
well.

Then we can get a bound on the size of the effective support:

Lemma 7.5. Let P be a unimodal distribution supported on Z such that the probability of the mode is Pmax

and let ε ≤ 1/M . Then the DFT modulo M of P has
∑
|ξ|>` |P̂|2 ≤ ε2/100, where ` = Θ(P2

maxM
2/ε2).

Proof.

∑
|ξ|>`

|P̂ |2 ≤ 2

M/2∑
ξ=`+1

O(PmaxM/ξ)2 ≤ O(PmaxM)2
∞∑

ξ=`+1

1/ξ2 ≤ O(P2
maxM

2/`) ≤ ε2

100
.

For log-concave distributions, we can relate Pmax and M as follows,

Fact 7.6. Let P be a discrete log-concave distribution with mean µ and variance σ2. Then

• P is unimodal;

• its probability mass function satisfies P(x) = exp(−O((x− µ)/σ))/σ; and

• Pr[|X − µ| ≥ Ω(σ log(1/ε))] ≤ ε.

Since Pmax = O(1/σ), we can take M = O(σ log(1/ε))) = O(log(1/ε)/Pmax). Substituting this into
Lemma 7.5 completes the proof of the proposition.
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8 Lower Bound for PMD Testing
In this section, we obtain a lower bound to complement our upper bound for testing Poisson Multinomial
Distributions. Namely, we prove the following:

Theorem 8.1. There exists an absolute constant c ∈ (0, 1) such that the following holds. For any k ≤ nc,
any testing algorithm for the class of PMDn,k must have sample complexity Ω

((
4π
k

)k/4 n(k−1)/4

ε2

)
.

The proof will rely on the lower bound framework of [CDGR17], reducing testing PMDn,k to testing
identity to some suitable hard distribution P∗ ∈ PMDn,k. To do so, we need to (a) choose a convenient
P∗ ∈ PMDn,k; (b) prove that testing identity to P∗ requires that many samples (we shall do so by in-
voking the [VV14] instance-by-instance lower bound method); (c) provide an agnostic learning algorithm
for PMDn,k with small enough sample complexity, for the reduction to go through. Invoking [CDGR17,
Theorem 18] with these ingredients will then conclude the argument.

Proof of Theorem 8.1. In what follows, we choose our “hard instance” P∗ ∈ PMDn,k to be the PMD
obtained by summing n i.i.d. random variables, all uniformly distributed on {e1, . . . , ek}. This takes care
of point (a) above.

To show (b), we will rely on a result of Valiant and Valiant, which showed in [VV14] that testing identity
to any discrete distribution P required Ω

(
‖P−max
−ε ‖2/3/ε2

)
samples, where P−max

−ε is the vector obtained by
zeroing out the largest entry of P, as well as a cumulative ε mass of the smallest entries. Since ‖P−max

−ε ‖2/3
is rather cumbersome to analyze, we shall instead use a slightly looser bound, considering ‖P‖2 as a proxy.

Fact 8.2. For any discrete distribution P, we have ‖P‖2/3 ≥ 1
‖P‖2

. More generally, for any vector x we

have ‖x‖2/3 ≥
‖x‖21
‖x‖2

.

Proof. It is sufficient to prove the second statement, which implies the first. This is in turn a straightforward

application of Hölder’s inequality, with parameters (4, 4
3): ‖x‖1 =

∑
i |x|

1/2
i |x|

1/2
i ≤

(∑
i |x|

2
i

)1/4 (
|x|2/3i

)3/4
.

Squaring both sides yields the claim.

Fact 8.3. For our distribution P∗, we have ‖P∗‖2 = Θ
(

kk/4

(4πn)(k−1)/4

)
.

Proof. It is not hard to see that, from any n = (n1, . . . , nk) ∈ Nk such that
∑k

i=1 ni = n, P∗(n) =
1
kn

(
n

n1,...,nk

)
(where

(
n

n1,...,nk

)
denotes the multinomial coefficient). From there, we have

‖P∗‖22 =
1

k2n

∑
n1+···+nk=n

(
n

n1, . . . , nk

)2

∼
n→∞

1

k2n
· k2n kk/2

(4πn)(k−1)/2

where the equivalent is due to Richmond and Shallit [RS08].

However, from Fact 8.2 we want to get a hold on ‖P∗−max
−ε ‖

2
, not ‖P∗‖2 (since ‖P∗−max

−ε ‖2
1
≥ 1−Ω(ε), we

then will have our lower bound on ‖P∗−max
−ε ‖2/3). Fortunately, the two are related: namely, ‖P∗−max

−ε ‖
2
≤

‖P∗‖2, so 1
‖P∗−max

−ε ‖
2

≥ 1
‖P∗‖2

which is the direction we need.

Combining the three facts above establishes (b), providing a lower bound of qhard(n, k, ε) = Ω
(

(4πn)(k−1)/4

kk/4ε2

)
for testing identity to P∗. It only remains to establish (c):
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Lemma 8.4. There exists a (not necessarily efficient) agnostic learner forPMDn,k, with sample complexity

qagn(n, k, ε) = 1
ε2

(
O(k2 log n) +O

(
k log(k/ε)

log log(k/ε)

)k)
.

Proof. This is implied by a result of [DKS16d], which establishes the existence of a (proper) ε-coverMn,k,ε

of PMDn,k such that |Mn,k,ε| ≤ nO(k2) · (1/ε)
O
(
k log(k/ε)
log log(k/ε)

)k−1

. By standard arguments, this yields

information-theoretically an agnostic learner with sample complexity O
(

log|Mn,k,ε|
ε2

)
.

Having (a), (b), and (c), an application of [CDGR17, Theorem 18] yields that, as long as qagn(n, k, ε) =
o(qhard(n, k, ε)) then testing membership to PMDn,k requires Ω (qhard(n, k, ε)) samples as well. This in
particular holds for k = o(nc) (where e.g. c < 1/9) and ε = 1/2O(n).
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A Omitted Proofs
In this appendix, we provide the proofs of the lemmas and technical results omitted in the main body.

A.1 From Section 2

Proof of Lemma 2.8. By Plancherel, we have ‖P′‖22 = 1
M

∑M−1
ξ=0 |P̂′(ξ)|2 = 1

M

∑M−1
ξ=0 |P̂(ξ)|2, the second

equality due to the definition of P̂′. Indeed, for any ξ ∈ [M ],

P̂′(ξ) =
M−1∑
j=0

e−2iπ jξ
MP′(j) =

M−1∑
j=0

e−2iπ jξ
M

∑
j′∈N

j′=j mod M

P(j′) =
M−1∑
j=0

∑
j′∈N

j′=j mod M

e−2iπ j
′ξ
M P(j′)

=
∑
j∈N

e−2iπ j
′ξ
M P(j′) = P̂(ξ)

as u 7→ e−2iπu is 1-periodic. Since
∣∣∣P̂(ξ)

∣∣∣ ≤ 1 for every ξ ∈ [M ] (as P̂(ξ) = Ej∼P[e−2iπ jξ
M ]), we can

upper bound the RHS as

1

M

M−1∑
ξ=0

|P̂(ξ)|2 ≤ 1

M

∑
r≥0

∑
ξ: 1

2r+1<|P̂(ξ)|≤ 1
2r

∣∣∣P̂(ξ)
∣∣∣2 ≤ 1

M

∑
r≥0

1

22r

∣∣∣∣{ ξ ∈ [M ] :
1

2r+1
<
∣∣∣P̂(ξ)

∣∣∣ }∣∣∣∣ .
Invoking Lemma 2.7(ii) with parameter δ set to 1

2r+1 , we get that
∣∣∣{ ξ ∈ [M ] : 1

2r+1 <
∣∣∣P̂(ξ)

∣∣∣ }∣∣∣ ≤
4Mks−1

√
r + 1, from which

‖P′‖22 ≤
4k

s

∑
r≥0

√
r + 1

22r
≤ 8k

s

as desired.

A.2 From Section 3

Proof of Proposition 3.2. Letting Xi denote the number of occurrences of the i-th domain element in the
samples from P, define Zi = (Xi − mP∗(i))2 − Xi. Since Xi is distributed as Poi(m · pi), E[Zi] =
m2(P(i) − P∗(i))2; thus, Z is an unbiased estimator for m2‖P−P∗‖22. (Note that this holds even when
P∗ is allowed to take negative values.)

We compute the variance of Zi via a straightforward calculation involving standard expressions for the
moments of a Poisson distribution: getting

Var[Z] =

r∑
i=1

Var[Zi] =

r∑
i=1

(
4m3(P(i)−P∗(i))2P(i) + 2m2P(i)2

)
.
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By Cauchy–Schwarz, and since
∑r

i=1 P(i)2 ≤ b by assumption, we have

r∑
i=1

(P(i)−P∗(i))2P(i) =

r∑
i=1

(P(i)−P∗(i)) · (P(i)−P∗(i))P(i)

≤

√√√√ r∑
i=1

(P(i)−P∗(i))2

r∑
i=1

P(i)2(P(i)−P∗(i))2

≤

√√√√ r∑
i=1

(P(i)−P∗(i))2b
r∑
i=1

(P(i)−P∗(i))2 =
√
b‖P−P∗‖22

and so
Var[Z] ≤ 4m3

√
b‖P−P∗‖22 + 2m2b.

For convenience, let η def
= 1

10 , and write ρ def
=
‖P−P∗‖2

ε – so that we need to distinguish ρ ≤ 1 from ρ ≥ 2.
If ρ ≤ 1, i.e. E[Z] ≤ m2ε2, then

Pr[Z > (3− η)m2ε2] = Pr[|Z − E[Z]| > m2ε2(((3− η)− γ)− ρ2)]

while if ρ ≥ 2, i.e. E[Z] ≥ 4m2ε2, then

Pr[Z < (3+η)m2ε2] = Pr[E[Z]−Z > m2(‖p−q‖22−(3+η)ε2)] ≤ Pr[|Z−E[Z]| > m2ε2(ρ2−(3+η))].

In both cases, by Chebyshev’s inequality, the test will be correct with probability at least 3/4 provided
m ≥ c

√
b/ε2 for some suitable choice of c > 0, since (where

Pr[|Z − E[Z]| > m2ε2|ρ2 − (3± η)|] ≤ Var[Z]

m4ε4(ρ2 − (3± η))2

≤ 4m3
√
bρ2ε2 + 2m2b

m4ε4(ρ2 − (3± η))2
=

ρ2

(ρ2 − (3± η))2
· 4
√
b

mε2
+

1

(ρ2 − (3± η))2
· 2b

m2ε4

≤ 20
√
b

mε2
+

5b

2m2ε4
≤ 20

c
+

5

2c2
≤ 1

3

as maxρ∈[0,1]
ρ2

(ρ2−(3±η))2
≤ 5 and maxρ∈[0,1]

1
(ρ2−(3±η))2

≤ 5
4 and the last inequality holds for c ≥ 61.

A.3 From Section 4.3

Proof of Lemma 4.10. By Theorem 3.7 of [DKS16b], there is an algorithm that can compute an ε-cover of
all (n, k)-SIIRVs of size n (k/ε)O(k log(1/ε)) that runs in time n (k/ε)O(k log(1/ε)). Note the way the cover is
given, allows us to compute the Fourier coefficients Q̂(ξ) for any ξ for each Q ∈ C in time poly(k/ε).

Since ε/
√
|S| = 1/poly(k/ε), Step 1 takes time n (k/ε)O(k log(k/ε)) and outputs a cover of size n (k/ε)O(k log(k/ε)).

As each iteration takes time |S|, the whole algorithm takes n (k/ε)O(k log(k/ε)) time.
Note that each Q that passes Step 3 is effectively supported on I by (3) and has Fourier transform

supported on S by Claim 4.5.

• Suppose that P ∈ SIIRVn,k. Then there is a (n, k)-SIIRV Q ∈ C with dTV (P,Q) ≤ ε/5
√
|S|.

We need to show that if the algorithm considers Q, it accepts. From standard concentration bounds,
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one gets that the expectations of P and Q are within O(ε
√

log(1/ε)) standard deviations of P and
the variances of P and Q are within O(ε log(1/ε)) multiplicative error. Thus Q passes the condition
of Step 3. Since dTV (P,Q) ≤ ε/(5

√
|S|), we have that |P̂(ξ) − Q̂(ξ)| ≤ ε/(5

√
|S|) for all ξ. In

particular, we have
∑

ξ∈S |Ĥ − Q̂|2 ≤ ε2/25. Thus by the triangle inequality for L2 norm, we have∑
ξ∈S |Ĥ− Q̂|2 ≤ (ε/5 + 3ε/25)2 ≤ (ε/

√
5)2. Thus the algorithm accepts.

• Now suppose that the algorithm accepts. We need to show that P has total variation distance at
most ε from some (n, k)-SIIRV. We will show that dTV (P,Q) ≤ ε for the Q which causes the
algorithm to accept. Since the algorithm accepts,

∑
ξ∈S |Ĥ − Q̂|2 ≤ ε2/25. For x /∈ S, Ĥ(ξ) = 0

and so
∑

ξ /∈S |Ĥ − Q̂|2 =
∑

ξ /∈S |Q̂|2 ≤ ε2/100 by Claim 4.5. By Plancherel, the distributions

Q′
def
= Q mod M , H′ def

= H mod M satisfy

‖Q′ −H′‖22 =
1

M

M−1∑
ξ=0

|Ĥ− Q̂|2 ≤ ε2

20M
.

Thus dTV (Q′,H′) ≤ ε
4 . By definition H has probability 0 outside I and by (3), Q has at most ε

5
probability outside I , Thus dTV (Q,H) ≤ ε

4 + ε
5 ≤

ε
2 and by the triangle inequality dTV (P,Q) ≤

dTV (Q,H) + dTV (P,H) ≤ ε/2 + 6ε/25 ≤ ε as required.

Proof of Lemma 4.11. We use Steps 4 and 5 of Algorithm Proper-Learn-PBD in [DKS16c]. Step 5
checks if one of a system of polynomials has a solution. If such a solution is found, it corresponds to an
(n, 2)-SIIRV Q that has

∑
|ξ|≤` |Ĥ(ξ) − Q̂(ξ)|2 ≤ ε2/4 and so we accept. If no systems have a solution,

then there is no such (n, 2)-SIIRV and so we reject. The conditions of this lemma are enough to satisfy the
conditions of Theorem 11 of [DKS16c], though we need that the constantC ′ used to define |S| is sufficiently
large to cover the ` = O(log(1/ε) from that paper. This theorem means that if P is a (n, 2)-SIIRV, then we
accept.

We need to show that if the algorithm finds a solution, then it is within ε of a Poisson Binomial distribu-
tion. The system of equations ensures that

∑
|ξ|≤` |Ĥ(ξ)− Q̂(ξ)|2 ≤ ε2/4. Now the argument is similar to

that for (n, k)-SIIRVs. For x /∈ S, Ĥ(ξ) = 0 and so
∑

ξ /∈S |Ĥ−Q̂|2 =
∑

ξ /∈S |Q̂|2 ≤ ε2/100 by Claim 4.5.

By Plancherel, the distributions Q′ def
= Q mod M , H′ def

= H mod M satisfy

‖Q′ −H′‖22 =
1

M

M−1∑
ξ=0

|Ĥ− Q̂|2 ≤ ε2

20M
.

Thus dTV (Q′,H′) ≤ ε
4 . By definition H has probability 0 outside I and by (3), Q has at most ε5 probability

outside I , Thus dTV (Q,H) ≤ ε
4 + ε

5 ≤
ε
2 and by the triangle inequality dTV (P,Q) ≤ dTV (Q,H) +

dTV (P,H) ≤ ε/2 + 6ε/25 ≤ ε as required.

B Learning Discrete Log-Concave Distributions in Hellinger Distance
Recall that the Hellinger distance between two probability distributions over a domain D is defined as

dH (p, q)
def
=

1√
2
‖√p−√q‖2
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where the 2- norm is to be interpreted as either the `2 distance or L2 distance between the pmf or pdf’s
of p, q, depending on whether D is Z or R. In particular, one can extend this metric to the set of pseudo-
distributions over D, relaxing the requirement that the measures sum to one. We let FD denote the set of
pseudo-distributions over D. The bracketing entropy of a family of functions G ⊆ RD with respect to the
Hellinger distance (for parameter ε) if then the minimum cardinality of a collection C of pairs (gL, gU ) ∈ F2

D
such that every f ∈ G is “bracketed” between the elements of some pair in C:

N[](ε,G,dH)
def
= min

{
N ∈ N : ∃C ⊆ F2

D, |C| = N, ∀f ∈ G, ∃(gL, gU ) ∈ C s.t. gL ≤ f ≤ gU and dH (gL, gH) ≤ ε
}

Theorem B.1. Let p̂m denote the maximum likelihood estimator (MLE) for discrete log-concave distribu-
tions on a sample of size m. Then, the minimax supremum risk satisfies

sup
p∈LCVn

Ep[dH (p̂m, p)
2] = O

(
log4/5(mn)

m4/5

)
.

Note that it is known that for continuous log-concave distributions over R, the rate of the MLE is
O(m−4/5) [KS16]; this result, however, does not generalize to discrete log-concavity, as it crucially relies
on a scaling argument which does not work in the discrete case. On the other hand, one can derive a rate of
convergence to learn discrete log-concave distributions in total variation distance (using another estimator
than the MLE), getting again O(m−4/5) in that case [DKS16a]. However, due to the loose upper bound
relating total variation and Hellinger distance, this latter result only implies an O(m−2/5) convergence rate
in Hellinger distance, which is quadratically worse than what we would hope for.

Thus, the result above, while involving a logarithmic dependence on the support size, has the advan-
tage of getting the “right” rate of convergence. (While this additional dependence does not matter for our
purposes, we believe a modification of our techniques would allow one to get rid of it, obtaining a rate of
Õ
(
m−4/5

)
instead.) We however conjecture that the tight rate of convergence should be O(m−4/5), as in

the continuous case (i.e., without the dependence on the domain size n nor the extra logarithmic factors in
m).

In order to prove Theorem B.1, we obtain along the way several interesting results on discrete (and
continuous) log-concave distributions, namely a bound on their bracketing entropy (Theorem B.2) and an
approximation result (Theorem B.3), which we believe are of independent interest.

In what follows, D will denote either R or Z; we let LCV(D) denote the set of log-concave distributions
over D, and LCVn ⊆ LCV(Z) be the subset of log-concave distributions supported on {0, . . . , n− 1}.

Theorem B.2. For every ε ∈ (0, 1),

N[](ε,LCVn, dH) ≤
(n
ε

)O(1/
√
ε)

A crucial element in to establish Theorem B.2 will be the following theorem, which shows that log-
concave distributions are well-approximated (in Hellinger distance) by piecewise-constant pseudo-distributions
with few pieces:

Theorem B.3. Let D be either R or Z. For every p ∈ LCV(D) and ε ∈ (0, 1), there exists a pseudo-
distribution g such that (i) g is piecewise-linear with O (1/

√
ε) pieces; (ii) g is supported on an interval

[a, b] with p(D \ [a, b]) = O(ε2); and (iii) dH (p, g) ≤ ε. (Moreover, one can choose to enforce g ≤ p, or
p ≤ g, on [a, b]).
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The proof of Theorem B.3 will be very similar to that of [DKS16a, Theorem 12]; specifically, we will
use the following (reformulation of a) lemma due to Diakonikolas, Kane, and Stewart:

Lemma B.4 ([DKS16a, Lemma 14], rephrased). Let D be either R or Z. Let f be a log-concave function
defined on an interval I ⊆ D, and suppose that f(I) ⊆ [a, 2a] for some constant a > 0. Furthermore,
suppose that the logarithmic derivative of f (or, if D = Z, the log-finite difference of f ) varies by at most
1/ |I| on I; then, for any ε ∈ (0, 1) there exists two piecewise linear functions g`, gu : I 7→ R withO (1/

√
ε)

pieces such that ∣∣f(x)− gj(x)
∣∣ = O (ε)f(x), j ∈ {`, u} (6)

for all x ∈ I , and with g` ≤ f ≤ gu.

Proof. Observe that it suffices to establish Eq. (6) for a piecewise linear function g : I 7→ R with O (1/
√
ε)

pieces; indeed, then in order to obtain g`, gu from g, it will be sufficient to scale it by respectively (1+αε)−1

and (1 + αε) (for a suitably big absolute constant α > 0), thus ensuring both Eq. (6) and g` ≤ f ≤ gu. We
therefore focus hereafter on obtaining such a pseudo-distribution g.

For ease of notation, we write h for the logarithmic derivative (or log-finite difference) of f (e.g., in the
continuous case, h = (ln f)′). By rescaling f , we may assume without loss of generality that a = 1. Note
that h is then bounded on I , i.e. |h| ≤ c/|I| for some absolute constant c > 0. We now partition I into
subintervals J1, J2, . . . , J` so that (i) each Ji has length at most ε1/2 |I|, and (ii) h varies by at most ε1/2/ |I|
on each Ji. This can be achieved with ` = O (1/

√
ε) by placing an interval boundary every ε1/2 |I| distance

as well as every time h passes a multiple of ε1/2/ |I|.
We now claim that on each interval Ji there exists a linear function gi so that |gi(x)− f(x)| = O(ε)f(x)

for all x ∈ Ji. Letting g be gi on Ji will complete the proof. Fix any i, and write Ji = [si, ti]. Letting
α0 ∈ h(Ji) be an arbitrary value in the range spanned by h on Ji, observe that for any x ∈ Ji there exists
αx ∈ h(Ji) such that

f(x) = f(si)e
αx(x−si)

from which we have

f(x) = f(si)e
α0(x−si)+(αx−α0)(x−si) = f(si)e

α0(x−si)e(αx−α0)(x−si)

= f(si) (1 + α0(x− si) +O(ε)) (1 +O((αx − α0)(x− si)))
= f(si) (1 + α0(x− si) +O(ε)) (1 +O(ε))

= f(si) + α0f(si)(x− si) +O(ε)

recalling that |α0| , |αx| = O(1/ |I|), |x− si| ≤ ε1/2 |I|, and |αx − α0| ≤ ε1/2/ |I|, so that |α0(x− si)| =
O(ε1/2) and |(αx − α0)(x− si)| = O(ε). This motivates defining the affine function gi as

gi(x)
def
= f(si) + α0f(si)(x− si), x ∈ Ji

from which∣∣∣∣f(x)− gi(x)

f(x)

∣∣∣∣ =

∣∣∣∣1− f(si) + α0f(si)(x− si)
f(si)eαx(x−si)

∣∣∣∣ =

∣∣∣∣1− 1 + α0(x− si)
eαx(x−si)

∣∣∣∣
=

∣∣∣∣1− 1 + α0(x− si)
1 + αx(x− si) +O(ε)

∣∣∣∣ = |1− (1 + α0(x− si)) (1− αx(x− si) +O(ε))|

= |(αx − α0)(x− si) +O(ε)| = O(ε)

as claimed. This concludes the proof.
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We will also rely on the following proposition, from the same paper:

Proposition B.5 ([DKS16a, Proposition 15]). Let f be a log-concave distribution on D (as before, either R
or Z). Then there exists a partition of D into disjoint intervals I1, I2, . . . and a constant C > 0 such that

• f satisfies the hypotheses of Lemma B.4 on each Ii.

• For each m, there are most Cm values of i so that f(Ii) > 2−m.

(Moreover, f is monotone on each Ii.)

We are now ready to prove Theorem B.3:

Proof of Theorem B.3. Fix any ε ∈ (0, 1), and p ∈ LCV(D). We divide D into intervals as described
in Proposition B.5. Call these intervals I1, I2, . . . sorted so that p(Ii) is decreasing in i. Therefore, we have
that p(Im) ≤ 2−m/C .

For 1 ≤ m ≤ M
def
= 2C log(1/ε), let εm

def
= ε2m/(3C); we use Lemma B.4 to approximate p in Im by

two piecewise linear functions g`m, g
u
m so that (i) gjm has at most O(1/

√
εm) pieces and (ii) p and gjm are, on

Im, within a multiplicative (1 ± O(εm)) factor with g`m ≤ p ≤ gum. For j ∈ {`, u}, let gj be the piecewise
linear function that is gjm on Im for 1 ≤ m ≤M , and 0 elsewhere. gj is then piecewise linear on

M∑
m=1

O(ε−1/2
m ) =

M∑
m=1

O
(
ε−1/22−

m
6C

)
= O(ε−1/2)

intervals.
Let I be defined as the smallest interval such that

⋃M
m=1 Im ⊆ I . By definition, g is 0 outside of I , and

moreover the total mass of p there is

∞∑
m=M+1

p(Im) ≤
∞∑

m=M+1

1

2m/C
= O

(
2−M/C

)
= O

(
ε2
)

By replacing gj by max(gj , 0), we may ensure that it is non-negative (while at most doubling the number of
pieces without increasing the distance from p). This establishes the first two items of the theorem; we now
turn to the third.
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The Hellinger distance between p and gj satisfies, letting J def
=
⋃M
m=1 Im,

2dH

(
p, gj

)2
= ‖√p−

√
gj‖

2

2 =

∫
D

(√
p(x)−

√
gj(x)

)2

µ(dx)

=

∫
D\J

(√
p(x)−

√
gj(x)

)2

µ(dx) +

∫
J

(√
p(x)−

√
gj(x)

)2

µ(dx)

=

∫
D\J

p(x)µ(dx) +
M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

≤ O(ε2) +
M∑
m=1

∫
Im

p(x)
(

1−
√

1±O(εm)
)2
µ(dx)

= O(ε2) +
M∑
m=1

∫
Im

p(x)O(ε2m)µ(dx) = O(ε2) +
M∑
m=1

O
(
ε2mp(Im)

)
= O(ε2) +

M∑
m=1

O
(
ε22

2m
3C 2

−m
C

)
= O(ε2) +

M∑
m=1

O
(
ε22

−m
3C

)
= O(ε2) +O(ε2) = O(ε2)

establishing the third item. (By dividing ε by a sufficiently big absolute constant before applying the above,
one gets (i), (ii), and (iii) with dH

(
p, gj

)
≤ ε as desired.) For technical reasons (that we will need in the

proof of Theorem B.2), instead of defining [a, b] to be our interval I , we choose [a, b] to be I augmented
with up to two of the remaining Im’s (those directly on the left and right of I , defining g`m, g

u
m on these two

additional pieces as before by Lemma B.4). This does not change the fact that the piecewise linear function
obtained on [a, b] hasO(ε−1/2) pieces (we only added o(ε−1/2) pieces), and p(D\[a, b]) ≤ p(D\I) = O(ε2).
Finally, it is easy to see that this only changes, as per the computation above, the Hellinger distance byO(ε2)
as well. (The advantage of this technicality is that now, the two end intervals in the union constituting [a, b]
have each total probability mass O(ε2) under p, which will come in handy later.) It then only remains to
choose g to be either g` or gu, depending on whether one wants a lower- or upperbound on f (on [a, b]).

We can finally prove Theorem B.2:

Proof of Theorem B.2. We can slightly strengthen the proof of Theorem B.3 for the case of LCVn, by im-
posing some restriction on the form of the ‘approximating distributions” g. Namely, for any ε ∈ (0, 1), fix
any p ∈ LCVn and consider the construction of g`, gu as in the proof of Theorem B.3. Clearly, we can
assume [a, b] ⊆ {0, . . . , n− 1}.

Now, we modify gj as follows (for j ∈ {`, u}): for 1 ≤ m ≤ M , consider the interval Im = [am, bm],
and the corresponding “piece” gjm of g on Im. We let g̃jm be the pseudo-distribution defined from gjm as
follows: it is affine on Im, with

g̃um(am)
def
=

⌈
gu(am)

M |Im|
2ε2

⌉
2ε2

M |Im|
, g̃um(am)

def
=

⌈
gu(bm)

M |Im|
2ε2

⌉
2ε2

M |Im|

and

g̃`m(am)
def
=

⌊
g`(am)

M |Im|
2ε2

⌋
2ε2

M |Im|
, g̃`m(am)

def
=

⌊
g`(bm)

M |Im|
2ε2

⌋
2ε2

M |Im|
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i.e. gjm is g “rounded up” (resp. down) to the near multiple of ε2

M |Im| on the endpoints. We then let g̃j

be the correspond piecewise-affine pseudo-distribution defined by piecing together the g̃jm’s. Clearly, by
construction g̃` and g̃u still satisfies (i) and (ii) of Theorem B.3, and g̃` ≤ p ≤ g̃u. As for (iii), observe that
at all 1 ≤ m ≤M and k ∈ Im we have

∣∣g̃j(k)− gj(k)
∣∣ ≤ 2ε2

M |Im| , from which

dH

(
p, g̃j

)
≤ dH

(
p, gj

)
+ dH

(
g, g̃j

)
≤ ε+

√
dTV (gj , g̃j) ≤ ε+

√√√√1

2

M∑
m=1

|Im| ·
2ε2

M |Im|
= 2ε

showing that we get (up to a constant factor loss in the distance) (iii) as well. Given this, we get that
specifying (g̃`, g̃u) can be done by the list of the O(1/

√
ε) endpoints along with the value of each g̃j for all

of these endpoints. Now, given the two endpoints, one gets the size of the corresponding interval Im (which
is at most n), and the two values to specify are a multiple of ε2/(M |Im|) in [0, 1]. (If we were to stop here,
we would get the existence of an ε-cover C′ε of LCVn in Hellinger distance of size (n/ε)O(1/

√
ε).)

One Last Step: Outside [a, b]. To get the bracketing bound we seek, we need to do one last modification
to our pair (g̃`, g̃u). Specifically, in the above we have one issue when approximating p: namely, that outside
of their common support {a, . . . , b}, both g̃j’s are 0. While this is fine for the lower bound g̃`, this is not
for g̃u, as it needs to dominate p outside of {a, . . . , b} as well, where p may have O(ε2) probability mass.
Thus, we need to adapt the construction above, as follows (we treat the setting of g̃u on {b+ 1, . . . , n}, the
definition on {0, . . . , a− 1} is similar).

First, observe if p(b + 1) = 0, we are done, as then by monotonicity we must have (k) = 0 for all
k ≥ b+ 1, and so setting g̃u = 0 on {b+ 1, . . . , n} suffices. Thus, we hereafter assume p(b+ 1) > 0; and,
for b+ 1 ≤ k ≤ n, set

g̃u(k)
def
= αeβ(k−(b+1))

where α def
=
⌈
p(b+ 1) n

2ε2

⌉
2ε2

n and β def
=
⌈
n
ε ln p(b+2)

p(b+1)

⌉
ε
n (so that β ≤ 0). Then g̃u(b + 1) ≥ p(b + 1), and

for b+ 1 < k ≤ n
g̃u(k)

g̃u(k − 1)
= eβ ≥ p(b+ 2)

p(b+ 1)
≥ p(k)

p(k − 1)

(the last inequality due to the log-concavity of p). This implies g̃u ≥ p on {b + 1, . . . , n} as desired; and,
thanks to the rounding, there are only O(n/ε2) different possibilities for the tail of g̃u. In view of bounding
the Hellinger distance between p and g̃u added by this modification, which is upper bounded by the (square
root) of the total variation distance this added, recall that p({b + 1, . . . , n}) = O(ε2) by construction, and
that

g̃u({b+ 1, . . . , n}) =

n∑
k=b+1

αeβ(k−(b+1)) =
α

1− eβ
.

Thus, the Hellinger distance incurred on {b+ 1, . . . , n} is at most
√
O(ε2) + α

1−eβ ; and to conclude, it only

remains to show that α
1−eβ = O(ε2).

To show this last point, let Im = [c, b] be the rightmost interval in the decomposition from Proposi-
tion B.5. Recall that we are guaranteed that p is non-increasing on Im; further, by inspection of the proof
of [DKS16a, Proposition 15], we also have that Im is maximal, in the sense that b is the rightmost point k
such that [c, k] satisfies the assumptions of Lemma B.4. Using first the monotoncity, we have

p(b+ 1) ≤ p(b) ≤ p(Im)

b− c
≤ O(ε2)

b− c
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that last inequality by construction (from the technicality we enforced in the end of the proof of Theo-
rem B.3); and therefore α ≤ O(ε2)

b−c + ε2

n = O(ε2)
b−c .

In order to obtain an upper bound on β, we rely on the maximality of Im, leading to two cases to consider:

• The first is that p(b+ 1) < p(c)
2 ; in which case p(b+ 2) ≤ p(b+ 1) < p(c)

2 ; which implies that

1

2
>
p(b+ 2)

p(c)
=
p(b+ 2)

p(b+ 1)
· p(b+ 1)

p(b)
· · · p(c+ 1)

p(c)
≥
(
p(b+ 2)

p(b+ 1)

)b−c+2

the last inequality by log-concavity. In turn, we get

β ≤ ln
p(b+ 2)

p(b+ 1)
+
ε

n
≤ − ln 2

b− c+ 2
+
ε

n
.

• The second is that ln p(c+1)
p(c) − ln p(b+1)

p(b) > 1
b−c+1 . In this case,

ln
p(b+ 2)

p(b+ 1)
≤ ln

p(b+ 1)

p(b)
< ln

p(c+ 1)

p(c)
− 1

b− c+ 1
≤ − 1

b− c+ 1
< − ln 2

b− c+ 2

(the last inequality as b− c ≥ 0) and therefore β ≤ − ln 2
b−c+2 + ε

n as in the first case.

Combining these two bounds, we obtain

α

1− eβ
≤ O(ε2)

b− c
· 1

1− e
ε
n e−

ln 2
b−c+2

= O(ε2)

the last inequality for ε < ln 2
2 (using the fact that 1 ≤ b − c ≤ n). This concludes the proof: as dis-

cussed, we then have that our setting of ḡu outside of [a, b] only causes an addition Hellinger distance of√
O(ε2) + α

1−eβ =
√
O(ε2) = O(ε).

We are, at last, ready to prove our main theorem:

Proof of Theorem B.1. Recall the following theorem, due to Wong and Shen [WS95] (see also [vdG00,
Theorem 7.4], [KS16, Theorem 17]):

Theorem B.6 ([WS95, Theorem 2]). There exist positive constants τ1, τ2, τ3, τ4 > 0 such that, for all
ε ∈ (0, 1), if ∫ √2ε

ε2/28

√
N[](u/τ1,G,dH) du ≤ τ2m

1/2ε2 (7)

and p̃n is an estimator that approximates p̂m within error η (i.e., solves the maximization problem within
additive error η) with η ≤ τ3ε

2, then

Pr [ dH (p̃m, p) ≥ ε ] ≤ 5 exp(−τ4mε
2).
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To apply this theorem, define the function Jn : (0, 1)→ R by J(x)
def
=
∫ x
x2

√
ln n

uu
−1/4 du. By (tedious)

computations, one can verify that Jn(x) ∼x→0
4
3x

3/4
√

ln n
x ; this, combined with the bound of Theorem B.2,

yields that for any ε ∈ (0, 1)∫ √2ε

ε2/28

√
N[](u/τ1,LCVn,dH) du = O

(
ε3/4

√
ln
n

ε

)
.

Thus, setting, for m ≥ 1, εm
def
= Cm−2/5(ln(mn))2/5 for a sufficiently big absolute constant C > 0

ensures that εm satisfies (7). Let ρm
def
= 1/εm. It follows that any estimator which, on a sample of size m,

approximates the log-concave MLE to within an additive ηm
def
= τ3ε

2
m has minimax error

ρ2
m sup
p∈LCVn

Ep[dH (p̃m, p)
2] = sup

p∈LCVn

∫ ∞
0

Pr
[
ρ2
mdH (p̃n, p)

2 ≥ t
]
dt

= sup
p∈LCVn

∫ ∞
0

Pr
[

dH (p̃n, p) ≥
√
tρ−1
m

]
dt

≤ 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH (p̃n, p) ≥
√
tρ−1
m

]
dt

= 1 + sup
p∈LCVn

∫ ∞
1

Pr
[

dH (p̃n, p) ≥
√
tεm

]
dt

≤ 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4mtε
2
m) dt

= 1 + 5 sup
p∈LCVn

∫ ∞
1

exp(−τ4Cm
1/2 ln(mn)t) dt

= O(1)

where we used the fact that if εt > εm, then εt satisfies (7) as well (and applied it to εt =
√
tεm). This

concludes the proof.
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