Electronic Colloquium on Computational Complexity, Report No. 77 (2017)

Lower Bounds and PIT for Non-Commutative Arithmetic circuits
with Restricted Parse Trees

Guillaume Lagarde* Nutan Limaye’ Srikanth Srinivasan®

Abstract

We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials
over the free non-commutative polynomial ring F(x;, ..., xy), where variables do not commute. We
consider circuits that are restricted in the ways in which they can compute monomials: this can
be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture
essentially all non-commutative circuit models for which lower bounds are known. We prove several
results about such circuits.

1. We show explicit exponential lower bounds for circuits with up to an exponential number of
parse trees, strengthening the work of Lagarde, Malod, and Perifel (ECCC 2016), who prove
such a result for Unique Parse Tree (UPT) circuits which have a single parse tree.

2. We show explicit exponential lower bounds for circuits whose parse trees are rotations of
a single tree. This simultaneously generalizes recent lower bounds of Limaye, Malod, and
Srinivasan (Theory of Computing 2016) and the above lower bounds of Lagarde et al., which
are known to be incomparable.

3. We make progress on a question of Nisan (STOC 1991) regarding separating the power of Al-
gebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing
a tight lower bound of n2(°¢4) for any UPT formula computing the product of d n x n matrices.
When d < logn, we can also prove superpolynomial lower bounds for formulas with up to
20(d) many parse trees (for computing the same polynomial). Improving this bound to allow
for 20 trees would yield an unconditional separation between ABPs and Formulas.

4. We give deterministic white-box PIT algorithms for UPT circuits over any field (strengthening
aresult of Lagarde et al. (2016)) and also for sums of a constant number of UPT circuits with
different parse trees.

*Univ Paris Diderot, Sorbonne Paris Cité, IRIF, UMR 7089 CNRS, F-75205 Paris, France. Email:
guillaume.lagarde@irif.fr.

TDepartment of Computer Science and Engineering, [IT Bombay, Mumbai, India. Email: nutan@cse.iitb.ac.in.

tDepartment of Mathematics, IIT Bombay, Mumbai, India. Email: srikanth@math.iitb.ac.in.

ISSN 1433-8092

1 Introduction

In this paper, we study questions related to Arithmetic Circuits, which are computational devices that
use arithmetic operations (such as + and x) to compute multivariate polynomials over a field . While
the more standard work in this area deals with the commutative polynomial ring Fx,...,xy], there is
also a line of research, initiated by Hyafil [14] and Nisan [22]], that studies the complexity of computing
polynomials from the non-commutative polynomial ring F(xi,...,xy), where monomials are simply
strings over the alphabet X = {xj,...,xy}. The motivation for this is twofold: firstly, the study of
polynomial computations over non-commutative algebras (e.g. the algebra of matrices over [F) naturally
leads to such questions [8, [7], and secondly, computing, say, the Permanent non—commutativelyﬂ is at
least as hard as computing it in the commutative setting and thus, the lower bound question should be
easier to tackle in this setting.

In an influential result, Nisan [22] justified this by proving exponential lower bounds for non-
commutative formulas, and more generally Algebraic Branching Programs (ABPs), computing the De-
terminant and Permanent (and also other polynomials). The method used by Nisan to prove this lower
bound can also be seen as a precursor to the method of Partial derivatives in Arithmetic circuit complex-
ity (introduced by Nisan and Wigderson [23]]), variants of which have been used to prove a large body
of lower bound results in the area [23, 26,1116, [18]].

While lower bounds for general non-commutative circuits remain elusive, we do have other lower
bounds that strengthen Nisan’s result. Recently, Malod, along with two of the authors of this paper
showed [20] that Nisan’s method can be extended to prove lower bounds for skew circuits, which are
circuits where every x-gate has at most one non-variable input. Also, the first author, Malod and Per-
ifel [[19] proved lower bounds for another variant of non-commutative circuits that they defined to be
unambiguous circuits (that we describe below). While these two results both strengthen Nisan’s result,
they are incomparable to each other, as shown by [19].

In this paper, we build on the above work to prove lower bounds that generalize these results signif-
icantly and also make progress on other problems related to non-commutative circuits. The circuits we
consider are restricted in the ways they are allowed to compute monomials. We do this by restricting
the “parse trees” that are allowed to appear in the circuits. Informally, the polynomial computed by any
arithmetic circuit C can be written down as an exponentially-large sum of subcircuits, each of which
contains only multiplication gates and hence computes a single monomia each such subcircuit gives
rise to a tree, which we call a parse tree of C (see [19] and references therein for the background of
parse trees), that tells us how the monomial was computed. For example, for the circuit C in Figure
the monomial x;xyx3x4 may be computed in C as (x-x2) - (x3-x4) or as (x1 - (x2-x3) - x4), each of which
comes from a parse tree of C.

All the non-commutative circuit classes for which we know lower bounds can be defined by restric-
tions on the parse trees that appear in them. ABPs are circuits where all parse trees are left combs (i.e.
a tree where every internal node has two children and the left child is always a leaf); skew circuits are
equivalent in power to circuits where the parse trees are twisted combs (i.e. a tree where every internal
node has two children and at least one of the two children is always a leaf); and unambiguous circuits
(that we will call Unique Parse Tree (UPT) circuits below) are defined to be circuits that have only one
parse tree. It is thus natural to consider other restrictions on the structure of the parse trees that appear
in a circuit. We prove several results about such circuits.

Our results. We start by considering circuits that only contain a few different parse trees. The motiva-
tion for this is the lower bound of [19] for the case of circuits with a single parse tree and a construction

'We can define the Permanent in the non-commutative polynomial ring by ordering the variables in each monomial in the
commutative permanent, say, in increasing order of the rows in which they appear.
2different subcircuits could compute the same monomial

Figure 1: From left to right: a non-commutative arithmetic circuit C; two ways in which the monomial
X1x2x3x4 is computed in the circuit; the corresponding parse trees

in [20] that shows that poly(N,d)-sized circuits with exp(Q(d)) many parse tree evade all currently
known techniques for proving lower bounds for non-commutative circuits. We prove exponential lower
bounds for circuits that contain up to an exponential number of parse trees.

Theorem 1 (Informal). For any N > 2, there is an explicit polynomial F on N variables of degree d
d1/4

such that any circuit C with at most pd'/t parse trees computing F must have size at least 2% .

Next, we consider structural restrictions on the collections of parse trees that appear in our circuits.
As mentioned above, skew circuits are circuits where all parse trees are twisted combs, which can be
seen as trees obtained by starting with a left comb (which defines an ABP) and successively applying
rotations to the internal nodes that swap the children. We say that a circuit C is rotation Unique Parse
tree (rotUPT) if there is a single tree T such that all the parse trees of C can be obtained as rotations
of T We show the following result that simultaneously generalizes the skew circuit lower bound of
Limaye et al. [20] as well as the UPT circuit lower bound of Lagarde et al. [19].

Theorem 2 (Informal). For any N > 2, there is an explicit polynomial F on N variables of degree d
such that any rotUPT circuit C computing F must have size N,

We also consider the problem of separating ABPs from formulas, which was posed by Nisan [22]
and is the non-commutative arithmetic analogue of separating NL from NC'. Equivalently, this is the
question of whether (an entry of) the product of d n x n matrices, all of whose entries are distinct
variables, can be computed by a poly(n,d)-sized non-commutative formula. The standard divide-and-
conquer approach yields, for every even A, a non-commutative formula of depth A and size o)
computing this polynomial and a size n@0ogd) formula in general. Further, these formulas can be seen
to have a unique parse tree (i.e. they are UPT). We show that this upper bound is nearly tight for UPT

formulas and every choice of A.

Theorem 3 (Informal). Any UPT formula of depth A for multiplying d n X n matrices must have size

nQ(Adl/WZJ). In particular, any UPT formula for this polynomial must have size n*1°24),

We are also able to extend this to the setting of formulas with ‘few’ parse trees. However, for this
result, we need an upper bound on the number d of matrices (see Remark [36] for more on this).

Theorem 4 (Informal). Say d <logn. Any formula with k < 2°4) parse trees for multiplying d n x n
matrices must have size n®").

Finally, we consider the Polynomial Identity Testing (PIT) problem for non-commutative circuits
with restricted parse trees. Lagarde et al. [[19]] show that deterministic PIT algorithms for UPT circuits

3 A close look at the circuits in [20] indicates that just about all parse trees of fan-in 2 appear in these circuits.
“4There can be exp(Q(d)) of these, as in the case of skew circuits.
5Qur bounds are actually better stated in terms of the x-depth of the formula.

can be obtained by adapting a PIT algorithm for ABPs due to Arvind, Joglekar and Srinivasan [3].
However, this technique only works over fields of characteristic zero. Here, we give a straightforward
adaptation of an older PIT algorithm of Raz and Shpilka [25] (also for non-commutative ABPs) to show
that PIT for UPT circuits can be solved in deterministic polynomial time over all fields. We also consider
circuits that are sums of UPT circuits (with possibly different parse trees). By using ideas from the work
of Gurjar, Korwar, Saxena and Thierauf [12], we show that PIT for a sum of constant number of UPT
circuits can be solved in deterministic polynomial time (over any field).

Theorem 5 (Informal). The PIT problem for the sum of k UPT circuits of size s can be solved determin-

. o k
istically in time s0@,

Related work. HrubesS, Wigderson and Yehudayoff [[13] initiated a study of the asymptotics of the
classical sum-of-squares problem in mathematics and showed that a suitable result in this direction
would yield strong lower bounds against general non-commutative circuits. While this line of work is
currently the only feasible attack on the problem of general circuit lower bounds, we do not yet have any
lower bounds using this technique.

Nisan and Wigderson [23]] prove results that implyﬂ some lower bounds for UPT formulas computing
iterated matrix product. For depth-3 formulas, they prove an optimal n¢ bound on computing the product
of d n x n matrices. For depths A > 3 though, the lower bound is only exp(®(d'/2)) and thus does not
yield anything non-trivial when A approaches logd. Indeed, the proof method of this result in [23] is not
sensitive to the value of n and holds for any n > 2. Such a method cannot yield non-trivial lower bounds
for general formulas since we do have poly(d)-sized formulas in the setting when n = O(1).

The results of Kayal, Saha, and Saptharishi [[17]] and Fournier, Limaye, Malod, and Srinivasan [10]
together also prove a superpolynomial lower bound on the size of regular formulas (defined by [17])
computing the product of d n X n matrices in the commutative setting. While these formulas (in the
non-commutative setting) are definitely UPT, the converse is not true.

Arvind, Mukhopadhyay and Raja [4] and Arvind, Joglekar, Mukhopadhyay and Raja [2] have some
recent work on PIT algorithms for general non-commutative circuits that run in time polylogarithmic
in the degree of the circuit and polynomial in the size of the circuit. Our results are incomparable with
theirs, since our algorithms run in time polynomial in both degree and size but are deterministic, whereas
the algorithms of [4) 2] are faster (especially in terms of degree) but randomized.

An earlier manuscript of Arvind and Raja [6] contains a claim that the PIT problem for non-
commuﬂt]ative skew circuits has a deterministic polynomial time algorithm, but the proof is unfortunately
flawed

Techniques. The techniques used to prove the lower bounds in this paper are generalizations of the
techniques of Hyafil [14] and Nisan [22]. Given a homogeneous polynomial f € F(X) of degree d, we
associate with it an N%/2 x N%/2 matrix whose rows and columns are labelled by monomials (i.e. strings
over X) m of degree d/2 each. Nisan [22] considers the matrix M[f] where the (m;,m;)th entry is the
coefficient of the monomial m;my in f. In [20,[19], along with our co-authors, we considered the more
general family of matrices My[f] where Y C [d] is of size d/2 and the (m;,m;)th entry of My|[f] is
the coefficient of the monomial /m such that the projection of m to the locations in Y gives m; and the
locations outside gives m;.

This is the general technique we use in this paper as well, though choosing the right Y requires some
work. In the proof of Theorem [I] it is chosen at random (in a similar spirit to a multilinear lower bound
of Raz [24])). In the proof of Theorem [2} it is chosen in a way that depends on the structure of the parse
trees in the circuit (combining the approaches of [20}[19]). In the proof of Theorem[3] it is applied (after

The results of [23] in fact hold in the stronger commutative set-multilinear setting.
TPrivate communication with the authors.

a suitable restriction) in a way that keeps the iterated matrix product polynomial high rank but reduces
the rank of the UPT formula.

For the PIT algorithm for sums of UPT circuits, we use an observation of Gurjar et al. [[12]] (also see
[22, 25]) that any polynomial P that has a small ABP has a small set of characterizing identitites such
that Q = P iff Q satisfies these identities. We are able to show (using a suitable decomposition lemma
of [19]) that a similar fact is also true more generally in the case that P has a small UPT circuit. If O
also has a small UPT circuit, then checking these identities for QO reduces to a PIT circuit for a single
UPT circuit, for which we already have algorithms. In this way, given two UPT circuits (with different
parse trees) computing P, Q, we can check if P — Q = 0. Extending this idea exactly as in [12], we can
efficiently check if the sum of any small number of UPT circuits is 0.

2 Preliminaries

We refer the reader to the survey [27] for standard definitions regarding arithmetic circuits.

2.1 Non-commutative polynomials

Throughout, we use X = {x1,...,xy} to denote the set of variables. We work over the non-commutative
ring of polynomials F(X) where monomials are strings over the alphabet X: for example, xjx; and x,x;
are distinct monomials in this ring. For d € N, we use .#;(X) to denote the set of monomials (i.e.
strings) over the variables in X of degree exactly d.

For i, j € N, we define [i, j] to be the set {i,i+ 1,...,j} (the set is empty if i > j). We also use the
standard notation [i] to denote the set [1,i].

Given homogeneous polynomials g,i € F(X) of degrees d, and d), respectively and an integer j €
[0,d}], we define the j-product of g and h — denoted g x j h — as follows:

e When g and & are monomials, then we can factor 4 uniquely as a product of two monomials /4,
such that deg(h;) = j and deg(hy) = dj, — j. In this case, we define g X jhto be hy - g - hy.

e The map is extended bilinearly to general homogeneous polynomials g, 4. Formally, let g,/ be
general homogeneous polynomials, where g = Y ,g¢, h = Y ;h; and gy, h; are monomials of g, h
respectively. For j € [0,d], each h; can be factored uniquely into A;,, h;, such that deg(h;,) = j
and deg(h;,) = dy — j. And g x j h is defined to be Y; Y.y hi, g,

Note that g X h and g X4, h are just the products g - and h - g respectively.

2.2 The partial derivative matrix

Here we recall some definitions from [22] and [20]]. Let IT denote a partition of [d] given by an ordered
pair (Y,Z), where Y C [d] and Z = [d] \ Y. In what follows we only use ordered partitions of sets into
two parts. We say that such a ITis balanced if |Y| = |Z| = d /2.

Given a monomial m of degree d and a set W C [d], we use my to denote the monomial of degree
|W | obtained by keeping only the variables in the locations indexed by W and dropping the others.

Definition 6 (Partial Derivative matrix). Let f € F(X) be a homogeneous polynomial of degree d. Given
a partition T1 = (Y, Z) of [d), we define an N x NV| matrix M| f, 1) with entries from F as follows: the
rows of M[f,T1] are labelled by monomials from .#\y|(X) and the columns by elements of M|z (X). Let
m' € My|(X) and m" € Mz (X); the (m',m")th entry of M[f,11] is the coefficient in the polynomial f

of the unique monomial m such that my = m' and mz = m’”.

We will use the rank of the matrix M[f, 1] — denoted rank(f,IT) — as a measure of the complexity
of f . Note that since the rank of the matrix is at most the number of rows, we have for any f € F(X)
rank(f,IT) < N1,

Definition 7 (Relative Rank). Ler f € F(X) be a homogeneous polynomial of degree d. For anyY C [d],
we define the relative rank of f w.r.t. Il = (Y,Z) — denoted rel-rank(f,I1) — to be

rel-rank(f,IT) := Mk(]]\‘fw.

Fix a partition IT= (Y, Z) of [d] and two homogeneous polynomials g, & of degrees d, and dj, respec-
tively. Let f = g x ; h for some j € [0,d}]. This induces naturally defined partitions Il of [d,] and ITj, of
[dp] respectively in the following way. Let I, = [j+ 1, j +d,] and I, = [d] \ I,. We define IT, = (Y, Z,)
such that Y, = {j € [d,] | Y contains the jth smallest element of I, }; IT, = (Y, Z;) is defined similarly
with respect to ;.. Let |Yy|,|Z,|, [Y4],|Z4| be denoted dy,dy , d),, d}) respectively.

In the above setting, we have a simple description of the matrix M[f,IT] in terms of M|g,I1,] and
M{[h,T1;]. We use the observation that monomials of degree |Y| = d; + dj, are in one-to-one correspon-
dence with pairs (my,m),) of degrees d, and dj, respectively (and similarly for monomials of degree |Z).
The following appears in [20].

Lemma 8 (Tensor Lemma). Say f = g X ;h as above. Then, M[f,I1] = M[g,I1,] @ M[h,I1;].

Corollary 9. Say f = g xjh as above. We have rank(f,II) = rank(g,IL,) - rank(h,I1j). In the special
case that one of Yq,Zy, Yy, or Z), is empty, the tensor product is an outer product of two vectors and hence
rank(f,IT) < 1.

We associate any partition IT = (Y,Z) with the string in {—1,1}¢ that contains a —1 in exactly
the locations indexed by Y. Given partitions I1j,TT, € {—1,1}¢, we now define A(II;,I1,) to be the
Hamming distance between the two strings or equivalently as |V AY>| where IT; = (Y1,Z;) and IT, =

(V2,22).

Proposition 10. Let f € F(X) be homogeneous of degree d and say T1 € {—1,1}%. Then, rank(f,I1) =
rank(f, —1IT).

Proof. Follows from the fact that M|[f, —IT] is the transpose of M[f,IT]. O

Lemma 11 (Distance lemma). Let f € F(X) be homogeneous of degree d and say 11,11, € {—1,1}<.
Then, rank(f,T1) < rank(f,I1I;) - NATILIR),

Proof. See Appendix O

2.3 Standard definitions related to non-commutative circuits

We consider noncommutative arithmetic circuits that compute polynomials over the ring F(X). These
are arithmetic circuits where the children of each x gate are ordered and the polynomial computed by
a x gate is the product of the polynomials computed by its children, where the product is computed in
the given order. Further, unless mentioned otherwise, we allow both + and x gates to have unbounded
fan-in and the + gates to compute arbitrary linear combinations of its inputs (the input wires to the +
gate are labelled by the coefficients of the linear combination). A noncommutative formula is a circuit
where the underlying directed graph is a rooted tree. The size of an arithmetic circuit or formula will the
number of edges or wires in the circuit (which can be assumed to be at least the number of gates in the
circuit).

We always assume that the output gate of the circuit is a + gate (possibly of fan-in 1) and that input
gates feed into + gates. We also assume that + and x gates alternate on any path from the output gate

to an input gate (some of these gates can have fan-in 1). Any circuit can be converted to one of this form
with at most a constant blow-up in size.

Throughout, our circuits and formulas will be homogeneous in the following sense. Define the
formal degree of a gate in the circuit as follows: the formal degree of an input gate is 1, the formal
degree of a + gate is the maximum of the formal degrees of its children, and the formal degree of a x
gate is the sum of the formal degrees of its children. We say that a circuit is homogeneous if each gate
computes a homogeneous polynomial and any gate computing a non-zero polynomial computes one of
degree equal to the formal degree of the gate. Note, in particular, that every input node is labelled by a
variable only (and not by constants from [F).

Homogeneity is not a strong assumption on the circuit: it is a standard fact that any homogeneous
polynomial of degree d computed by a non-commutative circuit of size s can be computed by a homo-
geneous circuit of size O(sd?) [13].

We also consider homogeneous Algebraic Branching Programs (ABPs), defined by Nisan [22] in the
non-commutative context. We give here a slightly different definition that is equivalent up to polynomial
factors.

Assume that N = n? - d for positive n,d € N and let IMM,, 4(X) denote the following polynomial in
N variables (see, e.g. [23]]). Assume X is partitioned into d sets of variables Xi,...,X; of size n* each
and let My, ...,M, be n x n matrices such that the entries of M; (i € |d]) are distinct variables in X;. Let
M = M, -M,---My; each entry of M is a homogeneous polynomial of degree d from F(X). We define
the polynomial IMM,, ; to be the sum of the diagonal entries of M.

A homogeneous ABP for a homogenous polynomial f € F(X) of degree d is a pair (n;,p) where
n; € N and p is a map from X' = {x},...,x : ,) to homogeneous linear functions from F(X) such that

f can be obtained by substituting p (x}) for each x/ in the polynomial IMM,,, 4(X"). The parameter n; is
called the width of the ABP.

2.4 Non-commutative circuits with restricted parse trees

In this paper, we study restricted forms of non-commutative arithmetic circuits. The restrictions are
defined by the way the circuits are allowed to multiply variables to compute a monomial. To make this
precise we need the notion of a parse tree of a circuit, which has been considered in many previous
works [115, 1, 121} [19]].

Fix a homogeneous non-commutative circuit C. A parse formula of C is a formula C' obtained by
making copies of gates in C as follows:

e Corresponding to the output + gate of C, we add an output + gate to C’,

e For every + gate @ added to C’ corresponding to a + gate ® in C, we choose exactly one child
¥ of @ in C and add a copy ¥’ to C’ as a child of ®'. The constant along the wire from ¥’ to @’
remains the same as in C.

e For every x gate @ added to C’ corresponding to a x gate @ in C and every wire from a child ¥
to ® in C, we make a copy of ¥ to C’' and make it a child of P.

Any such parse formula C’' computes a monomial (with a suitable coefficient) and the polynomial
computed by C is the sum of all monomials computed by parse formulas C’ of C. We define val(C’) to
be the monomial computed by C’.

A parse tree of C is a rooted, ordered tree obtained by taking a parse formula C’ of C, “short circuit-
ing” the + nodes (i.e. we remove the + nodes and connect the edges that were connected to it directly),
and deleting all labels of the nodes and the edges of the tree. See Figure [2]for an example. Note that in
a homogeneous circuit C, each such tree has exactly d leaves. We say that the tree 7 is the shape of the
parse formula C’.

Figure 2: From left to right: a non-commutative arithmetic circuit; two parse formulas in the circuit; the
corresponding parse trees.(To simplify the picture, we have not depicted the edges that carry the constant
1. Also we have not introduced + gates between the two layers of x gates; the reader should assume
that the edges between the two layers carry + gates of fan-in 1.)

The process that converts the parse formula C’ to T associates each internal node of 7 with a multi-
plication gate of C’' and each leaf of T with an input gate of C'.

Let T be a parse tree of a homogeneous circuit C with d leaves. Given a node v € V(T'), we define
the deg(v) to be the number of leaves in the subtree rooted at v and pos(v) := (1 + the number of leaves
preceding v in an in-order traversal of 7). The type of v is defined to be type(v) := (deg(v),pos(v)).
(The reason for this definition is that in any parse formula C’ of shape 7', the monomial computed by the
multiplication gate or input gate corresponding to v in C' computes a monomial of degree deg(v) which
sits at position pos(v) w.r.t. the monomial computed by the circuit C'.) We also use .# (T) to denote the
set of internal nodes of 7' and .Z(T') to denote the set of leaves of 7.

We use 7 (C) to denote the set of parse trees that can be obtained from parse formulas of C. We say
that a homogeneous non-commutative arithmetic circuit is a Unique Parse Tree circuit (or UPT circuit)
if | 7(C)| = 1. More generally if |7 (C)| < k, we say that C is k-PT. Finally, if 7 (C) C .7 for some
family .7 of trees, we say that C is .7 -PT. Similarly, we also define UPT formulas, k-PT formulas and
7 -PT formulas. If C be a UPT circuit with .7 (C) = {T'}, we say that T is the shape of the circuit C.

We say that a UPT circuit C is in normal form if we can associate with each gate ® of the circuit a
node v(®) € V(T) such that the following holds: if ® is an input gate, then v(®) is a leaf; if P is a x
gate with children Wy, ...,'¥, (in that order), then the nodes v(¥;),...,v(¥;) are the children of v(®P)
(in that order); and finally, if ® is a 4 gate with children Wy, ..., ¥; (which are all x or input gates since
we assume that + and x gates are alternating along each input to output path), then v(®) = v(¥;) =
-« =v(¥;). (Intuitively, what this means is that in any unravelling of a parse formula containing a
(multiplication or input) gate @ to get the parse tree T, the gate ® always takes the position of node
v(®).)

We state below some simple structural facts about UPT circuits.
Proposition 12. 1. Let C be a UPT formula. Then C is in normal form.

2. For any UPT circuit C of size s and shape T, there is another UPT circuit C' of size O(s*) and
shape T in normal form computing the same polynomial as C. Further, given C and T, such a C'
can be constructed in time poly(s).

Proof. See Appendix [B] O

Let C be either a UPT formula or a UPT circuit of shape T in normal form. We say that a + gate &
in Cis a (v,+) gate if v(®) = v. Similarly, we refer to a x gate @ in C as a (v, x) gate if v(®) = v. For

simplicity of notation, we also refer to an inpur gate @ as a (v, x) gate if v(®) = v. Note that the output
gate is a (v, +) gate where vy is the root of 7.

We now observe that any UPT formula or circuit in normal form can be converted to another (of a
possibly different shape) where each multiplication gate has fan-in at most 2.

Lemma 13. Let C be a normal form UPT circuit (resp. formula) of size s and shape T. Then there is a
tree T" and normal form UPT circuit (resp. formula) C' of size O(s) and shape T’ such that C' computes
the same polynomial as C and every multiplication gate in C' has fan-in at most 2. (This implies that
every internal node of T' also has fan-in at most 2.) Further, there is a deterministic polynomial-time
algorithm, which when given C, computes C' as above.

Proof. See Appendix [C] O

Let C be a UPT circuit of shape T computing a homogeneous polynomial f of degree d. Given any
node u € V(T), we define partition II, of [d] so that IT, = (Y,,Z,) where

Y, = {pos(v) | v aleaf and descendant of u}.

We will need the following lemma of Lagarde et al. [19]].

Lemma 14 ([19]]). Let C be a normal form UPT circuit of size s computing a homogeneous polynomial
f €F(X) of degree d. Assume that the fan-in of each multiplication gate is bounded by 2. Then, for any
u e V(T), rank(f,I1,) <s, where I1, is as defined above.

2.5 A polynomial that is full rank w.r.t. all partitions
The following was shown in [20].

Theorem 15. For any even d and any positive N € N, there is a qo(N,d) such that the following holds
over any field of size at least qo(N,d). There is an explicit homogeneous polynomial Fy 4 € F(X)
of degree d such that for any balanced partition T1 = (Y,Z) of [d], rank(f,II) = N¢/? (equivalently,
rel-rank(f,IT) = 1). Further, Fy 4 can be computed by an explicit homogeneous non-commutative arith-
metic circuit of size poly(N,d).

3 Lower bounds for k-PT circuits

In this section, we show that any k-PT circuit computing a polynomial of degree d where k is subexpo-
nential in d cannot compute the polynomial Fy 4 from Theorem We will show that if both k and the
size of the circuit are subexponential in d, then there is a IT such that rel-rank(f,IT) < 1.

Our proof is based on the following lemmas.

Lemma 16. Let C be a k-PT circuit (resp. formula) of size s with 7 (C) = {T,...,Tx} computing
f € F(X). Then there exist normal form UPT circuits (resp. formulas) Cy,...,Cy of size at most s> each
such that 7 (C;) = {T;} and f = Zi'{:1 fi» where f; the polynomial computed by C;.

Proof. See Appendix D] O

Lemma 17. Let C be a UPT circuit in normal form over F(X) of size s = N and f a homogeneous
polynomial of degree d computed by C. Let I1 be a uniformly random partition of the variables of |d]
into two sets. Then for any parameter b € N,

Pr | rank(f,IT) > N2 | <exp(—Q(d/(b+c)?)).

The above lemmas imply the following lower bound for homogeneous non-commutative circuits
with few parse trees. Note that when the field IF is large enough, this proves a lower bound for Fy 4 from
Theorem

Theorem 18. Assume that N > 2 is any constant and d an even integer parameter that is growing. Let
F € F(X) be any polynomial such that for each balanced partition T1, rank(F,I1) = N%/2. Then, for any

g
constant € € (0,1), any circuit that computes F and satisfies |7 (C)| =k <29° "~ must have size at least
1

2432,
Proof. Let C be any circuit of size s < N for ¢ = d'/37¢/2 with |.7(C)| = k < 24""™ and computing
f € F(X). We show that there is a balanced partition IT such that rank(f,IT) < N%/2. This will prove the
theorem.

To show this, we proceed as follows. Using Lemma we can write f = }cx fi where each
fi; € F(X) is computed by a normal form UPT circuit C; of size at most s* < N*°.

Fix any i € [k]. By Lemma , the number of partitions IT for which rank(f;, IT) > N ¢ is at most

2(1

2¢.exp(—Q(d/c?)). In particular, since the number of balanced partitions is (dt/lz) = ®(ﬁ)’ we see that

for a random balanced partition IT,

Pr [rank(fi,H) > Nd/z_‘} < Vd-exp(—Q(d/c?)) < exp(—d'/?).
IT balanced

Say f; is good for IT if rank(f;,IT) > N%/2=¢. By the above, we have

Pr [3i e [k] st f; good for IT] < k-exp(—d'/3) < pd' cexp(—d'?) < 1.
IT balanced
In particular, there is a balanced II such that no f; is good for IT. Fix such a balanced partition IT. By
the subadditivity of rank, we have

rank(f,I1) < Z rank(f;,IT) < k-N¥/>7¢ < pd"7E Nd/2e
ic[k]

_ Nd/2 . exp(o(dl/Sﬂ&‘) . Q(dl/st/Z)) < Nd/Z.

This proves the theorem. O

3.1 Proof of Lemma

Notation. Recall from Section that we identify each partition IT with an element of {—1,1}¢.
Given partitions I1j,IT, € {—1,1}¢ we use (I1j,IT,) to denote their inner product: i.e., (IT;,T1,) :=
Yicla) T1 (i)T12(i). Note that the Hamming distance A(IT;,I1) is

d 1
A(IT, Ih) = 5 — o (I, I1p). ey
2 2
Let 7(C) = {T}. Recall that |.Z(T)| = d and by Lemma [13] we can assume that the fan-in of
each internal node of 7 is bounded by 2. For any u € .#(T) (recall .#(T) is the set of internal nodes
of T), let £ (u) denote the set of leaves of the subtree rooted at u. We identify each leaf ¢ € V(T) with
pos(¢) € [d]. For each u € .#(T), we can define the partition IT, from Section 2.4 by IT,(¢) = —1 iff
te ZL(u).
For y > 0, define a partition ITto be y-correlated to T if for each u € 7 (T'), we have | ¥yc oo, T1() | <
Y.
Lemma|[I7|immediately follows from Claims[I9]and [20] stated below.

9

Claim 19. Let I1 be any partition of [d] such that rank(f,I1) > N%/>~". Then I1 is O(b + ¢)-correlated
toT.

Proof. We know from Lemma[14Jand Proposition[10]that for each u € .# (T'), rank(f,IT,,), rank(f, —II,,) <
N¢. If I is a partition such that either A(TLTL,) or A(IT, —I1,) is strictly smaller than 4 — (b +c) for
some u € ¥ (T), then by Lemmawe would have rank(f,IT) < N4/2-?.

Thus, if rank(f,IT) > N4/>~%, we must have min{A(ILIL,),A(T,-I1,)} > ¢ — (b +c) for each
u € 7 (T). By (1), this means that for each u € .#(T), |(IL,I1,)| < ¥ for some y = O(b+c).

Let v be the root of T. Note that IT, € {—1,1}¢ is the vector with all its entries being —1. Hence,
we have for any u € .#(T),

)| = o =R < S+) < o)

e (u)

This proves the claim. O

Claim 20. Say I1 € {—1,1}¢ is chosen uniformly at random and y < \/d. Then
d
II)Ir [I1 is y-correlated to T| < exp(_Q(?)).

The following subclaim is useful for proving Claim [20]

Subclaim 21. Assume that r,t € N such that rt < d /4. Then we can find a sequence uy,...,u, € I(T)
such that for each i € [r] we have |.£ (u;) \U’j_:ll L(uj)| >t

Proof. Consider the following ‘greedy’ procedure for choosing the u;. Order the nodes of .#(T) in
topological order (recall that the edges of T are directed toward the root). We choose u; to be the least
node in this order so that |-Z'(u;)| > ¢ (such a node must exist since there are d > ¢ leaves in T'). Further,
having chosen uy,...,u; we choose u;1| to be the least node greater than or equal to uj,...,u; in the
topological order such that |.Z (u;11) \ US‘:l L(uj)| >t.

To argue that this process produces a sequence of size at least r, note that for each i > 0, |-Z (u;11) \
U;: 1-Z(uj)| < 2t. This is because the fan-in of u; 1 in T is at most 2 and by assumption, for each child
u' of u;y 1, we have | -Z (') \Ui-:l.i”(uj)] < t. Thus for each i > 0, we have |U?;11 L(uj)| <2(i+1).

In particular, if i+ 1 < r, we have | U;ill ZL(uj)| <2tr <d/2. Thus, for v being the root of the tree,
we have [.Z(v)\ U?;ll Z(uj)| >d/2 > t. In particular, there is at least one node u of the tree such that
|-Z (u) \ Uzill Z(uj)| > t. This allows us to extend the sequence further. O

Proof of Claim[20, We apply Subclaimwitht = @(}/2) and r = ©(d/y*) to geta sequence uy,. .., u, €
& (T) such that for each i € [r], we have |.Z (u;) \ ’j;ll L(uj)| >1t.
By the definition of y-correlation, we have

Pr[IT y-correlated to T) < Pr [Vie [r], |), ()| <7y
n n e P (u)
< H%r[Y 10| <7 | {10 e Uf(u»}] @
ielr] e (u;) Jj<i

Fix any i € [r] and T1(¢) for each ¢ € Z; :=J;;-Z(u;). Note that the event | ¥.sc (., [1(£)| < yis
equivalent to Y ye ¢\ #., [1(€) € I for some interval I of length 2y = O(+/7). This is the probability that
the sum of at least # independent uniformly chosen {—1, 1}-valued random variables lies in an interval
of length O(+/7). By the Central Limit theorem, this can be bounded by 1 —Q(1).

By (2), we get Prry [IT y-correlated to 7] < exp{—Q(r)}, which gives the statement of the claim. [

10

4 Lower bounds for circuits with rotations of one parse tree

Given two parse trees 77 and 7, with the same number of leaves, we say that 7; is a rotation of 1>,
denoted 71 ~ T, if 71 can be obtained from 7, by repeatedly reordering the children of various nodes in
T». Clearly, ~ is an equivalence relation. We use [[7] to denote the equivalence class of tree 7. We say
that a homogeneous circuit C is rotation UPT or rotUPT if there is a tree T such that .7 (C) C [T]. The
tree T is said to be a template for C.

Our main result in this section is the following.

Theorem 22. Let C be a rotUPT circuit of size s computing a polynomial f € F(X) of degree d over n
variables, then there exists a partition 1 = I1¢ such that rel-rank(f,I1) is at most poly(s) - N—4).

In particular, we get the following corollary.

Corollary 23. Let N,d € N be parameters with d even. Let |F| > qo(N,d) where qo(N,d) is as in
Theorem Then, any rotUPT circuit for Fy 4 has size N,

We will need a decomposition lemma for non-commutative circuits in the proof of Theorem 22| The
following is a variant of lemmas that are proved in [13} 20, [19].

Lemma 24 (A decomposition lemma for homogeneous circuits). Let C be any homogeneous arithmetic
circuit of size s computing f € F(X) of degree d. Assume that there is some d’ € [d/2+ 1,d] such that
every parse formula C' of C contains a gate computing a (homogeneous) polynomial of degree d'. Let
Dy,..., D, (r < s) be the set of x gates computing polynomials of degree d' in C and let gy,...,g, be
the polynomials they compute (respectively). Then, for homogeneous polynomials h; j of degree d — d'
(i€lr],j€[0,d—d])we have

r d—d

f:Z Z & Xjhij.

i=1 j=0
Proof. See Appendix [E] O

Proof of Theorem Let C be rotUPT of size s computing a polynomial f of degree d over n variables,
and let T be a template for C. Let IT; = (Y;,Z;) for i € [2] be two partitions of [d] with Y¥; = [d/2] and
Y> = [d/4+1,3d /4]. We will show that rel-rank(£, IT) < poly(s) - N~ for some IT € {IT;,T1,}.

We consider two cases: Case 1: there is a node of degree dy € [3d, 11d] in the template 7. Note

that every rotation 7’ € [[T] also has a node of degree dy. Since every parse tree of C is a member of
[T7, this implies that each parse formula C’ of C contains a gate of degree dy. Applying Lemma 24] with
d' = dy, we see that there are k < s homogeneous polynomials gi,...,g of degree dy and k- (d — dy)
homogeneous polynomials A1 1,...h1 4—q,h2.1,- - . hk a—a, Of degree d — dy such that:

k
=)
i=1

We show that each term of the above decomposition has low relative rank w.r.t. the partition I, defined
above. Fix a term g; X ; h; ; from the decomposition above. Let IT} = (Y], Z}) where Y] = [j + 1, j +dy).
By Corollary@, we see that rank(g; x j ; j, IT}) = 1.

A straightforward calculation shows that A(TT,ITy) = do — % = % —Q(d) for all j. Hence, by
Lemma , we see that rank(g; % h; j,II)) < N(/2)~(d) and hence rel-rank(g; < h; j,ITy) < N
for each i, j.

Using (3) and the subadditivity of rank, we see that rel-rank(f,IT,) < (sd) - N~%@) < §2. N—9(d),

Case 2: there is no gate of degree dy € [3d, [3d] in the template 7. In this case, we show that
rel-rank(f,I1;) is small, where IT; is as defined above.

d—dy
8i % jhij G)
j=0

11

Let v be the node in 7 such that deg(v) > %d and all its children have degree < %d . Note that such

a v is uniquely defined (if there were another such node V', it cannot be an ancestor or descendant of v;
hence, we see that the number of leaves in T is at least deg(v) + deg(v') > d which is a contradiction).
Let djy = deg(v). Let vy, ..., v, be the children of v in T and assume that deg(v;) = d;. Note that d < 3
for each i.

As in the previous case, we see that every parse formula contains a gate of degree d{, and hence
applying the lemma with d’ = dj, we get

¢ d—dy
f=Y) sixjhi “
i=1 j=0
where g/,...,&; (¢ < s) are the polynomials of degree d|, computed by multiplication gates in C. We

show that for each i, j, rel-rank(g} x; h; j,Hl) < N©)_ As in the previous case, this will imply
rel-rank(f,IT) < s> - N~

Fix any i,j. We use g and h instead of g} and h: j- We know that g is a polynomial computed
by some x gate @ of degree d|, in the circuit. Consider the + gates feeding into ®. Since every

parse tree T’ of C is a rotation of T', it must be the case that there are exactly ¢ such + gates ¥y, ...,'¥,
computing polynomials g, ..., &, such that g = g; - - - §,. Assume that deg(g,) = d., for each a € [t]. Then

{d},...,d} ={d;,...,d]} as multisets, where d/, = deg(v,) as defined above; in particular, d;, < 3d for
each a.

Thus, g X jh= (g ---§) x jh. For any a € [t], we note that we can also write g X ji= (g1 84) X jha
where h, := (§at1---§:) Xjh. Let II), = (Y., Z))) be the partition of [d] such that ¥, = [j+ 1, j+d} +
---4dJj]. By Corollary [0] we know that rank(g x ; h,TI) = rank((g1--- §a) X j ha, 1) < 1 for each
a € [t]. Therefore, by Lemma 11} to prove that rel-rank(g x ; &, I1;) < N=*@)_it suffices to show that
A(TIL,IT;) < 4 — Q(d) for some a € [t]. We do this now.

Consider the least b € [t] so that df +dY + - +d}] > 55d. Let § =d| +---+dj. Since each
dj < 3d, we know that & € [55d,d — 1d]. Note that for partition IT}, we have A(IT),T1;) = [Y,/AY;|
where ¥}’ = [j+ 1, j+ 8] and Y| = [3d]. We thus get

d d d
YAV = j+[5 = (j+8)[= j+max{5 - (j+8),j+6 -3}
d d. d
= max{i —0,2j+6— 5} =3 —min{d,d —(2j+9)}.
Since § > -d and (2j+08) <2 5d+d—1d <d—Q(d), we see that A(IT},,T1}) = [Y/AY; | = 4 —Q(d).
This completes the proof. O

Remark 25. We note that the proof of the theorem yields the stronger statement that f is low-rank w.r.t.
one of the two partitions 11| and I1,. It is not hard to use this to prove a lower bound for an even simpler
polynomial than the polynomial Fy 4 (from Theorem|[I3)).

5 Separation between Few PT formulas and ABPs

In this section, we prove several lower bounds for formulas (with some restrictions on the parse trees)
against IMM,, 4, yelding separations with ABPs. More specifically, we prove in Section @ a tight
superpolynomial lower bound on the size of any UPT formula that computes IMM,, 4. In Sectio
we prove a superpolynomial lower bound for any formulas computing IMM,, 4 as long as the number of
distinct parse trees is significantly smaller than 2¢ (assuming d < logn).

12

5.1 Notations and decomposition lemma for labelled UPT formulas

The main purpose of this section is to fix some notations that will be used in the whole section, and to
prove that any polynomial computed by a labelled UPT formula (defined below) admits a very specific
decomposition given by Lemma30]

We start with some notation. For [= {ij < --- <i;} C [d], we define the set of I-monomials to be
the set of monomials of the form x; ---x; where x; € Xi;. Also, we define &?; to be the set of those
polynomials P over the variables (J;c |1 X;; that can be written as a linear combination of /-monomials.
We define IMM; to be Tr(M;, - -- M;,). Note that IMM; € &7}

Given] as above and f € 27, we define M;(f) tobe a n2131 5 n?l3) matrix whose rows and columns
are labelled by /,qg-monomials and Ieyen-monomials respectively, where loaqg = {i1,13,is,...} and Ieyen =
{i2,14,i6,...}. The (m',m")th entry of M;(f) is the coefficient in f of the I-monomial which is equal to m’
when restricted to its odd locations and m” when restricted to its even locations. Note that rank(M;(f)) <
n2l3l. We define rel-rank; (f) = rank(M;(f)) /n2l2).

We will need the following standard fact.

Fact 26. For any I C [d] of size t and any f € 2, we have rank(M;(f)) < n?"/2. Also, for any I C [d),
rank(M;(IMM;)) = n2l'/2) and hence rel-rank; (IMM;) = 1.

Let T be a parse tree with 7 leaves and I = {i; < i < --- < }. The I-labelling of T is the function
lab: V(T) — 2\ {0} defined as follows. For each u € £ (T) (recall that £ (T) is the set of leaves of T
and .7 (T) is the set of internal nodes of '), we define lab(u) to be {i;} if u is the jth leaf in the in-order
traversal of 7. We will sometimes abuse notation and assume lab(«) = i;. For each v € .#(T'), we define
lab(v) to be the set of labels of the leaves in the subtree rooted at v.

We say that a UPT formula F of shape T with ¢ leaves is I-labelled if for each input gate ® that is a
(u, x)-gate with u € £(T), the variable labelling the input gate from the set Xj,(,). The following is an
easy observation.

Lemma 27. If F is an I-labelled UPT formula with shape T, then it computes a polynomial from .
Further, for any F that is a UPT formula of size at most s computing polynomial f, there is an I-labelled
UPT formula F' of shape T and size at most s that computes the polynomial ' € &) that is obtained
from f by zeroing out the coefficients of all monomials that are not I-monomials.

Proof. Let F be an [-labelled UPT formula. If we take a I-labelled parse tree T, then it computes a
monomial which is the product of the leaves of T given by the in-order traversal of T (in that order):
by the definition of the labelling, this monomial is a /-monomial. Now, observe that every parse tree of
F is I-labelled, therefore F' computes a polynomial which is a sum of /-monomials, so that computes a
polynomial in &7;.

Let F be a UPT formula of shape T that computes a polynomial f and I be a labelling. We construct F’
in the following way: we delete every leaf ® that is a (u, x)-gate and not a variable in Xiab(u)- By doing
this, F' is I-labelled. Moreover, the polynomial f' computed by F’ is simply the polynomial f where
the monomials that are not /-monomials have been associated to a zero coefficient. O

The main idea in the proofs, following Nisan and Wigderson [23]], is to apply a restriction (defined
below) to the polynomial IMM,, 4 by choosing an I C [d] and setting each M; (j ¢ I) to the identity
matrix. Under such a restriction, IMM,, ; becomes the polynomial IMM; which, by Fact has high
relative rank. On the other hand, the restriction will be choosen such that given a small formula (with
some restriction on the parse trees), there is a suitable choice of the restriction that makes its relative
rank quite small.

13

Let us now carry out the above strategy. First we define a restriction, which is formally just a subset
I C [d]. The set I defines a substitution p; of the set of variables in X = U;c(q) X; as follows:

X lfx G Uie[Xi,
pr(x) =< 0 ifxis an offdiagonal entry of M; for j €1,
1 if xis a diagonal entry of M; for j € I.

In other words, we substitute all the variables in |J;¢ X; such that each M; (j & I) becomes the
identity matrix. All variables from the set | J;; X; are left as is.

Every polynomial P € F(X) is transformed in the natural way by such a substitution. We call this
new polynomial a restriction of P and denote it by P|;.

For any restriction /, let T'|; denote the tree obtained by removing all nodes u € V(T') such that
lab(x) NI = @ (in particular only leaves with labels from 7 survive in T'|;). The /-labelling of the tree T'|;
is given by the labelling function lab; where lab;(u) = lab(u) N 1.

We make the following simple observations.

Observation 28. 1. If P € Py, then Pl € 2.
2. IMM,, 4; = IMM;.

Lemma 29. For any [d]-labelled UPT formula F of size s and shape T computing some f (note that
f € Py by Lemma IZj), there is a UPT formula F|; of size at most s and shape T|; computing f|;.

Proof. (Sketch) Let F be as in the statement and / be any restriction. If we replace every variable in the
formula F by p;(x), we obtain by definition a formula F" which computes f|;. F' is not a UPT formula
since the leaves which were labeled by j ¢ I have been replaced by some constants — whereas leaves in
a UPT formula have to be variables. We now transform F’ to a UPT formula F|; in the following way:
each addition gate ¥ in F’ which was j-labelled in F for j ¢ I computes a constant (say o) and is wired
to some multiplication gates @y, ..., D;. We delete ¥ from F’ and multiply by a each edge outgoing ®;
for any k. By doing this, the formula F’ becomes a new formula F|; which is UPT with shape T'|;, and
still computes f|;.

O

Let T be a parse tree and @ = (v,,...,v) a path of length r in iﬂ We say that u is an off-path node
of 7 if there is an i < r such that u is a child of v; and u # v; 1. The set of off-path nodes of 7 is denoted
off(m).

Lemma 30. Let F be an I-labelled UPT formula of size s with shape T computing a polynomial f € &,
and let T = (vy,...,vo) be a path in T. If we define u;j to be the jth node of off(7) U{v,} that appears in
the in-order traversal of T, then we can decompose f as:

where:
o k<s
o = |off(m) U{v,}|

® fi,j € Prabuy)-

8Recall that our trees are oriented towards the root.

14

Proof. Let F be a I-labelled UPT formula as in the statement and @ = (v,,...,vp) be a path in 7. Let
(u1,...,u;) be the ordering of the set of nodes (off(7) U{v,}) given by an in-order traversal of 7. By
Proposition[I2] F is in normal form.

We say that a path in the circuit F is of signature 7 if the +-gates along this path are successively a
(vr,+) gate, a (v,—1,+) gate, and so on until we get a (vp,+) gate. Let k be the number of paths in F
with signature 7, and py, p2, ..., px be these paths. As F' is a formula, the number of paths from a leaf to
the root is upper bounded by s. Therefore k < s.

Each parse formula F’ (which is a subformula of F) of F has shape T and further each +-gate in F’
has fan-in 1; thus, each parse formula contains one and only one path of signature 7. The set S of parse
formula of F' is therefore naturally partitioned as S = S; U--- U Sy, where S; is the set of parse formulas
that contain the path p;. Recall that if F’ is a parse formula of F, we denote by val(F') the monomial
(along with its coefficient) computed by it. We have:

f= Z val(F/):Z val(F")

F'es i=1 F'eS;

t
From now, what remains to prove is that for each a € [k], Y. val(F’)is of the form [] f; ; with the
FieSs, j=1
additional property that each f; ; is a polynomial in W,ab(uj).

We fix a particular a € [k]. The polynomial Y. val(F’) is nothing else than the polynomial com-
F'ES,

puted by the /-labelled UPT formula G where for all j, each (v;,+) gate that is not present on the path
Pq has been deleted (together with the entire subformula at that gate). Observe that for all m, the (v;,, +)
gate in G is of in-degree and out-degree 1, except for the output gate, which is a (vo,+) gate of in-degree
1 and is of out-degree O.

Let p, =&, ¥, ,®,_|,¥, 2, P, »,...,P,¥,Dy, where Py is the root and for each m, d,, is the
(Vm,+)-gate and ¥, is the (v, X)-gates in p,. By construction, the path p, is present in G. We prove
by induction that the following statement H (m) holds for each m < r,

H(m): If we denote by (wy,...,w,,) the ordering of the set of nodes off((v,,...,vy))U{v,} given by an

i
in-order traversal of 7', then the polynomial computed by ®,, in G is of the form [] g; where:

j=1
o 1y =|off(vy,...,vm)) U{v,}|

® 2 € Plab(w))

We now prove H(m) by downward induction on m. It is clearly true when m = r since 7, = 1, as F is an
I-labelled UPT formula and hence the polynomial computed by &, is an element of Py,)-

Assume the statement H(m + 1) and let [, 1/, be the decomposition of the polynomial com-
puted by the gate ®,,_; given by the induction hypothesis. The polynomial computed by ®,, (a +-gate
of fan-in 1 in the formula G) is the product of the inputs of W¥,,: assume that these inputs are (in left-to-
right order) @,..., @, with each ®/ being a (w}, +)-gate for some w; € V(T). Let P, be the polynomial
computed by @}, (¢ € [r]). The gate ®,,;; is one among ®),...,P}: let us say it is ®]. The polyno-

r

r c—1 Tm—1
mial computed by ®,, is equal to [T P, = ([T Pr).(IT 4;)-(Py) by the induction hypothesis. Each
=1 =1 j=1 +1

=C

P, is computed by a (w},+)-gate and is thus a polynomial in L@lab(ww, and by induction, the h; are

polynomials in ylab(w’i)’ where w/,...,w, is the ordering of off((vr,...,vms1)) U{v,} given by the
in-order traversal of T. But it is not hard to see that w/,...,w" | w/,... Wi Wi, W) s exactly
the ordering of off((v,,...,vn,)) U{v,} given by the in-order traversal of T, so that the induction holds,
and the lemma is proved.]

15

5.2 Lower bound for a single UPT formula of x-depth A

We define the x-depth of a formula to be the maximum number of x-gates that one can meet on a path
from the root to a leaf. Note that if a formula has alternating + and x gates on each path and has depth
A" and x-depth A, then A’ > A > [%1 We will state our lower bounds bounds in terms of x-depth.

Throughout this section, we assume that all the UPT formulas we consider don’t have any multipli-
cation gate of fan-in 1, or equivalently, the shape of any UPT formula we consider does not have any
internal node of fan-in 1. This assumption is w.l.0.g. as shown below.

Lemma 31. Given any UPT formula F of shape T and size s computing a polynomial f, there is another
UPT formula F' of shape T' and size at most s computing f where T' has no internal nodes of fan-in 1
(and consequently F' has no x-gates of fan-in 1). Further, if all internal nodes of T have fan-in at most
k € N, then the same holds for T'.

Proof. The transformation process is the following: a multiplication gate of fan-in 1 does not change its
input and therefore can be deleted without changing the polynomial computed. Merging the two layers
of +-gates above and below the deleted gate ensures the formula still alternates between +-gate and
x-gate. The shape T’ of the new formula is simply the shape T where the internal nodes of fan-in 1 have
been removed and replaced by an edge. Clearly, the new shape 7" has the required property. g

Before attacking the main theorem, we will need one more lemma.

Lemma 32. Let T be a tree with d leaves and depth A, such that all internal nodes are of in-degree
strictly greater than 1. Then there is a path T = (vy,...,vo) in T such that |off() U {v,}| > Q(Ad'/%).

Proof. See Appendix [/ O

Theorem 33. Let F be a UPT formula of x-depth A, size s, computing IMM,, 4 € F(X). Then, s >
nAd) particular, any UPT formula for IMM,, ; must have size nflogd)

By our earlier observation relating the x-depth with depth, we get the lower bound stated in the
introduction.

Proof. Let F be a UPT formula as in the statement. By Lemma[27] we assume w.l.o.g that the formula is
[d]-labelled and that the variables that appear in an input gate ® of F, corresponding to a node v(®) € T,
are all included in Xju(,(@)) Where lab is the [d]-labelling of 7. By Lemmg32| there is a path 7 =
(ve,...,v0) in the shape T of F, such that |off(7) U {v,}| > Q(Ad'/). Let us denote by ¢ the size of
off(7) U {v¢}. We decompose IMM,, 4 along this path by Lemma [30} as:

M»

IMM,Ld(X],Xz,...,Xd) = fi,j

i=1j=1

with k <. Each f; ; is a polynomial in P4y, Where (u1, ..., u,) is the ordering of off(7) U {v,} given
by an in-order traversal of T'.

We now apply a restriction to this equality given by the subset / choosen in the following way: for each
J, we select one element from lab(u;) — we call it p; — and add it to 1. The set I is of size t. Under
this restriction, each f; j becomes a homogeneous linear polynomial in the variables X),;. We call these
homogeneous linear polynomials /; ;. We thus get

k t

IMM; =) [

i=1j=1

16

t
It is not hard to see that for each i, rank(M;(] /; j)) < 1. By Fac and subadditivity of the rank,
j=1

we get:
n2l/2) < g

Therefore, we get
s 2 k 2 nQ(Atl/A)

as wanted. OJ

Remark 34. Notice that this lower bound is tight for every X-depth A, since the standard divide and

conquer approach to computing IMM,, 4 gives in fact a UPT formula of size nOBd"™) gnq X -depth A,
for any A <logd.

5.3 Separation between k-PT formulas and ABPs

In this section, we will prove a lower bound on the size of k-PT formulas computing IMM,, ; as long
as k is significantly smaller than 2¢. Recall that the total number of parse trees with d leaves is 20(@)
(see for example [9]) and hence the results of this section intuitively imply that under any non-trivial
upper bound on the number of parse trees appearing in the formula, we can obtain a separation between
non-commutative formulas and ABPs.

The main theorem of this section is the following.

Theorem 35. Let n,d be growing parameters with d < logn. Then, any k-PT formula F computing
IMM, 4 has size at least n* where £ = Q(lgd —glgk). In particular, if k = 2°19), the size(F) > n®")
and ifk = 24" then size(F) > n®logd),

Remark 36. We say a few words about the assumption d < logn. The standard divide-and-conquer
approach for computing IMM,, 4 yields a (UPT) formula of size n@00ed) 1t wwould be quite surprising if
this standard algorithm were not optimal in terms of formula size.

Intuitively, improving on the standard divide-and-conquer algorithm gets harder as d gets smaller:
this is because any formula of size n°1°29) for computing IMM,, 4 can be straightforwardly used to
recursively obtain formulas for IMM,, p of size n°10eD) for any D > d. Thus, the case of smaller d,
which seems harder algorithmically, is natural first candidate for lower bounds.

Let T be a parse tree. We say that a node u € V(T) is odd if the number of leaves in the subtree
rooted at u is odd. Given a path 7, let odd(7) denote the set of odd off-path nodes in it.

Lemma 37. Let F be an I-labelled UPT formula of size s with shape T computing polynomial f. If T
has a path © = (v, ..., vo) with [odd(x)| > £, then rel-rank;(f) < .

Proof. Let (uy,...,u;) be the ordering of the set of nodes (off(7) U{vo}) given by an in-order traversal

i=1j=

k¢

of T, and f = ¥ [] f;; be a decomposition given by Lemm where each f; ; is in P (,;). By
.) .

Fact 26| we know that rank(M;(f; ;)) < n?l12(#)I/2] Hence, by the subadditivity of rank and Lemm

17

we have:

IN
™~
:H

I
-

~

Il
_

rank(M;(f)) rank(M;(f; ;)

t |lab(uj)\

21—

IN
™~
3

Il
—
~.
I
_

IN
™~

3

T

Il
—_

2515

IN
™~

Il
—_

As k <'s, this implies that rel-rank; (f) < ﬁ% < n[%] O
n
We now try to show that, given a small k-PT formula, there is a suitable choice of the restriction that
makes its relative rank quite small. To do this, we will use Lemma[37] which translates the statement to
a combinatorial statement about some trees. On the other hand, IMM remains high rank under arbitrary
restrictions by Fact[26] This will prove Theorem 35}
The main technical lemma in the proof of Theorem [33]is the following.

Lemma 38. Let T be any tree with d leaves such that every internal node has fan-in exactly 2. Assume
we choose I C [d] by adding each i € [d] to I independently with probability 1/2. Then for any { € N

d

Plr [T|; has no path © such that |odd(m)| > ¢] < exp(—Q(W)).

Assuming the above lemma, we can prove Theorem@] as follows.

Proof of Theorem[35] We assume throughout that Igd — 1glgk is larger than a large enough constant (to
be chosen later), since otherwise the theorem is trivial. Let £ = L% (lgd —1glgk) |, which is also assumed
to be large enough.
Assume that F' is a k-PT formula of size s computing IMM,, 4. If s > n*/*, then we are done.
Otherwise, we argue as follows. By Lemma[I6] there exist UPT formulas Fi,..., Fj of size at most
s> each such that

/4

k
IMM, 4 =) f;
i=1

where f; is the polynomial computed by F;. Let 7; denote the shape of F;. By Lemma|[I3] we can assume
that each internal node of 7; has fan-in exactly 2.

By Lemma 27| and Lemma [31| for each F;, there is a [d]-labelled UPT formula F; of shape 7; and
size at most 52 that computes the polynomial f/ that is obtained from f; by removing moonomials that
are not [d]-monomials. Since IMM,, s € &), we see that

k
IMM, 4 =Y f/.)
i=1

Now, choose a random restriction / by adding each j € [d] to I independently with probability 1/2.
Consider the relative rank of the polynomials on both sides of (9 after the restriction. For the left hand
side, we know using Fact[26]that for any /,

rel-rank;(IMM,, 4|;) = rel-rank;(IMM;) = 1. (6)

18

We now consider the right hand side of . By Lemma for any choice of restriction / and i € [k],
the restricted polynomial f/|; has a UPT formula F/|; of size at most s? and shape T;|; computing i
For each i € [k], let &; denote the event that 7;|; has no path 7 such that |odd(7)| > ¢. By Lemma|38] we
know that the probability of &; is at most exp(—Q(%)). Let & = \/*_, &. By a union bound we have

d
Pr[&] <k-exp <—Q <22£>> <1 @)
if (lgd —1glgk) is large enough.
If I is such that the event & does not occur, then for this choice of I and any i € [k], by Lemma[37]

2 . . .
rel-rank;(fi’ 1) < n;‘—,l < Wﬁ, where the final inequality follows from our assumption that s < n

Now, since rel-rank;(+) is subadditive, we have

o4

l-rank N Koo 2] 1
rel-ran 1(.%]f,-) = 021 = -1 = 22 <
IS

where the final two inequalities follow from the fact that d < lgn and the assumption that ¢ is greater
than some fixed constant. This contradicts (3 and (6)) and hence concludes the proof of the theorem. [J

5.3.1 Proof of Lemma 3§

We impose a natural partial order on the vertices in V(T') by saying that u < v for u,v € V(T). Given a
set of paths P = {m,..., 7} in the tree T, we say that P is independent if the sets off(m;) (i € [r]) are
pairwise disjoint and moreover, the set off(P) := [J; off(x;) forms an antichain w.r.t. the partial order <
(informally, no node in off(P) is an ancestor of another).

We show the following claim.

Claim 39. Assume T is as in the statement of the lemma. Then for any { > 1, there is an independent
set P of paths in T of length { such that |P| = Q(d /2%").

Proof. Given a tree T as in Lemma let us define 7' to be the subtree of T which contains every
node of T that has height ¢ or more (here the height of a node u is the length of the longest path from a
leaf from .Z(u) to u). Though every internal node in T has degree two, 7' may have internal nodes of
degree two as well as one. The leaves of T’ are those internal nodes of T that have height exactly /.

The main idea is as follows: Suppose 7’ has ‘many’ leaves, then it is easy to find many independent
paths in 7. This is because each leaf v of T’ is a node in T with at least one path of length ¢ rooted at v.
Also, two leaves u,v of T’ are nodes in T at height exactly £. This gives us as many independent paths
as the number of leaves in 7’. On the other hand, if 7’ does not have many leaves, then it also does not
have many degree two nodes. In this case, by throwing away all degree two nodes of 7/, we get many
components. Each component is a path and not all can be of length less than ¢. Subdividing the long
paths into paths of length ¢ then gives us the set of independent pathsﬂ We now work out the details.

As every internal node of T has degree two, the number of nodes at height 4, for any parameter
h > 1, is at least half of the number of nodes at height # — 1. Using this, we can inductively prove that
the number of leaves in 7’ and therefore |V (T')| is > 2%. We use s to denote %

Case I, the number of leaves in 7’ is > s/100¢: Each leaf v in T’ has a subtree rooted at it in 7', say
T,. For each leaf v in T/, T, has at least one path of length £ from v to a leaf of T. Let us call this path
T,. As the leaves of T’ are all the nodes at height ¢, for two leaves of T, say u # v, and for any vertex x

9Note that we only need the off-path nodes to form an antichain and not the nodes on the path itself.

19

in off(m,) and any vertex y in off(7,), neither x <y nor y < x. (If one of the conditions holds then it will
contradict that both u,v have height £.)

Case II, the number of leaves in 7" is < s/100¢: It is easy to see that the number of degree two nodes
in any tree is upper bounded by the number of leaves in the tree. Therefore, 7’ has at most s/100¢ degree
two nodes. Let F’ be the forest obtained by deleting all degree two nodes of T’. F’ is a collection of
paths. As we deleted degree two nodes, the total number of components created in F’ is at most twice
the number of degree two nodes, i.e at most s/50¢.

We call a component small if it has at most ¢ nodes; large otherwise. The total number of nodes in
small components is at most (s/50¢) - £ = s/50. We will not consider such components. We know that
|[V(T")| = 5. Therefore, we are left with at least s —s/50 > s/2 nodes even if we discard all the small
components.

We only consider the large components. Let C be a component with r vertices, where r > £. It can
be broken down into | 717 | paths, each of length £. This will give us |s/2(¢+ 1)] many paths in total.
As [s/2(£41)] > d /2%, if we argue that all these paths are independent, we will be done.

It is not very hard to see why these paths are all pairwise independent. Suppose two paths 7,7’
belonged to the same large component, then consider a vertex x € off(x) and y € off(n’). We observe
that neither x <y nor y < x. This is because a common ancestor of x,y is a vertex of either & or 7’.
Therefore, any such two paths are independent. Now say 7,7’ are two paths which come from two
different large components. Then for x € off(7r) and y € off(x’), the common ancestor of x,y is a degree
two node, which we deleted. Again, we can see that neither x <y nor y < x.

d

Given Claim we proceed as follows. Applying Claim [39| with 44 in place of /, we obtain a set
P={m,...,m} of independent paths in T with r = Q(d/2%). For each 7;, let off(m;) = {u; 1,.. ., u;a¢}
Note that these off-path nodes all exist since each internal node of T is assumed to have fan-in 2.

We now consider the effect of the random restriction /, chosen as in the lemma statement, on the tree
T.Foranyi€ [r|and j € [4(],1et Z; j € {0, 1} be the random variable that is 1 if u; ; is present in T'|; and
is an odd node, and 0 otherwise; equivalently, if lab is the [d]-labelling of T', then Z; ; = 1 iff the number
of leaves v such that lab(v) € I is odd. Note that E[Z; ;] = (1/2) for each i € [r] and j € [4(]. Moreover,
since P is an independent set of paths, the sets of leaves in the subtrees of u; ; (for different i, j) are
pairwise disjoint and consequently, the random variables Z; ; (for various i, j) are mutually independent.
In particular, by a Chernoff bound applied to Z := } ;¢ () jc[4¢ Zi,j» We get

1 d
Pr(Z<rlf]=Pr {Z < 2E[Z]] <exp(—Q(E[Z])) <exp(—Q(rf)) < exp(—Q(W)).
Note that when Z is the total number of nodes in off(P) that end up as odd nodes in T'|;. Hence, if Z > r¥,

then the number of odd nodes per (surviving) path of P in T|; is at least r¢/r = {. In particular, there
must be some path 7 in T |; such that |odd ()| > ¢. This concludes the proof of Lemma[38]

6 Deterministic PIT

6.1 PIT for UPT circuits

In this section, we give a deterministic PIT algorithm for UPT circuits. A previous algorithm for this
problem by Lagarde et al. [19], based on the ideas of Arvind et al. [3]], only works over fields of char-
acteristic 0. Our algorithm, which is an adaptation of the algorithm of Raz and Shpilka [25], is field
independent. The algorithm is whitebox in the sense that it needs access to the circuit itself and not
simply an oracle that evaluates the polynomial computed by the circuit at chosen points.

20

Theorem 40. Let N,s € N be parameters. There is a deterministic algorithm running in time poly(s)
which, on input a UPT circuit C of size at most s over N variables, checks if C computes the zero
polynomial or not.

Proof. Let C be the input UPT circuit. Let T be the unique parse tree of the circuit C (it is easy to
determine T from the circuit C by constructing an arbitrary parse formula of C and obtaining the parse
tree corresponding to it). By Proposition [[2] and Lemma [T3] we can assume without loss of generality
that C is in normal form and that 7" has fan-in bounded by 2.

For each node v € V(T), let r, denote the number of (v, X)-gates and ¢, the number of (v, +)-gates.
We also identify the (v, x)-gates with [r,] and (v, +)-gates with [#,] in an arbitrary way. For any v € V(T)
and any monomial m € .#yeq(,)(X), let &, € " be defined so that for any i € [r], the ith entry & (i)
of the vector &) is the coefficient of the monomial m in the polynomial computed at the ith (v, x) gate.
Similarly, let x,, € F" be the coefficient vector of the monomial m at the (v, +)-gates.

The idea of the algorithm is to compute, for each v € V(T), a set B, C Meg(v) (X) of size at
most #, such that the set of vectors B, = {x), | m € B, +} is a linearly independent set of vectors that
generates all the vectors in G, := {x), | m € Meg(v)(X)} € F. In particular, the polynomial computed
by the circuit C is non-zero iff for u being the root of T, there is a ¥ € B, ; such that the entry of y
corresponding to the output gate of the circuit is non—zero

Thus, it suffices to compute the sets B, and B, for each v € V(T). In order to do so, it will also
help to compute By, C A yeg(v)(X) and B, ,c = {&» | m € B, } of size at most r, each so that the set of
vectors B, » is a linearly independent set of vectors that generates all the vectors in C, . := {£" | m €
%deg(v) (X)} C ™.

The algorithm begins by choosing the sets B, « for each leaf node v € V(7). This may be done
efficiently since deg(v) = 1 for each leaf node and hence the number of monomials m € .#eq(,) (X) is
exactly |X| = N. By computing the coefficient vectors for each such monomial and performing Gaussian
elimination, we can find a suitable set B, as required in time poly(N,s) = poly(s).

To compute these bases for nodes higher up in T we proceed inductively as follows. Sum gates.

We first describe how to construct B, ;. and B, ;. given B, x and B, ... Since each (v, +)-gate computes
a linear combination of the (v, x)-gates, we see that there is a matrix M, € F"*"v such that) = M, &)
for every m € Myeg(,)(X). In particular, given sets B,,x and B, « as above, the set {x), | m € B, x} is
a spanning set for the set C, .. By Gaussian elimination, we can choose a basis B, ; C B, in time
poly(N,t,,r,) = poly(s) and choose B, ; to be the corresponding set of monomials. Multiplication

gates. Now let v € V(T') be an internal node with children u and w. We show how to compute B, x and
EW given Bu7+,BW,+,§u7+ and EW,+.

Let r = r, and let ®; be the ith (v, x)-gate in C for each i € [r]. Let ®. and ®! be the left and
right children respectively of ®;; note that @/ is a (u,+)-gate and ®! a (w,+)-gate. For monomials
m' € Meg(u)(X) and m" € Myeg(,)(X), let Ak, and A, € F” denote the coefficient vectors of m’ and m”
at the gates @/ (i € [r]) and @} (i € [r]) respectively For any monomial m’, each entry of the vector
Al is the coefficient of the monomial m’ at some (u,+)-gate and hence an entry of the vector . In
particular, A%, = P, for some linear projection P,; a similar fact is true for the A", as well. Thus, the
vectors {A%, | m' € B, 1 } span all the vectors in {A}y, | m’ € Myee(u)(X)} and similarly, {4, | m" € B,, 1 }
spans all the vectors in {A), | m" € M yeq() (X)}.

Now, note that for any monomial m € A geg(,) (X), there is a unique pair of monomials m’ € M deg(u) (X)
and m" € Myeg()(X) such that m = m'm”. Further, the coefficient of monomial in the polynomial
computed at ®; is the product of the coefficients of m’ at ®; and m” at ®/. In other words, we have
Ay = Ay - Ay, the pointwise product of the vectors A, and A,. By linearity, it follows that the coef-

m'

ficient vectors corresponding to the monomials in By, := By + - By, = {m'm" | m' € B, . ,m" € B,, | }

10Recall that the output gate of the circuit C is always assumed to be a 4 gate, possibly of fan-in 1.
"Note that the gates @/ and CD'J- may coincide even if i # j. This does not matter for our argument.

21

span Cv,X- Since |By,,| has size at most 5%, both B, and the corresponding coefficient vectors can be
computed in time poly(s). By Gaussian elimination, we can find in time poly(s) the sets B, x and B, x
as required.

This completes the description of the algorithm and its analysis. From the analysis above, it is clear
that the algorithm runs in time poly(s). We have shown Theorem @} O

6.2 PIT for sum of UPT circuits

In this section we will give a deterministic polynomial time algorithm for the PIT problem for the sum
of k UPT circuits. Recently a deterministic algorithm was designed by Gurjar et al. [12] for polynomial
identity testing of sum of ROABPs. Our algorithm uses a similar idea for the PIT of sum of UPT circuits.
Our PIT algorithm is white box, i.e. it uses the structure of the underlying UPT circuits.

Theorem 41. Let N, s,k € N be parameters. There is a deterministic algorithm running in time 502

which, on input k+ 1 UPT circuits Cy,Cy,...,Cy (of possibly differing shapes) each of of size at most s
over N variables, checks if Z{-‘ZO C; computes the zero polynomial or not.

Proof idea:

Say that circuit C; has shape T; for i € [0,k] (it is easy to compute 7; given each C; as observed in
Section [6.1)). By Proposition [I2]and Lemma T3] we can assume without loss of generality that each C;
is in normal form and that 7; has fan-in bounded by 2.

Let P; be the polynomial computed by the UPT circuit C; for each 0 <i < k. Let P= —Pj and let
Q =YX, P. Note that in this notation, checking whether Y'*_, P, = 0 or not is equivalent to checking
whether P = Q or not. We will present an algorithm to do this in four steps.

Step 1: We show how to build efficiently a small set of characterizing identities for the polynomial
P. We will ensure that this set of identities is of size poly(N,s,d) = poly(s).

Step 2: We will then check whether all the identities hold for the polynomial Q as well. This is
done by a call to the PIT algorithm for the sum of k¥ UPT circuits. We will analyze the complexity
of this step and bound it by s°2).

Step 3: We will then show that if Q satisfies all the characterizing identities, and moreover P and
Q agree on a small set of coefficents, then the two polynomials are in fact identical.

Step 4: We will show that testing the equality of the above set of coefficients of P and Q can also
be performed in time poly(s).

We now give a more detailed outline of the above steps with the statements of many formal claims.
For the sake of exposition, we postpone the proofs of these intermediate claims to the end of this section.

Step 1: We now introduce some notation to formally define the characterizing identities for a polynomial
defined by a UPT circuit. Let I = [i, j] be an interval in [d], i.e. 1 <i < j <d. If the interval is of size
1,i.e. I = [i,i] then we simply use i to denote it. Recall that .#;(X) stands for all monomials of degree
exactly |/|. For any r, let F(X), be the set of homogeneous polynomials of degree r.

For any interval / in [d] and any monomial m € .#;(X), we define a map 0y, : F(X)q — F(X) 41
which is defined as follows:

(917,,, (P) = Z Oy ymmy -1 - M2,
my,my:deg(my)=i—1,deg(my)=d—j

where Qy, mm, is the coefficient of the monomial m; - m-my in P. Informally, d;,, is an operator,
which when applied to a polynomial P of degree d, retains only those monomials of P (along with their

22

coefficients) which have the monomial m at exactly the positions in the interval /, while substituting the
constant 1 for all the variables in positions indexed by /.
Let T be Ty, the shape of the parse tree corresponding to P. For each v € V(T'), we use I, to denote
the interval [pos(v),pos(v) +deg(v) — 1] where type(v) = (pos(v),deg(v)) is as defined in Section[2.4}
Starting from the leaves, we start building identities corresponding to each of the nodes in the tree
T. Formally, we show the following inductive claim.

Claim 42. There is an algorithm that runs in time poly(s) that, for every node v in T, computes a set
By C Meg(v) (X) such that |B,| < s and also

e ifvisaleaf node and I, = i then, for each x € X and for each m € By, it computes coefficients cy ,,
such that 9;x(P) =Y. ueB. €y - Oim(P).

y bxm”

e if'v is an internal node with children u,w, then for all m' € B, = B, -B,, and for all m € B,, it
computes coefficients ¢, . such that 9y, , (P) = ¥uep, Chy - Ot.m(P)-

The algorithm for the above is almost identical to the PIT algorithm in Section [} Note that the size
of the output of the algorithm is poly(N,s,d) = poly(s).
We will prove this claim later.

Step 2: Let us assume that the above claim holds. Now if P = Q, then the same set of identities must
also hold for the polynomial Q. We now describe how one can check that Q satisfies these identities (the
algorithm can safely reject if some identity is not satisfied by Q). Suppose we have all the identities for

P along with the sets B, for all nodes v in T and all the coefficients (C,Vn, m R 5 again for every
/) m'eB,,,, ,meB,
nodevinT.
In general, we need to check identities of the following form when v is an internal node with children
u,w: 91, #(Q) = Lep, Cingn - 91,m(Q) for each m € B,,,,. (A similar check has to be made when v is a
leaf node.)

Recall that Q = Y'X | P.. Therefore, we can rewrite the above identity as follows.

M=

k
81V7,,~1(P,-) = Z Ciym * Z alym(Pl)
i=1

1 meB,

Rearranging this we get

k
Z Z Cingm - On,m(P) — I, w(P;) | =0. ®)

i=1 | meB,
We first show that each of the k terms in the above sum has a small UPT circuit.

Claim 43. For eachi € [k|, ¥.ucp, Cinm - O1,m(P;) — 01,4 (F;) can be computed by a UPT circuit of size at
most O(s?). Further, these circuits can be constructed in time poly(k,s).

By the above claim, Equation [§|reduced to an identity testing question for the sum of at most k UPT
circuits, and hence can be solved recursively. Finally, when we get to the case that k = 1, we simply
appeal to our result from Section[6.1] Using Claim43]|(which we will prove later) and the algorithm from
Section [6.1|for a single UPT circuit, we see that this step can be performed in time (sZ)O(ZH) = 5029

Step 3: Now suppose all the above checks succeed. That is, we have been able to ensure that the
following statements hold:

23

e For every leaf node v, x € X,m € B, and i such that I, = i:

~ Y P)and 9,(0) = Y ¢l 0im(Q).)

meB, meB,

e For every internal node v with children u,w, for every m € B, and m’ € B, ,, we have:

O (P)="Y. Chy o Opm(P)and 9y, (Q) = Y chy - Im(Q) (10)

meB, meB,

Claim 44. Equations H imply that for any node v € V(T) and any m" € #);,|(X) and m € B,, there
exist ¢, . € I such that

Im(P)="Y ch m " O,m(P) and 9y, ,y (Q) = Y ot * Otom(Q).

meB, meB,

Note that (9) and (I0) only give us a polynomially large set of common identities satisfied by P and
Q. The content of Claim is that we can use these to infer an exponentially (since the size of .2, (X)
is exponential) large set of common identitites for P and Q.

We will present the proof of Claim [44]later. For now let us assume this claim.

Now, let vo be the root of 7. We check that for each m € By, 9jg) u(P) = dq),»(Q) (as described in
Step 4). Note that for any m of degree d, dig) ,,(P) and 9|4 ,,(Q) are simply coefficients of the monomial
m in P and Q respectively. Again, if any of these coefficients are not equal, we can safely reject.
However, if these checks succeed, using Claim[44] we can see that all the coefficients of polynomials P
and Q are equal and hence they are the same polynomial. In this case, we accept.

Step 4: As noted above, dig,,(P) and dig) ,,(Q) are simply coefficients of the monomial m in the poly-
nomials P and Q respectively. We use the following lemma proved in [5] to compute these coefficients.

Lemma 45 ([3]]). Given access to a non-commutative circuit C of size s which is computing the polyno-
mial f of degree d and given a monomial m, the coefficient of m in f can be computed in time polynomial
ins,d.

This finishes the description of the four main steps. We now prove the claims used in these steps.

Proof sketch of Claim[d2] We follow exactly the procedure in the PIT algorithm for UPT circuits in
Section and compute sets B, ., Ev# ,By,x, and EV,X exactly as in that algorithm. We will take our sets
B, to be the sets B, » for each v € V(T). Clearly |B,| < s for each v.

To compute the coefficients ¢, . € IF, we proceed as follows. For any leaf node v € V(T'), y € X and
x € B, we choose cy,, such that we have & = Yxen, Cy16y-

For an internal node v € V(T) with children « and w, and any m’ € B, - B,,, we note that by the
definition of B,y in the proof of Theorem eachm’' € B,-B,,, 5;1, lies in Span(l?wx) and hence we can
find ¢, , such that &), =¥,cp,)y G-

This concludes the description of the algorithm. To show that this works as intended, it suffices to
prove the following claim.

Claim 46. Letv € V(T) and t := deg(v). For any m’ such that deg(m') =t and for any set B C .#;(X),
if & = Lonen Coy i+ Sm then O (P) = Lonep Cy 1y Orm(P).

Proof. Let v € V(T) be such that type(v) = (¢, p), where ¢ is deg(v) and p is pos(v). Let K, be the
number of nodes in Cy corresponding to v. For any polynomial computed by a UPT circuit, [[19]] proved
the following decomposition lemma, which we will recall and use below.

24

Lemma 47 (Proposition 1 [19]). Let P be a polynomial of degree d computed by a UPT circuit of size s
with a parse tree T. Let (t,p) be the type of a node v € V(T) and let K, be the number of gates in C of
that type. Let f1, f>, ..., fx, be the polynomials computed by these gates each of degree t. Then P can be
written as

K,
P= ij Xphj,
j=1

whereVj,1 < j <K, deg(hj) =d—t.

Using the above lemma our claim follows. Given below is the detailed proof of the claim.

K,
Orm (P) = O (Z fiXp hj) (a)

Il
T
e
§\<
(-
SN—
—_
X
S}
=
~.
l’
2
§\
3
pis
<
)
X
e}
=
~.

[
™M=
3
m
&

9

¢

Il
o
§<
E
Qo
3
-~
=
S <

~.
Il
_

(j)'mXp//lj)

g (])mxph/> +al,m < Z SIE(J)mXPhJ>>

3
m
S

5\
N

*

3
o
I aoks

S<

K,
= C,‘;1/7m-817m (Zé,;/(J)mXph]—i- Z é);;(])ﬁ’lXph]>
meB j=1 m#m
= C:;l’,m al,rn(P)

The identity (a) holds due to Lemma[47] The identity (b) follows due to our assumption in the statement
of the claim. The other identities follow due to the definition and/or by the linearity of d; . O

g

Proof of Claim We know that P, has a UPT circuit C; with shape 7;. Say we fix a monomial m and
an interval I = [i,ip] such that deg(m) = |I|. Let T/ be the tree obtained from 7; by deleting all nodes u
such that I, C 1. We claim that 9 ,,(P;) is computed by a UPT circuit of size at most s and shape T}

Consider any leaf node w € V(T;) such that pos(w) =i + £ — 1 € I. We consider each (w, x) gate
® of C (note that these are input gates) and replace the gate by 0 if the variable x labelling & is the /th
variable in m and O otherwise.

25

This gives us a non-commutative arithmetic circuit where some leaves are labelled by constants.
However, these constants are easily eliminated inductively as follows. For any x gate & which has a
child labelled by a constant ¢, we can remove the child and multiply the label of each wire leaving @' by
o; for any + gate @’ which has a child labelled by a constant, it must be the case that all its children are
labelled by constants (this follows from the UPT restriction) and hence the + gate can now be labelled
by a constant as well. Continuing this way, all the gates with constant labels are eliminated.

It can be checked that the circuit thus obtained is a UPT circuit of size at most s and shape 7}
computing d;,(P;). Returning to the statement of the claim, we have therefore shown that each of
d1,#(P;) and 9}, ,»(P;) can be computed by a UPT circuit of size s and shape T} .

Therefore, we can compute Y.,,cp. Cnm - Of,.m(P;) — 01,i#(P;) by a linear combination of the O(s) UPT
circuits computing J;, ,»(P) for m € B, U {r}. Overall, this gives a UPT circuit of size O(s*). Since the
above proof is constructive, we can actually find this circuit in time poly(s). O

Proof of Claim We will prove this claim by induction on |,.

The base case is |I,| = 1 which follows directly from Equation 9}

Suppose |I,| =t > 1. Then v is an internal node in 7. Let u,w be its two children. This implies that
I, =1,Ul,. Let |I,| = t1,|I,] = t,. Note that t;,1, < t.

We wish to prove that any m’ e,///‘, \(X), 9t (P) = LoneB, €y " Ot (P) and 9y, (Q) = Lines, oy
a,wm(Q) for a suitable choice of ¢” ' m . Note that this already follows for n?’ € B, B, from . So we
assume that m’ & B, - B,,.

Let m’' = m - m), where deg(m)) =t and deg(m)}) = t,. Let R be either of P or Q.

I, (R) = Op, 01, it m), (R)

= Jj,.m ©9p,.m,(R) (a)

- Lu Z C ,7 al ,m) (b>

meB,,

= Z m m al alw-,m(R)
meB,,

= Z cmz,m IM—|1u|m 81 ml() (a>
meB,,

- Z oty Z Cm </ —Ilul-ﬁoalmm(R) (b)
meB,, meB,

=) Cot o ” oy O Uty (R) (a)
meB,,,meB,

= Z c;’lnll ,m) Cn‘/‘;/27m : alv-,mm (R)
m'WGBu‘w

= Z (Zcml,m m’z,m m,m) 'alwm(R)' (C)
meB,

The equalities marked by (a) follow due to Observation 48| given below. The equalities marked (b)

follow due to the induction hypothesis. Finally, the equality marked (c) follows due to Equation m
The above implies the inductive claim with ¢” - ,, defined to be <Zm€ B.€By ot m cm,2 1 Comiim
Since the choice of ¢), is the same for both P and Q we are done.

Observation 48. Let I, J be two contiguous intervals in [d] such that I precedes J, i.e. if I = [i1,iz] and
J=1[j1,j2] then 1 <iy,i+1=jj and j, <d. Then o jmm, = 8J,|I|’m2 0 01.m, = Orm, © O1my, Where for
any two intervals I1,J, J — || denotes the interval {j — |I| | j € J}N[d].

26

References

[1] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-commutative arithmetic circuits: Depth
reduction and size lower bounds. Theor. Comput. Sci., 209(1-2):47-86, 1998.

[2] Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S Raja. Identity testing for +-
regular noncommutative arithmetic circuits. Electronic Colloquium on Computational Complexity
(ECCC), 23:193, 2016.

[3] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic circuits and the
hadamard product of polynomials. In JARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur,
India, pages 25-36, 2009.

[4] Vikraman Arvind, Partha Mukhopadhyay, and S Raja. Randomized polynomial time identity test-
ing for noncommutative circuits. Electronic Colloquium on Computational Complexity (ECCC),
23:89, 2016.

[5] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on noncommu-
tative and commutative polynomial identity testing. Computational Complexity, 19(4):521-558,
2010.

[6] Vikraman Arvind and S. Raja. The complexity of two register and skew arithmetic computation.
Electronic Colloquium on Computational Complexity (ECCC), 21:28, 2014.

[7] Steve Chien, Lars Eilstrup Rasmussen, and Alistair Sinclair. Clifford algebras and approximating
the permanent. J. Comput. Syst. Sci., 67(2):263-290, 2003.

[8] Steve Chien and Alistair Sinclair. Algebras with polynomial identities and computing the determi-
nant. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 352361, 2004.

[9] Kenneth Church and Ramesh Patil. Coping with syntactic ambiguity or how to put the block in the
box on the table. Comput. Linguist., 8(3-4):139—-149, July 1982.

[10] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for
depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173-1201,
2015.

[11] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm
at depth four. J. ACM, 61(6):33:1-33:16, 2014.

[12] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity testing for
sum of read-once oblivious arithmetic branching programs. In 30th Conference on Computational
Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages 323-346, 2015.

[13] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the sum-of-
squares problem. Journal of the American Mathematical Society, 24(3):871-898, 2011.

[14] Laurent Hyafil. The power of commutativity. In FOCS, pages 171-174, 1977.

[15] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations over
semirings. J. ACM, 29(3):874-897, 1982.

27

[16]

[17]

[18]

[19]

[20]

[21]

Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower bound
for homogeneous depth four arithmetic formulas. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 61-70,
2014.

Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 146-153, 2014.

Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 364-373, 2014.

Guillaume Lagarde, Guillaume Malod, and Sylvain Perifel. Non-commutative computations:
lower bounds and polynomial identity testing. Electronic Colloquium on Computational Com-
plexity (ECCC), 23:94, 2016.

Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for non-commutative
skew circuits. Theory of Computing, 12(1):1-38, 2016.

Guillaume Malod and Natacha Portier. Characterizing valiant’s algebraic complexity classes. J.
Complexity, 24(1):16-38, 2008.

[22] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In STOC,

pages 410-418, 1991.

[23] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.

Computational Complexity, 6(3):217-234, 1997.

[24] Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size. J.

ACM, 56(2):8:1-8:17, 2009.

[25] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models.

Computational Complexity, 14(1):1-19, 2005.

[26] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.

Computational Complexity, 10(1):1-27, 2001.

[27] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open

A

questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207-388, 2010.

Proof of Lemma [11]

Lemma (11| (restated). Let f € F(X) be homogeneous of degree d and say I1,,I1, are partitions of [d].
Then, rank(f,T1,) < rank(f,IT;) - NATIIR),

Proof. We prove this by induction on A(I1;,I1,).

is tr

The base case of the induction is the case that A(TT},I1;) = 0 i.e. IT} =II,. In this case, the statement
ivial.
Now consider when A(TT;,IT;) = A > 1. We can find a partition IT such that A(IT;,IT) = A—1 and

A(T1,IT) = 1. By the induction hypothesis, we know that rank(f,T1) < rank(f,IT;) - N*~! and so it
suffices to show that rank(f,I1,) < rank(f,IT)-N.

28

Assume that IT = (Y,Z) and I = (Y2,Z;). We know that A(IL,II;) = |[YAY,| = 1. W.Lo.g. assume
that Y =Y, \ i for some i € [d] (the other case, when Y = Y, U {i} is similar). Note that Z = Z, U {i}.

Consider the matrix M, := M|[f,I1,]. We divide M, into N blocks as follows. For each x € X, let M;
be the submatrix where we only keep the rows corresponding to monomials of degree |Y>| that contain
the variable x in the location “corresponding” to i (i.e. in the jth position where j is the rank of i in Y>).
Clearly, we have rank(M,) <Y,y rank(M3).

On the other hand, we also see that each M3 is a submatrix of M := M|f,II]: namely, the submatrix
obtained by only keeping the columns corresponding to those monomials that contain the variable x in
the location corresponding to i (as above but w.r.t. Z). Hence, rank(M;) < rank(M) for each x.

Hence, we see that rank(M,) < Y,y rank(M}) < N -rank(M) and this completes the induction. [

B Proof of Proposition

Proposition [12| (restated). 1. Let C be a UPT formula. Then C is in normal form.

2. For any UPT circuit C of size s and shape T, there is another UPT circuit C' of size O(s*) and
shape T in normal form computing the same polynomial as C. Further, given C and T, such a C'
can be constructed in time poly(s).

Proof. e Proof of 1. Let C be a UPT formula with shape T. We want to prove that C is in normal
form; this is equivalent to proving that for any multiplication gate & € C and for any parse formula
containing the gate @, the gate always takes the same position in 7. Let D, D’ be any two parse
formulas containing ®. D (resp. D’) is a formula, therefore there is a unique path p (resp. p’) from
the root to @ in D (resp. D’). The crucial point is the following: as C is also a formula with D
and D' as subformulas, these two paths must be equal. By definition, the position of ® in T with
respect to D is characterized by (deg(®),pos(®)) where deg(P) is the degree of the monomial
computed at the gate ® in D and pos(®) equals 1 + the sum of the degrees of the monomials
computed at the children of the multiplication gates along the path p which are on the left side of
the path. As the formula is UPT, the monomials computed in a gate are all of same degree for any
parse formulas containing the gate; moreover p = p’ so in both cases we consider the same gates
in the definition of (deg(®), pos(®)) in D or D' so that the positions of ® in T according to D or
D’ are equal.

e Proof of 2. We refer the reader to [19, Lemma 1]. It can be checked that the proof of this result

in [20] also yields the algorithmic conclusion.
O

C Proof of Lemma

Lemma [13] (restated). Let C be a normal form UPT circuit (resp. formula) of size s and shape T.
Then there is a tree T' and normal form UPT circuit (resp. formula) C' of size O(s) and shape T’ such
that C' computes the same polynomial as C and every multiplication gate in C' has fan-in at most 2.
(This implies that every internal node of T' also has fan-in at most 2.) Further, there is a deterministic
polynomial-time algorithm, which when given C computes C'.

Proof. We give the proof only for UPT circuits, since the transformation is the same in both cases. Let C
a UPT circuit as in the statement. For any x-gate @ with k£ > 2 children Wy, ..., ¥;_1, we replace ® by
the following gadget of 2.(k— 1) — 1 gates @, ..., P, 7). For any i € [0,k — 3], ®y; is a multiplication
gate with inputs ¥; and ®y;) and Py;+ is an addition gate with input P, 1y. Finally, @,y is a
multiplication gate with inputs W;_, and W;_;. The new circuit is still in alternating layer form, and is

29

clearly UPT because we apply the same process to any multiplication gate of fan-in strictly greater than
2. For any such gate, we add k — 2 edges which is less than the fan-in of the previous multiplication gate.
Therefore, the number of edges in the final circuit increases by at most two times the number of edges
in the original circuit, so that the size of the circuit obtained by this process is O(s).

The shape 7' of the new formula is simply the modified version of the shape T obtained by replacing
the internal nodes of fan-in k > 2 by right combs with & leaves.

This completes the construction of C’ from C. The construction can easily be seen to be imple-
mentable by a deterministic polynomial-time algorithm. U

D Proof of Lemma

Lemma (16| (restated). Let C be a k-PT circuit (resp. formula) of size s with 7 (C) ={T,...,T}}
computing f € F(X). Then there exist normal form UPT circuits (resp. formulas) Cy,...,Cy of size at
most s> each such that 7 (C;) = {T;} and f = Y*X_, f;, where f; the polynomial computed by C:;.

Proof. Let C be as in the statement. We show how to construct k UPT circuits (resp. formulas) Cy,...,C;
of size at most s2, of shapes Ty, ..., Tj respectively, computing f,..., f; respectively such that each f; is
equal to the sum of the monomials computed by all the parse formulas of C of shape 7;. Given this, the
polynomial f, which is equal to the sum of all monomials computed by all parse formulas of C, will be
equal to Y'¥_, £ and the lemma will be proved.

Construction of C;.

e The gates of C; are denoted by pairs of the form (®,v). For each gate ® € C and for each node
v € V(T;) such that deg(v) = deg(®P), we initially add a gate (P, v) to the circuit C;.

o Edges:

— If ® € C is an addition gate with children Wy,...,¥,, then (®,v) is an addition gate in C;
with children (¥y,v),...,(¥;,v).

- If ® € C is a multiplication gate with children ¥,...,¥, (in this order), then (®,v) is a

multiplication gate with children (¥1,v1),...,(¥;,v;), as long as the children of v in T; are
exactly vi,...,v; (in this order) with deg(v;) = deg(¥;) for each j. Otherwise, we label
(¥, v) with 0.

— If @ is an input gate labelled by x € X and v a leaf node, then the gate (®,v) is also an input
gate with the same label.

Notice that the size of C; is upper bounded by s?. Further, any parse formula that does not contain
any of the nodes labelled O has shape 7;. Finally, if C is actually a formula, then Cy,...,C; are formulas
as well.

We prove by induction (on any toplogical orderings of 7; and C) that for any v € V(T') and ® in C
such that deg(®) = deg(v), the gate (P, v) in C; computes the sum of all parse formulas C’ of C starting
at @ with the shape T;[v], where T;[v] is the subtree of i rooted at v. This will prove that the output gate
of C; computes the sum of the monomials computed by all the parse formulas of C of shape 7;. This is
clearly true for the leaves.

Take now any (®,v) in C;. We assume it is a multiplication gate (the other case is similar). Assume
that the children of ® € C are ¥y,...,¥; and that the children of v € T; are vy,...,v,. If either r # ¢ or
there is an a € [t] such that deg(v,) # deg(‘¥,), then there are no parse formulas starting at & of shape
T;[v] and hence the gate (®,v) which is labelled with 0 computes the correct polynomial. So we now
assume that r = ¢ and deg(v,) # deg(¥,) for each a € [t].

30

Let us denote by S’ the set of parse formulas C’ of C starting at ® with a shape 7;[v], and S/ (respec-
tively S5, ...,S;) the set of parse formulas starting at the gates ¥ (resp. ¥s,...,'¥,) with a shape T;[vi]
(resp. Ti[va)...., Ti[v)).

The set S’ is obtained by taking all possible combinations of parse formulas coming from S},...,S;.
In symbols

t
Y val(C)=T]), val(C")
c'es j=1cres,
If we denote by P(W;,v;) each polynomial computed by a gate (¥;,v;) in C;, we get by induction
hypothesis that

t
Z val(S H (¥;,vj)

c'es'
and hence
Z val(S) = P(®,v)
c'es'
as wanted.

Finally, note that some of the leaves of the circuit are labelled by the constant 0. To eliminate this,
we can repeatedly apply the following procedure. If ® is labelled with 0 and feeds into a x gate ¥, then
remove P and all wires feeding into ¥, and relabel ¥ with 0. If ® is labelled with 0 and feeds into a +
gate ¥, then simply remove @ and if ® has no inputs left, then relabel it with 0. This process produces
a UPT circuit with shape 7; and size at most s>. Further, since each gate is already associate with a node
of T in a natural way, the circuit C; is already in normal form. g

E Proof of Lemma 24

Lemma 24| (restated). Let C be any homogeneous arithmetic circuit of size s computing f € F(X) of
degree d. Assume that there is some d' > d /2 such that every parse formula C' of C contains a gate
computing a (homogeneous) polynomial of degree d'. Let ®1,...,®, (r < s) be the set of x gates com-
puting polynomials of degree d' in C and let g1, ...,g, be the polynomials they compute (respectively).

Then, we have
r d—d'

f= ZZ&X hi

i=1 j=
for some homogeneous polynomials h; ; of degree d —d' (i € [r], j € [0,d —d']).

Proof. We will first simplify the circuit C so that each gate ® appears in some parse formula of C.
If & appears in no parse formula of C, then we can remove it from the circuit without changing the
polynomial computed by the circuit.

We consider a topological ordering of the gates of the circuit C so that if the gate & computes a
polynomial of degree at most the degree of the gate W, then & appears before W in the ordering. This
can be done since C is a homogeneous circuit.

Let ¥y,...,%¥, (p < s) be this topological ordering of the gates and let f; be the polynomial com-
puted at ¥y (k € [p]). Let d; = deg(fi). We prove by induction on k € [p] that if d; > d’, then

r d—d

fk—zzgt]l] (11)

i=1 j=0

(k)

for some homogeneous polynomials /; ; of degree d — d’ each. Note that this is vacuously true for k

such that deg(fi) < d'.
If the gate Py is a x gate of degree d; > d’, then we have the following possibilities:

31

k

e d; =d': In this case f; = g; for some i € [r] and hence we can take h(o) =1 and h;

3/ 0 for all
other 7/, j/ pairs.

e di >d': Inthis case fy = fi, -+ fx, forsome ¢t and ki, ..,k < k. We observe that one of dy, , ..., dj,
must be at least d’.

To see this, assume that di, < d’ for each a € [t] and consider any parse formula C' containing
W (such a formula must exist since otherwise W; would have been removed in the first simpli-
fication step). By our assumption on the circuit, C’ must also contain some gate P’ computing a
polynomial of degree exactly d’. Note that ¥ does not lie in the subcircuit of C’ induced by the
gate ¥y since all the non-output gates of this subcircuit compute polynomials of degree < d’ and
the output gate computes a polynomial of degree > d’. Also, as dy > d’, ¥, does not appear in the
subcircuit of C’' induced by ¥'. Consider the parse tree T obtained by unraveling the circuit C'. By
the observations above, ¥, gives rise to (at least) one node u in T of degree d; > d’ and ¥’ gives
rise to anode v in T of degree d’. Thus, the degree of the root is at least deg(u) +deg(v) > 2d’ > d,
which is a contradiction since in a homogeneous circuit all parse trees have exactly d leaves.

So we can assume that deg(fi,) > d’ for some a € [t]. Applying the induction hypothesis to fj,
we have

Z{Zg,xjhlkj".
i=1j

(ka)

for suitable 7,1 of degree dy, —d' each. Thus, we have

r dy,—d

f= it = Z Z f1 Sigot (8 %< HY - fiir - fi

r dig—d’

ka
=Y Y &iXjrdyttdi (fl"’fkflh,(,j)fkaﬂ'“fk,)
i=1 j=0

where for the final equality we have used the observation that (g x;h) x jh' =g x 7 (hxyh')
for any homogeneous polynomials g, 4,4’ and any relevant j, j.

For any j € [0,dy, —d'], we have j/ := j+di, +---+di, , € [d, +---+di, ,,dx—d']. Hence,
setting 1) = fi-+ fi-th") fi 11+ fi, for each j' €€ [dy, + - +dy, ,.di — d'], and 0 for all
j <dy, +---+dy, ,, the above yields in this case.

If the gate Wy is a + gate of degree di > d’, then it is a linear combination of gates Wy, ..., ¥y, of
degree dj each. By induction, for each a € [t], we have

r d—d (k)
Z Z gi X th]” .
i=1 j=
Say fi = Y., % fi, Where o, € F. Then using the fact that X ; is bilinear, we get
rod—d rod—d' ()
Z aafk = Z Z Zaagl J lj Z Z 8iXj (Z(Xahij))
a€lt] i=1 j=0 a i=1 j=0 a
which is of the form required in (TI). This completes the induction. O

32

F Proof of Lemma 32

Lemma 32} Let T be a tree with d leaves and depth A, such that all internal nodes are of in-degree
strictly greater than 1. Then there is a path © = (vq, ..., vo) in T such that [off(m) U {v,}| > Q(Ad'/).

Proof. Let T be a tree as in the statement. We denote by wz(v) the fan-in of the node v. We will prove
the following equivalent conclusion: there is a path © = (vy,...,vo) from a leaf to the root such that
14+ Y (wt(vi) —1) > Q(Ad'/?).

0<i<t

We consider two distinct cases:

e Case 1: A > log(d). In this case, any path p = (vo,...,va) of depth Arespects 1 + Y (wr(v;)—

0<i<A

1) >A+1=0Q(Ad'/%).

e Case 2: A <log(d). We consider the following greedy procedure to choose the path of internal
nodes: starting from the root, repeatedly choose a child such that the number of leaves in the
resulting subtree is maximized. Let p = vy,..., v, be the sequence of nodes thus obtained. Note
that £ < A <log(d).

We prove by induction on the tree 7 that the number of leaves of the tree is at most the product of
the fan-ins of vy, ..., vy_; (this fact is true for any tree 7 and not just trees 7' such of depth at most
logd). If £ = 0, the entire tree consists of just the root: hence the number of leaves is 1 and the
(empty) product also evaluates to 1. Assume now that the root vg has & children corresponding to
subtrees T, T3, ...T,. We assume the number of leaves in the subtree 7; is t;. Assume the greedy
algorithm chooses v| corresponding to the subtree rooted in 7; (thus, we must have #; > ¢; for any

¢
J € [k]). By the induction hypothesis, [T wt(v;) > t;. Therefore
i=1

(-1 k
Hwt(v,-) >k-t; > th =d
i=0 i=1

which concludes the induction.
By the inequality of arithmetic and geometric means:
r wi(v)
0<i<l 1/¢ 1/¢
_ > t >d".
= ([T w) >

0<i</t

So, we have
Y (wr(v)—1)>¢(a"" ~1).

0<i</t

Notice that the right part of this inequality is a decreasing function of ¢ in the regime ¢ < log(d),
so that:

Y (wr(v)—1) > A —1) = Ad"/4(1— %) > AdYA(1— il) = Q(Ad'/).
0<i</t d e

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

