
Information Theoretic Continuously Non-Malleable Codes in
the Constant Split-State Model

Nico Döttling1, Jesper Buus Nielsen2, and Maciej Obremski2

1 UC Berkeley
2 Aarhus University

Abstract. We present an information-theoretically secure continuously non-malleable code in
the constant split-state model, where there is a self-destruct mechanism which ensures that the
adversary loses access to tampering after the first failed decoding. Prior to our result only codes
with computational security were known for this model, and it has been an open problem to
construct such a code with information theoretic security. As a conceptual contribution we also
introduce the notion of a one-way non-malleable code, which is the main new ingredient in our
construction. In this notion, the tampering adversary’s goal is to recover the encoded message
rather than to distinguish the encodings of two messages. Our technical contribution is two-fold.
– We show how to construct a full fledged continuously non-malleable code from a one-way

continuously non-malleable code while only increasing the number of states by a constant
factor.

– We construct a one-way continuously non-malleable code in the constant split state model
with information theoretic security.

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [DPW10] as a
relaxation of error correcting codes and error detecting codes. A code takes a message m and
encodes it as a possibly longer and possibly randomized codeword c← Enc(m). During storage
or transmission the codeword might become modified into a modified codeword c′ = Tamper(c),
where Tamper is a function describing this modification. Applying the decoding algorithm yields
a message m′ = Dec(c′). Various flavors of non-malleable codes provide different guarantees on
the relation between m and m′. It is generally impossible to give any meaningful guarantees if
the tampering function is unrestricted. Therefore, the tampering function Tamper is assumed
to come from some class T of functions.

As an example, in the well known notion of error correcting codes the messages are vectors
over a finite alphabet and it is guaranteed that m′ = m as long as the class T of tampering
functions is restricted to erasing or modifying some limited number of symbols. In the relaxed
notion of error detecting codes it is guaranteed that m′ ∈ {m,⊥} (where ⊥ signals a decoding
error) as long as the tampering is restricted to erasing or modifying some limited number of
positions in the vectors.

Non-malleable codes (NMC) come with the guarantee that the decoded message m′ = Dec(c′)
corresponding to the tampered codeword c′ is either identical to the original message m or a
message unrelated to m. In other words, if there is a decoding error, then the resulting message
will be independent of the original message m. Technically, we require that if m′ 6= m, then m′

can be simulated using just the tampering function Tamper, but without knowing anything
about the tampered codeword c′.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2017)

The canonical application domain for this flavor of code is protecting functionalities imple-
mented in hardware for crypto-enabled cards like signature cards. As an example, to securely
store a secret key k on a card, first encode k into c = Enc(k). When in need of k the card will
first compute k = Dec(c) and then e.g. output σ = sigk(m). In presence of a physical tampering
attack on the card, the codeword might get changed into a codeword c′ = Tamper(c). If Tamper
is a tampering function from the class T against which the code is resilient, it is guaranteed
that either the output is the correct signature σ = sigk(m) or σ = sigk′(m) for a key k′ that is
unrelated to k. Since the tampering adversary could have simulated k′ from just Tamper, it
might as well have computed σ = sigk′(m) without interacting with the card at all.

In [DPW10] the authors construct an efficient code which is non-malleable with respect to
bit-wise tampering, i.e., tampering functions that modify each bit of the codeword arbitrarily
but independently of the value of the other bits of the codeword. Later works [DKO13, ADL14,
CZ14, CG14b, Li16] provided stronger results by considering a model where the codeword is
split into s parts called states, which can each be tampered arbitrarily but independent of
the other states. If the codeword has length n, then the result of [DPW10] can be seen as a
result for the n-state model. The physical motivation for this model is that one might place
the different states on physically separated memories, for instance on different memory chips,
and hope this makes it impossible to tamper with one part in a way which depends on the
value of the other part. Clearly, one would like s to be as small as possible. NMCs have been
constructed for s = 2 [ADL14] and it is clearly impossible to get a NMC for s = 1.

In [DPW10] it was also shown that if the class T of tampering functions is essentially just a
little bit short of being the class of all functions, then there exists an (inefficient) NMC secure
against this class of tampering. The proof used the probabilistic method and is non-constructive.
Improvements and explicit constructions were later given in [FMVW14, CG14a]. Other works
considered tampering via permutations and perturbations [AGM+14], which are not captured
in the split-state model. In this work, however, we will focus on split state tampering.

The definition in [DPW10] allows the adversary to be computationally unbounded. We
call this an information theoretic NMC. Later works considered a notion of computational
NMC where the adversary and tampering functions are restricted to efficient computations, see
for instance [CKM11, LL12, AAnHKM+16]. It is clearly desirable to try to construct NMCs
without relying on unproven computational assumptions, and in this work we focus exclusively
on information theoretic NMCs.

The definition in [DPW10] allows the adversary to tamper the codeword only once. We
call this one-shot tampering. Faust et al. [FMNV14] consider a stronger model where the
adversary can iteratively submit tampering functions Tamperi and learn mi = Dec(Tamperi(c)).
We call this the continuous tampering model. This stronger security notion is needed in many
setting, for instance when using NMCs to make tamper resilient computations on von Neumann
architectures [FMNV15]. Some additional restrictions are, however, necessary in the continuous
tampering model. If the adversary was given an unlimited budget of tampering queries, then,
given that the class of tampering functions is sufficiently expressive (e.g. it allows to overwrite
single bits of the codeword), the adversary can efficiently learn the entire message just by
observing whether tampering queries leave the codeword unmodified or lead to decoding errors,
see e.g. [GLM+03].

2

To overcome this general issue, [FMNV14] assume a self-destruct mechanism which is
triggered by decoding errors. In particular, once the decoder outputs a special symbol ⊥ the
device self-destructs and the adversary loses access to his tampering oracle. This model still
allows an adversary many tamper attempts, as long as his attack remains covert. Jafargholi and
Wichs [JW15] provide a general study of when CNMCs can be built assuming a self-destruct
mechanism and/or persistency. Persistency means that once the adversary tampers a codeword,
the result of this tampering persists, i.e., the tampered codeword is not reset to its original
state after each tampering query. In the non-persistent model on the other hand, each tamper
query is performed on a fresh copy of the original codeword.

In this work, we will exclusively focus on continuous NMC in the non-persistent self-destruct
model. Call such codes sdCNMC for short.

Faust et al. [FMNV14] constructed an sdCNMC in the 2-state model which is secure against
computationally bounded adversaries. It was shown in the same work that it is impossible
to construct an information theoretic sdCNMC for the 2-state model. It was left as an open
problem to construct an information-theoretic sdCNMC for an s-state model for an s > 2. In
[CMTV15] a sdCNMC was constructed in the bit-wise tampering model, which can be seen as
an n-state model. However, no progress has been made in constructing information-theoretic
sdCNMCs for the setting where the number of split-states s is constant.

1.1 Our Contributions

We construct an information-theoretic sdCNMCs for the 188-state model. This number can
likely be significantly improved, most likely to around 34, but we settled on 188 states to keep
the proofs somewhat simpler. The following theorem states our main result.

Theorem 1 (Informal). There exists an efficient, explicit construction of non-persistent self-
destruct continuous non-malleable codes which encodes messages of length n bits into t ≤ 188
states each of size O(n), with security 2−Ω(n).

As a conceptual contribution and a technical building block we introduce the notion of
one-way NMC (owNMC). This relaxed security notion requires that a (potentially unbounded)
continuous tampering adversary should not be able to guess a high-entropy message m in the
tampering experiment. This primitive is similar in spirit to the computational notion of one-way
functions. In particular, one-way functions do not hide pre-images of function values entirely
(in an indistinguishability sense), but only guarantee that it is hard to compute a pre-image
given a random image of the function. The relation between owNMC and NMC parallels the
relation between one-wayness and semantic security in computational cryptography.

We show that there is a natural construction of sdCNMCs from owCNMC that uses two
encodings of the owCNMC and applies a two-source extractor to the two encoded values. The
rationale of this construction is that even an unbounded adversary cannot guess the encoded
values even after multiple tampering attempts, hence they must still have high min-entropy,
and therefore the output of the extractor is uniformly random. The transformation works for
any owCNMC and the Hadamard Extractor.

Theorem 2 (Informal). There exists a black-box transformation that given any owCNMC in
the constant split-state model produces a sdCNMC in the split-state model.

3

This new conceptual approach is the main idea which allows our constructions and proofs
to circumnavigate the obstacles that have hindered previous attempts to constructing an
information theoretic sdCNMC. In particular, small amounts of leakage, as an adversary may
obtain them in a continuous tampering experiment do not harm the security of owNMCs,
whereas the standard indistinguishability notion is rather brittle with respect to leakage.

2 Technical Introduction to One-way NMC

In this section, we will provide an overview of our construction of a one-way CNMC and the
main ideas for its security proof. Our construction combines two Hadamard extractors with a
super-strong NMC or NM-extractor. We require the following properties from this super-strong
NMC.

Properties of the Underlying Super-Strong NMC (or NM-Extractor). Let t be a constant
parameter, and Enc be a t-split state super-strong NMC (or NM-Extractor). The code Enc
should have following properties (discussed in more detail in Definition 10):

Leakage resilience: Should be leakage resilient against some constant rate leakage
Detection of close to bijective tampering: For any f close to bijective it holds that

Dec(f(c)) = ⊥ with overwhelming probability.

In Section 7 we will discuss instantiations with Super-Strong NMC as well as NM-Extractors.
In this outline we will only discuss the instantiation from super-strong NMCs.

Construction. Let K ⊃ F be finite fields. Given a message M and a uniformly random value R,
the encoding procedure of our owCNMC proceeds as follows.

– Encode M and R with the super-strong NMC: Enc(M) = X1, ..., Xt; Enc(R) = S1, ..., St,
where Xi, Si ∈ K \ {0}.

– Add two checks: V = 〈X,S〉K and W = 〈X,S〉F. Note that it holds that W = trK→F(V),
where trK→F is the field trace.

– The codeword is given by c = (X1, ..., Xt, S1, ..., St, V,W)

Learning overview. The tampering experiment for our one-way code is of the super-strong
type, i.e., every time the adversary tampers (c → c′) and c′ decodes to valid message, the
adversary will learn the whole tampered codeword c′. Notice that given c′ = (f1(X1), ..., ft(Xt),
g1(S1)..., gt(St), fV (V), fW (W)), all the adversary learns is that

– X = (X1, ..., Xt) ∈ AX
– S = (S1, ..., St) ∈ AS
– V ∈ AV
– W ∈ AW ,

where AX ×AY ×AV ×AW is the preimage of c′ for tampering function. In each round
of the tampering experiment the adversary will have some knowledge K = (AX ,AS ,AV ,AW)
about c and will attempt to learn more, i.e., make the sets AX ,AS ,AV ,AW smaller. As long
as these sets aren’t too small, we will be able to argue that the adversary has to pay with the
risk of getting detected if he wants to learn more information (make the set smaller).

4

Tampering and domain partition in each round. In each round we partition the domain of the
functions that tamper on X1, ..., Xt, S1, ..., St, including previously obtained knowledge K, as
follows (for details see Definition 12):

id: This part of the domain does not change under the current tampering function.
1-1: On this part the tampering function is close to being bijective (but not id).
med: On this part only a ’medium’ amount of entropy of the original state is preserved by the

tampering function.
rest: On this part only a very small amount of the entropy of the original state is preserved is

preserved by the tampering function.

Every single one of the 2t states is split this way, and all combinations of (id, 1-1,med, rest)2t

fall in one of the 5 disjoint cube classes:

1. Class−1 contains only the (id)2t cube.
2. Class−2 contains all cubes for which the following is true: (X ′ 6= X or S′ 6= S) and (X ′, S′)

contains almost full information about (X,S), i.e., all tampering functions are close to
bijective or id, but at least one tampering function is not the identity.

3. Class−3 contains all cubes which do not fall into any of above classes (in particular it means
that (X ′, S′) lost quite a bit information about the original (X,S)) and (X ′, S′) carries still
a substantial/medium amount of the information/entropy about (X,S).

4. Class−4 contains all cubes which do not fall into any of above classes but (X ′, S′) still
carries some entropy

5. Class−5 contains only the (rest)2t cube, that is (X ′, S′) is close to constant

X

S
id 1-1 med rest

id

1-1

med

rest

Class-1

Class-2

Class-3

Class-4

Class-5Class-4

Fig. 1. Pictorial overview over the classes. Both X and S are shown as one-dimensional, but are in fact
t-dimensional

Analysis of the tampering in each of the cubes classes. We show that if the codeword falls into
either class 2, 3 or 4, then the tampering will be detected with probability 1− ε for a negligible
ε:

5

– In Class−2 the underlying super-strong NMC will detect the tampering.

– In Class−3 the check 〈X ′, S′〉F = W ′ will fail. The reason is that (X ′, S′) has lost enough
information about (X,S) such that W = 〈X,S〉F is independent of (X ′, S′) (via a routine
leakage argument). To pass the check the adversary must correctly tamper W →W ′, but
W ′ has high entropy and is independent of W .

– In Class−4 the reasoning is quite similar to Class−3, but we use the check on 〈X ′, S′〉K = V ′.
We argue that (X ′, S′) has lost enough information about X,S (again via a leakage argument)
such that V is independent of (X ′, S′). Since every part is tampered independently, all
Xi, Si 6= 0 and either X ′ or S′ still has some remaining entropy, the value V ′ = 〈X ′, S′〉K
will have some remaining entropy. Again, we reach the conclusion that V ′ is unpredictable
and independent of V and the function that tampers V has only negligible chance to guess
V ′ correctly.

The only way the adversary can learn something and survive (not get detected) is if he
falls in Class−1 or Class-5. This will let him learn which class he landed in, which will carry
information. Moreover, in Class−5 there might be close-to-constant but not constant functions
(which if he does not get detected potentially gives additional knowledge to the adversary). We
will split the analysis in two phases. The adversary will when he picks his tampering function
have some initial knowledge K. He then submits his tampering function. In Phase 1 of the
analysis we only let him learn whether he fell into Class−1 or Class−5, without specifying
exactly which output was obtained in case of Class−5 (i.e., in Phase 1 the whole Class−5
is treated as a one, perfectly constant function). Then his knowledge K gets updated based
on this information and only in phase 2 of the analysis (which happens only if adversary felt
into Class−5) will we tell the adversary the exact codeword learned in Class-5 and deal with
close-to-constant functions.

Phase 1: Learning between Class−1 and Class−5. For these cases we will show that it is
impossible to cover the whole domain with Class−1 and Class−5 tampering functions. Via an
ε−independence argument we can show that either the whole domain is covered by Class−1,
the whole domain is covered by Class−5, or there exist parts of the domain that fall into other
classes and, as we mentioned above, the other classes lead to detection, except with negligible
probability. We also refer to these zones as death zones.

Let us start with an observation. Assume that A is a Class−1 part of the domain. Let B be
the current knowledge of adversary (i.e., the current domain, the adversary knows that the
codeword c is a uniformly random point in B). If at this point the adversary learns that the
codeword c is in A, the amount of information he obtains is exactly

log(1/Pr[c ∈ A|c ∈ B]) .

We show that both Class−1 and Class−5 have their individual death-zones, i.e., disjoint
parts of the domain that fall into Classes 2, 3, 4, which have the property that if the adversary
tries to learn k bits in case of the codeword being in Class−1, the death-zone D1 assigned to
this class will fulfill the following condition:

Pr[c ∈ Class-1 | c ∈ Class-1 ∪D1] ≤ 2−
1
2
k

6

or in other words

Pr[c ∈ Class-1 | c ∈ Class-1 ∪D1] ≤ 2−
1
2
log Pr−1[c∈Class-1]

where all above events are conditioned on the previous knowledge of the adversary. The analogue
of the above will hold for D5, the death-zone of Class−5.

These individual death-zones ensure that every time the adversary tries to learn something
new (i.e., pin down c to a smaller domain) he has to risk being detected. Moreover, the detection
probability is proportional to the amount of information the adversary is attempting to learn.

Class-1

Class-5

D1

D5

Fig. 2. Pictorial overview over death-zones for Class-1 and Class-5. The domain is already shrunk to the
adversarial knowledge K.

Learning within Class−5. In this case we discuss the scenario where the adversary attempts to
further partition Class−5 into parts of the domain where he applies different constant functions.
We show that in this case he loses control over the 〈X,S〉K = V check, and therefore again
each truly-constant zone in which he succeeds to fulfill the check can be assigned an individual
death-zone Di which fulfills:

Pr[c ∈ Ai|c ∈ Ai ∪Di] ≤ 2−
1

2t+2
log Pr−1[c∈Ai] .

Again, all events are conditioned on previous knowledge of the adversary. As before, this ensures
that if the the adversary tries to learn k new bit of information, he will risk a probability of

detection of at least 1− 2−
1

2t+2
k.

Wrapping everything up and the K-game. To tie the analyses of the different classes together,
we will look at an experiment we call the K-game. The K-game has the following rules:

– Setup: The game picks a codeword c uniformly at random.
– In each round the adversary chooses a list of non-intersecting sets (Bi)i. If it holds c ∈ Bi,

then the adversary learns the index i and the domain in the next round is set to Bi.
– For each set Bi the adversary has to choose a set Di (again all sets Di are non-intersecting

and does not intersect with the sets Bi) such that

Pr(c ∈ Bi | c ∈ Bi ∪Di) < 2−1/(2t)k

7

where k is the amount of information that adversary would learn from the event c ∈ Bi, i.e.,
k = − log(|Bi|/|current domain|).

– The adversary wins if at some point the size of the current domain is below a certain
threshold.

– If at any point the event c ∈ Di occurs for some index i, the adversary loses and the game
is over.

Remark 1. The above sketch covers the overall structure of the proof. In the full proof there are
many corner cases to be covered, and we mention but two of these here. The size of the set that
leads to a win depends on the underlying code. All learning lemmata discussed for Class−2, 3, 4
guarantee detection only if the domain in this round was not too small, in particular in our
instantiations the threshold will be roughly 2n−C·n, where 2n is the size of whole domain
and C < 1 is some constant. Moreover, if the Class−2, 3, 4 events themselves are too small,
we cannot guarantee that detection will occur. However in this case the probability that the
codewords falls into one of these cases is negligible via a standard domain partition argument.

3 Preliminaries and Technical Lemmas

If Z is a set then Z ← Z will denote a random variable sampled uniformly from Z. We start
with some standard definitions and lemmas about the statistical distance. Recall that if X and
X ′ are random variables over the same set X then the statistical distance between X and X ′

is denoted by ∆(X;X ′), and defined as ∆(X;X ′) = 1
2

∑
x∈X |PrX = x − PrX ′ = x|. If the

variables X and X ′ are such that ∆(X;X ′) ≤ ε then we say that X is ε-close to X ′, and write
X ≈ε X ′. If E , E ′ are some events then by ∆(X|E ; X ′|E ′) we will denote the distance between
variables X̃ and X̃ ′, distributed according to the conditional distributions PX|E and PX′|E ′ .

If UX is the uniform distribution over X then d(X|E) := ∆(X|E ;UX) is called statistical
distance of X from uniform given the event E . Moreover, if Y is independent from X then
d(X|Y) := ∆((X,Y); (UX , Y)) is called statistical distance of X from uniform given the variable
Y . More generally, if E is an event then d(X|Y, E) := ∆((X,Y)|E ; (UX , Y)|E). It is easy to see
that d(X|Y) is equal to the average

∑
y Pr(Y = y) · d(X|Y = y) = Ey(d(X|Y = y)).

Definition 1 ((Average-) Min-Entropy). Let X have finite support X . The min-entropy
H∞(X) of X is defined by

H∞(X) = − log max
x∈X

Pr(X = x).

For an event E, the conditional min-entropy H∞(X|E) of X given E is defined by

H∞(X|E) = − log max
x∈X

Pr(X = x|E).

For an event E and a random variable Y with finite support Y, the average min-entropy
H̃∞(X|Y, E) of X given Y and E is defined by

H̃∞(X|Y, E) = − logEy max
x∈X

Pr(X = x|Y = y, E).

8

Randomness extractors will be the workhorses of our non-malleable code constructions.

Definition 2 (Flexible Two-Source Extractors). A function Ext : X1×X2 → Z is called a
flexible (ε, δ)-two-source extractor, if it holds for all tuples ((X1, Y1), (X2.Y2)) for which (X1, Y1)
is independent of (X2, Y2) and H̃∞(X1|Y1) + H̃∞(X2|Y2) ≥ log(|X |) + log(|Y|)− δ that

d(Ext(X1, X2)|Y1, Y2) ≥ ε.

A well known example of a flexible two-source extractor is the Hadamard extractor or
inner-product-extractor.

Lemma 1 (Hadamard Extractor [ADL14]). The function Ext : Fnq × Fnq → Fq given by
Ext(x, y) = 〈x, y〉 is a flexible (ε, δ) extractor for δ ≤ (n− 1) log(q)− 2 log(1/ε).

Definition 3 (Non-malleable t-Source Extractors). A function Ext : (X)t → Y is called a
t-source (ε, δ)-non-malleable extractor if the following property holds. For every random variable
X = (X1, . . . , Xt) ∈ X t for which X1, . . . , Xt are independent and H∞(X) ≥ t · log |X | − δ, for
any split-state tampering function f = (f1, . . . , ft) such that there exists fi without fixed points
it holds that

∆ ((Ext(X),Ext(f(X))); (U,Ext(f(X))) ≤ ε,
where U is distributed uniformly on Y.

Recently, a 9-source non-malleable extractor was constructed by Chattopadhyay and Zuck-
erman [CZ14].

Theorem 3 ([CZ14]). For some δ > 0 there exists a polynomial time construction of a (k, ε)
non-malleable 10-source extractor nmExt : (Fnq)10 → Fmq with k = (1 − δ)n, ε = 2−Ω(n) and
m = Ω(k). Moreover, nmExt is efficiently preimage samplable.

We will now assemble a few basic technical lemmata that we will need for our proofs.

Lemma 2 (Bayes’ rule for statistical distance [DKO13]). Let (X,Y) ∈ X × Y be a
random variable such that d(X|Y) ≤ ε. Then for every x ∈ X we have

∆(Y |X = x ; Y) ≤ 2|X |ε.

Lemma 3. Let X,T be any arbitrarily correlated random variables and let E be random event
then

H̃∞(X|T, E) ≥ H̃∞(X|T)− log
1

Pr(E)
.

Proof.

H̃∞(X|T, E)− log Pr(E) = − logEt max
x

Pr(X = x|T = t, E)− log Pr(E)

= − log
∑
t

max
x

Pr(X = x|T = t, E) · Pr(T = t|A) · Pr(E)

= − log
∑
t

max
x

Pr(X = x, T = t, E)

≥ − log
∑
t

max
x

Pr(X = x, T = t)

= H̃∞(X|T)

9

Lemma 4 (Entropy-preservation of inner-product for uncorrelated distributions).
Let X,S ∈ Ft be random variables such that variables X1, . . . , Xt, S1, . . . , St are independent
and all non-zero, then

H∞(〈X;S〉F) ≥ max(H∞(S); H∞(X))

t

Proof. Assume w.l.o.g that H∞(S) ≥ H∞(X). As the components of S are independent, a simple
averaging argument yields that there exists an index i ∈ {1, . . . , t} such that H∞(Si) ≥ H∞(S)/t.
As Xi and Si are independent and Xi 6= 0, it holds that H∞(Xi · Si) ≥ H∞(Si) ≥ H∞(S)/t.
By independence of the components of X and S it follows that H∞(〈X;S〉F) ≥ H∞(S)/t. ut

Lemma 5 (Entropy-preservation of inner-product for correlated distributions). Let
X be random variable over X l, let C be random variable such that for every c we have
H∞(X|C = c) ≥ l · log |X | − d, where d < log |X |. Then for any non-zero v ∈ X l

H∞(〈X, v〉X | C = c) ≥ log |X | − d

for every c in supp(C).

Proof. Let X ′ = X|(C = c). Random variable X ′ has min-entropy l · log |X | − d. Without loss

of generality we can assume X ′ is a flat distribution. Then |supp(X ′)| = |X |l
2d

while |{x | 〈x, v〉 =

a}| = |X |l
|X | for every a. Thus via a quantitive argument H∞(〈X ′, v〉X) ≥ − log |X |l−1

|X |l·2−d =

log |X | − d. ut

Lemma 6 (Death-zones generation lemma). Let F be a finite field. Let A1, . . . , At, B1, . . . , Bt
be independent, non-zero random variables, denote A = (A1, . . . , At) and B = (B1, . . . , Bt).
Then:

max
c∈F

∑
a,b∈Ft:〈a,b〉F=c

(Pr[(A,B) = (a, b)])
2t−1
2t ≤ 1

Proof. Let us begin with Young’s inequality for convolution:

||f1 ∗ f2 ∗ . . . ∗ ft||r ≤
t∏
i=1

||fi||pi

whenever
∑t

i=1
1
p i

= 1
r + n− 1 and +∞ ≥ p1, . . . , pt, r ≥ 1. We will identify random variable

Ai with its distribution Ai(.) where Ai(x) = Pr(Ai = x). We will define two convolutions:

(Ai ∗× Bi)(z) =
∑

x,y:xy=z

Ai(x)Bi(y),

(Ai ∗+ Bi)(z) =
∑

x,y:x+y=z

Ai(x)Bi(y).

1. Notice that for every i, via Young’s inequality we get:

1 = ||Aαi (.)|| 1
α
· ||Bα

i (.)|| 1
α
≥ ||Aαi (.) ∗× Bα

i (.)|| 1
2α−1

for 1/2 ≤ α ≤ 1.

10

2. Now, notice, again via Young’s inequality for the ”additive” convolution:

1 ≥
t∏
i=1

||Aαi (.) ∗× Bα
i (.)|| 1

2α−1
≥

≥ ||[Aα1 (.) ∗× Bα
1 (.)] ∗+ . . . ∗+ [Aαt (.) ∗× Bα

t (.)]|| 1
2nα−(2n−1)

for 2t−1
2t ≤ α ≤ 1.

Now we take α = 2t−1
2t and we get :

1 ≥ ||[Aα1 (.) ∗× Bα
1 (.)] ∗+ . . . ∗+ [Aαt (.) ∗× Bα

t (.)]||∞

ut

4 Definitions related to Non-Malleable Codes

Definition 4 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where Enc :M→ C
is a randomized function and Dec : C →M∪{⊥} is a deterministic function, such that it holds
for all M ∈M that Dec(Enc(M)) = M .

We will now define the continuous super strong tampering experiment. In this experiment
the adversary is provided with the tampered codeword C ′ (instead of the output of the decoder)
whenever C ′ 6= C and the decoder does not output ⊥.

Definition 5 ((Continuous-) Super Strong Tampering Experiment). We will define
continuous non-persistent self-destruct non-malleable codes analogously to [JW15]. Fix a coding
scheme (Enc,Dec) with message space M and codeword space C. Also fix a family of functions
F : C → C. We will first define the tampering oracle TamperstateC (f), for which initially
state = alive. For a tampering function f ∈ F and a codeword C ∈ C define the tampering
oracle by

TamperstateC (f) :
If state = dead output ⊥
C ′ ← f(C)
If C ′ = C output same
M ′ ← Dec(C ′)
If M ′ = ⊥ set state← dead and output ⊥
Otherwise output C ′

Fix a tampering adversary A and a codeword C ∈ C. We define the continuous tampering
experiment CTA,M by

CTC(A) :
state← alive

v ← ATamperstateC (·)

Output v

11

Definition 6. Let (Enc,Dec) be a coding scheme and CT be its corresponding continuous
tampering experiment for a class F of tampering functions. We say that (Enc,Dec) is an
ε-secure continuously non-malleable code against F , if it holds for all tampering adversaries A
and all pairs of messages M0,M1 ∈M that

CTC0(A) ≈ε CTC1(A),

where C0 ← Enc(M0) and C1 ← Enc(M1).

Remark 2. [AKO16] In any model allowing bitwise tampering, in particular in the t−split state
model, the self-destruct mechanism is necessary when the size of the messages is at least 3.

Definition 7 ((Continuously-) One-Way NMC). We say that an coding scheme (Enc,Dec)
with Enc : M → C and Dec : C → M ∪ {⊥} is δ−One-Way-Continuous if for a random M
uniformly distributed over M it holds that

Pr
t←CTA,M

[H∞(C)−H∞(C|CTA,M = t) ≤ δ] ≥ 1− ε.

where C = Enc(M) is the codeword generated by the tampering experiment.

The only family of tampering functions we are concerned with in this work are split state
tampering functions.

Definition 8 (Split State Tampering). Let C = C1 × · · · ×Cs. The class of spit state tam-
pering functions Fs consists of all functions f of the form f = (f1, . . . , fs) where f(c1, . . . , cs) =
(f1(c1), . . . , fs(cs)) for all (c1, . . . , cs) ∈ C1 × · · · × Cs. Here the fi are arbitrary functions
Ci → Ci.

5 From Continuous One-Way NMC to Continuous NMC

In this section, we show how a continuously non-malleable code (Enc,Dec) can be constructed
from a continuously one-way non-malleable code (Enc0,Dec0). The underlying idea is very basic:
Share a 0k-padded encoding of the message M into two random shares M1 and M2 by inverting
the Hadamard extractor. Now these shares are each encoded by Enc0. To decode, first decode
the two shares M1 and M2 using Dec0 and then compute 〈M1,M2〉. If this is correctly encoded,
i.e., of the form 0k||M , output M , otherwise output ⊥.

The intuition behind this construction is the following. By the continuous one-way property
of (Enc0,Dec0), a tampering adversary will not be able learn more than δ bits about each of M1

and M2. Moreover, independence of M1 and M2 is preserved during the tampering experiment.

The only critical tampering queries by the adversary are such queries where one side is
preserved, but the other side is changed (say overwritten)—we call these mixed queries. In
this case, we cannot simulate tampering queries with a one-way non-malleable code, as in a
reduction to the owCNMC one of the oracles would return same making it impossible for us
to compute the correct inner product. However, we will show that such queries lead to an
immediate decoding error via the 0k check.

12

Construction 1 Let ` be a sufficiently large constant, let M be a finite message space and let
Fq be the finite field of size q. Let (Enc0,Dec0) be a t-split state scheme with message space M.
The 2t-split state scheme (Enc,Dec) is given as follows.

Enc(M) :
Pick X,Y ← (Fq\{0})` uniformly

such that 〈X,Y 〉 = 0k‖M
C1 ← Enc0(X)
C2 ← Enc0(Y)
Output (C1, C2)

Dec(C1, C2) :
X ← Dec0(C1)
Y ← Dec0(C2)
Check if X 6= ⊥, Y 6= ⊥

and X,Y ∈ (Fq\{0})`
If not output ⊥

Parse 0k‖M ← 〈X,Y 〉
If parsing fails output ⊥

Output M ∈M

We will now show that (Enc,Dec) is a continuously non-malleable code.

Theorem 4. Assume that (Enc0,Dec0) is an (ε, δ)-secure continuously one-way non-malleable
code where ε = 2−Ω(log(q)). Let CT be the continuous tampering experiment for the coding scheme
(Enc,Dec) given in Construction 1. Then it holds for all continuous tampering adversaries A
and for all messages M0,M0 ∈M that

∆ (CTC0(A);CTC1(A)) ≤ 2−Ω(log q),

where C0 ← Enc(M0) and C1 ← Enc(M1). In other words, (Enc,Dec) is a 2−Ω(log q)-secure
continuously non-malleable code.

Proof. We will prove the theorem with a hybrid argument. Let A be a continuous tampering
adversary against the tampering experiment CTCb(A), where b ∈ {0, 1}, M0,M1 ∈M, C0 ←
Enc(M0) and C1 ← Enc(M1). In the following, assume that A makes at most r = poly(n)
queries to the tampering oracle.

Consider the following hybrids.

– Hybrid H0: This is the real experiment CTCb(A).
– Hybrid Hi (for i = 1, . . . , r): The same as Hi−1, except that if for j ≤ i the j-th tamper

query (fj , gj) of A is such that either TamperC1
(fj) = same and TamperC2

(gj) /∈ {same,⊥}
or TamperC1

(fj) /∈ {same,⊥} and TamperC2
(gj) = same, then output ⊥ and abort.

– Hybrid Hr+1: The same as H1, except that X and Y are chosen uniformly at random

Clearly, in Hr+1 the output of the tampering experiment is independent of the message Mb,
as X and Y were chosen uniformly at random. Thus the adversary’s advantage of guessing b
correctly is 0 in this experiment.

We will first show that for i = 1, . . . , r the hybrids Hi−1 and Hi are statistically close.
Define the event Ei as either TamperC1

(fi) = same and TamperC2
(gi) /∈ {same,⊥} or

TamperC1
(fi) /∈ {same,⊥} and TamperC2

(gi) = same happens and there exists an M̂ such that

13

〈Dec(fi(C1)),Dec(gi(C2))〉 = 0k‖M̂ . In other words, Ei is the event that fi(C1), gi(C2) is a
valid codeword of the code (Enc,Dec) and it holds that either fi(C1) = C1 or gi(C2) = C2.

First observe that conditioned to ¬Ei, the hybrids Hi−1 and Hi are identically distributed
from the view of A. Thus, Pr[Ei] gives us an upper bound on the statistical distance between
Hi−1 and Hi.

Consider an alternative experiment H̃i−1, which is identical to Hi−1, except that the
experiment stops after the i-th query. Clearly, the probability that Ei happens in Hi−1 is
identical to the probability that Ei happens in H̃i−1. Now consider the following modification
Ĥi−1 of H̃i−1: In this experiment both X and Y are chosen uniformly at random without the
restriction that 〈X,Y 〉 = 0k‖M .

Our strategy is to first show that Ĥi−1 of H̃i−1 are statistically close, then we will show
that the event Ei has at most negligible probability in Ĥi−1. This readily implies that event Ei
also has negligible probability in Hi−1.

The view of A in H̃i−1 after round i consists of the information learned in prior rounds,
and, if no abort happened after the i-th query, fi(C1) and gi(C2). If Dec(fi(C1)) 6= X and
Dec(gi(C2)) 6= Y , then it follows immediately from the security of the underlying one-way non-
malleable code that both X and Y have high min-entropy given the view of the adversary, and
therefore 〈X,Y 〉 is statistically close to uniform. Thus assume now that wlog that Dec(fi(C1)) =
X and Dec(gi(C2)) 6= Y , i.e. (fi, gi) is a mixed query.

Now, observe that the leakage on X and Y that A got until round i is independent. To see
this note that by the definition of Hi−1 all mixed queries for rounds j < i lead to an abort.
Furthermore, since we reached round i no decoding resulted in ⊥. Since we consider a super
strong tampering game this means that in each round the adversary received (fj(C1), gj(C2)),
which clearly is independent leakage on the two codewords. Let K1(X) be the leakage of X
and K2(Y) be the leakage of Y . Since the game reached round i it means the decoding still
did not abort. This in particular implies that in all previous rounds neither fj(C1) nor gj(C2)
decoded to an error. By the security of the owCNMC (Enc0,Dec0), it therefore holds that
H∞(X|K1(X) = k1) ≥ `q − δ and H∞(Y |K2(Y) = k2) ≥ `q − δ, except with probability 2ε.

Now observe that by the flexible extraction property of the Hadamard extractor (Lemma 1)
it holds that

∆((〈X,Y 〉, X, gi(C2))|K1(X) = k1,K2(Y) = k2), (U,X, gi(C2)|K1(X) = k1,K2(Y) = k2)) ≤ 1/q2,

where U ∈ Fq is uniformly random an independent of X and Y . Using Lemma 2 we conclude
that

∆((X, gi(C2))|〈X,Y 〉 = 0k‖M,K1(X) = k1,K2(Y) = k2, (X, gi(C2)|K1(X) = k1,K2(Y) = k2))

≤ 2q · 1/q2 = 2/q.

As (X, gi(C2))|〈X,Y 〉 = 0k‖M,K1(X) = k1,K2(Y) = k2 is the view of A in H̃i−1 and
(X, gi(C2)|K1(X) = k1,K2(Y) = k2) its view in Ĥi−1, it follows immediately that∆(H̃i−1, Ĥi−1) ≤
2/q + 2ε = 2−Ω(log(q)).

14

Now, in Ĥi−1 it holds that X and Y are independent. Thus observe that in this experiment

Pr[Ei] = Pr[∃M ′ ∈ {0, 1}log(q)−k s.t. 〈X, gi(C2)〉 = 0k‖M ′]

≤
∑

M ′∈{0,1}log(q)−k
Pr[〈X, gi(C2)〉 = 0k‖M ′]

≤
∑

M ′∈{0,1}log(q)−k
2−(log(q)−δ)

≤ 2log(q)−k · 2− log(q)+δ

= 2δ−k,

where the second inequality follows by Lemma 5. We conclude that event Ei happens with
probability at most 2δ−k + 2−Ω(log(q)) = 2−Ω(log(q)) in Hi−1. Thus, we can conclude that the
statistical distance between Hi−1 and Hi is at most 2−Ω(log(q)).

Finally, observe thatHr+1 is identically distributed to Ĥr. As we have seen that the statistical
distance between Ĥr and Hr is at most 2−Ω(log(q)), we can conclude that the statistical distance
between H0 and Hr+1 is at most (r + 1)2−Ω(log(q)) = 2−Ω(log(q)) in Hi−1. This concludes the
proof. ut

6 Constructing Continuously One-Way Non-Malleable Codes

We now present our construction of a owCNMC and its analysis.

6.1 Construction

Our code (Enc,Dec) is derived from an underlying code (E ,D). We start by giving our con-
struction generically. We specify the requirements on the components and parameters below.

Definition 9 (Enc,Dec). Let K be a finite field and assume we have an encoding algorithm
E :M→ Kt and corresponding decoding function D : Kt →M∪{⊥}, for a constant t > 0. Let
F ⊂ K be a subfield.

Enc(M) :
R← K
X ← E(M)
Reject and resample until X ∈ (K\{0})t
S ← E(R)
Reject and resample until:
S ∈ (K\{0})t and 〈X,S〉K 6= 0
V = 〈X,S〉K
W = 〈X,S〉F
Output (X,S, V,W)
∈ (K)t × (K)t ×K× F

Dec(X,S, V,W) :
Check whether:

X ∈ (K\{0})t
S ∈ (K\{0})t
D(X) 6= ⊥,
D(S) 6= ⊥,
〈X,S〉K = V ,
〈X,S〉F = W .

If any check fails output ⊥
Otherwise, output D(X) ∈M

15

Definition 10. We call an underlying encoding scheme (E ,D) (δd, εd, δl, k, εl)-admissible if it
fulfils the following requirements. Throughout this section we use n to denote log |K|.

Canonical E procedure: E(m) is uniform in {c : D(c) = m}.
Detection of close to bijective tampering: δd > 0 and if X1, . . . , Xt ∈ K are independent

random variables such that for X being the conditional distribution ((X1, . . . , Xt)|D(X1, . . . , Xt) 6= ⊥)
it holds that

H∞(X) ≥ t · n− δd

and deterministic function f = (f1, . . . , ft), fi : K→ K is such that

H∞(f(X)) ≥ t · n− δd

and f(X) 6= X then

∆ [(D(X),D(f(X))) ; (U,⊥)] ≤ εd .

High density of valid codewords: k < δ and

H∞(E(U)) = n · t− k .

Leakage resilient storage: δl > 0 and εl > 0 and the following holds. If X ∈ (K)t is such
that

H∞(X) ≥ t · n− δl

and X1, . . . , Xt are independent random variables and f = (f1, . . . , ft), fi : K→ K is such
that

H∞(U |fi(U) = u) ≥ 1

3
· n

then

∆ [(f1(X1), . . . , ft(Xt) | D(X) 6= ⊥) ; (f1(X1), . . . , ft(Xt))] ≤ εl .

Parameter restrictions:

|F| = 2δd/7t

t ≥ 49

n ≥ 2δd

k ≤ 1

28t
δd

δl ≥
1

14t
δd

It is instructive to think of the parameters as having the following asymptotic behaviours:
δl, k = Θ(n) and εl, εd = O(2−n), but this is not needed for the formal statements below.

16

6.2 Analysis

Theorem 5. If (E ,D) is (δd, εd, δl, k, εl)-admissible, then (Enc,Dec) is a (δ, ε)-one-way con-
tinuous NMC. If the adversary is restricted to tampering r times, then

δ ≤ ρ,

ε ≤ ρτ +O(r · ψ),

where
n = log(|K|) ,

ψ = γρ−1 + εl + εd + 2−Ω(n) + 2−Ω(δd) ,

τ =
1

2t+ 2
,

γ = 2−
1

28t
δd ,

ρ = 2−
1

60t
δd .

In the rest of the section we will analyze an adversary A attacking (Enc,Dec) in the
continuous super one-way NMC game. During the attack A will learn information on the
codeword (X,S, V,W). We define a class of benign knowledge for which the code is still secure.

Definition 11 (benign knowledge). Consider an adversary A with information on a code-
word (X,S, V,W). Formally, let A be the random variable denoting the knowledge of the
adversary on the codeword. We say A is benign if there exist set AX ,AS ⊆ Kt, AV ⊆ K,
and AW ⊆ F such that (X,S, V,W) conditioned on A is distributed as a random codeword
sampled as (X,S, V,W) ← Enc(x) for a uniformly random x conditioned on (X,S, V,W) ∈
AX ×AS ×AV ×AW . Furthermore, AX should be a cube, i.e., there exist AX,1, . . . ,AX,t such
that AX = AX,1 × · · · × AX,t. Similarly AS should be a cube. We call such a knowledge benign.
When A is benign we use K = (AX ,AS ,AV ,AW) to specify the knowledge learned. We use
Pr[K] to denote Pr[(X ′, S′, V ′,W ′) ∈ K] when (X ′, S′, V ′,W ′)← Enc(U).

The K-game We start by defining and analysing an abstract game called the K-game.

– The game is played on some benign K.
– The game has a parameter 0 ≤ ε < 1, called the death zone slack,

a parameter 0 ≤ σ < 1, called the survival probability bound,
a parameter 0 < τ ≤ 1 called the death rate,
and a parameter 0 ≤ ρ < 1 called the target probability.

– We use Enc(K) to denote the distribution of (X,S, V,W) given by sampling Enc(U) condi-
tioned on Enc(U) ∈ K.

In the game the move of the player is to give a strategy σ. After that there is a move by the
game which is to sample (X,S, V,W)← Enc(K).

– A strategy σ consists of ({(Bi, Di)}`i=1, Z), where Bi, Di and Z are events defined on
(X,S, V,W).

17

– The events Bi are called survival events.

– The events Di are called death events.

– All the events B1, . . . , B`, D1, . . . , D` should be disjoint. Let B = ∪iBi and D = ∪iDi. It
should hold that Pr[S ∪D|K] = 1.

– It should hold that3 Pr[Z |K] ≤ σ.

– For each Bi let Ki be the distribution of (X,S, V,W)← Enc(K) conditioned on Bi.

– It should hold that each Ki is benign.

– Finally it should hold for all Bi that

Pr[Bi |Bi ∪Di] ≤ Pr[Bi |K]τ + ε . (2)

Let A be an unbounded adversary playing the K-game. We denote the outcome of the game
by GA(K, ε, σ, τ, ρ). The game proceeds as follows.

1. If Pr[K] ≤ ρ, then GA(K, ε, σ, τ, ρ) = 1.

2. Otherwise, input K to A and receive from A a strategy σ.

3. Then sample (X,S, V,W)← Enc(K).

4. If Z, then GA(K, ε, σ, τ, ρ) = 1.

5. Otherwise, if D, then GA(K, ε, σ, τ, ρ) = 0.

6. Otherwise, there exist i such that Bi, and then GA(K, ε, σ, τ, ρ) = GA(Ki, ε, σ, τ, ρ).

7. We say that A wins the game iff GA(K, ε, σ, τ, ρ) = 1. Clearly Pr[GA(K, ε, σ, τ, ρ) = 1] =
E[GA(K, ε, σ, τ, ρ)].

Notice that if the adversary survives a move in the game and recursively has to play Ki,
then it learned that (X,S, V,W) ∈ Ki. Specifically, it learned κi = − log Pr[Bi |K] bits of
knowledge. To balance this learning, we required that the adversary specified a death event
Di, which is the ”price” we charge it for learning κi. Let αi = − log Pr[Bi |Bi ∪Di]. Then the
probability of being alive after learning Bi given that you are in Bi or its death event is 2−αi .
The requirement on the size of the death event can then be phrased as αi ≥ τκi. In other words,
if you learn κi bits, then you survive with probability at most 2−τκi . Hence τ is the rate at
which learning knowledge translates into death.

Lemma 7 (Knowledge). For all A it holds that E[GA(K, ε, σ, τ, ρ)] ≤ (ρ/Pr[K])τ +r ·(ε+σ),
where r denotes the number of rounds the game was played.

3 The reason behind introduction of the event Z is that for technical reasons when we later use the K-game to
analyse our code there will some corner case which happen with negligible probability that break the overall
clean structure of the proof. We sweep these up by putting them all into the event Z. As it happens, it gives a
more elegant analysis to not require the set Z to be disjoined from the sets Bi and Di.

18

Proof. For an event E we use G(K|E) to denote E[GA(K, ε, σ, τ, ρ)|E]. If Pr[K] ≤ ρ, then
G(K) = 1 and (ρ/Pr[K])τ + ε ≥ 1. Assume then that Pr[K] > ρ. Let Ei = Bi ∪Di.

G(K) =
∑
i

Pr[Ei]G(K|Ei)

4 ≤
∑
i

Pr[Ei] Pr[Bi|Ei]G(Ki) + Pr[Z]

5 ≤
∑
i

Pr[Ei] Pr[Bi|Ei] ((ρ/Pr[Ki])
τ + (r − 1)(ε+ σ)) + σ

≤
∑
i

Pr[Ei] Pr[Bi|Ei](ρ/Pr[Ki])
τ + (r − 1)(ε+ σ) + σ

≤
∑
i

Pr[Ei](Pr[Bi|Ei]− ε)(ρ/Pr[Ki])
τ + ε+ (r − 1)(ε+ σ) + σ

≤
∑
i

Pr[Ei](Pr[Bi|K])τ)(ρ/Pr[Ki])
τ + r(ε+ σ)

≤
∑
i

Pr[Ei](Pr[Bi|K])τ ((ρ/(Pr[K] Pr[Si|K]))τ) + r(ε+ σ)

≤
∑
i

Pr[Ei](ρ/Pr[K])τ + r(ε+ σ)

≤ (ρ/Pr[K])τ + r(ε+ σ) .

ut

Let K0 = K2t+1 × F denote the situation where the adversary has no knowledge on the
codeword. Then Pr[K0] = 1 and E[GA(K0, ε, σ, τ, ρ) ≤ ρτ + r · (ε+ σ).

We use the above lemma to analyse the success probability of an adversary A against
our code as follows. Along the analysis we will define some negligible events. If these happen
the knowledge is no longer benign, so when they happen we simply assume that A wins by
default. These events will correspond to Z in the K-game. We then keep the invariant that if
the tampering adversary did not already win the game by default or made the tampering oracle
output ⊥, then the knowledge K of the adversary is benign. We then show that any tampering
request corresponds to picking a legal strategy in the K-game, and that if Z does not happen
and D happens, then the tampering query makes the tampering oracle output ⊥. Furthermore,
if any Bi happens the knowledge learned by the tampering query is exactly Ki. We then use
the Knowledge Lemma to conclude that at the point where the tampering oracle outputs ⊥,
the adversary still has high entropy on the codeword, which implies security of our code.

Technical Lemmas We will now prove some technical lemmas. Along the way we make some
definitions which vaguely link these lemmas to the K-game. After proving the lemmas we will
then put the pieces together.

4 Follows from fact that Z doesn’t have to be disjoined.
5 Follows from inequality (2).

19

In the following lemmas we consider an adversary who already has knowledge K and which
then does one more tampering attack. In each of the lemmas we assume that K is benign and
that Pr[K] ≥ ρ. We assume A tampers X with f = (f1, . . . , ft), tampers S with g = (g1, . . . , gt),
tampers V with fV and tampers W with fW .

Definition 12. Let fi : K→ K be a tampering function. We define the following partition of
K for U uniformly distributed over K.

Cfiid = {x ∈ K | fi(x) = x},

Cf,i[a;b] = {x ∈ K \ Cfid | H∞(U |f(U) = fi(x)) ∈ [a, b]}

Cfi1−1 = Cfi
[0; 6

7t
δd]

Cfimed = Cfi
[6
7t
δd;

1
3
·n+ 2

7t
δd]

Cfirest = Cfi
[1
3
·n+ 2

7t
δd; n]

.

Definition 13. We will consider cubes of the form

t∏
i=1

Ai ×
t∏
i=1

Bi,

where each Ai, Bi ⊆ K. For valid tampering functions f, g : Kt → Kt, we define the following
Cube Classes that will partition K2t:

1. There is only 1 cube in Class-1:

∀i Ai = Cfiid , Bi = Cgiid .

2. Class-2 are the cubes of the form:

Ai ∈ {Cfiid , C
fi
1−1} and Bi ∈ {Cgiid , C

gi
1−1},

and there exists i such that Ai 6= Cfiid or Bi 6= Cgiid .

3. Class-3 cubes are of the form:

Ai ∈ {Cfiid , C
fi
1−1, C

fi
med, C

fi
rest} and Bi ∈ {Cgiid , C

gi
1−1, C

gi
med, C

gi
rest},

and there exists i such that Ai ∈ {Cfimed, C
fi
rest} or Bi ∈ {Cgimed, C

gi
rest},

and in each half of the vector describing this cube there is at most 12 coordinates that are
equal to C .irest.

4. Class-4 includes all cubes that weren’t included above except
∏t
i=1C

fi
rest ×

∏t
i=1C

gi
rest

5. Class-5 includes only one cube that is

t∏
i=1

Cfirest ×
t∏
i=1

Cgirest

20

Let C be a cube of any class. We use the following notation:

– by X ∈ C we mean that X ∈ CX , where CX is the projection of cube C on the first t
coordinates.

– by S ∈ C we mean that S ∈ CS , where CS is the projection of cube C on the last t
coordinates.

6.3 Handling Class-2 Events

Lemma 8 (Case 2). If C is a Class-2 cube and

Pr ((X,S) ∈ C | K) ≥ γ 1

ρ
,

then the probability that D(f(X)) = ⊥ given K,C is at least 1−O(εd)−O(2−n).

Intuition: The adversary will attempt to apply close to bijective tampering functions. Either
this part of the domain will have negligible size or the adversary will be detected.

Proof. W.l.o.g. let us assume that one coordinate not equal to C.iid is in the first half of the
vector describing the cube C. Let X ′ be the conditional distribution X|X ∈ (C∩AX). From the
whole random event K via inner product properties only X ∈ AX has non-negligible ”influence”
on X. Thus we will ignore the remaining events for now (we include an extra epsilon later on).
First notice that

Pr
(

(X,S) ∈ Cf1−1 × (Cgid ∪ Cg1−1) | K
)
≥ γ 1

ρ
⇒ Pr

(
X ∈ Cf1−1 ∩ AX

)
≥ γ.

Via the property high density of codewords in Definition 10 we know that

H∞(X) ≥ t · n− k

thus

H∞(X ′) ≥ t · n− log
1

γ
− k ≥ t · n− δd.

We know that X ′ ∈ C and that C is a Class-2 cube, so

H∞(f(X ′)) ≥
(
t · n− log

1

γ
− k
)
− t · (6

7t
δd) ≥ t · n− δd.

Using the property detection of almost bijective tampering in Definition 10 we obtain:

∆
[(
D(X ′),D(f(X ′))

)
;
(
D(X ′),⊥′

)]
≤ εd.

Thus, the probability that D(f(X ′)) 6= ⊥ is less or equal εd. On top of X ∈ AX , the adversary
also knows S ∈ AS , 〈X,S〉K ∈ AV , 〈X,S〉F ∈ AW , where 〈X,S〉F ∈ AW is redundant since
〈X,S〉F = tr(〈X,S〉K), where tr is a trace function. Since Pr(K) ≥ ρ� 2−n, using the strong
extraction properties of the Hadamard extractor we obtain:

∆ ([X|K]; [X|X ∈ AX])� O(2−n) .

From this we obtain the bound O(εd) +O(2−n). ut

21

Definition 14 (Class-2 Events). For each Class-2 cube we define a win event Z2. If |C∩K| ≤
γ/ρ, then Z2 = C ∩K. Otherwise Z2 is the set of (X,S, V,W) ∈ K ∩C for which D(f(X)) 6= ⊥
and D(g(X)) 6= ⊥. In the first case

Pr[Z2|K] ≤ γ 1

ρ
.

In the second case
Pr[Z2|K,C] ≤ O(εd) +O(2−n) .

6.4 Handling Class-3 Events

Lemma 9 (Case 3). If C is a Class-3 cube and

Pr ((X,S) ∈ C | K) ≥ γ 1

ρ
,

then
Pr(fW (〈X;Y 〉F) = 〈f(X); g(Y)〉F | K, (X,S) ∈ C) ≤ 2−Ω(δd) .

Intuition: The adversary will not be able to guess 〈f(X); g(Y)〉F even given 〈X;Y 〉F. He lost
too much entropy and 〈X;Y 〉F, 〈f(X); g(Y)〉F are now independent, and vectors f(X), g(S)
have enough entropy to keep 〈f(X); g(Y)〉F uniform.

Proof. W.l.o.g. let us assume that the coordinate that is equal to C.imed or C.irest is in the
first half of the vector describing the cube C. Let X ′ and S′ be the conditional distributions
X|X ∈ (C ∩ AX) and S|S ∈ (C ∩ AS). From the assumptions we know that

H̃∞(X ′|f(X ′)) ≥ 6

7t
δd − log

1

γ
− k

H∞(S′) ≥ t · n− log(
1

γ
)− k

H∞(f(X ′)) ≥ (t− 12)(
2

3
· n− 2

7t
δd)− log

1

γ
− k

H∞(g(S′)) ≥ (t− 12)(
2

3
· n− 2

7t
δd)− log

1

γ
− k ≥ (t− 12)

2

3
· n− 3

7
δd.

Via the strong extraction property of the Hadamard-extractor (Lemma 1) and Bayes’ rule for
the statistical distance (Lemma 2) we know that

d(〈X ′, S′〉F|f(X ′), S′) ≤ 2−
H̃∞(X′|f(X′)+H∞(S′)−(t·n)−log |F|

2 =

= 2−
(6
7t δd−log 1

γ−k)+(t·n−log 1
γ−k)−(t·n)−(1

7t δd)

2 ≤ 2−
2
7t
δd .

Thus it holds for any m that

∆((f(X ′), S′)|〈X ′, S′〉F = m; (f(X ′), S′)) ≤ 2 · 2
1
7t
δd · 2−

2
7t
δd = 2 · 2−

1
7t
δd ,

∆
(
〈f(X ′), g(S′)〉F|〈X ′, S′〉F = m; 〈f(X ′), g(S′)〉F

)
≤ 2 · 2−

1
7t
δd .

22

We further know that

d(〈f(X ′), g(S′)〉F) ≤ 2−
2·((t−12) 23 ·n−

3
7 δd)−(t·n)−(17 δd)

2

= 2−
1
3 t·n−16·n− 6

7 δd−
1
7t δd

2

≤ 2−
1
2
n.

Thus we can conclude that

d(〈f(X ′), g(S′)〉F | 〈X ′, S′〉F = m) ≤ 2 · 2−
1
7t
δd + 2−

1
2
n ≤ 4 · 2−

1
7t
δd .

From this we get that

∀m,m̃ Pr(〈f(X ′), g(S′)〉F = m̃ | 〈X ′, S′〉F = m) ≤ 1

|F|
+ 4 · 2−

1
7t
δd .

Now notice that for all m̃ and all m ∈ tr(AV), where tr is a trace function:

1

|F|
+ 4 · 2−

1
7t
δd ≥ Pr(〈f(X ′), g(S′)〉F = m̃ | 〈X ′, S′〉F = m) =

= Pr(〈f(X ′), g(S′)〉F = m̃ | 〈X ′, S′〉F = m, 〈X ′, S′〉K ∈ AV) · Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = m)+

+ Pr(〈f(X ′), g(S′)〉F = m̃ | 〈X ′, S′〉F = m, 〈X ′, S′〉K /∈ AV) · Pr(〈X ′, S′〉K /∈ AV | 〈X ′, S′〉F = m) ≥

≥Pr(〈f(X ′), g(S′)〉F = m̃ | 〈X ′, S′〉F = m, 〈X ′, S′〉K ∈ AV) · Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = m)

= Pr(〈f(X), g(S)〉F = m̃ | K, (X,S) ∈ C, 〈X ′, S′〉F = m) · Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = m).
(3)

Now we will show that for m ∈ tr(AV):

Pr
m

(
Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = m) ≥ ρ2

)
≥ 1− ρ ≥ 1− 2−Ω(δd), (4)

where m is sampled according to distribution 〈X ′, S′〉F|〈X ′, S′〉 ∈ AV . We sample m this way
since the adversary a priori knows that X,S are consistent with knowledge K and that they
fall into cube C, then he produces function fW which only then ”sees” element m and attempts
to tamper it.

The proof is by contradiction. Let us denote

bad =
{
a ∈ F | Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = a) < ρ2

}
23

From assumptions on knowledge K we know that Pr(〈X ′, S′〉K ∈ AV) ≥ ρ. For all a ∈ bad we
have:

Pr(〈X ′, S′〉K ∈ AV | 〈X ′, S′〉F = a) < ρ2

Pr(〈X ′, S′〉F = a | 〈X ′, S′〉K ∈ AV) · Pr(〈X ′, S′〉K ∈ AV)

Pr(〈X ′, S′〉F = a)
< ρ2

Pr(〈X ′, S′〉F = a | 〈X ′, S′〉K ∈ AV) <
Pr(〈X ′, S′〉F = a)

Pr(〈X ′, S′〉K ∈ AV)
· ρ2 ≤ Pr(〈X ′, S′〉F = a) · ρ

∑
a∈bad

Pr(〈X ′, S′〉F = a | 〈X ′, S′〉K ∈ AV) ≤
∑
a∈bad

Pr(〈X ′, S′〉F = a) · ρ ≤ ρ.

Given that m is sampled accordingly to distribution 〈X ′, S′〉F|〈X ′, S′〉 ∈ AV this gives us (4).
Now with (3) and (4) we obtain:

Pr(〈f(X), g(S)〉F = m̃ | K, (X,S) ∈ C, 〈X ′, S′〉F = m) ≤ 1

ρ2

(
1

|F|
+ 4 · 2−

1
7t
δd

)
≤ 2−Ω(δd),

with probability at least 1 − 2−Ω(δd) over the choice of m. Which means that the value of
〈f(X ′), g(S′)〉F is unpredictable from the view of the function fW . ut

Definition 15 (Class-3 Events). For each Class-3 cube we define a win event Z3. If |C ∩
K| ≤ γ/ρ, then Z3 = C ∩ K. Otherwise Z3 is the set of (X,S, V,W) ∈ K ∩ C for which
fW (〈X;S〉F) = 〈f(X); g(S)〉F. In the first case

Pr[Z3|K] ≤ γ 1

ρ
.

In the second case
Pr[Z3|K,C] ≤ 2−Ω(δd) .

6.5 Handling Class-4 Events

Lemma 10 (Case 4). Let C be Class-4 cube and

Pr ((X,S) ∈ C) | K) ≥ γ 1

ρ
,

then
Pr(fV (〈X;S〉K) = 〈f(X); g(S)〉K | K, (X,S) ∈ C) ≤ 2−Ω(n) .

Intuition: The adversary will not be able to guess 〈f(X); g(Y)〉K even given 〈X;Y 〉K. He
lost too much entropy and 〈X;Y 〉K, 〈f(X); g(Y)〉K are now independent. Vectors f(X), g(S)
have enough entropy to keep 〈f(X); g(Y)〉F unpredictable (not uniform, but with substantial
min-entropy).

24

Proof. W.l.o.g. let us assume that in the first half of the vector describing C there is more than
12 coordinates equal to C.irest. Let X ′ be a conditional distribution X|X ∈ (C ∩AX) and let S′

be the conditional distribution S|S ∈ (C ∩ AS). From the assumptions we know that

H∞(X ′) ≥ t · n− log
1

γ
− k

H̃∞(X ′|f(X ′)) ≥ 12 · (1

3
n+

2

7t
δd)− log

1

γ
− k,

H∞(S′) ≥ t · n− log(
1

γ
)− k.

Via strong extraction property of the Hadamard-extractor (Lemma 1) and the Bayes’ rule
for the statistical distance (Lemma 2) we know that

d(〈X ′, S′〉K|f(X ′), S′) ≤ 2−
H̃∞(X′|f(X′)+H∞(S′)−(t·n)−n

2

= 2−
(12·(13n+

2
7t δd)−log 1

γ−k)+(t·n−log(1γ)−k)−(t·n)−(n)

2

≤ 2−(3
2
n).

Thus it holds for any for any m ∈ K that

∆((f(X ′), S′)|〈X ′, S′〉K = m; (f(X ′), S′)) ≤ 2 · 2n · 2−(3
2
n) = 2 · 2−

1
2
n,

∆
(
〈f(X ′), g(S′)〉K|〈X ′, S′〉K = m; 〈f(X ′), g(S′)〉K

)
≤ 2 · 2−

1
2
n = 2−Ω(n). (5)

Notice that now the whole K is included in the conditioning above, X ∈ AX , S ∈ AS got
included in the definition of X ′, S′ and the 〈X,S〉K ∈ AV is covered the in conditioning above,
the last part of K is 〈X,S〉F ∈ AW but that follows easily from the fact that if trK→F denotes
trace function from extension field K into F then 〈X,S〉F = trK→F(〈X,S〉K). This makes the
conditioning on inner product over the smaller field obsolete.

Since the cube C is a Class-4 cube we know there exists at least one coordinate which is C.imed
or C.i1−1 or C.iid. W.l.o.g. let us assume that coordinate is in the first half of the cube vector. Let

X̃ be uniformly distributed over (CX ∩AX) where CX is the projection of the cube vector to the
first half of the coordinates. Also since Pr(X ∈ (C ∩AS)) ≥ γ and H∞(X) ≥ t · n− k and E is
the canonical procedure we know that for uniform random U it holds that P (D(U) 6= ⊥) ≥ 2−k

and thus Pr(U ∈ (CX ∩ AX)) ≥ γ · 2−k. By that we obtain the following:

H∞(X̃) ≥ t · n− log(
1

γ
)− k

H∞(f(X̃)) ≥ 1

3
· n+

2

7t
δd − log

1

γ
− k ≥ 1

3
· n . (6)

Since we know that fi(X̃i) are all independent random variables we get via the entropy
preservation property of the inner product (Lemma 4) that

H∞(〈f(X̃), g(S′)〉K) ≥
1
3 · n
t

25

Thus we get

max
z

Pr(〈f(X̃), g(S′)〉K = z) ≤ 2−
1
3 ·n
t .

Since

Pr(D(U) 6= ⊥ | U ∈ (CX ∩ AX)) = Pr(U ∈ (CX ∩ AX) | D(U) 6= ⊥) · Pr(D(U) 6= ⊥)

Pr(U ∈ (CX ∩ AX))

≥ γ · 2−k .

Hence

max
z

Pr(〈f(X ′), g(S′)〉K = z) = max
z

Pr(〈f(X̃), g(S′)〉K = z | D(X̃) 6= ⊥)

≤ 2
−(n

3t
−log 1

γ
−k) ≤ 2−

n
4t

Via the above and (5) we get that for any m ∈ K the following holds:

max
z

Pr(〈f(X ′), g(S′)〉K = z|〈X ′, S′〉K = m,K) ≤ 2−
n
4t + 2 · 2−

1
2
n

≤ 2−Ω(n),

which means that 〈f(X ′), g(S′)〉K is unpredictable from the view of fV even given K. ut

Definition 16 (Class-4 Events). For each Class-4 cube we define a win event Z4. If |C ∩
K| ≤ γ/ρ, then Z4 = C ∩ K. Otherwise Z4 is the set of (X,S, V,W) ∈ K ∩ C for which
fV (〈X;S〉K) = 〈f(X); g(S)〉K. In the first case

Pr[Z4|K] ≤ γ 1

ρ
.

In the second case
Pr[Z4|K,C] ≤ 2−Ω(δd) .

6.6 Handling Class-1 and Class-5 Events

Lemma 11 (1-or-5 strategy). Let C1 be the Class-1 cube and define a survival event B1 =
C1 ∩K. Let C5 be the Class-5 cube and define a survival event B5 = C5 ∩K. The corresponding
K1 and K5 are benign. There exist D1, D5 and event Z ′ such that ({(B1, D1), (B5, D5)}, Z2 ∨
Z3 ∨ Z4 ∨ Z ′) is a legal strategy in G(K, ε, τ = 1

2t+2 , σ, ρ) for ε = 2−n and σ = O(1ρ) +O(εl) +

O(εd) + 2−Ω(n) + 2−Ω(δd). Furthermore, if D1 or D5 occurs, then the tampering oracle outputs
⊥.

The lemma follows directly from the following lemma.

Definition 17. Let I : Kt → Zp be defined as follows

I(X) =


−1, if X ∈ Cf,1rest × . . .× Cf,trest
1, if X ∈ Cf,1id × . . .× Cf,tid
2, if otherwise

(7)

We define I(S) in the exactly same way.

26

Lemma 12. If X,S ∈ Kt are valid and distributed uniformly such that X ∈ AX , S ∈
AS , 〈X,S〉K ∈ AK then there exist sets Did and Drest such that

1. Pr[(I(X), I(S)) = (1, 1) | (X,S) ∈ I−1(1)×I−1(1)∪Did] ≤ 2−
1
2
log Pr−1[(I(X),I(S))=(1,1)]+2−n

2. Pr[(I(X), I(S)) = (−1,−1) | (X,S) ∈ I−1(1)×I−1(1)∪Drest] ≤ 2−
1
2
log Pr−1[(I(X),I(S))=(−1,−1)]+

2−n

3. Did ∩ Drest = ∅, and Did ∩
(
(I−1(1)× I−1(1) ∩ (I−1(−1)× I−1(−1)

)
= ∅, and Drest ∩(

(I−1(1)× I−1(1) ∩ (I−1(−1)× I−1(−1)
)

= ∅.

Intuition: From the above equations we will calculate the required size of sets Did and Drest,
then we will show that there are at least |Did|+ |Drest| points of the domain that do not fall
into either the identity-cube or rest-cube. That will conclude the existence proof for sets Did

(or D1) and Drest (or D5).

Proof. Let X ′ be uniformly distributed over AX , such that D(X) 6= ⊥ and let S′ be uniformly
distributed on AS , such that D(S) 6= ⊥ . First we will show that there exist sets Did, Drest ⊆ X2t

such that

1. Pr[(I(X ′), I(S′)) = (1, 1) | (X ′, S′) ∈ I−1(1)× I−1(1) ∪Did] ≤ 2−
1
2
log Pr−1[(I(X′),I(S′))=(1,1)]

2. Pr[(I(X ′), I(S′)) = (−1,−1) | (X ′, S′) ∈ I−1(1)×I−1(1)∪Drest] ≤ 2−
1
2
log Pr−1[(I(X′),I(S′))=(−1,−1)]

3. Did ∩ Drest = ∅, and Did ∩
(
(I−1(1)× I−1(1) ∩ (I−1(−1)× I−1(−1)

)
= ∅, and Drest ∩(

(I−1(1)× I−1(1) ∩ (I−1(−1)× I−1(−1)
)

= ∅.
From the first two conditions we can calculate the required size of sets Did, Drest:

Pr[(I(X ′), I(S′)) = (1, 1)]

Pr[(I(X ′), I(S′)) = (1, 1)] + Pr[(X ′, S′) ∈ Did]
≤ Pr[(I(X ′), I(S′)) = (1, 1)]1/2

Pr[(I(X ′), I(S′)) = (1, 1)]1/2 − Pr[(I(X ′), I(S′)) = (1, 1)] ≤ Pr[(X ′, S′) ∈ Did]

From Lemma 6 we obtain:∑
a,b∈Zp
a·b=1

Pr[(I(X ′), I(S′)) = a, b]
1
2 ≤ 1

∑
a,b∈Zp
a·b=1

(
Pr[(I(X ′), I(S′)) = a, b]

1
2 − Pr[(I(X ′), I(S′)) = a, b]

)
≤ 1−

∑
a,b:
a·b 6=1

Pr[(I(X ′), I(S′)) = a, b]

Pr[(I(X ′), I(S′)) ∈ Did] + Pr[(I(X ′), I(S′)) ∈ Drest] ≤ 1−
∑
a,b:
a·b 6=1

Pr[(I(X ′), I(S′)) = a, b] ,

which concludes existential proof for such sets. We will show that these sets fulfil the conditions
listed in the lemma statement. We know that

H∞(X ′) ≥ t · n− log
1

ρ
− k,

H∞(S′) ≥ t · n− log
1

ρ
− k,

H̃∞(X ′|I(X ′)) ≥ t · n− log
1

ρ
− k − 2 .

27

Via the strong extraction property of the Hadamard-extractor (Lemma 1) and Bayes’ rule for
the statistical distance (Lemma 2) we know that

d(〈X ′, S′〉K|I(X ′), S′) ≤ 2−
H̃∞(X′|I(X′)+H∞(S′)−(t·n)−n

2

= 2−
(t·n−log 1

ρ−k−2)+(t·n−log 1
ρ−k)−(t·n)−(n)

2

≤ 2−3n.

Thus it holds for any m ∈ K that

∆((I(X ′), S′)|〈X ′, S′〉K = m; (I(X ′), S′)) ≤ 2 · 2n · 2−3n = 2 · 2−2n,
∆
(
I(X ′), I(S′)|〈X ′, S′〉K = m; I(X ′), I(S′)

)
≤ 2−n

∆
(
I(X), I(S); I(X ′), I(S′)

)
≤ 2−n.

which shows it is indeed possible to find required sets. ut

Proof (Lemma 11). We let D1 = Did and we let D5 = Drest. Let S = S1 ∪ S5. Note the
S = I−1(1)∪ I−1(1). We have from the proof of the above lemma that the sets have the correct
sizes for ε = 2−n. Furthermore, if S1 happens, then K1 is again benign as the Class-1 cube is a
cube, and if S5 happens, then K5 is again benign as the Class-5 cube is a cube.

Lemma 13 (Case 1). Let C be a Class-1 cube. When X,S are unchanged then fW (〈X,S〉F) =
〈X,S〉F and fV (〈X,S〉K) = 〈X,S〉K, else Dec will return ⊥. Let CW , CV be the sets of fixed
points of fW , fV respectively. Let C′W = CW ∩ AW and C′V = CV ∩ AV , moreover let K ′ =
K ∧ (〈X,S〉F ∈ C′W) ∧ (〈X,S〉K ∈ C′V). Then

Pr(〈X,S〉F ∈ C′W ∧ 〈X,S〉K ∈ C′V | (X,S) ∈ C,K) ≤

2−(log(Pr(K∧(X,S)∈C))−log(Pr(K′∧(X,S)∈C)))

Proof. Obvious via conditional probability. ut

Definition 18 (Class-1 Event). For the Class-1 cube C we define the winning event Z1 = ∅
and survival event B1 to be the set of (X,S, V,W) ∈ K ∩ C for which 〈X,S〉F ∈ C′W and
〈X,S〉K ∈ C′V . Let D1 = K ∩ C \B1.

Lemma 14 (1-strategy). The strategy ({(B1, D1)}, Z) is legal for G(K ∩C, 0, 0, τ = 1
2t+2 , ρ).

Furthermore, the knowledge K1 corresponding to B1 happening is benign, and if D1 happens
the tampering oracle outputs ⊥.

Proof. We have from the above lemma that Pr[B1 |B1 ∪D1] ≤ Pr[B1 |K]
1
1 , which implies that

Pr[B1 |B1 ∪D1] ≤ Pr[B1 |K]τ , as desired.

Lemma 15 (Case 5). Let C be a Class-5 cube. If it holds that

Pr ((X,S) ∈ C | K) ≥ γ 1

ρ

then for all x, s ∈ Kt there exist sets Dx,s ⊆ Kt ×Kt such that:

28

1. for all a, b ∈ Dx,s : 〈f(a), g(b)〉 6= fV (〈a, b〉
2. for any (x′, s′) 6= (x, s) : Dx′,s′ ∩Dx,s = ∅
3. Pr[(f(X̃), g(S̃), fW (〈X̃, S̃〉F), fV (〈X̃, S̃〉)) = (x, s, tr(〈x, s〉), 〈x, s〉)
| (f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉) ∨ (X̃, S̃) ∈ Dx,s] ≤

≤ 2−
1

2t+2
log Pr−1[(f(X̃),g(S̃),fW (〈X̃,S̃〉F),fV (〈X̃,S̃〉))=(x,s,tr(〈x,s〉),〈x,s〉)] + ε

where (X̃, S̃) is the conditional distributions (X,S)|((X,S) ∈ C,K), and ε = 2(εl + 2−n) where
εl comes from Definition 10.

Intuition: In this case 〈f(X), g(S)〉K is independent of 〈X,S〉K and the more the adversary is
trying to learn (i.e., pre-images of f, g are smaller) the less control over 〈f(X), g(S)〉K he has.

Proof. We do not need an efficient construction of the sets Dx,s, they are here only to prove
that whenever the adversary attempts to learn something he will be detected (condition 1)
with a probability corresponding to the amount of information he wants to obtain. Let us first
prove that there exists sets Dx,s fulfilling the following inequality:

Pr[(f(X̃),g(S̃), fV (〈X̃, S̃〉))
= (x, s, 〈x, s〉) | (f(X̃), g(S̃), fV (〈X̃, S̃〉))(x, s, 〈x, s〉) ∨ (X̃, S̃) ∈ Dx,s] ≤ (8)

≤ 2−
1

2t+2
log Pr−1[(f(X̃),g(S̃),fV (〈X̃,S̃〉))=(x,s,〈x,s〉)] + ε

From (8) we can calculate the required sizes of sets Dx,s.

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉) | (f(X̃), g(S̃), fV (〈X̃, S̃〉))
= (x, s, 〈x, s〉) ∨ (X̃, S̃) ∈ Dx,s]

≤ (Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)])
1

2t+2

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
Pr[(f(X̃), g(S̃)fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)] + Pr[(X̃, S̃) ∈ Dx,s]

≤ Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
1

2t+2

Pr[(f(X̃), g(S̃)fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
2t+1
2t+2 − Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
≤ Pr[(X̃, S̃) ∈ Dx,s]. (9)

To show existence of sets Dx,s all we need to prove is that:∑
(x,s)

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) ∈ Dx,s] ≤ 1−
∑
(x,s)

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]

Thus via (9) ∑
(x,s)

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
2t+1
2t+2 ≤ 1. (10)

29

At this point we would like to use Lemma 6, to do that we need to prove independence of fi(X̃i)
and gi(S̃i). Let X ′ be a conditional distribution X|X ∈ (C ∩ AX) and let S′ be conditional
distribution S|S ∈ (C ∩ AS). We know that:

H∞(X ′) ≥ t · n− log
1

γ
− k ≥ t · n− δl

H∞(S′) ≥ t · n− log(
1

γ
)− k ≥ t · n− δl

H̃∞(X ′|f(X ′)) ≥ t · (1

3
n+

2

7t
δd)− log

1

γ
− k ≥ 1

3
t · n+

1

7
δd

Via the strong extraction property of the Hadamard-extractor (Lemma 1) and Bayes’ rule
for the statistical distance (Lemma 2) we know that

d(〈X ′, S′〉K|f(X ′), S′) ≤ 2−
H̃∞(X′|f(X′)+H∞(S′)−(t·n)−n

2

= 2−
(13 t·n+

1
7 δd)+(t·n−log(1γ)−k)−(t·n)−(n)

2

≤ 2−2n.

Thus for UK uniformly distributed over AF and independent of all other random variables:

∆((f(X ′), S′)|〈X ′, S′〉K = m; (f(X ′), S′)) ≤ 2 · 2n · 2−2n = 2 · 2−n, (11)

∆
([
f(X̃), g(S̃), fV (〈X̃, S̃〉)

]
;
[
f(X ′), g(S′), fV (UK)

])
≤ 2 · 2n · 2−2n = 2 · 2−n (12)

We know thatAX and C are cubes, thus their intersection is a cube. Via Condition 4 in Defini-
tion 10 we obtain that f1(X ′1), . . . , ft(X

′
t), g1(S′t), . . . , gt(S

′
t) are 2εl-close to f1(U1), . . . , gt(U2t),

where [U1, . . . , U2t] is uniformly distributed over the intersection of cubes AX and C thus all
random variables f1(U1), . . . , gt(U2t), fV (UK) are independent and through (12) we get that:

∆
([
f(X̃), g(S̃), fV (〈X̃, S̃〉)

]
; [f1(U1), . . . , gt(U2t), fV (UK)]

)
≤ 2−Ω(n) (13)

Via Lemma 6 applied to vectors [f1(U1), . . . , ft(Ut),−1] and [g1(Ut+1), . . . , gt(U2t), fV (UK)] we
obtain: ∑

(x1,...,xt,s1,...,st,c):
〈[x1,...,xt,−1];[s1,...,st,c]〉=0

Pr[(f1(U1), . . . , gt(U2t), fV (UK)) = (x, s, c)]
2t+1
2t+2 ≤ 1

Thus we obtain (10) as desired:∑
x,s

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)]
2t+1
2t+2 ≤ 1 + 2εl + 2 · 2−n (14)

which, via (9) gives us existence of sets Dx,s such that :

Pr[(f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)
| (f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉) ∨ (X̃, S̃) ∈ Dx,s] ≤

≤ 2−
1

2t+2
log Pr−1[(f(X̃),g(S̃),fV (〈X̃,S̃〉))=(x,s,〈x,s〉)] + ε

30

Now if we multiply the left hand side by

Pr
(
fW (〈X̃, S̃〉) = tr(〈x, s〉) | (f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)

)
and the right hand side by something larger:

Pr
(
fW (〈X̃, S̃〉) = tr(〈x, s〉) | (f(X̃), g(S̃), fV (〈X̃, S̃〉)) = (x, s, 〈x, s〉)

) 1
2t+2

we obtain the result. ut

Definition 19 (Class-5 Events). For the Class-5 cube C we define a win event Z5 = ∅. For
each (x, s) we define a survival event Bx,s to be the set of (X,S, V,W) ∈ K for which

(f(X), g(S), fW (〈X,S〉F), fV (〈X,S〉)) = (x, s, 〈x, s〉F, 〈x, s〉F) .

We use the death events Dx,s from the above lemma.

Lemma 16 (5-strategy). Let C be the class-5 cube. The strategy ({(Bx,s, Dx,s)}, Z) is legal
for G(K ∩C, ε = 2(εl + 2−n), σ = 0, τ = 1

2t+2 , ρ). Furthermore, each Kx,s corresponding to Bx,s
is benign and if any Dx,s occurs, the tampering oracle outputs ⊥.

Proof. By the above lemma the death events have the right size when ε = 2(εl + 2−n). Clearly,
when Bx,s happens the knowledge Kx,s is again benign, and by design D triggers ⊥.

6.7 Putting the Pieces Together

We now link the tampering game to the K-game as follows. Let K0 denote that A has no
knowledge on the codeword. The game starts at K = K0. We will argue that the probability
that the tampering adversary A makes it happen that Pr[K] ≤ ρ is upper bounded by the
probability of some B winning GB(K0, ε, σ, τ, ρ) for ε = O(εl) + O(εd) + 2−Ω(n) + 2−Ω(δd),
σ = γ 1

ρ , τ = 1
2t+2 . Note that K0 is benign. Whenever A tampers, let K be the knowledge of A

and assume by induction that K is benign. Assume that the random codeword sampled in the
game is the same as the one in the tampering game. We first play the 1-or-5-strategy to learn
whether the codeword is in the Class-1 or Class-5 cube or some other cube. By design, we lose
the K-game only if the tampering oracle outputs ⊥. Otherwise we win the K-game or we have
to recursively play it for K ∩C1 or K ∩C5, where C1 is the Class-1 cube and C5 is the Class-5
cube. In the first place we play the 1-strategy. In the second case we play the 5-strategy. Again,
by design, we lose the K-game only if the tampering oracle outputs ⊥. Otherwise we win the
game or end up in a survival zone. If we end up in a survival zone, the new K ′ we have to play
is exactly the knowledge of the tampering adversary A. Note that for each tampering query we
make two moves in the K-game.

Let r denote the number of tampering queries done by the adversary. It follows by the
above analysis and the Knowledge Lemma that when the tampering oracle outputs ⊥, then
Pr[Pr[K] ≤ ρ] ≤ ρτ + 2r · (O(εl) +O(εd) + 2−Ω(n) + 2−Ω(δd) + γ 1

ρ). This concludes the proof of
Theorem 5.

31

7 Instantiation of Definition 10

In this section we discuss various instantiation options. We give a generic method of instantiating
with any multi-source non-malleable extractor. This method requires small changes to the proof
which are discussed below. The proof modifications are required only for nmExtractors that do
not have good leakage resilient storage parameters. They lead to slightly worse parameters of
ow-CNMC thus they were separated from the main proof into this section.

7.1 Using Super-Strong NMCs

The most straight forward instantiation would be using the super-strong NMC from [AKO16]
(with the improved affine evasive function from [Agg15]). Let us briefly recall the construction:

For any m ∈ M, Enc(m) = Enc1 ◦ Enc2(m), where for any m ∈ M, Enc2(m) ← {X ∈
F | h(X) = a||b||m}, where h is affine-evasive function, and a, b were chosen uniformly at
random. For any x ∈ F, Enc1(x) = (L,R), where L,R ∈ FN are uniform such that 〈L,R〉 = x,
φ(L, a) = valid and φ(R, b) = valid where φ is a check function based on Reed-Salomon codes,
such that for every a we get Prx(φ(x, a) = valid) = 1

|a| . The construction is secure for any

N ≥ C · log4 |F|, where C is some constant, which makes the whole codeword length equal to
C · log5(|F|).
Let us go through conditions from Definition 10:

Canonical encoder Fulfilled trivially.

Density of codewords Through the inspection of the construction we get that

H∞(Enc(U)) ≥ 2 · log5(|F|)−O(log |F|)

the entropy loss O(log |F|) is independent of the choice of N .

Detection of close to bijective tampering Through inspection of Theorem 5 from [AKO16]
and Theorem 3 from [ADL14] we obtain that detection is possible for

δd = C ′ · (N)1/4

εd =
1

|F|Ω(1)

where C ′ > 0 is some constant. To fulfil the parameter requirements, namely k = 1
28tδd, all

we have to do is choose N large enough (above we said that k does not depend on N).

Leakage resilient storage Since the construction is based on the inner-product it is clear
that this condition is fulfilled with δl = Θ(log5 |F|) and εl = 2−Ω(log5 |F|).

Since all parameters are fulfilled we can instantiate:

Theorem 6. There exists explicit (δ, ε)−owCNMC in the 94−split state model that encodes m
bits of message into n bits of codeword, with the following parameters:

– δ ≤ Θ(n1/5),

32

– ε ≤ r ·
(

2−Ω(δ) +O
(

1
nΩ(1)

))
, where r is the number of tampering queries made by the

adversary.
– for adversary attempting poly(δ) queries

ε ≤ negligible(δ)

– The length of the codeword is n = O(m5).

7.2 Using multi-source non-malleable Extractors.

We start with a definition

Definition 20 (Non-malleable T -Source Extractors). A function Ext : (B)T → Y is
called a T -source (ε, δ)-non-malleable extractor if the following property holds. For every
random variable B = (B1, . . . , BT) ∈ BT for which B1, ..., BT are independent and H∞(Bi) ≥
t · log |B| − δ, for any split-state tampering function f = (f1, ..., fT) such that there exists fi
without fixed points it holds that

∆ ((Ext(B),Ext(f(B))); (U,Ext(f(B))) ≤ ε,

where U is distributed uniformly on Y.

We describe below how to modify any T source extractor to fit our requirements.

Definition 21. Let k ∈ N be any constant

E(M) :
B1, ..., BT ← {b1, . . . , bT | Ext(b1, . . . , bT) = 0k||M}
(X1, ..., X t

T
) = B1

. . .
(Xt− t

T
+1, ..., Xt) = BT

Output (X1, . . . , Xt)

D(X1, . . . , Xt) :
B1 = (X1, ..., X t

T
)

. . .
BT = (Xt− t

T
+1, ..., Xt)

Check whether:
Dec(B1, . . . , BT) = 0k||M ,

If the check fails output ⊥
Otherwise, output M ∈M

Lemma 17. Scheme (E ,D) defined above fulfills:

Canonical E procedure: E(m) is uniform in {c : D(c) = m}.
Detection of close to bijective tampering: δd = 1

2δ (where δ comes from definition 20)
and n = log |K| and if X1, . . . , Xt ∈ K are independent random variables such that for X
being the conditional distribution ((X1, . . . , Xt)|D(X1, ..., Xt) 6= ⊥) with

H∞(X) ≥ t · n− δd
and deterministic function f = (f1, . . . , ft), fi : K→ K is such that

H∞(f(X)) ≥ t · n− δd
and f(X) 6= X, then

∆ [(D(X),D(f(X))) ; (U,⊥)] ≤ 2ε+ 2−k.

33

Proof. From definition 20 we get

∆ ((Ext(X1, . . . , Xt),Ext(f1(X1), . . . , ft(Xt)); (U,Ext(f1(X1), . . . , ft(Xt))) ≤ ε,

and we also know that f(X1, . . . , Xt) has a lot of entropy so Ext(f1(X1), . . . , ft(Xt)) is
ε−close to uniform, thus Pr(cD(X1, . . . , Xt) 6= ⊥) ≤ 2−k.

High density of valid codewords: for any k we get:

H∞(E(U)) = n · t− k .

Thus it is possible to choose k fulfilling the parameters requirements.
Leakage resilient storage: Take δl = T

2tδ and the following holds. If X ∈ (K)t is such that

H∞(X) ≥ t · n− δl

and X1, . . . , Xt are independent random variables and f = (f1, . . . , ft), fi : K→ K is such
that

H∞(U |fi(U) = u) ≥ n− δl
then

∆ [(f1(X1), . . . , ft(Xt) | D(X) 6= ⊥) ; (f1(X1), . . . , ft(Xt))] ≤ 2ε .

Proof. This follows straight forward from extractor properties. H∞(Xi|fi(Xi)) ≥ n − 2δl
and thus H∞(Bi|f i·t

T
+1(X i·t

T
+1), . . . , f i·t

T
+T (X i·t

T
+T)) ≥ t

T · n− δ thus

d(Ext(B1, ..., BT) | (f1(X1), ..., ft(XT))) ≤ ε.

Thus

∆ ((Ext(X1, . . . , Xt),Ext(f1(X1), . . . , ft(Xt)); (U,Ext(f1(X1), . . . , ft(Xt))) ≤ ε ·
1

(1− 2−k)
.

We can see above that the generic nmExtractor fulfils the Leakage resilient storage condition
with significantly worse parameters than required. This can be fixed via a small change to the
partition of the domain.

In the partition definition we will add one more set:

Definition 22. Let fi : K→ K be a tampering function. We define the following partition of
K for U uniformly distributed over K.

Cfiid = {x ∈ K | fi(x) = x},

Cfi[a;b] = {x ∈ K \ Cfid | H∞(U |f(U) = fi(x)) ∈ [a, b]}

Cfi1-1 = Cfi
[0; 6

7t
δd]

Cfimed = Cfi
[6
7t
δd;

1
3
·n+ 2

7t
δd]

Cfirest = Cfi
[1
3
·n+ 2

7t
δd; n−(δl−log 1

γ
−k)]

Cficonst = Cfi
[n−(δl−log 1

γ
−k); n].

34

Which leads to small modification of Cubes Classes:

Definition 23. 1. There is only 1 cube in Class-1:

∀i Ai = Cfiid , Bi = Cgiid .

2. Class-2 are the cubes of form:

Ai ∈ {Cfiid , C
fi
1−1} and Bi ∈ {Cgiid , C

gi
1−1},

and there exists i such that Ai 6= Cfiid or Bi 6= Cgiid .

3. Class-3 cubes are of the form:

Ai ∈ {Cfiid , C
fi
1−1, C

fi
med, C

fi
rest, C

fi
const} and Bi ∈ {Cgiid , C

gi
1−1, C

gi
med, C

gi
rest, C

gi
const},

and there exists i such that Ai ∈ {Cfimed, C
fi
rest, C

fi
const} or Bi ∈ {Cgimed, C

gi
rest, C

gi
const},

and in each half of the vector describing this cube there is at most 12 coordinates that are
equal to C ·irest or C ·iconst.

4. Class-4 includes all cubes that weren’t included above except
∏t
i=1C

fi
const ×

∏t
i=1C

gi
const

5. Class-5 includes only one cube that is

t∏
i=1

Cficonst ×
t∏
i=1

Cgiconst

This change does not influence the case analysis much.

Case 1, 2, 3 stay exactly the same
Case 4 In inequality (6) we get H∞(f(X̃)) ≥ (δl − log 1

γ − k)− log 1
γ − k , thus later on we

obtain maxz Pr(〈f(X̃), g(S′)〉K = z) ≤ 2
−((δl−log 1

γ
−k)−log 1

γ
−k)

and then

max
z

Pr(〈f(X ′), g(S′)〉K = z) = max
z

Pr(〈f(X̃), g(S′)〉K = z | D(X̃) 6= ⊥)

≤ 2−
((δl−log 1

γ−k)−log 1
γ−k)−log 1

γ−k
t

Thus via the above and (5) we get that for any m ∈ K the following holds:

max
z

Pr(〈f(X ′), g(S′)〉K = z|〈X ′, S′〉K = m,K) ≤ 2−
δl−3 log 1

γ−3k

t + 2 · 2−
1
2
n

≤ 2−Ω(δl),

when δl − 3 log 1
γ − 3k = Ω(δl) (this will be trivially fulfilled by the choice of γ and k as in

Theorem 5 and Definition 10).

This gives us the following parameters for Case 4. Let C be a Class-4 cube and

Pr ((X,S) ∈ C) | K) ≥ γ 1

ρ
,

then
Pr(fV (〈X;S〉K) = 〈f(X); g(S)〉K | K, (X,S) ∈ C) ≤ 2−Ω(δl)

35

Case 5 The parameters are unchanged. The only point where the modified partition comes
into play is at equation (13). Since

H∞(X ′i|fi(X ′i)) ≥ n− (δl − log
1

γ
− k)− log

1

γ
− k ≥ n− δl

we can use Lemma 17 to obtain equation (13).

Corollary 1. Since the above is true for any k it is possible to set k = 1
28tδd and all parameter

requirements will be fulfilled. Thus via Theorem 5 we obtain that for any T−source (ε, δ)-non-
malleable extractor there exists an explicit (δow, εow)-owCNMC with the following properties:

– δow ≤ 1
120tδ,

– εow ≤ r(2−Ω(δow)+O(ε)), where r is the number of tampering queries made by the adversary,
– Notice that if r is polynomial in δow and ε are negligible in δow then

εow ≤ negligible(δow)

for an adversary making at most poly(δow) queries.
– The rate of this owCNMC is equal to C · nmextrate where C is some constant and nmextrate

is the rate of underlying nmExtractor.

Proof. To put things together we repeat the same argument as in Section 6.7. We obtain that
for an adversary tampering r times:

Pr[Pr[K] ≤ ρ] ≤ ρτ + 2r ·
(
O(ρ) +O(εl) +O(εd) + 2−Ω(n) + 2−Ω(δl) + 2−Ω(δd) + γ

1

ρ

)
Via Lemma 17 we get that εd = 2ε+ 2−k and εl = 2ε. This in particular gives us that

Pr[Pr[K] ≤ 2−
1

60t
(1
2
δ)] ≤ 2−

1
60t

(1
2
δ)· 1

2t+2 + 2r · (O(2−
1

60t
(1
2
δ)) +O(ε) +O(2−k) + 2−Ω(n) + 2−Ω(δ) + 2−

1
55t

(1
2
δ))

which substituting the remaining parameters leads to

Pr[Pr[K] ≤ 2−
1

60t
(1
2
δ)] ≤ r · (2−Ω(δ) +O(ε)) .

ut
Recently, a 9-source non-malleable extractor was constructed by Chattopadhyay and Zuckerman
[CZ14].

Theorem 7 ([CZ14]). For some φ > 0 there exists a polynomial time construction of a (k, ε)
non-malleable 10-source extractor nmExt : (Fnq)10 → Fmq with k = (1 − φ)n, ε = 2−Ω(n) and
m = Ω(k). Moreover, nmExt is efficiently preimage samplable.

Using Corollary 1 we get:

Theorem 8. There exists an explicit (δ, ε)−owCNMC in the 94-split state model that encodes
m bits of message into n bits of codeword, with the following parameters:

– δ ≤ Θ(n),
– ε ≤ r · (2−Ω(δ) + O(2−Ω(n))), where r is the number of tampering queries made by the

adversary.
– For an adversary making poly(δ) queries

ε ≤ negligible(δ)

– Has constant code rate, i.e., the length of codeword is n = O(m).

36

Acknowledgements

The authors would like to thank Ilya Bogdanov who on Mathoverflow provided us with the
elegant proof of the Death-Zones Generation Lemma.

References

[AAnHKM+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta nad Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran. Optimal computational split state non-malleable codes. To appear in
TCC 16-A, 2016.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In STOC. ACM, 2014.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Information Processing Letters, 115(2):382–
385, 2015.

[AGM+14] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes resistant to permutations and perturbations. IACR Cryptology
ePrint Archive, 2014:841, 2014.

[AKO16] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-malleable codes
stronger. Cryptology ePrint Archive, Report Report 2015/1013, 2016. http://eprint.iacr.org/.

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In Moni Naor,
editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January
12-14, 2014, pages 155–168. ACM, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In TCC, 2014.

[CKM11] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in tamper resilience. In Advances
in Cryptology–ASIACRYPT 2011, pages 740–758. Springer, 2011.

[CMTV15] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-bit
public-key encryption via non-malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer
Science, pages 532–560. Springer, 2015.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in the constant split-state
model. FOCS, 2014.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-
source extractors. In Advances in Cryptology-CRYPTO 2013. Springer, 2013.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS, pages
434–452. Tsinghua University Press, 2010.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable codes. In Theory
of Cryptography Conference - TCC. Springer, 2014.

[FMNV15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper and
leakage resilient von neumann architecture. In Jonathan Katz, editor, Public-Key Cryptography
- PKC 2015 - 18th IACR International Conference on Practice and Theory in Public-Key
Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, volume 9020 of
Lecture Notes in Computer Science, pages 579–603. Springer, 2015.

[FMVW14] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 111–128.
Springer, 2014.

[GLM+03] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
Tamper-Proof (ATP) security: Theoretical foundations for security against hardware tampering.
In Moni Naor, editor, First Theory of Cryptography Conference — TCC 2004, volume 2951 of
LNCS, pages 258–277. Springer-Verlag, February 19–21 2003.

37

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. In
Theory of Cryptography, volume 9014 of Lecture Notes in Computer Science, pages 451–480.
Springer Berlin Heidelberg, 2015.

[Li16] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source extrac-
tors. arXiv Archive, arXiv:1608.00127, 2016. https://arxiv.org.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model. In
Advances in Cryptology–CRYPTO 2012, pages 517–532. Springer, 2012.

38

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

