
Continuous Non-Malleable Codes in the 8-Split-State Model

Divesh Aggarwal∗ Nico Döttling† Jesper Buus Nielsen‡ Maciej Obremski‡

Erick Purwanto∗

April 6, 2018

Abstract

Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs [DPW10],
provide a useful message integrity guarantee in situations where traditional error-correction (and
even error-detection) is impossible; for example, when the attacker can completely overwrite the
encoded message. NMCs have emerged as a fundamental object at the intersection of coding
theory and cryptography. In particular, progress in the study of non-malleable codes and the
related notion of non-malleable extractors has led to new insights and progress on even more
fundamental problems like the construction of multi-source randomness extractors.

A large body of the recent work has focused on various constructions of non-malleable codes
in the split-state model. Many variants of NMCs have been introduced in the literature i.e.
strong NMCs, super strong NMCs and continuous NMCs. The most general, and hence also
the most useful notion among these is that of continuous non-malleable codes, that allows for
continuous tampering by the adversary.

We present the first efficient information-theoretically secure continuously non-malleable
code in the constant split-state model, where there is a self-destruct mechanism which ensures
that the adversary loses access to tampering after the first failed decoding.

We believe that our main technical result could be of independent interest and some of the
ideas could in future be used to make progress on other related questions.

∗National University of Singapore
†Friedrich-Alexander-University Erlangen-Nuremberg
‡Aarhus University

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 78 (2017)

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs [DPW10], provide a
useful message integrity guarantee in situations where traditional error-correction (and even error-
detection) is impossible; for example, when the attacker can completely overwrite the encoded
message. NMCs have emerged as a fundamental object at the intersection of coding theory and
cryptography.

Informally, given a tampering family F , an NMC (Enc,Dec) against F encodes a given message
m into a codeword c ← Enc(m) in a way that, if the adversary modifies c to c′ = f(c) for some
f ∈ F , then the the message m′ = Dec(c′) is either the original message m, or a completely
“unrelated value”. Formally, we require that if m′ 6= m, then m′ can be simulated using just the
tampering function f , but without knowing anything about the tampered codeword c′.

As has been shown by the recent progress [DPW10, LL12, DKO13, ADL14, FMVW14, FMNV14,
CG14a, CG14b, CZ14, Agg15, ADKO15b, ADKO15a, AB16, CGL16, AGM+15b, AGM+15a, AAnHKM+16,
AKO17, Li17] NMCs aim to handle a much larger class of tampering functions F than traditional
error-correcting or error-detecting codes, at the expense of potentially allowing the attacker to re-
place a given message m by an unrelated message m′. NMCs are useful in situations where changing
m to an unrelated m′ is not useful for the attacker (for example, when m is the secret key for a
signature scheme.)

Continuous Non-malleable Codes. It is clearly realistically possible that the attacker repeat-
edly tampers with the device and observes the outputs. The definition in [DPW10] allows the ad-
versary to tamper the codeword only once. We call this one-shot tampering. Faust et al.[FMNV14]
consider a stronger model where the adversary can iteratively submit tampering functions fi and
learn mi = Dec(fi(c)). We call this the continuous tampering model. This stronger security notion
is needed in many settings, for instance when using NMCs to make tamper resilient computations
on von Neumann architectures [FMNV15]. As mentioned in [JW15], non-malleable codes can pro-
vide protection against these kind of attacks if the device is allowed to freshly re-encode its state
after each invocation to make sure that the tampering is applied to a fresh codeword at each step.
After each execution the entire content of the memory is erased. While such perfect erasures may
be feasible in some settings, they are rather problematic in the presence of tampering. Due to this
reason, Faust et al. [FMNV14] introduced an even stronger notion of non-malleable codes called
continuous non-malleable codes where security is achieved against continuous tampering of a single
codeword without re-encoding. Some additional restrictions are, however, necessary in the continu-
ous tampering model. If the adversary was given an unlimited budget of tampering queries, then,
given that the class of tampering functions is sufficiently expressive (e.g. it allows to overwrite
single bits of the codeword), the adversary can efficiently learn the entire message just by observ-
ing whether tampering queries leave the codeword unmodified or lead to decoding errors, see e.g.
[GLM+04].

To overcome this general issue, [FMNV14] assume a self-destruct mechanism which is trig-
gered by decoding errors. In particular, once the decoder outputs a special symbol ⊥ the device
self-destructs and the adversary loses access to his tampering oracle. This model still allows an ad-
versary many tamper attempts, as long as his attack remains covert. Jafargholi and Wichs [JW15]
considered four variants of continuous non-malleable codes depending on

• Whether tampering is persistent in the sense that the tampering is always applied to the
current version of the tampered codeword, and all previous versions of the codeword are lost.

1

The alternative definition considers non-persistent tampering where the device resets after
each tampering, and the tampering always occurs on the original codeword.

• Whether tampering to an invalid codeword (i.e., when the decoder outputs ⊥) causes a “self-
destruct” and the experiment stops and the attacker cannot gain any additional information,
or alternatively whether the attacker can always continue to tamper and gain information.

In this work, we will exclusively focus on continuous NMC in the non-persistent self-destruct
model. We shorthand such codes by sdCNMC.

Split-State Model. Although any kind of non-malleable codes do not exist if the family of
“tampering functions” F is completely unrestricted,1 they are known to exist for many large classes
of tampering families F .

In [DPW10] the authors considered one such natural family of tampering functions. They
gave a construction of an efficient code which is non-malleable with respect to bit-wise tampering,
i.e., tampering functions that modify each bit of the codeword arbitrarily but independently of the
value of the other bits of the codeword. Later works [DKO13, ADL14, CZ14, CG14b, Agg15, AB16,
Li17] provided efficient constructions in a stronger model called the s-split state model where the
codeword is split into s parts called states, which can each be tampered arbitrarily but independently
of the other states. If the codeword has length n, then the result of [DPW10] can be seen as a result
for the n-state model. The physical motivation for this model is that one might place the different
states on physically separated memories, for instance on different memory chips, and hope this
makes it impossible to tamper with one part in a way which depends on the value of the other part.
Clearly, one would like s to be as small as possible. This family is interesting since it seems naturally
useful in applications, especially when s is low and the shares y1, . . . , ys are stored in different parts
of memory, or by different parties. Not surprisingly, the setting of t = 2 appears the most useful
(but also the most challenging from the technical point of view), so it received the most attention
so far [DPW10, LL12, DKO13, ADL14, FMNV14, CG14a, CG14b, CZ14, ADKO15b, ADKO15a]
and is also the focus of our work.

While some of the above-mentioned results achieve security only against computationally
bounded adversaries, we focus on security in the information-theoretic setting, i.e., security against
unbounded adversaries. The known results in the information-theoretic setting can be summa-
rized as follows. First, [DPW10] showed the existence of (strong) non-malleable codes, and this
result was improved by [CG14a] who showed that the optimal rate of these codes is 1/2. Faust et
al. [FMNV14] showed the impossibility of continuous non-malleable codes against non-persistent
2-split-state tampering. Later [JW15] showed that continuous non-malleable codes exist in the
split-state model if the tampering is persistent, and [AKO17] gave an efficient construction of such
codes.

There have been a series of recent results culminating in constructions of efficient non-malleable
codes in the split-state model [DKO13, ADL14, CZ14, ADKO15a, CGL16, Li17].

1.2 Continuous Non-Malleable Codes in the Split-State Model and Our Result

Faust et al. [FMNV14] constructed a sdCNMC in the 2-state model which is secure against com-
putationally bounded adversaries. A recent result [AKO17] gave a construction of non-malleable

1In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c))) for any non-trivial function
f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related to m.

2

codes secure against persistent continuous tampering. It was shown in [FMNV14] that it is impos-
sible to construct an information theoretic sdCNMC for the much more interesting 2-state model
with non-persistent tampering. This leaves the following question open.

Question 1. Does there exist a code that is non-malleable in the c-split persistent continuous
tampering model for some constant c?

In [CMTV15] a sdCNMC was constructed in the bit-wise tampering model, which can be seen
as an n-state model. However, very little progress has been made towards resolving Question 1.
The only result that achieves some sort of non-malleable codes secure against persistent continuous
tampering is the result by Chattopadhyay, Goyal, and Li [CGL16]. They achieve this by con-
structing a so-called many-many non-malleable code in the 2-split state model. Their construction
achieves non-malleability as long as the number of rounds of tampering is at most nγ for some
constant γ < 1, where n is the length of the codeword. Their result has a natural barrier and it is
unlikely that their ideas can be used to achieve a construction that allows more than O(n) rounds
of tampering. This is both because their construction does not allow self-destruct and is for the
2-split state model, and it is known [FMNV14, AKO17] that continuous non-malleable codes with
ω(n) rounds of tampering is impossible both for the two split-state model and for the constant
split-state model that does not allow self-destruct.

We construct an information-theoretic sdCNMCs for the 8-state model.

Theorem 1 (Informal). There exists an efficient, explicit construction of non-persistent self-
destruct 2O(k)-round continuous 2−Ω(k)-non-malleable codes which encodes messages of length k
bits into 8 states, each of size O(k log k).

1.3 Overview of the Construction and Techniques

In this section, we will provide an overview of our construction and the main ideas for its secu-
rity proof. Our construction combines two Hadamard extractors with a 3-source non-malleable
extractor. The construction is given as follows.

1.3.1 Our Construction

Let K be a finite field of size 2n, which is an extension field F of size 2n/` for an appropriately
chosen divisor ` of n. Our construction uses the following:

• A three source non-malleable extractor nmExt : K3 → {0, 1}3k with k = θ(n/ log n), where
the min-entropy for each source is required to be at least (1− δ)n, for some constant δ,

• A 2-source Hadamard extractor 〈·, ·〉 : (K3)× (K3)→ K, and

• A 2-source Hadamard extractor 〈·, ·〉 : (F3`)× (F3`)→ F.

We define
nmExt′ : ({0, 1}n)3 → {0, 1}3k ∪ {⊥}

as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) ∈ 02k‖y for some y ∈ {0, 1}k, and ⊥,
otherwise.

Encoding: Our encoding procedure takes as input a message m ∈ {0, 1}k, and does the following.

• Sample X = (X1, X2, X3) from (K \ {0})3 uniformly such that nmExt(X) = 02k‖m.

3

• Sample S = (S1, S2, S3) from (K \ {0})3 uniformly such that nmExt(S) = 02k‖r for some
r in {0, 1}k.
• V = 〈X,S〉K.

• W = 〈X,S〉F.

• Output the eight parts (X1, X2, X3, S1, S2, S3, V,W).

Decoding: The decoding procedure is canonical, i.e., on input (x, s, v, w), we first check if x and
s pass the two inner product checks and are in the correct domains (i.e. all components
non-zero), we try to decode x and s and if neither reports an error we return the decoded
value of x.

The adversary, in each round, will choose some functions, f1, f2, f3, g1, g2, g3, h1 : K → K, h2 :
F→ F and will apply these functions to the eight respective parts. Let f(X) denote (f1(X1), f2(X2), f3(X3))
and g(S) denote (g1(S1), g2(S2), g3(S3)) In order to prove (continuous) non-malleability of the con-
struction, we need to show that even if we collect all the messages obtained after decoding the
tampered codewords in multiple rounds excluding any round where all the chosen functions are
identity functions (in this case decoding the tampered codeword yields the original message), this
should not reveal any useful information about the original message. To formalize this, we define
the tampering experiment to output a special symbol same whenever all functions are identity
functions. Then, it is required to prove that for any two messages, the output distributions of the
corresponding tampering experiments are statistically close to each other. In fact, in this work,
we consider a stronger notion of continuous non-malleable codes called super-strong continuous
non-malleable codes in which every time the adversary tampers (c→ c′), c′ 6= c, and c′ decodes to
a valid message, the adversary will learn the whole tampered codeword c′.2

1.3.2 Proof Ideas

Before looking at the ideas behind the security of our construction, it is instructive to revisit the
reason behind the impossibility of constructions for 2-state information-theoretic continuous non-
malleable codes [FMNV14]. The main idea behind the attack given in [FMNV14] was to find
a triple `, r0, r1 such that Dec(`, r0),Dec(`, r1) 6= ⊥. Given `, r0 and r1, the attack proceeds by
overwriting the first state with `, while the second state is overwritten by rb where b is the first bit
of the second state, thereby revealing one bit of information. Repeating this idea for different bits
of the codeword, after a linear number of rounds, the adversary will recover the entire codeword.

In our construction, if the adversary decides to preserve a significant amount of entropy of
the original codeword when tampering, i.e., the tampering function is close to being bijective,
then the non-malleability of nmExt should be sufficient to achieve not just non-malleability but
error detection - nmExt(f(X)) is close to being uniform and independent of nmExt(X) by the
non-malleability of nmExt, and hence the tampered codeword decodes to ⊥ with high probability.
However, if the adversary decides to carry only a very small amount of entropy into the tampered
codeword, there is nothing preventing him from learning some small amount of information as in
the attack by [FMNV14] described above. Generally, it is not possible to always detect such low
entropy tampering. Nevertheless, our proof ensures that every time the adversary tries to learn some
information about the original codeword, he will risk being detected with a probability proportional

2The reason we talk about this stronger tampering oracle is because it is much easier and cleaner to prove
statements in the super strong tampering model. One could hope that if one considers the weaker notion of continuous
non-malleable codes, one might be able to prove this result for a smaller number of parts, but all our effort in this
direction indicates that it is likely much harder to prove statements if we don’t allow super strong tampering.

4

to the amount of information he is trying to learn. To ensure that this will be the case, we will
carefully analyze how the adversary can learn anything about the codeword.

As mentioned above, the tampering experiment for our code is of the super-strong type, i.e.,
every time the adversary tampers (C → C ′), C ′ 6= C, and C ′ decodes to a valid message, the
adversary will learn the whole tampered codeword C ′. Notice that given

C ′ = (f1(X1), f2(X2), f3(X3), g1(S1), g2(S2), g3(S3), h1(V), h2(W))

all the adversary learns is that

• Xi ∈ Xi for i = 1, 2, 3

• S ∈ S for i = 1, 2, 3

• V ∈ V

• W ∈ W,

where X ×Y ×V ×W is the preimage of c′ for the function (f1, f2, f3, g1, g2, g3, h1, h2). In round r
of the tampering experiment the adversary will learn that the codeword belongs to some domain
X (r) × S(r) × V(r) × W(r), and will progressively try to make these sets as small as possible. In
the [FMNV14] attack described above, the domain size is reduced by a factor of two each time,
eventually revealing the entire codeword. As long as we can make sure that the domain doesn’t
become too small, we will be able to argue that if the adversary wants to learn more information
(make the set smaller) there is a significant risk of getting detected. We sketch below the idea for
showing this for r = 1, i.e. the first round, and the argument for the following rounds follows by a
slightly tricky inductive argument.

Depending on the functions f1, f2, f3, g1, g2, g3, we partition each of X1,X2,X3,S1,S2,S3 which
induces a partition on the whole domain. For instance X1 is partitioned into ` + 1 parts for some
parameter ` = ω(1), as follows.

• X1,0 is the part where the function f1 is identity, i.e., {x ∈ X1 : f1(x) = x}.

• For i = 1, . . . , `, X1,i is defined such that f1 has between 2n(i−1)/` and 2n·i/` preimages.

This implies that for each partition, the entropy of X1 conditioned on f1(X1) is nearly fixed (upto
an additive term n/` = o(n)). The other sets X2,X3,S1,S2,S3 are partitioned similarly. Each
partition of the form

X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j1 ,S3,j3 ,V,W .

Type−1 corresponds to i1 = i2 = i3 = j1 = j2 = j3 = 0.

Type−2 contains all partitions for which the following is true: (f(X) 6= X or g(S) 6= S) and
(f(X), g(S)) contains almost full information about (X,S), i.e., all tampering functions are
close to bijective or id, but at least one tampering function is not the identity.

Type−3 contains all partitions which do not fall into any of above classes (in particular it means
that (f(X), g(S)) lost quite a bit information about the original (X,S)), but (f(X), g(S))
still carries a substantial/medium amount of information/entropy about (X,S).

Type−4 contains all partitions which do not fall into any of above classes but (f(X), g(S)) still
carries some entropy

Type−5 contains the partition where (f(X), g(S)) is close to constant, i.e., i1 = i2 = i3 = j1 =
j2 = j3 = `.

5

Analysis of the tampering for each type of partition. In this section, we often implicitly
assume that X is independent of S in order to simplify the informal argument, even though there
is some limited dependence introduced by the fact that 〈X,S〉K ∈ V, etc. For details about why
this dependence does not hurt us, we would suggest the reader to read the full proofs.

We show that if for a given tampering function the codeword c falls into either class 2, 3 or 4,
then the tampering will be detected with probability 1− ε for a negligible ε:

In Type−2: On this part of the domain the adversary will attempt to apply close to bijective
tampering functions. Either this part of the domain will have negligible size, or the adversary
will be detected by the check for nmExt′.

In Type−3: We will argue that the check 〈f(X), g(S)〉F = h2(W) will fail. To see this, notice that
the adversary applied non-bijective tampering, and the vectors f(X), g(S) have a substantial
amount of entropy. The argument below follows from the strong extraction properties of
the inner-product extractor: The vectors f(X) and g(S) do not carry enough information
about X,S, i.e., one of H̃∞(X|f(X)) or H̃∞(S|g(S)) is not too small. Thus 〈X,S〉F and
〈f(X), g(S)〉F are almost independent. However f(X), g(S) have enough entropy to keep
〈f(X), g(S)〉F uniform. The adversary will not be able to guess 〈f(X), g(S)〉F even given
〈X,S〉F. Thus he will fail at the check h2(〈X,S〉F) = 〈f(X), g(S)〉F and this tampering will
be detected.

In Type−4: The reasoning is quite similar to Type−3, but we use the check on 〈f(X), g(S)〉K =
h1(V). The adversary applied far-from-bijective tampering, and the vectors f(X), g(S) still
have some small amount of entropy. The argument below follows from the strong extrac-
tion properties of the inner product extractor: The vectors f(X) and g(S) only carry a very
small amount of information about X,S. Thus 〈X,S〉K and 〈f(X), g(S)〉K are almost inde-
pendent. However f(X), g(S) still have enough entropy to keep 〈f(X), g(S)〉K unpredictable
(not uniform, but with substantial min-entropy). The adversary will not be able to guess
〈f(X), g(S)〉K even given 〈X,S〉K, thus he will fail at the check h1(〈X,S〉K) = 〈f(X), g(S)〉K
and this tampering will be detected.

This leads to the conclusion that the only way that the adversary can learn something and survive
(i.e. not get detected) is if the original codeword falls into Type−1 or Type−5. If the codeword
was in Type−1, the tampering experiment will output same (unless one of the inner product checks
fails and the tampered codeword decodes to ⊥). If the codeword was in Type−5, then the output
will be some codeword c′, and the adversary will learn whether the codeword is Type 1 or Type
5 with respect to the choice of functions f and g. Moreover, on Type−5 there might be close-
to-constant but non-constant functions (which, if he does not get detected, potentially provide
additional knowledge to the adversary).

Even if the adversary is in a Type 1 or Type 5 partition and succeeds to go to the next round
without causing self-destruct, this is not a reason to worry as long as the size of the domain remains
large enough. On the other hand, if the adversary can manage to land himself in a small enough
domain, this means that the adversary already obtained a lot of information about the codeword,
and might be able to recover the message. However, if such small domains are few and scarce, then
the probability that the adversary lands in such a domain is quite small. The main cause of concern
is if there are many such small domains that cover a significant fraction of the ambient space. In
the following, we show that this is not possible.

Type 1 or Type 5: Notice that the adversary is in a Type 1 or a Type 5 partition if either
each of i1, i2, i3, j1, j2, j3 is 0, or each is equal to `. Since the indices i1, i2, i3, j1, j2, j3 are

6

independently distributed random variables, a simple application of the Cauchy Schwarz
inequality shows that √

p1 +
√
p5 ≤ 1 ,

where p1 is the probability of being in a Type 1 partition, and p5 is the probability of being
a Type 5 partition.

Type 5: Just like in the case of Type 4 partitions, we have that the vectors f(X) and g(S) only
carry a very small amount of information about X,S. Thus 〈X,S〉K and 〈f(X), g(S)〉K
are nearly independent. The Type 5 partition corresponds to the domain where each of
f1, f2, f3, g1, g2, g3 is close to a constant and can be further subdivided such that for each of
these subpartitions, each of f1, f2, f3, g1, g2, g3 output a fixed value. Intuitively speaking, if
say, each of these functions takes two different values then there are potentially 64 different
values of 〈f(X), g(S)〉K (although some of these 64 values could be the same), and so the
function h1 cannot guess this value with sufficiently large probability, unless all the inner
products magically become equal. Formally, we show in this case that

p
7/8
5,1 + · · ·+ p

7/8
5,d ≤ p

7/8
5 ,

where p5,1, . . . , p5,d are the respective probabilities of being in various subpartitions of Type
5 such that h1(〈X,S〉K) = 〈f(X), g(S)〉K holds within these subpartitions.

Together, these results imply that

q
7/8
1 + q

7/8
2 + · · ·+ q

7/8
d+1 ≤ 1 , (1)

where q1, . . . , qd+1 is a renaming of p1, p5,1, . . . , p5,d. A simple application of Hölder’s inequality
implies that for any ε ≥ 0,∑

qi≤ε
qi =

∑
qi≤ε

q
7/8
i · q1/8

i ≤
∑
qi≤ε

q
7/8
i · ε1/8 ≤ ε1/8 .

For an appropriately chosen ε, this implies that it is not possible that there are many small domains
on which the decoder does not self-destruct, and their union is large. This concludes the intuitive
overview of our proof.

We would like to again emphasize that for ease of exposition, we ignored many intricacies of the
formal proof, and made many simplifying assumptions, one of these being that here we assumed
that X1, X2, X3, S1, S2, S3 are independent, even though they have some limited dependence (which
in particular introduces small errors in the statements above) because of the fact that 〈X,S〉K ∈ V,
〈X,S〉F ∈ W, nmExt′(X) 6= ⊥, and nmExt′(S) 6= ⊥. For the formal proofs, we refer the reader to
Section 3.

1.4 Conclusions and Open Questions

We give a construction of a 2−Ω(k)-non-malleable code from k bit messages to O(k log k) bit code-
words in the 8-split state model secure against continuous tampering. The main building block of
our construction is a non-malleable 3-source extractor construction from [Li17], and the Hadamard
2-source extractor.

Prior results achieved continuous non-malleability only for a sublinear number of rounds. The
main reason for difficulty in achieving non-malleable codes against continuous tampering is that

7

the adversary can potentially obtain useful information in each round, and even if one bit of
information about the codeword is obtained in each round, this is already catastrophic and does
not allow non-malleability beyond a linear number of rounds.

Our idea of proving that our construction achieves non-malleability for a large number of rounds
is that we ensure that whenever the adversary tampers to gain useful information about the code-
word, there is a risk of a decoding error resulting in self-destruct. Central to our proof strategy is
what we believe a very novel technique where we obtained and used an inequality of the form 1 to
bound the statistical distance between two random experiments. In particular, our main techni-
cal result in Theorem 5 where we bound the statistical distance between two random variables by
(ρq)c+ε, where q is proportional to the size of the domain, c is a constant, and ρ, ε are appropriately
chosen parameters, might seem very unusual, but appears naturally in our proof.

The following are natural questions left open by our work.

1. Improve the rate of our code.

2. Improve the number of split states to a number smaller than 8.

The first of these questions can be resolved immediately by a non-malleable extractor with pa-
rameters (output length) better than the one given in [Li17]. As for the second question, our
construction has a natural barrier and the number of states can likely not be improved by any
simple modification. However, we hope that our techniques can lead to new insights that might
help resolve this question.

Lastly, in the recent years, progress related to non-malleable codes has led to useful ideas
for solving even more fundamental problems like constructing better two-source or multi-source
extractors. We hope that our construction and/or techniques can find other similar applications.

2 Preliminaries

All logarithms are to the base 2. For any function h : X → Y, we define h−1(y) := {x ∈ X : h(x) =
y}.

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we
let Um denote the uniform distribution over {0, 1}m, the bit-strings of length m. We denote two
independent bitstrings of length m by Um, U

′
m. For a distribution or random variable X we write

x ← X to denote the operation of sampling a random x according to X. For a set S, we write
s← S as shorthand for s← US . For a random variable Z, f(Z)|Z∈C denotes the distribution f(Z)
conditioned on the event that Z ∈ C.

2.1 Entropy and Statistical Distance

The min-entropy of a random variable X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). We say

that X is an (n, k)-source if X ∈ {0, 1}n and H∞(X) ≥ k. For X ∈ {0, 1}n, we define the entropy
rate of X to be H∞(X)/n. We also define average (aka conditional) min-entropy of a random
variable X conditioned on another random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
where Ez←Z denotes the expected value over z ← Z. We have the following lemma.

Lemma 1 ([DORS08]). Let (X,W) be some joint distribution. Then,

8

• For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W)− s] ≥ 1− 2−s.

• If Z has at most 2` possible values, then H̃∞(X|(W,Z)) ≥ H̃∞(X|W)− `.

The statistical distance between two random variables W and Z distributed over some set S is

∆(W ;Z) := max
T⊆S

(|W (T)− Z(T)|) =
1

2

∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W ;Z) = maxD(Pr[D(W) = 1] − Pr[D(Z) = 1]), where D is a probabilistic function.
We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W ;Z) ≤ ε. We write ∆(W ;Z|Y) as shorthand
for ∆((W,Y); (Z, Y)). The following is folklore, and is easy to see.

Lemma 2. For any two random variables X,Y , and any randomized function f , we have that

∆(f(X); f(Y)) ≤ ∆(X;Y) .

2.2 Extractors

An extractor [NZ96] can be used to extract uniform randomness out of a weakly-random value
which is only assumed to have sufficient min-entropy. Our definition follows that of [DORS08],
which is defined in terms of conditional min-entropy.

Definition 1 (Extractors). An efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}m is an (average-
case, strong) (k, ε)-extractor, if for all X,Z such that X is distributed over {0, 1}n and H̃∞(X|Z) ≥
k, we get

∆((Z, Y,Ext(X;Y)) ; (Z, Y, Um)) ≤ ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k−m is called the entropy
loss of Ext, and the value d is called the seed length of Ext.

Definition 2 (Two-Source Extractors). A function Ext : X1 × X2 → Z is called a (k, ε)-two-
source extractor, if it holds for all tuples ((X1, Y1), (X2, Y2)) for which (X1, Y1) is independent of
(X2, Y2) and H̃∞(X1|Y1) + H̃∞(X2|Y2) ≥ k that

∆(Ext(X1, X2) ; UZ | Y1, Y2) ≥ ε .

A well-known flexible two-source extractor is the Hadamard extractor or inner-product extractor.

Lemma 3 ([CG88, ADL14]). For any finite field Fq of cardinality q and any positive integer n,
the function Ext : Fnq × Fnq → Fq given by

Ext(X1, X2) := 〈X1, X2〉 = X1,1 ·X2,1 + · · ·+X1,n ·X2,n

is a (k, ε)-two-source extractor for any k ≥ (n+ 1) log q + 2 log
(

1
ε

)
.

We denote the above inner product by 〈X1, X2〉Fq . We will drop the subscript if the field is
clear from the context.
We will also use non-malleable t-source extractor.

Definition 3 (Non-Malleable t-Source Extractor). A function nmExt : (X)t → Z is called
a t-source (k, ε)-non-malleable extractor if the following property holds. For all independently dis-
tributed tuples ((X1, Y1), (X2, Y2), . . . , (Xt, Yt)) such that H̃∞(Xi|Yi) ≥ k, and for any split-state

9

tampering function f = (f1, . . . , ft), fi : X → X such that there exists fi without fixed points, it
holds that

∆
(
nmExt(X) ; UZ | nmExt(f(X)), Y1, . . . , Yt

)
≤ ε ,

where X = (X1, . . . , Xt), and f(X) = (f1(X1), . . . , ft(Xt)).

The following result gives the best known 2-source non-malleable extractor.

Theorem 2 ([Li17]). For any finite field K of cardinality 2n, there exists a constant δ? ∈ (0, 1/3),
and a function nmExt2 : K2 → {0, 1}3k such that the function nmExt is a 2-source ((1−δ?)n, 2−1000k)
non-malleable extractor with k = Θ(n/ log n). Moreover, it is efficiently pre-image sampleable.

For this paper, we need a 3-source non-malleable extractor. The construction from the above
result can be easily modified to obtain a 3-source non-malleable extractor.

Theorem 3. For any finite field K of cardinality 2n, there exists a constant δ ∈ (0, 1/3), and
a function nmExt : K3 → {0, 1}3k such that the function nmExt is a 3-source ((1 − δ)n, 2−1000k)
non-malleable extractor with k = Θ(n/ log n). Moreover, it is efficiently pre-image sampleable.

Proof. Let (X1, Y1), (X2, Y2), (X3, Y3) be as in Definition 3. Consider the following construction.

nmExt(X1, X2, X3) := nmExt2(X1, X2)⊕ nmExt2(X2, X3)⊕ nmExt2(X3, X1) ,

where by ⊕, we mean the bitwise XOR function. Let the functions applied to the three parts be
f1, f2, f3, one of which has no fixed points. Without loss of generality, let f1 be the function with
no fixed points. We have that

H̃∞(X1 | Y1, nmExt2(X3, X1), nmExt2(f3(X3), f1(X1))) ≥ n− n · δ − 6k ≥ n(1− δ?) ,

and

H̃∞(X2 | Y2, nmExt2(X2, X3), nmExt2(f2(X2), f3(X3))) ≥ n− n · δ − 6k ≥ n(1− δ?) ,

where we assumed that δ = δ?/2, and δn ≥ 12k. Thus, the statistical distance between nmExt2(X1, X2)
and U3k conditioned on nmExt2(f1(X1), f2(X2)), Y1, nmExt2(X3, X1), nmExt2(f3(X3), f1(X1)), Y2,
nmExt2(X2, X3), and nmExt2(f2(X2), f3(X3)) is at most 2−1000k, which implies using Lemma 2 that

∆ (nmExt(X1, X2, X3) ; U3k | nmExt(f1(X1), f2(X2), f3(X3)) Y1, Y2, Y3) ≤ 2−1000k ,

2.3 Trace function

For a finite field A = F2m , and for its extension field B = F2n , we define the trace function
trB→A : B → A as (see for instance [SW15])

trB→A =

n
m
−1∑

i=0

x2m·i .

We will need the following properties of the trace function.

• Let A = F2m be a finite field, B = F2n be an extension field of A, and C = F2r be an extension
field of B. Then,

∀x ∈ C, trC→A(x) = trB→A(trC→B(x)) .

10

• It is convenient to choose the group isomorphism φ : An/m → B such that for any x, y ∈ An/m

〈x, y〉 = trB→A(φ(x) · φ(y)) .

These two together imply that for any finite field A = F2m , and for its extension field B = F2n ,
and any integer `, and any x, y ∈ B`, there is a group isomorphism from ψ : B` → An`/m such that

〈ψ(x), ψ(y)〉A = trB→A(〈x, y〉B) .

We will need this result on many occasions. Using a slight abuse of notation, we will denote
〈ψ(x), ψ(y)〉A by 〈x, y〉A.

2.4 Definitions related to Non-Malleable Codes

Definition 4 (Coding Schemes). A coding scheme is a pair (Enc,Dec), where Enc :M→ C is
a randomized function and Dec : C → M∪ {⊥} is a deterministic function, such that it holds for
all M ∈M that Dec(Enc(M)) = M .

We will now define the continuous super strong tampering experiment. In this experiment
the adversary is provided with the tampered codeword C ′ (instead of the output of the decoder)
whenever C ′ 6= C and the decoder does not output ⊥.

Definition 5 ((Continuous-) Super Strong Tampering Experiment). We will define con-
tinuous non-persistent self-destruct non-malleable codes analogously to [JW15]. Fix a coding scheme
(Enc,Dec) with message space M and codeword space C. Also fix a family of functions F : C → C.
We will first define the tampering oracle TampstateC (f), for which initially state = alive. For a
tampering function f ∈ F and a codeword c ∈ C define the tampering oracle by

Tampstatec (f) :
If state = dead output ⊥
c′ ← f(c)
If c′ = c output same
m′ ← Dec(c′)
If m′ = ⊥ set state← dead and output ⊥
Otherwise output c′

Fix a codeword c ∈ C. We define the continuous tampering experiment CTrC by

CTrC :
state← alive

For i = 1 to r
Choose functions f
v ← Tampstatec (f)
Output v

Definition 6. Let (Enc,Dec) be a coding scheme and CT be its corresponding continuous tampering
experiment for a class F of tampering functions. We say that (Enc,Dec) is an ε-secure r-round
continuously non-malleable code against F , if it holds for all tampering adversaries A and all pairs
of messages m0,m1 ∈M that

CTrC0
(A) ≈ε CTrC1

(A),

where C0 ← Enc(m0) and C1 ← Enc(m1).

11

Remark 1. [AKO17] In any model allowing bitwise tampering, in particular in the t−split state
model, the self-destruct mechanism is necessary when the size of the messages is at least 3.

The only family of tampering functions we are concerned with in this work are split state
tampering functions.

Definition 7 (Split State Tampering). Let C = C1 × · · · × Cs. The class of spit state tam-
pering functions Fs consists of all functions f of the form f = (f1, . . . , fs) where f(c1, . . . , cs) =
(f1(c1), . . . , fs(cs)) for all (c1, . . . , cs) ∈ C1× · · ·×Cs. Here the fi are arbitrary functions Ci → Ci.

2.5 Some Useful Results

Lemma 4 (Deathzone Generation Lemma). Let Fq be a finite field. Let A1, . . . , At, B1, . . . , Bt
be independent, non-zero random variables. Denote A = (A1, . . . , At) and B = (B1, . . . , Bt). Then

max
c∈F

∑
a,b∈Ft:〈a,b〉F=c

(
Pr
[
(A,B) = (a, b)

]) 2t−1
2t ≤ 1 .

Proof. Let us begin with Young’s inequality for convolution:

||f1 ∗ f2 ∗ · · · ∗ ft||r ≤
t∏
i=1

||fi||pi

whenever
∑t

i=1
1
pi

= 1
r + n− 1 and +∞ ≥ p1, . . . , pt, r ≥ 1.

We will identify random variable Ai with its distribution Ai(.) where Ai(x) = Pr[Ai = x]. We
define two convolutions:

(Ai ∗× Bi)(z) =
∑

x,y :xy=z

Ai(x)Bi(y) ,

(Ai ∗+ Bi)(z) =
∑

x,y :x+y=z

Ai(x)Bi(y) .

Notice that for every i, via Young’s inequality, we get

1 = ||Aαi (.)|| 1
α
· ||Bα

i (.)|| 1
α
≥ ||Aαi (.) ∗× Bα

i (.)|| 1
2α−1

for 1/2 ≤ α ≤ 1.
Notice again via Young’s inequality for the ”additive” convolution, we get

1 ≥
t∏
i=1

||Aαi (.) ∗× Bα
i (.)|| 1

2α−1

≥ ||[Aαi (.) ∗× Bα
i (.)] ∗+ · · · ∗+ [Aαt (.) ∗× Bα

t (.)]|| 1
2nα−(2n−1)

,

for 2t−1
2t ≤ α ≤ 1.

Now we take α = 2t−1
2t and we get

1 ≥ ||[Aαi (.) ∗× Bα
i (.)] ∗+ · · · ∗+ [Aαt (.) ∗× Bα

t (.)]||∞ .

12

Lemma 5. Suppose 2 ∆(P ;Q) =
∑n

i=1 |pi − qi| = ε, where pi = Pr[P = xi] and qi = Pr[Q = xi];
and

m∑
i=1

p ri ≤ α ,

for r < 1. Then
m∑
i=1

q ri ≤ α + εr ·m1−r .

Proof.

m∑
i=1

q ri =

m∑
i=1

(pi + |pi − qi|) r

≤
m∑
i=1

(p ri + |pi − qi| r)

=

m∑
i=1

p ri +

m∑
i=1

|pi − qi| r

≤ α +

m∑
i=1

|pi − qi| r

≤ α +

(
m∑
i=1

|pi − qi|

) r

·

(
m∑
i=1

1

) 1−r

(2)

= α + εr ·m1−r ,

where inequality 2 follows from Hölder’s inequality.

Lemma 6 ([CG14b]). Let D and D′ be distributions over the same finite space Ω, and suppose
they are ε-close to each other. Let E ⊆ Ω be any event such that D(E) = p. Then, the conditional
distributions D|E and D′|E are (ε/p)-close.

3 From One-time to Continuous Tampering

3.1 Our construction

By Theorem 3, we have that there exists a constant c, such that for all n, and k ≤ c·n
logn , there is a

function
nmExt : (K)3 → {0, 1}3k

that is a (1 − δ, 2−1000k) non-malleable 3-source extractor. We choose the largest such k =
Θ(n/ log n) such that ` = n

50k = O(log n) is an integer. Also, define

nmExt′ : ({0, 1}n)3 → {0, 1}3k ∪ {⊥}

as nmExt′(x1, x2, x3) = nmExt(x1, x2, x3) if nmExt(x1, x2, x3) ∈ 02k‖y for some y ∈ {0, 1}k, and ⊥,
otherwise.

Let K be a finite field of size 2n, and let F be a finite field of size 250k. Notice that there is a
natural bijection between K and F`. We further assume that k ≤ min

(
δn

1000 ,
n

5000

)
.

13

Encoding: Our encoding procedure Enc takes as input a message m ∈ {0, 1}k, and does the
following.

• Sample X from (K \ {0})3 uniformly such that nmExt(X) = 02k‖m.

• Sample S from (K \ {0})3 uniformly such that nmExt(S) = 02k‖r for some r in {0, 1}k.
• V = 〈X,S〉K.

• W = 〈X,S〉F.

• Output (X,S, V,W).

Decoding: Our decoding procedure Dec takes as input some x, s, v, w and does the following.

• If (x, s, v, w) /∈ (K \ {0})6 ×K× F, then output ⊥.

• If nmExt′(x) = ⊥, output ⊥.

• If nmExt′(s) = ⊥, output ⊥.

• If v 6= 〈x, s〉K, output ⊥.

• If w 6= 〈x, s〉F, output ⊥.

• Otherwise, output m∗, where nmExt(x) = 02k‖m∗.

3.2 The statement of the Main Result

Let f1, f2, f3, g1, g2, g3, h1 : K → K, h2 : F → F be arbitrary functions, and let f = (f1, f2, f3) and
g = (g1, g2, g3).

Definition 8 (Continuous Tampering Experiment). We will first define the tampering oracle
Tampstatec (f, g, h1, h2), for state ∈ {alive, dead} and for

c = (x1, x2, x3, s1, s2, s3, 〈x, s〉K, 〈x, s〉F) .

For a tampering function (f, g, h1, h2) define the tampering oracle by

Tampstatec (f, g, h1, h2) :
If state = dead output ⊥
If (x, s, 〈x, s〉K, 〈x, s〉F) = (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F) output same
If (nmExt′(f(x)) = ⊥)

or (nmExt′(g(s)) = ⊥)
or (〈f(x), g(s)〉K 6= h1(〈x, s〉K))
or (〈f(x), g(s)〉F 6= h2(〈x, s〉F))
set state← dead and output ⊥

Otherwise output (f(x), g(s), h1(〈x, s〉K), h2(〈x, s〉F)

Fix some c = (x, s, v, w), with x, s ∈ K3, v ∈ K, and w ∈ F. We define the continuous tampering
experiment CTrc by
CTrc :

state← alive
For i = 1 to r

Choose functions f1, f2, f3, g1, g2, g3, h1, h2.
ψ ← Tampstatec (f, g, h1, h2).
Output ψ

14

The following result which shows that continuously tampering a codeword for polynomially
many rounds does not reveal any useful information about the codeword.

Theorem 4. Let X,S be uniform in (K \ {0})3 conditioned on the event that nmExt′(X) 6= ⊥ and
nmExt′(S) 6= ⊥. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

For any integer r ≥ 0, we have that

∆
(
(CTrC , nmExt(X)) ; (CTrC , 0

2k‖Uk)
)
≤ 2−2k · 10 · r ,

where Uk is a uniform k-bit string independent from X,S.

The main result of the paper is obtained as an easy corollary of Theorem 4, as stated below.

Corollary 1. Let m0,m1 ∈ {0, 1}k, and let C(0) ← Enc(m0), and let C(1) ← Enc(m1). For any
integer r ≥ 0, we have that

∆
(
(CTr

C(0) ; (CTr
C(1)

)
≤ 2−k · 20 · r .

Proof. By Theorem 4, for any r ≥ 0, and the random variable

C = (X,S, 〈X,S〉K, 〈X,S〉F)

we have that
∆
(
(CTrC , nmExt(X)) ; (CTrC , 0

2k‖Uk)
)
≤ 2−2k · 10 · r ,

where X,S are distributed as in Theorem 4. Thus conditioning on the event that Dec(C) = mi for
i = 0, 1, which is the same as the event that nmExt(X) = 02k‖mi and using Lemma 6, we get that

∆
(
(CTrC , nmExt(X))|nmExt(X)=02k‖m0

; (CTrC , 0
2k‖Uk)|Uk=m0

)
= ∆

(
(CTr

C(0) ; (CTrC
)

≤ 2−k · 10 · r ,

and

∆
(
(CTrC , nmExt(X))|nmExt(X)=02k‖m1

; (CTrC , 0
2k‖Uk)|Uk=m1

)
= ∆

(
(CTrC0 ; (CTrC

)
≤ 2−k · 10 · r ,

The result then follows by triangle inequality.

To prove Theorem 4, we will show the more general statement, i.e., Theorem 5 which imme-
diately implies Theorem 4. We introduce the following parameters: ρ = 2−40k. Also, for any sets
X ,S ⊆ K3, V ⊆ K and W ⊆ F, we shorthand

p[X ,S,V,W] := Pr[(X̃, S̃, 〈X̃, S̃〉K, 〈X̃, S̃〉F) ∈ X × S × V ×W]

and

q[X ,S,V,W] := Pr[(X̃, S̃, 〈X̃, S̃〉K, 〈X̃, S̃〉F) ∈ X × S × V ×W | nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]

where X̃, S̃ are uniform in K3.

15

Remark 2. Our proof will proceed by partitioning the space in a way that the eight parts of our
codeword remain independent. We introduced above the definition of the probability of landing in
a particular partition. The reason we needed two different definitions depending on whether the
codeword is a valid codeword or not is because we want to prove a statement for valid codewords but
the proof technique crucially requires us to prove statements assuming that the eight parts of the
codeword are independent. The following result shows that as long as q[X ,S,V,W] is not too small,
p[X ,S,V,W] and q[X ,S,V,W] are nearly equal. This statement is required only to overcome the
above mentioned technical annoyance and the reader can safely skip the proof.

Lemma 7. Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and
S = (S1,S2,S3). If q[X ,S,V,W] ≥ 2−800k, then

p[X ,S,V,W]

q[X ,S,V,W]
= 1± 2−180k ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W]

q[X ,S,V,W]
= 1± 2−180k ,

where X̃, S̃ are uniform in K3, and Un is uniform in K.

Theorem 5. Let X1,X2,X3,S1,S2,S3 ⊆ K \ {0}, V ⊆ K, and let W ⊆ F. We denote X =
(X1,X2,X3) and S = (S1,S2,S3). Let (X,S) be random variables uniform in {0, 1}6n conditioned
on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V,
and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

For any integer r ≥ 0, we have that

∆
(

(CTrC , nmExt(X)) ; (CTrC , 0
2k‖Uk)

)
≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k , (3)

where Uk is a uniform k-bit string independent from X,S.

We will prove Theorem 5 by partitioning the ambient space into appropriate subsets such that
Equation 3 holds for each of these partitions. Theorem 5 can then be shown by the following
lemma.

Lemma 8. Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and
S = S1,S2,S3. Let X,S be random variables uniform in {0, 1}6n conditioned on the event that
Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W.
Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Let P1,P2, . . . ,Pt be a partitioning of X ×S ×V ×W. Then we have that for any integer r ≥ 0, if

∆
(

(CTrC , nmExt(X))|C∈Pj ; (CTrC , 0
2k‖Uk)|C∈Pj

)
≤ εj

then

∆
(

(CTrC , nmExt(X)) ; (CTrC , 0
2k‖Uk)

)
≤

t∑
j=1

q[Pj]
q[X × S × V ×W]

· εj ,

where Uk is a uniform k-bit string independent from X,S.

16

Proof. Let A be the sample space of (CTrC , nmExt(X)). Then, by definition,

∆ = ∆
(

(CTrC , nmExt(X)) ; (CTrC , 0
2k‖Uk)

)
is given by

∆ =
1

2
·
∑
a∈A

∣∣∣Pr[(CTrC , nmExt(X)) = a]− Pr[(CTrC , 0
2k‖Uk) = a]

∣∣∣
=

1

2
·
∑
a∈A

∣∣∣ t∑
j=1

Pr[(CTrC , nmExt(X)) = a, C ∈ Pj]− Pr[(CTrC , 0
2k‖Uk) = a, C ∈ Pj]

∣∣∣
≤ 1

2
·
∑
a∈A

t∑
j=1

Pr[C ∈ Pj] ·
∣∣∣Pr[(CTrC , nmExt(X)) = a | C ∈ Pj]− Pr[(CTrC , 0

2k‖Uk) = a | C ∈ Pj]
∣∣∣

=
1

2
·

t∑
j=1

Pr[C ∈ Pj] ·
∑
a∈A

∣∣∣Pr[(CTrC , nmExt(X)) = a | C ∈ Pj]− Pr[(CTrC , 0
2k‖Uk) = a | C ∈ Pj]

∣∣∣
=

t∑
j=1

q[Pj]
q[X × S × V ×W]

· εj .

We will now partition each of X1,X2,X3,S1,S2,S3 which will induce a partitioning of the whole
space. The partitions are chosen in a way that if, say, Xi (respectively, Si) for i ∈ {1, 2, 3} is
uniformly distributed over a particular partition of Xi (respectively, Si), then this gives a precise
estimate of H̃∞(Xi|fi(Xi)) (respectively, H̃∞(Si|gi(Si)).

Definition 9 (Partition). We partition the set X1 ⊆ {0, 1}n based on the function f1 as follows.

1. X1,0 = {x ∈ X1 : f1(x) = x}.

2. X1 = X1 \ X1,0.

3. For i = 1, . . . , `− 1, X1,i = {x ∈ X1 : |f−1
1 (f1(x)) ∩ X1| ∈ [2100k·(i−1), 2100k·i)}.

4. X1,` = {x ∈ X1 : |f−1
1 (f1(x)) ∩ X1| ≥ 2100k·(`−1)}

X2,X3,S1,S2,S3 are partitioned similarly as above.

We classify the partitions obtained according to the following types.

Definition 10 (Classification of Partitions). Let i1, i2, i3, j1, j2, j3 be one of {0, 1, . . . , `}. We
then classify the partition

P := X1,i1 ×X2,i2 ×X3,i3 × S1,j1 × S2,j2 × S3,j3 × V ×W

of X × S × V ×W as follows.

Type 1: We say that P is a Type 1 partition if i1 = i2 = i3 = j1 = j2 = j3 = 0.

Type 2: We say that P is a Type 2 partition if

1. P is not a Type 1 partition, i.e., at least one of i1, i2, i3, j1, j2, j3 > 0.

17

2. Each of i1, i2, i3, j1, j2, j3 is at most δn
100k − 1.

Type 3: We say that P is a Type 3 partition if the following hold

1. P is not a Type 1 or Type 2 partition, i.e., at least one of i1, i2, i3, j1, j2, j3 >
δn

100k − 1.

2. i1 + i2 + i3 + j1 + j2 + j3 ≤ n
40k .

Type 4: We say that P is a Type 4 partition if

1. P is not a Type 1, 2, or 3 partition, , i.e., i1 + i2 + i3 + j1 + j2 + j3 >
n

40k .

2. At least one of i1, i2, i3, j1, j2, j3 is not `.

Type 5: We say that P is a Type 5 partition if i1 = i2 = i3 = j1 = j2 = j3 = `.

In the following we classify partitions of Type 1 and Type 5 further into subpartitions, but
before this, we introduce the following definition.

Definition 11. We define the following subsets of V.

• Vsame = {v ∈ V : h1(v) = v}.

• Vsame = V \ Vsame.

• For all y ∈ {0, 1}n, Vy = {v ∈ V : h1(v) = y}.

• For all y ∈ {0, 1}n, Vy = V \ Vy.

We similarly define Wsame,Wsame,Wz,Wz for all z ∈ F via the function h2.

Using this classification, we now further partition Type 1 and Type 5 partitions.

Definition 12. Let Xsame = X1,0 ×X2,0 ×X3,0 and let Ssame = S1,0 × S2,0 × S3,0

Type 1a: We say that Xsame × Ssame × Vsame ×Wsame is a Type 1a partition.

Type 1b: We say that the following are Type 1b partitions:

• Xsame × Ssame × V ×Wsame.

• Xsame × Ssame × Vsame ×Wsame.

Definition 13. For a = (a1, a2, a3) ∈ {0, 1}3n, let

Xa = {(x1, x2, x3) ∈ X1,` ×X2,` ×X3,` : f1(x1) = a1, f2(x2) = a2, f3(x3) = a3} .

Similarly, define Sb for b = (b1, b2, b3) ∈ {0, 1}3n.

Type 5a: We say that Xa × Sb × V〈a,b〉K ×W〈a,b〉F is a Type 5a partition.

Type 5b: We say that the following are Type 5b partitions:

• Xa × Sb × V ×W〈a,b〉F
• Xa × Sb × V〈a,b〉K ×W〈a,b〉F.

If a partition P is of Type T , then we denote it as Type(P) = T , where T ∈ {1a, 1b, 2, 3, 4, 5a, 5b}.
Before bounding the required statistical distance for each partition, we will prove a few general

results.

18

Lemma 9. Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and
S = (S1,S2,S3). Let |Xi| ≥ 2n−100k, |Si| ≥ 2n−100k for i = 1, 2, 3, and let q[X ,S,V,W] ≥ 2−800k.
Let (X,S) be random variables uniform in K3 conditioned on the event that Xi ∈ Xi, Si ∈ Si for
i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then

∆
(
nmExt(X) ; 02k‖Uk

)
≤ 2−990k ,

where Uk is a uniform k-bit string independent from X,S.

Proof. Notice that if X and S were independent and uniform then this would follow trivially from
the fact that nmExt is a 3-source extractor (Notice that we don’t need the non-malleability property
of nmExt for this part of the proof). Thus, in order to show this, it is sufficient to establish that X
and S are nearly independent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. We show this
as follows.

LetX ′, S′ be distributed independently and uniform in X ,S, respectively. Notice that H∞(X ′) ≥
3n − 300k, and H∞(S′) ≥ 3n − 300k, and hence H̃∞(X ′|nmExt(X ′)) ≥ 3n − 303k. By Lemma 3,
we get that

(〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ≈2−(1000k) (Un, nmExt(X ′), nmExt(S′)) ,

where we assumed that n ≥ 5000k. Since 〈X ′, S′〉F = trK→F(〈X ′, S′〉K), where trK→F is the field
trace function, we have that

(〈X ′, S′〉K, 〈X ′, S′〉F, nmExt(X ′), nmExt(S′)) ≈2−1000k (Un, trK→F(Un), nmExt(X ′), nmExt(S′)) .

Let (X̃, S̃) be jointly distributed as (X ′, S′) conditioned on 〈X ′, S′〉K ∈ V, 〈X ′, S′〉F ∈ W. Thus,
by Lemma 6, we get that

(nmExt(X̃), nmExt(S̃)) ≈2−1000k (nmExt(X ′), nmExt(S′)) .

Also, since H∞(X ′i) ≥ n − 100k ≥ n(1 − δ), H∞(S′i) ≥ n − 100k ≥ n(1 − δ) for n = 1, 2, 3. Thus,
by Theorem 3, we have that

(nmExt(X ′), nmExt(S′)) ≈2·2−1000k (Uk, U
′
k) .

By triangle inequality, we get that

(nmExt(X̃), nmExt(S̃)) ≈3·2−1000k (Uk, U
′
k) .

Conditioning on nmExt′(X̃) 6= ⊥, and nmExt′(S̃) 6= ⊥ and applying Lemma 6, we obtain the desired
result.

We now show that for any given partition, if the tampering oracle outputs ⊥ with high proba-
bility, then the desired statistical distance for that particular partition is small.

Lemma 10. Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3) and
S = (S1,S2,S3). Let (X,S) be random variables uniform in {0, 1}6n conditioned on the event that
Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W.
Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

19

If
Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1− ε

then for any integer r ≥ 0

∆
(

(CTrC , nmExt(X)) ; (CTrC , 0
2k‖Uk)

)
≤ ∆

(
nmExt(X) ; 02k‖Uk

)
+ 2ε ,

where Uk is a uniform k-bit string independent from X,S.

Proof. Let TC denote TampstateC (f, g, h1, h2). Notice that for any m ∈ {0, 1}3k, we have that

Pr[TC = ⊥, nmExt(X) = m] ≤ Pr[nmExt(X) = m] .

Since we know that the statistical distance between two random variables A and B is∑
a:Pr[A=a]>Pr[B=a]

(Pr[A = a]− Pr[B = a]) ,

we have that
∆ ((TC , nmExt(X)) ; (⊥, nmExt(X))) = Pr[TC 6= ⊥] ≤ ε .

This implies that
∆ ((CTrC , nmExt(X)) ; (⊥r, nmExt(X))) ≤ ε , (4)

where by⊥r we mean the tampering oracle outputs⊥ in the first and hence in each of the subsequent
rounds. By equation 4 and Lemma 2, we have that

∆
(

(CTrC , 0
2k‖Uk) ; (⊥r, 02k‖Uk)

)
= ∆ (CTrC ; ⊥r) ≤ ε , (5)

By equation 4 and equation 5, and the triangle inequality, we get the desired result.

It is easy to see that when X,S are restricted to “belong” to a partition of Type 1b and
5b, the tampering oracle outputs ⊥ with probability 1 and hence for partitions of this type, the
corresponding statistical distance can be bounded using Lemma 10 and Lemma 9. We will now see
that a similar result holds for Type 2, 3, and 4.

Lemma 11. [Type 2 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j3 ,S3,j3 ,V ⊆ K, and let W ⊆ {0, 1}2k.
We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? = S1,j1 ,S2,j2 ,S3,j3. Let (X ?,S?,V,W) be a partition
of Type 2, and let q[X ?,S?,V,W] ≥ 2−45k. Let X,S be random variables uniform in {0, 1}6n
conditioned on the event that Xt ∈ Xt,it, St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1− 2 · 2−2k .

Proof. In this lemma, the given partition is of Type 2, which means that at least one of i1, i2, i3, j1, j2, j3 6=
0, and so without loss of generality, let i1 > 0. If X1, X2, X3 were independent random variables
then, by the non-malleability property of the non-malleable extractor, and the fact that f, g are
nearly bijective functions, nmExt(X) and nmExt(f(X)) are close to being uniform and independent.

20

However the constraint that 〈X,S〉K ∈ V and 〈X,S〉F ∈ W might introduce dependence between
X1, X2, X3.

To overcome this hurdle, it is sufficient to establish that X1, X2, X3, S1, S2, S3 are nearly inde-
pendent given partial knowledge about 〈X,S〉K, and 〈X,S〉F. The proof of this is almost identical
to that of Lemma 9. The details follow.

Firstly, by Lemma 7, we have that

p[X ,S,V,W] ≥ 2−45k−1 ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1 ,

where X̃, S̃ are independent and uniform in K3. Let X ′, S′ be distributed independently and
uniform in X ?,S?, respectively. Notice that H∞(X ′) ≥ 3n− 45k− 1, and H∞(S′) ≥ 3n− 45k− 1,
and hence H̃∞ (X ′|nmExt(X ′), nmExt(f(X ′))) ≥ 3n− 51k − 2. By Lemma 3, we get that

∆
(
〈X ′, S′〉K ; Un|nmExt(X ′), nmExt(f(X ′))

)
≤ 2−1000k ,

where we use the fact that n ≥ 5000k. Since 〈X ′, S′〉F = trK→F(〈X ′, S′〉K), where trK→F is the field
trace function, we have that

∆
(
〈X ′, S′〉K, 〈X ′, S′〉F ; Un, trK→F(Un)|nmExt(X ′), nmExt(f(X ′))

)
≤ 2−1000k ,

Let (X̃, S̃) be jointly distributed as (X ′, S′) conditioned on 〈X ′, S′〉K ∈ V, 〈X ′, S′〉F ∈ W. Thus,
by Lemma 6, we get that

∆(
(
nmExt(X̃), nmExt(f(X̃)) ;

(
nmExt(X ′), nmExt(f(X ′))

)
≤ 2−955k .

Since H∞(X ′i) ≥ n− 45k ≥ n(1− δ), for i = 1, 2, 3, by Theorem 3, we have that

∆
(
nmExt(X ′) ; U3k | nmExt(f(X ′))

)
≤ 2−1000k .

Also, since the partition is of Type 2 and hence i1, i2, i3 are at most δn
100k−1, H∞(fi(X

′
i)) ≥ n(1−δ)

for i = 1, 2, 3. Thus, using Theorem 3 we have that

∆
(
nmExt(f(X ′)) ; U ′3k

)
≤ 2−1000k .

By triangle inequality, we get that

(nmExt(X̃), nmExt(f(X̃)) ≈3·2−1000k (U3k, U
′
3k) .

Conditioning on nmExt′(X̃) 6= ⊥, by Lemma 6, we get that

(nmExt(X), nmExt(f(X)) ≈2−98k (02k‖Uk, U ′3k) .

Thus, the probability that nmExt′(f(X)) = ⊥, and hence TampstateC (f, g, h1, h2) = ⊥ is at least
1− 2−2k − 2−98k.

Lemma 12. [Type 3 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j3 ,S3,j3 ,V ⊆ K, and let W ⊆ {0, 1}2k.
We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? = (S1,j1 ,S2,j2 ,S3,j3). Let (X ?,S?,V,W) be a partition
of Type 3, and let q[X ?,S?,V,W] ≥ 2−45k. Let (X,S) be random variables uniform in {0, 1}6n
conditioned on the event that Xt ∈ Xt,it, St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1− 2−4k .

21

Proof. Since the partition is of Type 3, at least one of i1, i2, i3, j1, j2, j3 >
δn

100k − 1 and

i1 + i2 + i3 + j1 + j2 + j3 ≤
n

40k
.

Without loss of generality, let i1 >
δn

100k − 1.
The intuition behind the proof is that since i1 is not too small, X has enough entropy given

f(X) to ensure that 〈X,S〉F is close to uniform given f(X), S by using the strong extractor property
of the inner product. Hence 〈X,S〉F and 〈f(X), g(S)〉F are close to being independent and so the
adversary, in order to not decode to ⊥, should be able to guess 〈f(X), g(S)〉F in the eighth state
without having any useful information. Also, since i1 + i2 + i3 + j1 + j2 + j3 is not too small,
f(X), g(S) together should have enough entropy to ensure that 〈f(X), g(S)〉F is close to being
uniform again because the inner product is a strong two-source extractor. This implies that the
probability that the decoder does not decode to ⊥ after tampering is close to 0. Of course, for this
argument, we implicitly assumed that X and S are independent and formally we need to take into
account the condition that 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence
between X and S. The formal argument is given below.

By Lemma 7, we have that
p[X ,S,V,W] ≥ 2−45k−1 ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1 .

Let X ′, S′ be distributed independently and uniform in X ?,S?, respectively. We have that
H̃∞(X ′|f(X ′)) ≥ 100k(i1 − 1) ≥ δn − 200k, and thus H̃∞(X ′|f(X ′), nmExt(X ′)) ≥ δn − 203k.
Also, H∞(S′) ≥ 3n− 45k − 1. Thus, by Lemma 3,

∆
(
〈X ′, S′〉F ; U50k | f(X ′), S′, nmExt(X ′)

)
≤ 2−200k ,

where we have used that δn ≥ 1000k. This implies using Lemma 2 that

∆
(
〈X ′, S′〉F ; U50k | 〈f(X ′), g(S′)〉F, nmExt(X ′), nmExt(S′)

)
≤ 2−200k .

Also, H∞(f(X ′)) ≥ 3n− 45k− 100k(i1 + i2 + i3), and H∞(g(S′)) ≥ 3n− 45k− 100k(j1 + j2 + j3).
Hence, H∞(f(X ′) | nmExt(X ′)) ≥ 3n− 48k − 100k(i1 + i2 + i3). Using Lemma 3, we obtain that,

∆
(
〈f(X ′), g(S′)〉F ; U50k | nmExt(X ′), nmExt(S′)

)
≤ 2−200k ,

where we use the fact that n ≥ 5000k, and hence

3n− 45k + 3n− 48k − 100k(i1 + i2 + i3 + j1 + j2 + j3)− 3n− 50k ≥ n

2
− 143k ≥ 400k .

Thus, the triangle inequality implies that

∆
(
〈X ′, S′〉F, 〈f(X ′), g(S′)〉F ; U50k, U

′
50k | nmExt(X ′), nmExt(S′)

)
≤ 2 · 2−200k .

Let X̃, S̃ be distributed as X ′ conditioned on nmExt′(X ′) 6= ⊥, and S′ conditioned on nmExt′(S′) 6=
⊥, respectively. Then, by conditioned on the event that nmExt′(X ′) 6= ⊥ and nmExt′(S′) 6= ⊥, and
using Lemma 6, we get that

∆
(
〈X̃, S̃〉F, 〈f(X̃), g(S̃)〉F ; U50k, U

′
50k

)
≤ 2−100k .

22

This implies that
Pr[h2(〈X̃, S̃〉F) = 〈f(X̃), g(S̃)〉F] ≤ 2−100k + 2−50k .

Thus,

Pr[h2(〈X̃, S̃〉F) = 〈f(X̃), g(S̃)〉F | 〈X̃, S̃〉K ∈ V, 〈X̃, S̃〉F ∈ W] ≤ Pr[h2(〈X̃, S̃〉F) = 〈f(X̃), g(S̃)〉F]

Pr[〈X̃, S̃〉K ∈ V, 〈X̃, S̃〉F ∈ W]

≤ 2−100k + 2−50k

2−45k

≤ 2−4k ,

which implies the result.

Lemma 13. [Type 4 partition] Let X1,i1 ,X2,i2 ,X3,i3 ,S1,j1 ,S2,j3 ,S3,j3 ⊆ K \ {0}, V ⊆ K and let
W ⊆ {0, 1}2k. We denote X ? = (X1,i1 ,X2,i2 ,X3,i3) and S? = S1,j1 ,S2,j2 ,S3,j3. Let (X ?,S?,V,W)
be a partition of Type 4, and let q[X ?,S?,V,W] ≥ 2−45k. Let (X,S) be random variables uniform
in {0, 1}6n conditioned on the event that Xt ∈ Xt,it, St ∈ St,jt for t = 1, 2, 3, nmExt′(X) 6= ⊥,
nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then,
Pr
C

[TampstateC (f, g, h1, h2) = ⊥] ≥ 1− 2−4k .

Proof. Since the partition is of Type 4, at least one of i1, i2, i3, j1, j2, j3 6= ` and

i1 + i2 + i3 + j1 + j2 + j3 >
n

40k
.

Without loss of generality, let i1 ≤ `− 1. Also, without loss of generality, let i1 + i2 + i3 >
n

80k .
The intuition behind the proof is that i1 + i2 + i3 is large enough to ensure that X has enough

entropy given f(X) to ensure that 〈X,S〉K is close to uniform given f(X), S by using the strong
extractor property of the inner product. Hence 〈X,S〉K and 〈f(X), g(S)〉K are close to being
independent and so the adversary, in order to decode to a valid message, should be able to guess
〈f(X), g(S)〉K in the seventh state without having any useful information. Also, since i1 ≤ ` − 1
is not too small, f1(X1) has a large amount of entropy which in turn implies that 〈f(X), g(S)〉K
has a large amount of entropy since g1(S1) 6= 0. This implies that the probability that the decoder
does not decode to ⊥ after tampering is close to 0. Of course, for this argument to go through, we
implicitly assumed that X and S are independent and formally we need to take into account the
condition that 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W which introduces a limited dependence between X
and S. The formal argument is given below.

By Lemma 7, we have that
p[X ,S,V,W] ≥ 2−45k−1 ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1 .

Let X ′, S′ be distributed independently and uniform in X ?,S?, respectively. We have that
H̃∞(X ′|f(X ′)) ≥ 100k(i1 − 1 + i2 − 1 + i3 − 1) ≥ 5n

4 − 300k, and H∞(S′) ≥ 3n − 45k. Thus, by
Lemma 3,

∆
(
〈X ′, S′〉K ; Un | f(X ′), S′

)
≤ 2−450k ,

23

where we have used that n ≥ 5000k. This implies using Lemma 2 that

∆
(
〈X ′, S′〉K ; Un | 〈f(X ′), g(S′)〉K

)
≤ 2−450k .

This implies that

Pr[h1(〈X ′, S′〉K) = 〈f(X ′), g(S′)〉K] ≤ 2−450k + Pr[h1(Un) = 〈f(X ′), g(S′)〉K]

≤ 2−450k + 2−H∞(〈f(X′),g(S′)〉K)

≤ 2−450k + 2−H∞(f1(X′1)

≤ 2−450k + 2−55k

≤ 2−54k , (6)

where the second to last inequality uses the fact that i1 ≤ `− 1, and hence H∞(fi(X
′
i)) ≥ 55k.

Also, since H̃∞(X ′|nmExt(X ′)) ≥ 3n − 45k − 3k, using a similar argument as above, we have
that

∆
(
〈X ′, S′〉K ; Un | nmExt(X ′), nmExt(S′)

)
≤ 2−450k .

Additionally, since H∞(X ′i) ≥ n− 45k ≥ n(1− δ) and H∞(S′i) ≥ n− 45k ≥ n(1− δ), for i = 1, 2, 3,
we have that

∆
(
nmExt(X ′), nmExt(S′) ; U3k, U

′
3k

)
≤ 2 · 2−1000k .

Thus, the triangle inequality implies that

∆
(
〈X ′, S′〉K, nmExt(X ′), nmExt(S′) ; Un, U3k, U

′
3k

)
≤ 3 · 2−1000k .

This implies that
Pr[E] ≥ 2−45k · 2−4k − 3 · 2−1000k ≥ 2−50k , (7)

where E is shorthand for the event that nmExt(X ′) 6= ⊥, nmExt(S′) 6= ⊥, 〈X ′, S′〉K ∈ V, and
trK→F(〈X ′, S′〉K) ∈ W. Combining inequalities 6 and 7, we get that

Pr[h1(〈X,S〉K) = 〈f(X), g(S)〉K] = Pr[h1(〈X ′, S′〉K) = 〈f(X ′), g(S′)〉K | E]

≤ Pr[h1(〈X ′, S′〉K) = 〈f(X ′), g(S′)〉K
Pr[E]

≤ 2−54k

2−50k

≤ 2−4k .

In the above results, we established that the tampering oracle will output ⊥ with probability
very close to 1 for all partitions of Type 2, 3, 4 that are not too small. If the size of the partition is
extremely small then Lemma 8 guarantees that such a partition does not contribute much to the
statistical distance. Also, for a partition of Type 1b and 5b, the tampering oracle always outputs
⊥. The following corollary states the bound on the statistical distance conditioned on X,S in a
partition of Type 1b, 2, 3, 4, 5b.

Corollary 2. Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ F. We denote X = (X1,X2,X3)
and S = S1,S2,S3. Let q[X ,S,V,W] ≥ 2−40k. Let X,S be random variables uniform in {0, 1}6n

24

conditioned on the event that Xi ∈ Xi, Si ∈ Si for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Let C be the random variable

(X,S, 〈X,S〉K, 〈X,S〉F) .

Then for any integer r ≥ 0, if∑
P:Type(P)∈{1b, 2, ,3, 4,5b}

q[P]

q[X ,S,V,W]
·∆
(

(CTrC , nmExt(X))|C∈P ; (CTrC , 0
2k‖Uk)|C∈P

)
≤ 5 · 2−2k ,

where Uk is a uniform k-bit string independent from X,S.

Proof. It follows from the definition that if P is a Type 1b or Type 5b partition, then either

Pr[〈f(X), g(S)〉K 6= h1(〈X,S〉K) | C ∈ P] = 1 ,

or
Pr[〈f(X), g(S)〉F 6= h1(〈X,S〉F) | C ∈ P] = 1 ,

and hence
Pr
C

[TampstateC (f, g, h1, h2) = ⊥ | C ∈ P] = 1 .

By Lemmata 11, 12, and 13, we have that if P is a Type 2, 3, or 4 partition then

Pr
C

[TampstateC (f, g, h1, h2) = ⊥ | C ∈ P] ≥ 1− 2 · 2−2k .

By Lemma 10, this implies that for any partition P of Type 1b, 2, 3, 4, 5b, we have that

∆
(

(CTrC , nmExt(X))|C∈P ; (CTrC , 0
2k‖Uk)|C∈P

)
≤ ∆

(
nmExt(X)|C∈P ; 02k‖Uk

)
+ 4 · 2−2k .

So, we need to bound ∆
(
nmExt(X)|C∈P ; 02k‖Uk

)
for each partition. By Lemma 9, we get that if

q[P] ≥ 2−800k then

∆
(
nmExt(X)|C∈P ; 02k‖Uk

)
≤ 2−90k .

Thus,
∑
P

q[P]
q[X ,S,V,W] ·∆

(
(CTrC , nmExt(X))|C∈P ; (CTrC , 0

2k‖Uk)|C∈P
)
, where the sum is over all par-

titions P of Type 1b, 2, 3, 4, and 5b is at most∑
P:q[P]≥2−800k

q[P]

q[X ,S,V,W]
· (2−90k + 4 · 2−2k) +

∑
P:q[P]<2−800k

q[P]

q[X ,S,V,W]
· 1

≤ 2−90k + 4 · 2−2k +
2−800k

2−40k
· (2600k · 2 + 2 + `6)

≤ 5 · 2−2k ,

where we used that there are 2 partitions of Type 1b, at most `6 partitions of Type 2, 3, and 4,
and each partition of Type 5b contains at least 26n−600k elements from X ,S that are all distinct,
which implies that the number of partitions of Type 5b is at most 2 · 2600k.

Lemma 14. [Type 5 partition] Let X1,`,X2,`,X3,`,S1,`,S2,`,S3,` ⊆ K \ {0}, V ⊆ K, and let W ⊆
{0, 1}2k. We denote X ? = (X1,`,X2,`,X3,`) and S? = S1,`,S2,`,S3,`. Let (X ?,S?,V,W) be a partition
of Type 5, and let q[X ?,S?,V,W] ≥ 2−45k. Let (X,S) be random variables uniform in {0, 1}6n

25

conditioned on the event that Xi ∈ X1,`, Si ∈ Si,` for i = 1, 2, 3, nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥,
〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then,

∑
a,b

(
q[Xa,Sb,V〈a,b〉K ,W〈a,b〉F]

q[X1,`,S1,`,V,W]

)7/8

≤
∑
a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b]
7
8 ≤ 1+2−50k .

Proof. Since the partition is of Type 5, we have

i1 = i2 = i3 = j1 = j2 = j3 = ` .

By Lemma 7, we have that
p[X ,S,V,W] ≥ 2−45k−1 ,

and
Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W] ≥ 2−45k−1 .

Let X ′, S′ be distributed independently and uniform in X ?,S?, respectively. We have that

H̃∞(X ′|f(X ′), nmExt(X ′)) ≥ 100k(3`− 3)− 3k = 3n− 303k , and H∞(S′) ≥ 3n− 45k .

Thus, by Lemma 3,

∆
(
〈X ′, S′〉K ; Un | f(X ′), nmExt(X ′), S′

)
≤ 2−1000k ,

where we have used that n ≥ 5000k. This implies using Lemma 2 that

∆
(
〈X ′, S′〉K ; Un | 〈f(X ′), g(S′)〉K, nmExt(X ′), nmExt(S′)

)
≤ 2−1000k .

Also, H̃∞(X ′i|fi(X ′i)) ≥ 100k(` − 1) ≥ n(1 − δ), and H̃∞(S′i|gi(S′i)) ≥ 100k(` − 1) ≥ n(1 − δ) for
i = 1, 2, 3. Thus, by Lemma 3,

∆
(
nmExt(X ′), nmExt(S′) ; U3k, U

′
3k | 〈f(X ′), g(S′)〉K

)
≤ 2 · 2−200k .

Using triangle inequality, we get that

∆
(
〈X ′, S′〉K, nmExt(X ′), nmExt(S′) ; Un, U3k, U

′
3k | 〈f(X ′), g(S′)〉K

)
≤ 3 · 2−200k .

Conditioning on nmExt′(X ′) 6= ⊥, nmExt′(S′) 6= ⊥, 〈X ′, S′〉K ∈ V, and trK→F(〈X ′, S′〉K) ∈ W we
get that

∆
(
〈f(X), g(S)〉K, 〈X,S〉K ; 〈f(X ′), g(S′)〉K, V

)
≤ 2−150k , (8)

where V is distributed as Un conditioned on Un ∈ V, and trK→F(Un) ∈ W. Now using lemma 4 on
vector pair (f1(X ′1), f2(X ′2), f3(X ′3),−1) and (g1(S′1), g2(S′2), g3(S′3), h1(V)), and t = 4, we obtain∑

(a1,a2,a3,b1,b2,b3,c) |
〈(a1,a2,a3,−1) , (b1,b2,b3,c)〉K=0

Pr[(f(X ′), g(S′), h1(V)) = (a,b, c)]
7
8 ≤ 1 .

Notice that the number of different possible values of the tuple (a1, a2, a3, b1, b2, b3, c) such that
Pr[(f(X ′), g(S′), h1(V)) = (a,b, c)] 6= 0 is at most 2600k. Thus, using Lemma 5 and the inequality 8,
we get that∑

a,b

Pr[h1(〈X,S〉K) = 〈a,b〉K, f(X) = a, g(S) = b]
7
8 ≤ 1 + 2600k/8 · 2−150k·7/8 ≤ 1 + 2−50k .

26

Lemma 15. [Type 1 or Type 5 partition] Let X1,X2,X3,S1,S2,S3,V ⊆ K, and let W ⊆ {0, 1}2k.
We denote X = (X1,X2,X3) and S = S1,S2,S3. Let q[X ,S,V,W] ≥ ρ. Let (X,S) be random
variables uniform in {0, 1}6n conditioned on the event that Xt ∈ Xt, St ∈ St for t = 1, 2, 3,
nmExt′(X) 6= ⊥, nmExt′(S) 6= ⊥, 〈X,S〉K ∈ V, and 〈X,S〉F ∈ W. Then,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2 + Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]1/2 ≤ 1 + 2−90k ,

and hence,

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]7/8 + Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]7/8 ≤ 1 + 2−90k ,

Proof. LetX ′, S′ be distributed independently and uniform in X ,S, respectively. Let i1, i2, i3, j1, j2, j3 :
K→ {0, 1, . . . , `} be as defined in the partitioning procedure, i.e., i1 is a function of X ′1 that indi-
cates the partition in which X ′1 belongs depending on the function f1, etc.

Since H̃∞(X ′|nmExt(X ′), i1, i2, i3) ≥ 3n − 40k − 3 log(` + 1) ≥ 3n − 41k, using Lemma 3, we
have that

∆
(
〈X ′, S′〉K ; Un | nmExt(X ′), nmExt(S′), i1, i2, i3, j1, j2, j3

)
≤ 2−450k .

Additionally, since H̃∞(X ′t|it) ≥ n−40k− log(`+1) ≥ n(1−δ) and H∞(S′i) ≥ n−40k− log(`+1) ≥
n(1− δ), for t = 1, 2, 3, we have that

∆
(
nmExt(X ′), nmExt(S′) ; U3k, U

′
3k | i1, i2, i3, j1, j2, j3

)
≤ 2 · 2−200k .

Thus, the triangle inequality implies that

∆
(
〈X ′, S′〉K nmExt(X ′), nmExt(S′) ; Un, U3k, U

′
3k | i1, i2, i3, j1, j2, j3

)
≤ 3 · 2−200k .

Conditioning on nmExt(X ′) 6= ⊥, nmExt(S′) 6= ⊥, 〈X,S〉K ∈ V, and trK→F(〈X,S〉K) ∈ W and using
Lemma 6, we get that

∆
(
i1(X ′1), i2(X ′2), i3(X ′3), j1(S′1), j2(S′2), j3(S′3) ; i1(X1), i2(X2), i3(X3), j1(S1), j2(S2), j3(S3)

)
≤ 3·2−200k .

(9)
We introduce the following notation. For r = 0, `, let

pr := Pr[X ′t ∈ Xt,r for t = 1, 2, 3] = Pr[i1(X ′1) = i2(X ′2) = i3(X ′3) = r] ,

and
qr := Pr[S′t ∈ St,r for t = 1, 2, 3] = Pr[i1(S′1) = i2(S′2) = i3(S′3) = r] .

Then clearly, p0 + p` ≤ 1, and q0 + q` ≤ 1. This implies

Pr[X ′t ∈ Xt,0, S′t ∈ St,0 for t = 1, 2, 3]1/2 + Pr[X ′t ∈ Xt,`, S′t ∈ St,` for t = 1, 2, 3]1/2

=
√
p0 · q0 +

√
p` · q`

≤ √p0 · q0 +
√

(1− p0) · (1− q0)

≤ 1 ,

using the Cauchy-Schwarz inequality. Thus, using Lemma 5 and the inequality 9, we get that

Pr[Xt ∈ Xt,0, St ∈ St,0 for t = 1, 2, 3]1/2 + Pr[Xt ∈ Xt,`, St ∈ St,` for t = 1, 2, 3]1/2

≤ 1 + 6 · 2−200k·1/2 ≤ 1 + 2−90k .

27

3.3 Proof of Theorem 5

Proof. Now, we prove Theorem 5 by induction on the number of rounds r. For r = 0, i.e., when
there is no tampering, we need to show that nmExt(X) is statistically close to 02k‖Uk, which follows
by Lemma 9. Using Corollary 2, we have that∑
P:Type(P)∈{1b, 2, ,3, 4,5b}

q[P]

q[X ,S,V,W]
·∆
(

(CTrC , nmExt(X))|C∈P ; (CTrC , 0
2k‖Uk)|C∈P

)
≤ 5 · 2−2k .

Let Q1 be a partition of Type 1a (note that there is only one such partition), and let Q2, . . . ,Qm
be partitions of Type 5a. Let X ? = (X1,`,X2,`,X3,`), and S? = (S1,`,S2,`,S3,`). We consider two
cases.

CASE 1: q[X ?,S?,V,W] < 2−45k.

In this case, the total probability of falling in a partition of Type 5 is small, and so intuitively
the only useful information that can be learnt is by landing in a partition of Type 1a. In
this case, by Lemma 8 and the induction hypothesis we have that the statistical distance
∆
(
(CTrC , nmExt(X)) ; (CTrC , 0

2k‖Uk)
)

is upper bounded by

≤ 5 · 2−2k +
q[X ?,S?,V,W]

q[X ,S,V,W]
· 1 +

q[Q1]

q[X ,S,V,W]
·

((
ρ

q[Q1]

) 1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k + 2−5k +

(
q[Q1]

q[X ,S,V,W]

) 7
8

·
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · (r − 1) · 2−2k

≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k .

CASE 2: q[X ?,S?,V,W] ≥ 2−45k. In this case, by Lemma 8, and the induction hypothesis we
have that the statistical distance ∆

(
(CTrC , nmExt(X)) ; (CTrC , 0

2k‖Uk)
)

is upper bounded by

≤ 5 · 2−2k +

m∑
i=1

q[Qi]
q[X ,S,V,W]

·

((
ρ

q[Qi]

) 1
8

+ 9 · (r − 1) · 2−2k

)

≤ 5 · 2−2k + 2−5k +
m∑
i=1

(
q[Qi]

q[X ,S,V,W]

) 7
8

·
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · (r − 1) · 2−2k

≤
(

ρ

q[X ,S,V,W]

) 1
8

(1 + 2−2k) + 9(r − 1) · 2−2k + 6 · 2−2k

≤
(

ρ

q[X ,S,V,W]

) 1
8

+ 9 · r · 2−2k ,

where the second to last inequality uses Lemma 14 and Lemma 15.

References

[AAnHKM+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta nad Hemanta K. Maji, Omkant
Pandey, and Manoj Prabhakaran. Optimal computational split state non-malleable
codes. To appear in TCC 16-A, 2016.

28

[AB16] Divesh Aggarwal and Jop Briët. Revisiting the sanders-bogolyubov-ruzsa theorem
in f p n and its application to non-malleable codes. In Information Theory (ISIT),
2016 IEEE International Symposium on, pages 1322–1326. Ieee, 2016.

[ADKO15a] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In The 47th ACM Symposium on Theory
of Computing (STOC), 2015.

[ADKO15b] Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski.
Leakage-resilient non-malleable codes. In Theory of Cryptography, volume 9014
of Lecture Notes in Computer Science, pages 398–426. Springer Berlin Heidelberg,
2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In STOC. ACM, 2014.

[Agg15] Divesh Aggarwal. Affine-evasive sets modulo a prime. Information Processing
Letters, 115(2):382–385, 2015.

[AGM+15a] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Explicit non-malleable codes resistant to permutations. Advances
in Cryptology - CRYPTO, 2015.

[AGM+15b] Shashank Agrawal, Divya Gupta, HemantaK. Maji, Omkant Pandey, and Manoj
Prabhakaran. A rate-optimizing compiler for non-malleable codes against bit-wise
tampering and permutations. In Theory of Cryptography, volume 9014 of Lecture
Notes in Computer Science, pages 375–397. Springer Berlin Heidelberg, 2015.

[AKO17] Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-
malleable codes stronger. In Theory of Cryptography Conference, pages 319–343.
Springer, 2017.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[CG14a] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes.
In ITCS, 2014.

[CG14b] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-
wise and split-state tampering. In TCC, 2014.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and
codes, with their many tampered extensions. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 285–298. ACM, 2016.

[CMTV15] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-
bit to multi-bit public-key encryption via non-malleable codes. In Dodis and
Nielsen [DN15], pages 532–560.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in the constant
split-state model. FOCS, 2014.

29

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Advances in Cryptology-CRYPTO 2013. Springer,
2013.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science.
Springer, 2015.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM
Journal on Computing, 38(1):97–139, 2008.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In ICS, pages 434–452. Tsinghua University Press, 2010.

[FMNV14] S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous non-malleable
codes. In Theory of Cryptography Conference - TCC. Springer, 2014.

[FMNV15] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A
tamper and leakage resilient von neumann architecture. In Jonathan Katz, editor,
Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on
Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March
30 - April 1, 2015, Proceedings, volume 9020 of Lecture Notes in Computer Science,
pages 579–603. Springer, 2015.

[FMVW14] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In Eurocrypt. Springer, 2014.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor, Theory of Cryptography, First
Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February
19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages
258–277. Springer, 2004.

[JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-
malleable codes. In Dodis and Nielsen [DN15], pages 451–480.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1144–1156. ACM, 2017.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In Advances in Cryptology–CRYPTO 2012, pages 517–532. Springer,
2012.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–53, 1996.

[SW15] Guanghong Sun and Chuankun Wu. Higher order nonlinearity of niho functions.
Fundamenta Informaticae, 137(3):403–412, 2015.

30

Appendix

A Proof of Lemma 7

Proof. Let X̃, S̃ be independent and uniform in K\{0}. Since, q[X ,S,V,W] ≥ 2−800k we have that

Pr[X̃ ∈ X]

Pr[nmExt′(X̃) 6= ⊥]
· Pr[S̃ ∈ S]

Pr[nmExt′(S̃) 6= ⊥]
≥ q[X ,S,V,W] ≥ 2−800k .

We have by Theorem 3 that Pr[nmExt′(X̃) 6= ⊥] ≥ 1
22k
− 2−1000k, and Pr[nmExt′(S̃) 6= ⊥] ≥

1
22k
− 2−1000k which implies that |X | × |S| ≥ 26n−806k. Since 806k < δn, again by Theorem 3, we

have that ∣∣∣Pr[nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥ | X̃ ∈ X , S̃ ∈ S]− 2−4k
∣∣∣ ≤ 2 · 2−1000k , (10)

and ∣∣∣Pr[nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]− 2−4k
∣∣∣ ≤ 2 · 2−1000k . (11)

LetX ′, S′ be distributed independently and uniform in X ,S, respectively. By Lemma 1, H̃∞(X ′|nmExt(X ′))+
H∞(S′) ≥ 6n− 810k. We obtain using Lemma 3 that

(〈X ′, S′〉K, nmExt(X ′), nmExt(S′)) ≈2−1000k (Un, nmExt(X ′), nmExt(S′)) ,

where we assumed that n ≥ 5000k. Since 〈X ′, S′〉F = trK→F(〈X ′, S′〉K), where trK→F is the field
trace function, we have that

(〈X ′, S′〉K, 〈X ′, S′〉F, nmExt(X ′), nmExt(S′)) ≈2−1000k (Un, trK→F(Un), nmExt(X ′), nmExt(S′)) .

This implies∣∣∣Pr[〈X̃, S̃〉K ∈ V, 〈X̃, S̃〉F ∈ W | X̃ ∈ X , S̃ ∈ S]− Pr[Un ∈ V, trK→F(Un) ∈ W]
∣∣∣ ≤ 2−1000k ,

and hence ∣∣∣p[X ,S,V,W]− Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W]
∣∣∣ ≤ 2−1000k .

Furthermore, we have by Theorem 3 that Pr[nmExt′(X ′) 6= ⊥] ≥ 2−2k−2−1000k and Pr[nmExt′(X ′) 6=
⊥] ≥ 2−2k − 2−1000k. Thus, conditioning the inequality 10 on the event that nmExt′(X ′) 6= ⊥, and
nmExt′(S′) 6= ⊥, and using Lemma 6, we get that

Pr[〈X̃, S̃〉K ∈ V, 〈X̃, S̃〉F ∈ W | X̃ ∈ X , S̃ ∈ S, nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]

is equal to Pr[Un ∈ V, trK→F(Un) ∈ W]± 2−995k. This implies, using inequality 10 and 11 that

q[X ,S,V,W] =
Pr[(X̃, S̃, 〈X̃, S̃〉K, 〈X̃, S̃〉F) ∈ X × S × V ×W, nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]

Pr[nmExt′(X̃) 6= ⊥, nmExt′(S̃) 6= ⊥]

=
Pr[X̃ ∈ S, S̃ ∈ S] · (2−4k ± 2−1000k) · (Pr[Un ∈ V, trK→F(Un) ∈ W]± 2−995k)

2−4k ± 2−1000k

= Pr[X̃ ∈ X , S̃ ∈ S, Un ∈ V, trK→F(Un) ∈ W]± 2−990k ,

and hence
|p[X ,S,V,W]− q[X ,S,V,W]| ≤ 2−990k + 2−1000k ≤ 2−989k .

Using that q[X ,S,V,W] ≥ 2−800k, we obtain the desired result.

31
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

