
OPTIMAL INTERACTIVE CODING FOR INSERTIONS,
DELETIONS, AND SUBSTITUTIONS

ALEXANDER A. SHERSTOV AND PEI WU

Abstract. Interactive coding, pioneered by Schulman (FOCS ’92, STOC ’93),
is concerned with making communication protocols resilient to adversarial
noise. The canonical model allows the adversary to alter a small constant
fraction of symbols, chosen at the adversary’s discretion, as they pass through
the communication channel. Braverman, Gelles, Mao, and Ostrovsky (2015)
proposed a far-reaching generalization of this model, whereby the adversary
can additionally manipulate the channel by removing and inserting symbols.
For any ✏ > 0, they showed how to faithfully simulate any protocol in this
model with corruption rate up to 1/18� ✏, using a constant-size alphabet and
a constant-factor overhead in communication.

We give an optimal simulation of any protocol in this generalized model
of substitutions, insertions, and deletions, tolerating a corruption rate up to
1/4� ✏ while keeping the alphabet to a constant size and the communication
overhead to a constant factor. Our corruption tolerance matches an impossi-
bility result for corruption rate 1/4 which holds even for substitutions alone
(Braverman and Rao, STOC ’11).

Affiliation and funding. Computer Science Department, UCLA, Los Angeles, CA 90095.
B {sherstov,pwu}@cs.ucla.edu The first author was supported in part by NSF CAREER award
CCF-1149018 and an Alfred P. Sloan Foundation Research Fellowship. The second author was
supported in part by NSF CAREER award CCF-1149018.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 79 (2017)

Contents

1. Introduction 3
1.1. The model . 4
1.2. Our results . 5
1.3. Background on interactive coding 6
1.4. The Braverman–Rao simulation . 7
1.5. The BGMO simulation . 8
1.6. Our approach . 9

2. Preliminaries 10
2.1. General . 10
2.2. String notation . 11
2.3. Edit distance . 11
2.4. Suffix distance . 14
2.5. Trees and tree codes . 14
2.6. Communication protocols . 17
2.7. The corruption model . 18

3. Auxiliary results 20
3.1. Bounds for suffix distance . 20
3.2. Longest prefix decoding . 22
3.3. Frequency of good decodings . 24

4. A coding scheme with a polynomial-size alphabet 25
4.1. The simulation . 26
4.2. Events . 28
4.3. Excellent transmissions . 30
4.4. Bad transmissions . 31
4.5. Virtual length . 33
4.6. Virtual corruption rate . 36
4.7. Finish times . 38
4.8. The progress lemma . 39
4.9. Finishing the proof . 40

5. A coding scheme with a constant-size alphabet 43
5.1. Edge representation and transfer . 43
5.2. The simulation . 46
5.3. Fundamental notions and facts . 48
5.4. Full pages . 49
5.5. Finish times . 50
5.6. The progress lemma . 53
5.7. Finishing the proof . 56
5.8. Generalization to early output . 57
5.9. Optimality . 59

Acknowledgments 61

References 61

Appendix A. Existence of good tree codes 62

1. Introduction

Shannon [23, 24] famously considered the problem of transmitting a message over
an unreliable channel. The problem features an omniscient and computationally
unbounded adversary who controls the communication channel and can alter a small
constant fraction of symbols that pass through the channel. The choice of symbols
to corrupt is up to the adversary; the only guarantee is an a priori bound on the
fraction of altered symbols, called the corruption rate. The sender’s objective is to
encode the message using a somewhat longer string so as to always allow the receiver
to recover the original message. Shannon’s problem is the subject matter of coding
theory and has been extensively studied. In particular, for any constant ✏ > 0,
it is known [15] how to encode an n-bit message using a string of O(n) symbols
from a constant-size alphabet such that the receiving party will recover the original
message whenever the fraction of corrupted symbols is at most 1

2 � ✏. In seminal
work, Schulman [19, 20, 21] considered a generalization of Shannon’s problem to the
interactive setting. Here, two parties Alice and Bob communicate back and forth
according to a communication protocol agreed upon in advance. Alice and Bob
privately hold inputs X and Y, respectively, which dictate their behavior throughout
the communication protocol. As before, the communication channel is controlled
by an adversary who can change a small constant fraction of symbols as they
transit through the channel. The goal is to overcome these corruptions by cleverly
simulating the original protocol with some redundant communication, as follows.
The simulation leaves Alice and Bob with a record of symbols exchanged between
them, where Alice’s record will generally disagree with Bob’s due to interference
by the adversary. Nevertheless, they each need to be able to determine, with no
further communication, the sequence of symbols that would have been exchanged
in the original protocol on the inputs X and Y in question. Ideally, Alice and Bob’s
simulation should use an alphabet of constant size and have communication cost
within a constant factor of the original protocol.

A naïve solution to Schulman’s problem is for Alice and Bob to encode their
individual messages with an error-correcting code developed for Shannon’s setting.
This approach fails spectacularly because the adversary is only restricted by the to-
tal number of corruptions rather than the number of corruptions on a per-message
basis. In particular, the adversary may choose a specific message from Alice to Bob
and corrupt all symbols in it. As a result, the naïve solution cannot tolerate any
corruption rate beyond 1

m , where m is the total number of messages. Remarkably,
Schulman [21] was able to show how to simulate any communication protocol with
corruption rate up to 1

240 , using a constant-size alphabet and a constant-factor
overhead in communication. Interactive coding has since evolved into a highly ac-
tive research area with a vast literature on virtually every aspect of the problem,
e.g., [18, 6, 11, 2, 8, 16, 13, 4, 3, 12, 14, 7, 10, 1], from corruption rate to commu-
nication overhead to computational complexity. We refer the reader to Gelles [9]
for an up-to-date survey. Of particular interest to us is the work of Braverman
and Rao [6], who proved that any communication protocol can be simulated in
Schulman’s model with corruption rate up to 1

4 � ✏ for any ✏ > 0, and established
a matching impossibility result for corruption rate 1

4 . Analogous to Schulman [21],
the simulation due to Braverman and Rao [6] uses a constant-size alphabet and
increases the communication cost only by a constant factor.

4 ALEXANDER A. SHERSTOV AND PEI WU

In the canonical model discussed above, the adversary manipulates the commu-
nication channel by altering symbols. This type of manipulation is called a substi-
tution. In a recent paper, Braverman, Gelles, Mao, and Ostrovsky [5] proposed a
far-reaching generalization of the canonical model, whereby the adversary can addi-
tionally manipulate the channel by inserting and deleting symbols. As Braverman
et al. point out, insertions and deletions are considerably more difficult to handle
than substitutions even in the one-way setting of coding theory. To borrow their
example, Schulman and Zuckerman’s polynomial-time coding and decoding algo-
rithms [22] for insertion and deletion errors can tolerate a corruption rate of roughly
1

100 , in contrast to the corruption rate of 1
2 � ✏ or 1

4 � ✏ (depending on the alphabet
size) achievable in the setting of substitution errors alone [15]. As their main re-
sult, Braverman et al. [5] prove that any communication protocol can be simulated
in the generalized model with substitutions, insertions, and deletions as along as
the corruption rate does not exceed 1

18 � ✏, for an arbitrarily small constant ✏ > 0.
Analogous to previous work, the simulation of Braverman et al. uses a constant-size
alphabet and increases the communication cost only by a multiplicative constant.

The authors of [5] posed the problem of determining the highest possible cor-
ruption rate that can be tolerated in the generalized model, and of achieving that
optimal rate for every protocol. We give a detailed solution to this problem, showing
that any protocol can be simulated with corruption rate up to 1

4 � ✏ for any ✏ > 0.
Recall that this corruption tolerance is optimal even in the setting of substitutions
alone.

1.1. The model. Following previous work, we focus on communication protocols
in canonical form. In such a protocol, the communication proceeds in rounds. The
number of rounds is the same on all inputs, and each round involves Alice sending
a single symbol to Bob and Bob sending a symbol back to Alice. The canonical
form assumption is without loss of generality since any protocol can be brought
into canonical form at the expense of doubling its communication cost.

We now describe the model of Braverman et al. [5] in more detail. Naïvely, one
may be tempted to give the adversary the power to delete or insert any symbol at
any time. A moment’s thought reveals that such power rules out any meaningful
computation. Indeed, deleting a single symbol en route from Alice to Bob will stall
the communication, forcing both parties to wait on each other indefinitely to send
the next symbol. Conversely, inserting a symbol into the communication channel
may result in crosstalk, with both parties trying to send a symbol at the same time.
Braverman et al. [5] proposed a natural and elegant formalism, to which we refer as
the BGMO model, that avoids these abnormalities. In their model, deletions and
insertions occur in pairs, with every deletion immediately followed by an insertion.
In other words, the BGMO model gives the adversary the capability to intercept
any symbol � in transit from one party to the other and insert a spurious symbol
�0 in its place. Crucially, the adversary is free to decide which party will receive the
inserted symbol. This makes it possible for the adversary to carry out two types
of attacks, illustrated in Figure 1.1. In a substitution attack, the inserted symbol is
routed the same way as the original symbol. Such an attack is precisely equivalent
to a substitution in Schulman’s model [21]. In an out-of-sync attack, on the other
hand, the inserted symbol is delivered to the sender of the original symbol. From
the sender’s point of view, an out-of-sync attack looks like a response from the
other party, whereas that other party does not even know that any communication

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 5

Sender Receiver
�
✗

Sender Receiver
�
✗

��

��

Figure 1.1: A substitution attack (top) and an out-of-sync attack (bottom).

has taken place and continues to wait for an incoming symbol. Braverman et al. [5]
examine a variety of candidate models, including some that are clock-driven rather
than message-driven, and demonstrate that the BGMO model is essentially the
only reasonable interactive formalism that allows deletions and insertions. It is
important to note here that even though deletions and insertions in the BGMO
model occur in pairs, the corruption pattern experienced by any given party can
be an arbitrary sequence of deletions and insertions.

1.2. Our results. For the purposes of defining the corruption rate, a deletion-
insertion pair in the BGMO model counts as a single corruption. This means that
with corruption rate �, the adversary is free to carry out as many as �M attacks,
where M is the worst-case number of sent symbols. The main result of our paper
is the following theorem, where |⇡| denotes the worst-case communication cost of a
protocol ⇡.

Theorem 1.1. Fix an arbitrary constant ✏ > 0, and let ⇡ be an arbitrary protocol
with alphabet ⌃. Then there exists a simulation for ⇡ with alphabet size O(1) and
communication cost O(|⇡| log |⌃|) that tolerates corruption rate 1

4 � ✏ in the BGMO
model.

Theorem 1.1 matches an upper bound of 1
4 on the highest possible corruption rate,

due to Braverman and Rao [6], which holds even if the adversary is restricted to
substitution attacks.

Theorem 1.1 is particularly generous in that it gives the adversary a flat budget
of �M attacks, where � is the corruption rate and M is the maximum number of
sent symbols over all executions. Due to out-of-sync attacks, the number of symbols
sent in a given execution may be substantially smaller than M. This can happen,
for example, if the adversary uses out-of-sync attacks to force one of the parties to
exit before his or her counterpart has reached the end of the simulation. In such
case, the actual ratio of the number of attacks to the number of sent symbols may
substantially exceed �. This leads us to consider the following alternate formalism:
with normalized corruption rate (✏subs, ✏oos), the number of substitution attacks

6 ALEXANDER A. SHERSTOV AND PEI WU

and out-of-sync attacks in any given execution must not exceed an ✏subs and ✏oos
fraction, respectively, of the number of symbols sent in that execution. In this
setting, we prove:

Theorem 1.2 (Normalized corruption rate). Fix an arbitrary constant ✏ > 0, and
let ⇡ be an arbitrary protocol with alphabet ⌃. Then there exists a simulation for
⇡ with alphabet size O(1) and communication cost O(|⇡| log |⌃|) that tolerates any
normalized corruption rate (✏subs, ✏oos) in the BGMO model with

✏subs +
3

4

✏oos 6
1

4

� ✏.

We show that Theorem 1.2, too, is optimal with respect to the normalized cor-
ruption rates that it tolerates (Section 5.9). In the interesting special case when
the adversary is restricted to out-of-sync attacks, Theorem 1.2 tolerates normalized
corruption rate 1

3 � ✏ for any ✏ > 0. This contrasts with the maximum possible cor-
ruption rate that can be tolerated with substitutions alone, namely, 1

4 � ✏. Thus,
there is a precise technical sense in which substitution attacks are more powerful
than out-of-sync attacks. As we will discuss shortly, however, the mere presence of
out-of-sync attacks greatly complicates the analysis and requires a fundamentally
different approach.

In Theorems 1.1 and 1.2, each player computes the transcript of the simulated
protocol based on his or her entire record of sent and received symbols, from the
beginning of time until the communication stops. In Section 5.8, we adapt Theo-
rem 1.1 to the setting where Alice and Bob wish to know the answer by a certain
round, according to each player’s own counting. In particular, Braverman et al. [5]
required each player to know the answer by round (1� 2�)N , where N is the max-
imum number of rounds and � is the corruption rate. With that requirement, we
give a simulation that tolerates corruption rate 1

6�✏ for any ✏ > 0, which is optimal
by the impossibility result in [5, Theorem G.1].

1.3. Background on interactive coding. In what follows, we review relevant
previous work [21, 6, 5] on interactive coding and contrast it with our approach. A
key tool in this line of research is a tree code, a coding-theoretic primitive developed
by Schulman [21]. Let ⌃in and ⌃out be nonempty finite alphabets. A tree code is
any length-preserving map C : ⌃

⇤
in ! ⌃

⇤
out with the property that for any input

string s 2 ⌃

⇤
in and any i = 1, 2, 3, . . . , the first i symbols of the codeword C(s)

are completely determined by the first i symbols of the input string s. A tree
code has a natural representation as an infinite tree in which every vertex has arity
|⌃in| and every edge is labeled with a symbol from ⌃out. To compute the codeword
corresponding to a given input string s = s1s2 . . . sk, one starts at the root and walks
down the tree for k steps, choosing at the ith step the branch that corresponds to si.
The sought codeword C(s), then, is the concatenation of the edge labels along this
path. Tree codes are well-suited for encoding interactive communication because
Alice and Bob must compute and send symbols one at a time, based on each other’s
responses, rather than all at once at the beginning of the protocol. In more detail,
if Alice has used a tree code C to send Bob s1, s2, . . . , sk�1 and now wishes to
send him sk, she need only send the kth symbol of C(s1s2 . . . sk) rather than all of
C(s1s2 . . . sk). This works because by the defining properties of a tree code, the first

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 7

k�1 symbols of C(s1s2 . . . sk) are precisely C(s1s2 . . . sk�1) and are therefore known
to Bob already. To additionally cope with adversarial substitutions, Schulman
used tree codes in which different codewords are “far apart.” More precisely, for
any two input strings s, s0 2 ⌃

⇤
in of equal length with s1s2 . . . sk = s01s

0
2 . . . s

0
k but

sk+1 6= s0k+1, the codewords C(s) and C(s0) disagree in a 1�↵ fraction of positions
beyond the kth. Schulman [21] showed the existence of such tree codes for any
↵ > 0, where the size of the output alphabet depends only on ↵ and the input
alphabet. Figure 1.2 (left) offers an illustration of the distance property for tree
codes: the concatenation of the labels on the solid path should disagree with the
concatenation of the labels on the dashed path in a 1 � ↵ fraction of positions.
Finally, when attempting to recover the codeword from a corrupted string y 2 ⌃

⇤
out,

one outputs the codeword of length |y| that is closest to y in Hamming distance.
This recovery procedure produces the true codeword whenever y is sufficiently close
to some codeword in suffix distance, a distance on strings that arises in a natural
way from tree code properties.

We now review protocol terminology. Fix a deterministic protocol ⇡ in canonical
form that Alice and Bob need to simulate on their corresponding inputs X and Y .
Let ⌃ and n denote the alphabet and the communication cost of ⇡, respectively.
Associated to ⇡ is a tree of depth n called the protocol tree for ⇡. Each vertex in
this tree corresponds to the state of the protocol at some point in time, with the
root corresponding to the initial state before any symbols have been exchanged,
and each leaf corresponding to a final state when the communication has ended.
Each internal vertex has arity |⌃|, corresponding to all possible symbols that can be
transmitted at that point. Execution of ⇡ corresponds to a walk down the protocol
tree, as follows. A given input X for Alice makes available precisely one outgoing
edge for every internal vertex of even depth, corresponding to the symbol that she
would send if the execution were to arrive at that vertex. Similarly, an input Y
for Bob makes available precisely one outgoing edge for every internal vertex of
odd depth. To execute ⇡, Alice and Bob walk down the protocol tree one edge at
a time, at each step selecting the edge that is dictated by the input of the player
whose turn it is to speak.

We emphasize that there is no relation whatsoever between protocol trees and
trees representing tree codes. They are structurally unrelated and play entirely
different roles in the simulation of a protocol over an unreliable channel.

1.4. The Braverman–Rao simulation. We are now in a position to describe the
simulation of Braverman and Rao [6] for the model with adversarial substitutions.
Using the tree view of communication, we can identify Alice’s input X with a set
EX of outgoing edges for the protocol tree vertices at even depths, one such edge
per vertex. Analogously, Bob’s input Y corresponds to a set EY of outgoing edges
for the vertices at odd depths. Execution of ⇡, then, corresponds to identifying the
unique root-to-leaf path made up of edges in EX [EY . In Braverman and Rao’s
simulation, all communication is encoded and decoded using a tree code with the
parameter ↵ > 0 set to a small constant. The simulation amounts to Alice and
Bob taking turns sending each other edges from their respective sets EX and EY .
When it is Alice’s turn to speak, she decodes the edge sequence received so far and
attempts to extend the path made up of her sent and received edges by another
edge from EX , communicating this new edge to Bob. Bob acts analogously. When
the communication stops, Alice decodes her complete sequence of received edges,

8 ALEXANDER A. SHERSTOV AND PEI WU

Figure 1.2: Distance constraints for codewords in a tree code (left) and an

edit distance tree code (right).

identifies the first prefix of that sequence whose edges along with EX contain a
root-to-leaf path, and takes this root-to-leaf path to be the transcript of ⇡ on the
given pair of inputs. Bob, again, acts analogously.

In the described simulation, the edge that a player sends at any given point may
be irrelevant but it is never incorrect. In particular, Alice and Bob make progress in
every round where they correctly decode the edge sequences that they have received
so far. Braverman and Rao use a relation between suffix distance and Hamming
distance to argue that with overall corruption rate 1

4 � ✏, Alice decodes her received
edge sequence correctly more often than half of the time, and likewise for Bob. This
means that there are a considerable number of rounds where Alice and Bob both
decode their received sequences correctly. It follows that at some point t⇤, Alice
and Bob will have exchanged every edge in the root-to-leaf path in EX [EY . As
a final ingredient, the authors of [6] argue that the adversary’s remaining budget
for corruptions beyond time t⇤ cannot “undo” this progress, in the sense that at
the end of the communication Alice and Bob will correctly decode a prefix that
contains the root-to-leaf path in EX [EY .

1.5. The BGMO simulation. We now describe the simulation of Braverman
et al. [5] in the BGMO model with substitutions, insertions, and deletions. The
authors of [5] draw inspiration from the classic work of Levenshtein [17], who devel-
oped codes that allow recovery from insertions and deletions in the noninteractive
setting. Recall that when coding for substitution errors, one uses codewords that
are far apart in Hamming distance [15]. Analogously, Levenshtein used codewords
that are far apart in edit distance, defined for a pair of strings as the minimum
number of insertions and deletions needed to transform one string into the other.
To handle interactive communication, then, it is natural to start as Braverman et
al. do with a tree code in which the codewords are far apart in edit distance rather
than Hamming distance. They authors of [5] discover, however, that it is no longer
sufficient to have distance constraints for pairs of codewords of the same length.
Instead, for any two paths of arbitrary lengths that cross to form a lambda shape,
such as the solid and dashed paths in Figure 1.2 (right), the associated codeword

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 9

segments need to be far apart in edit distance. Braverman et al. establish the ex-
istence of such edit distance tree codes and develop a notion of suffix distance for
them, thus providing a sufficient criterion for the recovery of the codeword from a
corrupted string.

Algorithmically, the BGMO simulation departs from Braverman and Rao’s in
two ways. First, all communication is encoded and decoded using an edit distance
tree code. Second, a different mechanism is used to decide which leaf of the protocol
tree for ⇡ to output, whereby each player keeps a tally of the number of times any
given leaf has been reached during the simulation and outputs the leaf with the
highest tally. The resulting analysis is quite different from [6], out-of-sync attacks
being the main source of difficulty. Braverman et al. start by showing that each
player correctly decodes his or her received sequence of edges often enough over
the course of the simulation. This does not imply progress, however. Indeed, all of
Alice’s correct decodings may conceivably precede all of Bob’s, whereas progress is
only guaranteed when the players’ correct decodings are interleaved. To prove that
this interleaving takes place, Braverman et al. split the simulation into n progress
intervals, corresponding to the length of the longest segment recovered so far from
the root-to-leaf path in EX [EY . They use an amortized analysis to argue that
the number of unsuccessful decodings per interval is small on the average, allowing
Alice and Bob to reach the leaf on the root-to-leaf path in EX [EY at some point
in the simulation. They finish the proof by arguing that the players subsequently
revisit this leaf often enough that its tally outweighs that of any other leaf.

1.6. Our approach. There are several obstacles to improving the corruption tol-
erance from 1

18 � ✏ in Braverman et al. [5] to an optimal 1
4 � ✏. Some of these

obstacles are of a technical nature, whereas others require a fundamental shift in
approach and analysis. In the former category, we develop edit distance tree codes
with stronger guarantees. Specifically, Braverman et al. use tree codes with the
property that for any two paths that cross to form a lambda shape in the code
tree, the edit distance between the associated codeword segments is at least a 1�↵
fraction of the length of the longer path. We prove the existence of tree codes that
guarantee a stronger lower bound on the edit distance, namely, a 1� ↵ fraction of
the sum of the lengths of the paths. This makes intuitive sense because the typical
edit distance between randomly chosen strings of lengths `1 and `2 over a nontrivial
alphabet is approximately `1+ `2 rather than max{`1, `2}; cf. Proposition 2.2. Our
second improvement concerns the decoding process. The notion of suffix distance
used by Braverman et al. is not flexible enough to support partial recovery of a
codeword. We define a more general notion that we call k-suffix distance and use it
to give a sufficient criterion for the recovery of the first k symbols of the codeword
from a corrupted string. This makes it possible to replace the tally-based output
criterion of Braverman et al. with a more efficient mechanism, whereby Alice and
Bob compute their output based on a prefix on the received edge sequence rather
than the entire sequence.

The above technical improvements fall short of achieving an optimal corruption
rate of 1

4�✏. The fundamental stumbling block is the presence of out-of-sync attacks.
For one thing, Alice and Bob’s transmissions can now be interleaved in a complex
way, and the basic notion of a round of communication is no longer available.
Out-of-sync attacks also break the symmetry between the two players in that it is
now possible for one of them to receive substantially fewer symbols than the other.

10 ALEXANDER A. SHERSTOV AND PEI WU

Finally, by directing a large number of out-of-sync attacks at one of the players, the
adversary can force the simulation to stop early and thereby increase the effective
error rate well beyond 1

4 � ✏. These are good reasons to doubt the existence of a
simulation that tolerates corruption rate 1

4 � ✏ with substitutions, insertions, and
deletions.

Our approach is nevertheless based on the intuition that out-of-sync attacks
should actually help the analysis because they spread the brunt of a corruption
between the two players rather than heaping it all on a single player. Indeed, the
deletion that results from an out-of-sync attack only affects the receiver, whereas
the insertion only affects the sender. This contrasts with substitution attacks,
where the deletions and insertions affect exclusively the receiver. With this in
mind, convexity considerations suggest that out-of-sync attacks may actually be less
damaging overall than substitution attacks. To bear out this intuition, we introduce
a “virtual” view of communication that centers around the events experienced by
Alice and Bob (namely, insertions, deletions, and successful deliveries) rather than
the symbols that they send. In this virtual view, the length of a time interval
and the associated error rate are defined in terms of the number of alternations in
events rather than in terms of the number of sent symbols. Among other things, the
virtual view restores the symmetry between Alice and Bob and makes it impossible
for the adversary to shorten the simulation using out-of-sync attacks. By way of
analysis, we start by proving that corruption rate 1

4 � ✏ translates into virtual
corruption rate 1

4 � ⌦(✏). Next, we split the simulation into n progress intervals,
corresponding to the length of the longest segment recovered so far from the root-
to-leaf path in EX [EY , and a final interval that encompasses the remainder of the
simulation. We bound the virtual length of each interval in terms of the number of
corruptions and successful decodings. We then contrast this bound with the virtual
length of the overall simulation, which unlike actual length is never smaller than the
simulation’s worst-case communication complexity. Using the previously obtained
1
4 �⌦(✏) upper bound on the virtual corruption rate, we argue that Alice and Bob
successfully output the root-to-leaf path in EX [EY when their communication
stops.

2. Preliminaries

We start with a review of the technical preliminaries. The purpose of this section
is to make the paper as self-contained as possible, and comfortably readable by a
broad audience. The expert reader may wish to skim this section for notation or
skip it altogether.

2.1. General. As usual, the complement of a set A is denoted A. For arbitrary
sets A and B, we define the cardinality of A relative to B by |A|B = |A\B|. For a
set A and a sequence s, we let A[s denote the set of elements that occur in either
A or s. We define A \ s analogously. For a logical condition C, we use the Iverson
bracket:

I[C] =

(
1 if C holds,
0 otherwise.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 11

We abbreviate [n] = {1, 2, . . . , n}, where n is any positive integer. We let N =

{0, 1, 2, 3, . . . } and Z+
= {1, 2, 3, . . .} denote the set of natural numbers and the set

of positive integers, respectively. We use the term integer interval to refer to any
set of consecutive integers (finite or infinite). We perform all calculations in the
extended real number system R[{�1,1}. In particular, we have a/0 =1 for any
positive number a 2 R. To simplify our notation, we further adopt the convention
that

0

0

= 0.

We let log x denote the logarithm of x to base 2. For a real-valued function f : X !
R, recall that argminx2X f(x) denotes the set of points where f attains its minimum
value. Analogously, argmaxx2X f(x) denotes the set of points where f attains its
maximum value. We let e = 2.7182 . . . denote Euler’s number.

2.2. String notation. In this manuscript, an alphabet ⌃ is any nonempty finite
set of symbols other than the asterisk ⇤, which we treat as a reserved symbol. Recall
that ⌃

⇤ stands for the set of all strings over ⌃. We let " denote the empty string
and adopt the standard shorthand ⌃

+
= ⌃

⇤ \{"}. The concatenation of the strings
u and v is denoted uv. For any alphabet ⌃, we let � denote the standard partial
order on ⌃

⇤ whereby u � v if and only if uw = v for a nonempty string w. The
derived relations �,�,⌫ are defined as usual by

u � v , v � u,

u ⌫ v , v � u or v = u,

u � v , u � v or v = u.

A prefix of v is any string u with u � v. A suffix of v is any string u such that
v = wu for some string w. A prefix or suffix of v is called proper if it is not equal
to v. A subsequence of v is v itself or any string that can be obtained from v by
deleting one or more symbols.

For any string v, we let |v| denote the number of symbols in v. We consider
the symbols of v to be indexed in the usual manner by positive integers, with
vi denoting the symbol at index i. For a set A, we use the subsequence notation
v|A = vi1vi2 . . . vi|A| , where i1 < i2 < · · · < i|A| are the elements of A. For a number
◆ 2 [0,1] in the extended real number system, we let v<◆ denote the substring of
v obtained by keeping the symbols at indices less than ◆. As special cases, we have
v<1 = " and v<1 = v. The substrings v6◆, v>◆, and v>◆ are defined analogously.
In any of these four definitions, an index range that is empty produces the empty
string ".

We view arbitrary finite sequences as strings over the corresponding alphabet.
With this convention, all notational shorthands that we have introduced for strings
are defined for sequences as well.

2.3. Edit distance. Recall that the asterisk ⇤ is a reserved symbol that does not
appear in any alphabet ⌃ in this manuscript. For a string v 2 (⌃ [{⇤})⇤, we
let ⇤(v) and ⇤(v) denote the number of asterisks and non-asterisk symbols in v,

12 ALEXANDER A. SHERSTOV AND PEI WU

respectively:

⇤(v) = |{i : vi = ⇤}|,
⇤(v) = |{i : vi 6= ⇤}|.

In particular, ⇤(v) + ⇤(v) = |v|. We let 6 ⇤(v) stand for the string of length ⇤(v)
obtained from v by deleting the asterisks. For example, 6 ⇤(⇤ab⇤aa) = abaa and
6 ⇤(⇤) = " for any alphabet symbols a, b.

An alignment for a given pair of strings s, r 2 ⌃

⇤ is a pair of strings S,R 2
(⌃ [{⇤})⇤ with the following properties:

|S| = |R|,
6 ⇤(S) = s,

6 ⇤(R) = r,

Ri 6= ⇤ _ Si 6= ⇤ (i = 1, 2, 3, . . . , |S|),
(Ri 6= ⇤ ^ Si 6= ⇤) =) Ri = Si (i = 1, 2, 3, . . . , |S|).

To better distinguish alignments from ordinary strings, we reserve uppercase sym-
bols for the former and lowercase for the latter. We write S || R to indicate that
S and R are an alignment for some pair of strings. For an alignment S || R, the
strings S|A, R|A for any given subset A of indices also form an alignment, to which
we refer as a subalignment of S || R.

The notion of a string alignment arises in an auxiliary capacity in the context
of edit distance. Specifically, the edit distance between strings s, r 2 ⌃

⇤ is denoted
ED(s, r) and is given by

ED(s, r) = min

S||R
{⇤(S) + ⇤(R)},

where the minimum is over all alignments for s, r. Letting LCS(s, r) denote the
length of the longest common subsequence of s and r, we immediately have

ED(s, r) = |s|+ |r|� 2LCS(s, r). (2.1)

The following equivalent definition is frequently useful: ED(s, r) is the minimum
number of insertion and deletion operations necessary to transform s into r. In
this equivalence, an alignment S || R represents a specific way to transform s into r,
indicating the positions of the insertions (Si = ⇤, Ri 6= ⇤), deletions (Si 6= ⇤, Ri = ⇤),
and unchanged symbols (Si = Ri 6= ⇤). The operational view of edit distance shows
that it is a metric, with all strings s, r, t obeying

ED(s, r) = ED(r, s), (2.2)
ED(s, r) + ED(r, t) 6 ED(s, t). (2.3)

Another property of edit distance is as follows.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 13

Proposition 2.1. For any strings u, v 2 ⌃

⇤,

ED(u, v) > ||u|� |v||.

In particular,

ED(u, v) = ||u|� |v||

whenever u is a subsequence of v or vice versa.

Proof. The proposition is immediate from (2.1). An alternate approach is to appeal
to the operational view of edit distance, as follows. An insertion or deletion changes
the length of a string by at most 1. Therefore, at least max{|u| � |v|, |v| � |u|} =

||u| � |v|| operations are needed to transform u into v. If one of the strings is a
subsequence of the other, then either of them can clearly be transformed into the
other using ||u|� |v|| deletions or ||u|� |v|| insertions.

By definition, the edit distance between a pair of strings of lengths n and m is
at most n+m. We now show that this trivial upper bound is essentially tight when
the strings are chosen uniformly at random over an alphabet of nonnegligible size.

Proposition 2.2. For any nonnegative integers n and m and any 0 < ↵ 6 1,

P
u2⌃n

v2⌃m

[ED(u, v) 6 (1� ↵)(n+m)] 6

e

↵
p
|⌃|

!↵(n+m)

.

Proof. We may assume that

e

↵
p
|⌃|

6 1, (2.4)

the proposition being trivial otherwise. Letting ` = d↵(n+m)/2e, we have

P
u2⌃n

v2⌃m

[ED(u, v) 6 (1� ↵)(n+m)] = P
u2⌃n

v2⌃m

[LCS(u, v) > `]

6
✓
n

`

◆✓
m

`

◆
· |⌃|

` · |⌃|n�` · |⌃|m�`

|⌃|n+m

6
✓
n+m

2`

◆
· 1

|⌃|`

6

e (n+m)

2`
· 1p

|⌃|

!2`

6

e

↵
p
|⌃|

!2d↵(n+m)/2e

6

e

↵
p
|⌃|

!↵(n+m)

,

14 ALEXANDER A. SHERSTOV AND PEI WU

where the first and last steps follow from (2.1) and (2.4), respectively.

2.4. Suffix distance. We now discuss several other measures of distance for align-
ments and strings. For an alignment S || R, define

�(S,R) =

⇤(S) + ⇤(R)

⇤(S) .

This quantity ranges in [0,1], with the extremal values taken on. For example,
�(", ") = �(a, a) = 0 and �(⇤, a) = 1, where a is any alphabet symbol. The
definition of � is motivated in large part by its relation to edit distance:

Fact 2.3. For any alignment S || R with �(S,R) <1,

ED(6 ⇤(S), 6 ⇤(R)) 6 �(S,R) · ⇤(S).

Proof. Immediate from the definitions of ED and �.

The suffix distance for an alignment S || R is given by

SD(S,R) = max

i>1
�(S>i, R>i).

This notion was introduced recently by Braverman et al. [5], inspired in turn by an
earlier notion of suffix distance due to Schulman [21]. In our work, we must consider
a more general quantity yet. Specifically, we define SDk(S,R) for 0 6 k 6 1 to
be the maximum �(S>i, R>i) over all indices i for which ⇤(S<i) < k, with the
convention that SDk(S,R) = 0 for k = 0. As functions, we have

0 = SD0 6 SD1 6 SD2 6 SD3 6 · · · 6 SD1 = SD . (2.5)

We generalize the above definitions to strings s, r 2 ⌃

⇤ by letting

SD(s, r) = min

S||R
SD(S,R), (2.6)

SDk(s, r) = min

S||R
SDk(S,R), (2.7)

where in both cases the minimum is over all alignments S || R for s, r. Since there
are only finitely many alignments for any pair of strings s and r, the quantities (2.6)
and (2.7) can be computed in finite time.

2.5. Trees and tree codes. In a given tree, a rooted path is any path that starts
at the root of the tree. The predecessors of a vertex v are any of the vertices on the
path from the root to v, including v itself. We analogously define the predecessors
of an edge e to be any of the edges of the rooted path that ends with e, including e
itself. A proper predecessor of a vertex v is any predecessor of v other than v itself;
analogously for edges. In keeping with standard practice, we draw trees with the
root at the top and the leaves at the bottom. Accordingly, we define the depth of
a vertex v as the length of the path from the root to v. Similarly, the depth of an

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 15

edge e is the length of the rooted path that ends with e. We say that a given vertex
v is deeper than another vertex u if the depth of v is larger than the depth of u;
and likewise for edges.

Fix alphabets ⌃in and ⌃out. A tree code is any length-preserving map C : ⌃

⇤
in !

⌃

⇤
out such that the first i symbols of the output are completely determined by the

first i symbols of the input. Formally,

|C(x)| = |x|,
(C(x))6i = C(x6i), i = 0, 1, 2, . . . ,

for all x 2 ⌃

⇤
in. Recall that the codewords of C are the elements of C(⌃

⇤
in), i.e., the

strings y 2 ⌃

⇤
out such that y = C(x) for some x. A tree code can be represented as

an infinite rooted tree in which each node has precisely |⌃in| outgoing edges, and
each edge is labeled with a symbol from ⌃out. To compute C(x) for a given string
x 2 ⌃

⇤
in, one starts at the root and walks down the tree for |x| steps, taking the edge

corresponding to xi in the ith step. Then C(x) is the concatenation of the |x| edge
labels, in the order they were encountered during the walk. If there is an a priori
bound n on the length of the input string, as in this manuscript, it is sufficient to
work with the restriction of the tree code to strings of length up to n. We refer to
such a restriction as a tree code of depth n.

To allow decoding in the presence of errors, structural properties of a tree code
must ensure that the encodings of distinct strings are sufficiently far apart. How
this is formalized depends on the kinds of errors that must be tolerated. Previous
work has considered substitution errors [21, 6] and more recently insertions and
deletions [5]. We work in the latter setting and adopt structural constraints similar
to those in [5].

Definition 2.4 (↵-violation). Fix a tree code C : ⌃

⇤
in ! ⌃

⇤
out and a real 0 6 ↵ < 1.

A quadruple (A,B,D,E) of vertices in the tree representation of C form an ↵-
violation if:

(i) B is the deepest common predecessor of D and E;

(ii) A is any predecessor of B; and
(iii) ED(AD,BE) < (1 � ↵)(|AD| + |BE|), where AD 2 ⌃

⇤
out is the concate-

nation of the code symbols along the path from A to D, and analogously
BE 2 ⌃

⇤
out is the concatenation of the code symbols along the path from

B to E.

An ↵-good code is any tree code C for which no vertices A,B,D,E in its tree
representation form an ↵-violation.

Definition 2.4 is illustrated in Figure 2.1. This definition strengthens an earlier
formalism due to Braverman et al. [5], in which the inequality ED(AD,BE) <
(1� ↵)max{|AD|, |BE|} played the role of our constraint (iii). The strengthening
is essential to the tight results of our paper.

16 ALEXANDER A. SHERSTOV AND PEI WU

A

B

E

D

Figure 2.1: A quadruple of vertices A,B,D,E involved in an ↵-violation.

Remark 2.5. Observe that A,B,D,E can form an ↵-violation for 0 6 ↵ < 1 only
when

D 6= E,

B 6= E.

Indeed, suppose that one or both of these conditions fail. Then BE = " and
therefore

ED(AD,BE) = ED(AD, ")

= |AD|
= |AD|+ |BE|
> (1� ↵)(|AD|+ |BE|),

where the second step follows from Proposition 2.1.

As the next observation shows, an ↵-good code allows for the unique decoding of
every codeword.

Fact 2.6. Let C : ⌃

⇤
in ! ⌃

⇤
out be any ↵-good code, where 0 6 ↵ < 1. Then C is

one-to-one.

Proof. It will be convenient to prove the contrapositive. Let C : ⌃

⇤
in ! ⌃

⇤
out be a

tree code such that

C(x0
) = C(x00

), (2.8)
x0 6= x00 (2.9)

for some strings x0, x00 2 ⌃

⇤
in. Let x be the longest common prefix of x0 and x00.

Consider the vertices B,D,E in the tree representation of C that correspond to

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 17

the input strings x, x0, x00 2 ⌃

⇤
in, respectively. Then

ED(BD,BE) = 0 < (1� ↵)(|BD|+ |BE|),

where the first and second steps in the derivation follow from (2.8) and (2.9),
respectively. Thus, the quadruple (B,B,D,E) forms an ↵-violation in C.

The following theorem, proved using the probabilistic method, ensures the exis-
tence of ↵-good codes with good parameters.

Theorem 2.7. For any alphabet ⌃in, any 0 < ↵ < 1, and any integer n > 0, there
is an ↵-good code C : ⌃

⇤
in ! ⌃

⇤
out of depth n with

|⌃out| =
⇠
(10|⌃in|)1/↵ e

↵

⇡2
.

This theorem and its proof are adaptations of an earlier result due to Braverman
et al. [5]. For the reader’s convenience, we provide a complete and self-contained
proof of Theorem 2.7 in Appendix A.

2.6. Communication protocols. We adopt the standard two-party model of
deterministic communication due to Yao [25]. In this model, Alice and Bob receive
inputs X 2 X and Y 2 Y , respectively, where X and Y are some finite sets
fixed in advance. They communicate by sending each other symbols from a fixed
alphabet ⌃. The most common alphabet is ⌃ = {0, 1}, but we will encounter
others as well. The transfer of an alphabet symbol from one party to the other is
an atomic operation to which we refer as a transmission. We intentionally avoid
the term “message” in this paper because it is ambiguous as to the length of the
content. The communication between Alice and Bob is governed by an agreed-
upon protocol ⇡. At any given time, the protocol specifies, based on the sequence
of symbols exchanged so far between Alice and Bob, whether the communication is
to continue and if so, who should send the next symbol. This next symbol is also
specified by the protocol, based on the sender’s input as well as the sequence of
symbols exchanged so far between Alice and Bob. The output of the protocol ⇡ on
a given pair of inputs X,Y, denoted ⇡(X,Y), is the complete sequence of symbols
exchanged between Alice and Bob on that pair of inputs. The communication
cost of the protocol ⇡, denoted |⇡|, is the worst-case number of transmissions,
or equivalently the maximum length of the protocol output on any input pair:
|⇡| = max |⇡(X,Y)|.

Given protocols ⇡ and ⇧ with input space X ⇥ Y , we say that ⇧ simulates
⇡ if ⇡(X,Y) = f(⇧(X,Y)) for some fixed function f and all inputs X 2 X and
Y 2 Y . To illustrate, any protocol ⇡ with alphabet ⌃ can be simulated in the
natural manner by a protocol ⇧ with the binary alphabet {0, 1} and communication
cost |⇧| 6 |⇡|max{1, dlog |⌃|e}. Observe that the “simulates” relation on protocols
is transitive. A protocol ⇡ is said to be in canonical form if the following two
conditions hold: (i) the number of symbols exchanged between Alice and Bob is
an even integer and is the same for all inputs X 2 X and Y 2 Y ; (ii) Alice and
Bob take turns sending each other one symbol at a time, with Alice sending the
first symbol. A moment’s thought reveals that any protocol ⇡ can be simulated

18 ALEXANDER A. SHERSTOV AND PEI WU

by a protocol in canonical form with the same alphabet and at most double the
communication cost.

A communication protocol ⇡ over alphabet ⌃ can be visualized in terms of a
regular tree of depth |⇡|, called the protocol tree. Every internal vertex of the
protocol tree has precisely |⌃| outgoing edges, each labeled with a distinct symbol
of the alphabet. A vertex of the protocol tree corresponds in a one-to-one manner
to a state of the protocol at some point in time. Specifically, the vertex reachable
from the root via the path v 2 ⌃

⇤ corresponds to the point in time when the
symbols exchanged between Alice and Bob so far are precisely v1, v2, . . . , v|v|, in
that order. In particular, the root vertex corresponds to the point in time just
before the communication starts, and a leaf corresponds to a point in time when
the communication has ended. Every internal vertex of the protocol tree is said
to be owned by either Alice or Bob, corresponding to the identity of the speaker
at that point in time. For a given input X 2 X , the protocol specifies a unique
outgoing edge for every vertex owned by Alice, corresponding to the symbol that
she would send at that point in time with X as her input. Analogously, for any
Y 2 Y , the protocol specifies a unique outgoing edge for every vertex owned by
Bob. On any input pair X,Y, Alice and Bob’s edges determine a unique root-
to-leaf path. Execution of the protocol corresponds to a walk down this unique
root-to-leaf path defined by Alice and Bob’s edges, and the output of the protocol
⇡(X,Y) is the concatenation of the edge labels on that path. Adopting this view
of communication, we will henceforth identify Alice’s input with a set of edges, one
for each vertex that Alice owns; and likewise for Bob. Observe that if the protocol
is in canonical form, Alice and Bob’s inputs are a set of outgoing edges for the even-
depth vertices and a set of outgoing edges for the odd-depth vertices, respectively,
one such edge per vertex.

2.7. The corruption model. Our review so far has focused on error-free com-
munication. We adopt the corruption model introduced recently by Braverman et
al. [5]. In this model, the communication channel between Alice and Bob is con-
trolled by an omniscient and computationally unbounded adversary. In particular,
the adversary knows Alice and Bob’s protocol and their inputs. The adversary can
interfere with a transmission in two different ways, illustrated in Figure 1.1. In a
substitution attack, the adversary intercepts the sender’s symbol � and replaces it
with a different symbol �0, which is then delivered to the receiver. In an out-of-sync
attack, the adversary intercepts the sender’s symbol �, discards it, and then sends
a spurious symbol �0 back to the sender in lieu of a response. Both a substitution
attack and an out-of-sync attack involve the deletion of a symbol from the channel
followed immediately by the insertion of a symbol; what makes these attacks differ-
ent is how the inserted symbol is routed. On arrival, symbols manipulated by the
adversary are indistinguishable from correct deliveries. As a result, Alice and Bob
cannot in general tell on receipt of a transmission if it is corrupted. We remind the
reader that a transmission is an atomic operation from the standpoint of interfer-
ence by the adversary: either a transmission is delivered correctly and in full, or
else an attack takes place and the transmission is considered to be corrupted.

Execution of a protocol is now governed not only by Alice and Bob’s inputs but
also by the adversary’s actions. Our objective is to faithfully simulate any protocol
⇡ with only a constant-factor increase in communication cost. Our simulations
will all be in canonical form, with Alice and Bob taking turns sending one symbol

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 19

at a time. There are two immediate benefits to this strict alternation. First, it
guarantees that the adversary cannot force crosstalk, with Alice and Bob attempting
to send a transmission at the same time. Second, canonical form guarantees that
the adversary cannot cause Alice and Bob both to stall, i.e., wait indefinitely on
each other to send the next message. In particular, canonical form ensures that at
least one of the parties is able to run the protocol to completion. The adversary
may still force one of the parties to stall, e.g., by carrying out an out-of-sync attack
during the next-to-last transmission. We consider an execution of the protocol to
be complete as soon as the communication has stopped, due to Alice or Bob (or
both) terminating.

With the adversary present, we must revisit the notion of protocol output. We
define the output of a player in a particular execution to be the complete sequence of
symbols, ordered chronologically, that that player sends and receives over the course
of the execution. There is a minor technicality to address regarding which received
symbols are counted toward a player’s output. Due to out-of-sync attacks, Alice and
Bob need not always be in agreement about how many rounds of communication
they have completed. As a result, it may happen that one of the players expects
the communication to continue when the other has already exited. In that case, the
latter player may have one last symbol addressed to him which he or she will never
retrieve from the communication channel. Since that symbol is not accessible to the
player, we do not count it toward his or her input. With this minor clarification,
we are prepared for formalize our notion of an interactive coding scheme.

Definition 2.8 (Coding scheme). Let ⇡ be a given protocol with input space
X ⇥Y . We say that protocol ⇧ is an interactive coding scheme for ⇡ that tolerates
corruption rate ✏ if:

(i) ⇧ has input space X ⇥ Y and is in canonical form;
(ii) when ⇧ is executed on a given pair of inputs (X,Y) 2X ⇥Y , the adversary

is allowed to subject any transmission in ⇧ to a substitution attack or out-
of-sync attack, up to a total of at most ✏|⇧| attacks;

(iii) there exist functions f 0, f 00 such that for any pair of inputs (X,Y) 2X ⇥Y
and any allowable behavior by the adversary, Alice’s output a and Bob’s
output b satisfy f 0

(a) = f 00
(b) = ⇡(X,Y).

In this formalism, the functions f 0 and f 00 allow Alice and Bob to interpret their
respective outputs as an output of the simulated protocol ⇡, with the requirement
that these interpretations by Alice and Bob match the actual output of ⇡ on the
corresponding pair of inputs.

The previous definition gives the adversary a budget of ✏|⇧| attacks, where |⇧|
is the maximum length of any execution of ⇧. This flat budget applies even to
executions that are significantly shorter than |⇧|, as may happen due to out-of-
sync attacks. This motivates us to define a second model, where the number of
attacks in any given execution is bounded by a fraction of the actual length of that
execution.

Definition 2.9 (Coding scheme with normalized corruption rate). Let ⇡ be a given
protocol with input space X ⇥Y . We say that protocol ⇧ is an interactive coding
scheme for ⇡ that tolerates normalized corruption rate (✏subs, ✏oos) if:

20 ALEXANDER A. SHERSTOV AND PEI WU

(i) ⇧ has input space X ⇥ Y and is in canonical form;
(ii) when ⇧ is executed on a given pair of inputs (X,Y) 2X ⇥Y , the adversary

is allowed to subject any transmission in ⇧ to a substitution attack or out-
of-sync attack, where
� the number of substitution attacks in any execution is at most an ✏subs

fraction of the total number of transmissions in that execution, and
� the number of out-of-sync attacks in any execution is at most an ✏oos

fraction of the total number of transmissions in that execution;
(iii) there exist functions f 0, f 00 such that for any pair of inputs (X,Y) 2X ⇥Y

and any allowable behavior by the adversary, Alice’s output a and Bob’s
output b satisfy f 0

(a) = f 00
(b) = ⇡(X,Y).

In this paper, we will obtain an interactive coding scheme that achieves optimal
corruption tolerance in both models (Definition 2.8 and 2.9).

3. Auxiliary results

We now prove a number of technical results on suffix distance and tree codes
that are used in the design and analysis of our interactive coding schemes. Some
of these results are new and some are adapted from previous work [21, 6, 5].

3.1. Bounds for suffix distance. Here, we collect several lower and upper bounds
on suffix distance. We start with a proposition that gives bounds for alignments in
terms of their subalignments.

Proposition 3.1. Let S0 || R0 and S00 || R00 be given alignments. Then:

(i) �(S0S00, R0R00
) 6 max{�(S0, R0

),�(S00, R00
)};

(ii) �(S0S00, R0R00
) > min{�(S0, R0

),�(S00, R00
)};

(iii) SD(S0S00, R0R00
) 6 max{SD(S0, R0

), SD(S00, R00
)};

(iv) SDk(S
0S00, R0R00

) 6 max{SDk(S
0, R0

),�(S00, R00
)} for k 6 ⇤(S0

).

Proof. (i), (ii) There are two cases to consider. If ⇤(S0
) > 0 and ⇤(S00

) > 0, we have

�(S0S00, R0R00
) =

⇤(S0S00
) + ⇤(R0R00

)

⇤(S0S00
)

=

⇤(S0
) + ⇤(R0

)

⇤(S0
) + ⇤(S00

)

+

⇤(S00
) + ⇤(R00

)

⇤(S0
) + ⇤(S00

)

=

⇤(S0
)

⇤(S0
) + ⇤(S00

)

·�(S0, R0
) +

⇤(S00
)

⇤(S0
) + ⇤(S00

)

·�(S00, R00
).

In other words, �(S0S00, R0R00
) is a weighted average of �(S0, R0

) and �(S00, R00
)

and therefore lies between the minimum and maximum of these quantities.
For the complementary case, by symmetry we may assume that ⇤(S0

) = 0. If
S0

= ", then �(S0S00, R0R00
) = �(S00, R00

) and therefore (i) and (ii) both hold. If
S0 6= ", then we immediately have �(S0, R0

) =1 and �(S0S00, R0R00
) > �(S00, R00

),
whence (i) and (ii), respectively.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 21

(iii) We have

SD(S0S00, R0R00
) = max

i
�((S0S00

)>i, (R
0R00

)>i)

= max{max

i
�(S00

>i, R
00
>i),max

i
�(S0

>iS
00, R0

>iR
00
)}

6 max{max

i
�(S00

>i, R
00
>i),max

i
�(S0

>i, R
0
>i),�(S00, R00

)}

= max{max

i
�(S00

>i, R
00
>i),max

i
�(S0

>i, R
0
>i)}

= max{SD(S00, R00
), SD(S0, R0

)},

where the third step uses (i).

(iv) The proof is similar to the previous item:

SDk(S
0S00, R0R00

) = max

i
{�((S0S00

)>i, (R
0R00

)>i) : ⇤((S0S00
)<i) < k}

= max

i
{�(S0

>iS
00, R0

>iR
00
) : ⇤(S0

<i) < k}

6 max

i
{max{�(S0

>i, R
0
>i),�(S00, R00

)} : ⇤(S0
<i) < k}

= max{SDk(S
0, R0

),�(S00, R00
)},

where the second step is valid because k 6 ⇤(S0
) and in particular i 6 |S0|, whereas

the third step uses (i).

The following generic lower bound on suffix distance will also be useful.

Proposition 3.2. Let k > 0 be given. Then for all r 2 ⌃

⇤ and s 2 ⌃

+,

SDk(s, r) > 1� |r|
|s| . (3.1)

Proof. Fix an arbitrary alignment S || R for s, r. Then

SDk(S,R) > �(S,R)

=

⇤(S) + ⇤(R)

⇤(S)

=

⇤(S) + ⇤(R)

|s|

=

⇤(S) + ⇤(S) + |s|� |r|
|s|

> |s|� |r|
|s| ,

where the next-to-last step uses ⇤(S) + |s| = ⇤(R) + |r|.

22 ALEXANDER A. SHERSTOV AND PEI WU

3.2. Longest prefix decoding. In interactive coding, a sequence of symbols is
encoded with a tree code and transmitted over an unreliable channel. On the
receiving end, an attempt is then made to decode the sequence. The encoding and
decoding are fundamentally different in that the former is fully determined by the
tree code, whereas the latter allows for several reasonable approaches. In contrast
to the work of Braverman et al. [5], our interactive coding schemes use longest
prefix decoding, whereby the receiver attempts to correctly decode as long a prefix
of the original sequence as possible. The following key theorem relates the length
of such a prefix to the suffix distance between the original sequence and its received
counterpart.

Theorem 3.3. Fix an ↵-good code C : ⌃

⇤
in ! ⌃

⇤
out with 0 < ↵ < 1. Consider a

string r 2 ⌃

⇤
out and codewords s0, s00 of C with

SDk(s
0, r) < 1� ↵,

SDk(s
00, r) < 1� ↵.

Then

s06k = s006k. (3.2)

Previous work [5] settled a special case of Theorem 3.3 for k =1, corresponding to
the correct decoding of the entire sequence. The extension to arbitrary k is essential
to the optimal interactive coding schemes in our paper.

Proof of Theorem 3.3 (cf. Braverman et al. [5]). Let s be the longest common pre-
fix of s0 and s00. For the sake of contradiction, assume that (3.2) fails. Then

s0 6= s00, (3.3)
|s| < k. (3.4)

We will show that these two conditions force an ↵-violation in C, contrary to the
theorem hypothesis.

Fix alignments S0 || R0 and S00 || R00 for the string pairs s0, r and s00, r, respectively,
such that

SDk(S
0, R0

) < 1� ↵, (3.5)
SDk(S

00, R00
) < 1� ↵. (3.6)

Let i0, i00 > 0 be integers with

s = 6 ⇤(S0
6i0), (3.7)

s = 6 ⇤(S00
6i00). (3.8)

It follows from (3.3) that

⇤(S0
>i0) + ⇤(S00

>i00) > 0. (3.9)

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 23

Observe also that r contains both 6 ⇤(R0
>i0) and 6 ⇤(R00

>i00) as suffixes, which means
that one of those strings is a suffix of the other. Without loss of generality, assume
that 6 ⇤(R00

>i00) is a suffix of 6 ⇤(R0
>i0) and fix an integer j00 > 0 such that

j00 6 i00, (3.10)
6 ⇤(R00

>j00) = 6 ⇤(R0
>i0). (3.11)

It follows from (3.4) and (3.7) that ⇤(S0
6i0) < k. Analogously, (3.4), (3.8), and

(3.10) give ⇤(S00
6j00) < k. Therefore, the suffix distance bounds (3.5) and (3.6)

guarantee that

�(S0
>i0 , R

0
>i0) < 1� ↵, (3.12)

�(S00
>j00 , R

00
>j00) < 1� ↵. (3.13)

In addition, (3.9) and (3.10) imply that

⇤(S0
>i0) + ⇤(S00

>j00) > 0. (3.14)

Now

ED(6 ⇤(S0
>i0), 6 ⇤(S00

>j00))

6 ED(6 ⇤(S0
>i0), 6 ⇤(R0

>i0)) + ED(6 ⇤(R0
>i0), 6 ⇤(S00

>j00))

= ED(6 ⇤(S0
>i0), 6 ⇤(R0

>i0)) + ED(6 ⇤(S00
>j00), 6 ⇤(R0

>i0))

= ED(6 ⇤(S0
>i0), 6 ⇤(R0

>i0)) + ED(6 ⇤(S00
>j00), 6 ⇤(R00

>j00))

6 �(S0
>i0 , R

0
>i0) · ⇤(S0

>i0) +�(S00
>j00 , R

00
>j00) · ⇤(S00

>j00)

< (1� ↵)(⇤(S0
>i0) + ⇤(S00

>j00)), (3.15)

where the first four steps follow from (2.3), (2.2), (3.11), and Fact 2.3, respectively,
and the final step is immediate from (3.12)–(3.14).

It remains to interpret our findings in terms of the tree representation of C.
Let A,B,D,E be the vertices reached by following the paths 6 ⇤(S00

6j00), s, s
00, s0, re-

spectively, from the root of the tree. Then (3.15) is equivalent to ED(BE,AD) <
(1� ↵)(|BE|+ |AD|), which is the promised ↵-violation.

We are now in a position to describe our decoding algorithm and relate its
decoding guarantees to the suffix distance between the original sequence and its
received counterpart.

Theorem 3.4. Let C : ⌃

⇤
in ! ⌃

⇤
out be an ↵-good code, 0 < ↵ < 1. Then there is an

algorithm DecodeC,↵ : ⌃
⇤
out ! ⌃

⇤
out that runs in finite time and obeys

(DecodeC,↵(r))6k = s6k (3.16)

for any real 0 6 k 61, any codeword s, and any string r 2 ⌃

⇤
out with SDk(s, r) <

1� ↵.

24 ALEXANDER A. SHERSTOV AND PEI WU

Proof. For a codeword s and a string r, define

K(s, r) = max{k 2 N [{1} : SDk(s, r) < 1� ↵}.

The maximization on the right-hand side is over a nonempty set that contains
k = 0, so that K(s, r) is well-defined for every s, r pair. The algorithm is the
natural one: on input r, the output of DecodeC,↵ is any s⇤ 2 argmaxs K(s, r),
where s ranges over all codewords of C. To verify (3.16), let s be any codeword
with SDk(s, r) < 1 � ↵. Then the algorithm output s⇤ obeys SDk(s

⇤, r) < 1 � ↵
and hence s⇤6k = s6k by Theorem 3.3.

It remains to show that DecodeC,↵ can be implemented to run in finite time.
Clearly, computing K(s, r) for any pair of strings s and r takes finite time. To
find a codeword in argmaxs K(s, r), it is suffices to consider codewords of length
at most r/↵ because longer codewords s satisfy K(s, r) = 0 by Proposition 3.2.

3.3. Frequency of good decodings. In the analysis of interactive coding schemes,
one typically needs to argue that there are many points in time when the receiving
party is able to correctly decode the sequence of symbols transmitted so far. We
estimate the number of such “good decodings” using the following technical fact,
closely analogous to previous work [6, 5].

Proposition 3.5. Fix an alignment S || R and define

G = {i : Si = Ri 6= ⇤},
D = {i : Si 6= ⇤, Ri = ⇤},
I = {i : Si = ⇤, Ri 6= ⇤}.

Then for all 0 < ↵ < 1,

|{i 2 G : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1� ↵}|

> |G| � ↵

1� ↵
|D| � 1

1� ↵
|I|.

The notation in Proposition 3.5 is mnemonic, with I,D, and G denoting the posi-
tions of the inserted, deleted, and “good” (unchanged) symbols, respectively. Note
that insertions and deletions play asymmetric roles in this result, insertions being
more damaging than deletions.

Proof of Proposition 3.5 (adapted from [6, 5]). Abbreviate ` = |S| = |R| and con-
sider Algorithm 1, which iteratively constructs a subset

A ✓ {i : SD(S1S2 . . . Si, R1R2 . . . Ri) < 1� ↵}. (3.17)

Since SD(S1S2 . . . Si, R1R2 . . . Ri) > �(Si, Ri) > 1 for every i 2 I [D, we infer

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 25

1 A ?
2 i `

3 while i > 0 do
4 if SD(S1S2 . . . Si, R1R2 . . . Ri) < 1� ↵ then
5 A A [{i}
6 i i� 1

7 else
8 find any index j with �(SjSj+1 . . . Si, RjRj+1 . . . Ri) > 1� ↵

9 i j � 1

10 end
11 end
12 return A

Algorithm 1: An algorithm to accompany the proof of Proposition 3.5.

that A ✓ G. In particular,

�(SA, RA) =
|I \A|+ |D \A|
|G \A|+ |D \A|

=

|I|+ |D|
|G|� |A|+ |D| . (3.18)

The complementary set A is the disjoint union of the intervals {j, j+1, . . . , i} com-
puted by the else clause, each of which satisfies �(SjSj+1 . . . Si, RjRj+1 . . . Ri) >
1 � ↵. It follows by Proposition 3.1(ii) that �(SA, RA) > 1 � ↵, which along
with (3.18) gives

|A| > |G|� ↵

1� ↵
|D|� 1

1� ↵
|I|.

In view of (3.17) and A ✓ G, the proof is complete.

4. A coding scheme with a polynomial-size alphabet

We will now show how to faithfully simulate any protocol in the adversarial
setting at the expense of a large increase in alphabet size and a constant-factor
increase in communication cost. For an arbitrary constant ✏ > 0, we give an inter-
active coding scheme that tolerates corruption rate 1

4 � ✏ as well as any normalized
corruption rate (✏subs, ✏oos) with ✏subs +

3
4✏oos 6 1

4 � ✏. In detail, the main result of
this section is as follows.

Theorem 4.1. Fix an arbitrary constant ✏ > 0, and let ⇡ be an arbitrary protocol
with alphabet ⌃. Then there exists an interactive coding scheme for ⇡ with alphabet
size (|⌃| · |⇡|)O(1) and communication cost O(|⇡|) that tolerates

(i) corruption rate 1
4 � ✏;

(ii) any normalized corruption rate (✏subs, ✏oos) with ✏subs +
3
4✏oos 6 1

4 � ✏.

26 ALEXANDER A. SHERSTOV AND PEI WU

As we will see later in this paper, Theorem 4.1 is optimal with respect to the
corruption rate and normalized corruption rate that it tolerates. We have organized
our proof of the theorem around nine milestones, corresponding to Sections 4.1–4.9.
Looking ahead, we will obtain the main result of this paper by improving the
alphabet size to a constant.

4.1. The simulation. Recall from Section 2.7 that any protocol can be brought
into canonical form at the expense of doubling its communication cost. We may
therefore assume that ⇡ is in canonical form to start with. As a result, we may
identify Alice’s input with a set X of odd-depth edges of the protocol tree for ⇡,
and Bob’s input with a set Y of even-depth edges. Execution of ⇡ corresponds to
a walk down the unique root-to-leaf path in X [Y, whose length we denote by

n = |⇡|.

Analogous to previous work [6, 5], our interactive coding scheme involves Alice and
Bob sending edges from their respective input sets X and Y . At any given point,
Alice will send an edge e only if she has already sent every proper predecessor of e
in X, and likewise for Bob. This makes it possible for the sender to represent an
edge e succinctly as a pair (i,�), where i is the index of a previous transmission by
the sender that featured the grandparent of e, and � 2 ⌃ ⇥ ⌃ uniquely identifies
e relative to that grandparent. When transmitting an edge e of depth 1 or 2,
the sender sets i = 0 to indicate that there are no proper predecessors to refer
to. Viewing each (i,�) pair as an alphabet symbol, the resulting alphabet ⌃in has
size at most |⌃|2 multiplied by the total number of transmissions. The following
lemma shows that given any sequence of edge representations, it is always possible
to recover the corresponding sequence of edges.

Lemma 4.2. Consider an arbitrary point in time, and let

(i1,�1), (i2,�2), . . . (it,�t) (4.1)

be the sequence of edge representations sent so far by one of the players. Then
the sequence uniquely identifies the corresponding edges e1, e2, . . . , et sent by that
player.

Proof. The proof is by induction of t, the base case t = 0 being trivial. For
the inductive step, let e1, e2, . . . , et�1 be the unique sequence of edges correspond-
ing to (i1,�1), (i2,�2), . . . , (it�1,�t�1). Recall that it 2 {0, 1, 2, . . . , t � 1}. If it 2
{1, 2, . . . , t� 1}, then by definition (it,�t) is the grandchild of eit that corresponds
to �t 2 ⌃⇥ ⌃. If it = 0, then by definition (it,�t) is the edge of depth 1 in Alice’s
case, or depth 2 in Bob’s, that corresponds to �t.

A formal description of the interactive coding scheme is given by Algorithms 2
and 3 for Alice and Bob, respectively. In this description, ↵ = ↵(✏) 2 (0, 1) and
N = N(n, ✏) are parameters to be set later, and C : ⌃

⇤
in ! ⌃

⇤
out is an arbitrary

↵-good code whose existence is ensured by Theorem 2.7. Alice and Bob use C to
encode every transmission. In particular, the encoded symbol from ⌃out at any
given point depends not only on the symbol from ⌃in being transmitted but also

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 27

Input: X (set of Alice’s edges)

1 encode and send the edge in X incident to the root

2 foreach i = 1, 2, 3, . . . , N do

3 receive a symbol ri 2 ⌃
out

4 s DecodeC,↵(r1r2 . . . ri)

5 interpret s as a sequence B of even-depth edges

6 ` maximum length of a rooted path in X [B

7 compute the shortest prefix of B s.t. X [B contains a rooted path of length

`, and let P be the rooted path so obtained

8 out deepest vertex in P

9 if i 6 N � 1 then

10 encode and send the deepest edge in P \X whose proper predecessors

in X have all been sent

11 end

12 end

Algorithm 2: Coding scheme for Alice

Input: Y (set of Bob’s edges)

1 foreach i = 1, 2, 3, . . . , N do

2 receive a symbol ri 2 ⌃
out

3 s DecodeC,↵(r1r2 . . . ri)

4 interpret s as a sequence A of odd-depth edges

5 ` maximum length of a rooted path in Y [A

6 compute the shortest prefix of A s.t. Y [A contains a rooted path of length

`, and let P be the rooted path so obtained

7 out deepest vertex in P

8 encode and send the deepest edge in P \ Y whose proper predecessors in Y

have all been sent

9 end

Algorithm 3: Coding scheme for Bob

on the content of previous transmissions by the sender. The decoding is done using
the DecodeC,↵ algorithm of Theorem 3.4. Apart from the initial send by Alice in
line 1, the roles of two players are symmetric. In particular, the pseudocode makes
it clear that Alice and Bob send at most N transmissions each. We conclude that
|⌃in| 6 |⌃|2 · 2N and therefore by Theorem 2.7,

|⌃out| = (|⌃| ·N)

O(1/↵). (4.2)

28 ALEXANDER A. SHERSTOV AND PEI WU

Transmission # 1 2 3 4 5 6 7 8 9 10
Addressee B A A B A B A B A B A B A
Symbol sent 0 1 ⇤ 0 1 0 0 ⇤ 1 0 ⇤ 0 1
Symbol received 0 ⇤ 0 0 1 0 ⇤ 0 1 ⇤ 1 0 1

Table 1: A hypothetical execution.

We pause to elaborate on the decoding and interpretation steps in lines 4–5
for Alice and lines 3–4 for Bob. The decoding step produces a codeword s of C,
which by Fact 2.6 corresponds to a unique string in ⌃

⇤
in. Recall that this string is

of the form (4.1) for some integers i1, i2, . . . , it and some �1,�2, . . . ,�t 2 ⌃ ⇥ ⌃.
The receiving party uses the inductive procedure of Lemma 4.2 to convert (4.1) to
a sequence of edges. It may happen that (4.1) is syntactically malformed; in that
case, the receiving party interrupts the interpretation process at the longest prefix
of (4.1) that corresponds to a legitimate sequence of edges. This completes the
interpretation step, yielding a sequence of edges A for Bob and B for Alice.

In Sections 4.2–4.9 below, we examine an arbitrary but fixed execution of the
interactive coding scheme. In particular, we will henceforth consider the inputs
X and Y and the adversary’s actions to be fixed. We allow any behavior by the
adversary as long as it meets one of the criteria (i), (ii) in Theorem 4.1. We will
show that as soon as the communication stops, the variable out is set for both Alice
and Bob to the leaf vertex of the unique root-to-leaf path in X [Y . This will prove
Theorem 4.1.

4.2. Events. A central notion in our analysis is that of an event. There are three
types of events: deletions, insertions, and good events. A successful transmission
corresponds to a single event, which we call a good event. A transmission that is
subject to an attack, on the other hand, corresponds to two events, namely, a dele-
tion event followed immediately by an insertion event. Each event has an addressee.
The addressee of a good event is defined to be the receiver of the transmission. Sim-
ilarly, the deletion and insertion events that arise from a substitution attack are
said to be addressed to the receiver of the transmission. In an out-of-sync attack,
on the other hand, the deletion event is addressed to the intended receiver of the
transmission, whereas the insertion event is addressed to the sender.

To illustrate these definitions, consider the hypothetical execution in Table 1.
The columns of the table are numbered 1 through 10, corresponding the ten trans-
missions sent in this execution. These ten columns are further split into subcolumns
that correspond to individual events, as follows.

(i) Transmissions 1, 3, 4, 5, 7, 9, 10 result in successful deliveries, each contribut-
ing a good event addressed to the receiver of the transmission. For each of
these transmissions, the entries in the sent and received rows coincide and
show the symbol delivered from the sender to the receiver.

(ii) Transmission 2 is subject to a substitution attack, whereby the sent sym-
bol “1” is deleted (corresponding to the “1” and ⇤ entries in the sent and
received rows, respectively) and a symbol of “0” is inserted in its place (cor-
responding to the ⇤ and “0” entries in the sent and received rows, respec-
tively). Transmission 2 thus contributes a deletion event and an insertion
event, both addressed to the receiver of the transmission.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 29

(iii) Transmissions 6 and 8 are subject to out-of-sync attacks, each contributing
a deletion event and an insertion event. In both cases, the deletion event
is addressed to the transmission’s intended receiver, whereas the insertion
event is addressed to the transmission’s sender. In the case of transmis-
sion 6, the sent symbol “0” is deleted (corresponding to the “0” and ⇤
entries in the sent and received rows, respectively) and a new symbol of
“0” is spuriously sent back on behalf of the transmission’s intended receiver
(corresponding to the ⇤ and “0” entries in the sent and received rows, re-
spectively).

Execution of the interactive coding scheme gives rise to a string alignment S0 || R0

for Alice and a string alignment S00 || R00 for Bob. Each position i in the strings S0

and R0 corresponds in a one-to-one manner to an event addressed to Alice, which
is either a good event (S0

i = R0
i), a deletion (S0

i 6= ⇤, R0
i = ⇤), or an insertion

(S0
i = ⇤, R0

i 6= ⇤). An analogous description applies to Bob’s strings S00 and R00. To
illustrate, the execution in Table 1 corresponds to

S0
= 1⇤101⇤1,

R0
= ⇤01⇤111

and

S00
= 000⇤00,

R00
= 0000⇤0.

For integers i 6 j, we let S0
[i, j] || R0

[i, j] denote the subalignment of S0 || R0 that
corresponds to transmissions i, i + 1, . . . , j. Analogously, S00

[i, j] || R00
[i, j] denotes

the subalignment of S00 || R00 that corresponds to transmissions i, i + 1, . . . , j. We
alert the reader that in our notation, S0

i and S0
[i, i] have completely different mean-

ings: the former is the ith symbol of S0, whereas the latter is the substring of S0

that corresponds to the ith transmission. We define

G0
= {i : S0

[i, i] = R0
[i, i] 6= "},

D0
= {i : R0

[i, i] = ⇤},
I 0 = {i : S0

[i, i] = ⇤}.

In words, G0, D0, I 0 are the sets of transmissions that contribute a good event, a
deletion event, and an insertion event, respectively, addressed in each case to Alice.
We define analogous sets for Bob:

G00
= {i : S00

[i, i] = R00
[i, i] 6= "},

D00
= {i : R00

[i, i] = ⇤},
I 00 = {i : S00

[i, i] = ⇤}.

30 ALEXANDER A. SHERSTOV AND PEI WU

We abbreviate

G = G0 [G00,

D = D0 [D00,

I = I 0 [I 00.

We let T denote the combined number of transmissions sent by Alice and Bob.
Since neither player can send more than N transmissions, we have

T 6 2N. (4.3)

The following lemma collects basic properties of the sets just introduced.

Lemma 4.3. The following properties hold:
(i) G0 and G00 form a partition of G;

(ii) I 0 and I 00 form a partition of I;
(iii) D0 and D00 form a partition of D;

(iv) I = D;

(v) I 0 \D0
= D00 \ I 00;

(vi) I 00 \D00
= D0 \ I 0;

(vii) G and I form a partition of {1, 2, . . . , T};
(viii) G and D form a partition of {1, 2, . . . , T}.

Proof. Properties (i)–(iii) hold because any given transmission contributes at most
one good event, at most one deletion event, and at most one insertion event, where
each event is addressed to precisely one of the players. Property (iv) holds because
deletions and insertions always occur in pairs, with any given transmission gen-
erating both or neither. Property (v) follows set-theoretically from the preceding
properties:

I 0 \D0
= (I \ I 00) \ (D \D00

) by (ii) and (iii)
= (D \ I 00) \ (D \D00

) by (iv)

= D \ I 00 \D \D00 by Boolean algebra

= D \ I 00 \ (D [D00
) by Boolean algebra

= D \ I 00 \D00 by Boolean algebra

= I 00 \D00 by (iii)
= D00 \ I 00 by Boolean algebra.

The proof of (vi) is entirely analogous. Properties (vii) and (viii) can be restated by
saying that the transmissions can be partitioned into those that result in successful
deliveries and those that are subject to an attack.

4.3. Excellent transmissions. A straightforward consequence of Lemma 4.2 is
that the codewords 6 ⇤(S0

[1, t]) and 6 ⇤(S00
[1, t]) completely reveal the sequences of

edges sent by Bob and by Alice, respectively, over the course of the first t trans-
missions. We formalize this observation below.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 31

Lemma 4.4. Let t 2 {1, 2, . . . , T} be given. Then:
(i) the string 6 ⇤(S0

[1, t]) uniquely identifies the sequence of protocol tree edges
that Bob sends Alice over the course of transmissions 1, 2, . . . , t;

(ii) the string 6 ⇤(S00
[1, t]) uniquely identifies the sequence of protocol tree edges

that Alice sends Bob over the course of transmissions 1, 2, . . . , t.

Proof. By symmetry, it suffices to prove the former claim. By Fact 2.6, the code-
word 6 ⇤(S0

[1, t]) 2 ⌃

⇤
out corresponds to a unique string in ⌃

⇤
in, which is the sequence

of edge representations that Bob sent Alice over the course of the first t transmis-
sions. By Lemma 4.2, this sequence of edge representations uniquely identifies the
edges themselves.

Of course, due to interference by the adversary, the receiving party rarely if ever
has access to the exact codeword sent by his or her counterpart. This motivates
us to identify sufficient conditions that allow for complete and correct decoding by
the receiving party. Define

E0
= {i 2 G0

: SD(S0
[1, i], R0

[1, i]) < 1� ↵},
E00

= {i 2 G00
: SD(S00

[1, i], R00
[1, i]) < 1� ↵}.

We refer to E0 and E00 as the sets of excellent transmissions for Alice and Bob,
respectively. This term is borne out by the following lemma.

Lemma 4.5. Let t 2 {1, 2, . . . , T} be given.
(i) If t 2 E0, then on receipt of transmission t, Alice is able to correctly recover

the complete sequence of edges that Bob has sent her by that time.
(ii) If t 2 E00, then on receipt of transmission t, Bob is able to correctly recover

the complete sequence of edges that Alice has sent him by that time.

Proof. By symmetry, it again suffices to prove the former claim. Let t 2 E0. Then
by definition, SD(S0

[1, t], R0
[1, t]) < 1 � ↵. Taking k = 1 in Theorem 3.4, we

conclude that DecodeC,↵(6 ⇤(R0
[1, t])) = 6 ⇤(S0

[1, t]). This means that on receipt of
transmission t, Alice is able to correctly recover the entire codeword 6 ⇤(S0

[1, t]) that
Bob has sent her so far. By Lemma 4.4, this in turn makes it possible for Alice to
correctly identify the corresponding sequence of edges.

4.4. Bad transmissions. Recall that each symbol received by Alice from the
communication channel corresponds in a one-to-one manner to a good event or an
insertion. Put another way, each such symbol originates in a one-to-one manner
from a transmission in G0[I 0. As we saw in Section 4.3, the symbols that correspond
to excellent transmissions E0 ✓ G0[I 0 allow Alice to correctly recover the sequence
of edges that Bob has sent her so far. In all other cases, the conversion of the
received string to an edge sequence can produce unpredictable results and cannot
be trusted. This motivates us to define the sets of bad transmissions for Alice and
Bob by

B0
= (G0 [I 0) \ E0,

B00
= (G00 [I 00) \ E00,

32 ALEXANDER A. SHERSTOV AND PEI WU

respectively. We abbreviate

B = B0 [B00.

Lemma 4.6. The sets B0 and B00 form a partition of B.

Proof:

B0 \B00 ✓ (G0 [I 0) \ (G00 [I 00)

= (G0 \G00
) [(I 0 \ I 00) [(G0 \ I 00) [(G00 \ I 0)

✓ (G0 \G00
) [(I 0 \ I 00) [(G \ I)

= ?,

where the last step follows from Lemma 4.3 (i), (ii), (vii).

As one might expect, the number of bad transmissions is closely related to the
number of attacks by the adversary. This relation is formalized by the following
lemma.

Lemma 4.7. For any interval J with 1 2 J,

|B|J 6 2

1� ↵
|D|J .

The reader will recall that |B|J = |B \ J | and |D|J = |D \ J | in the lemma above.
We use this relative cardinality notation extensively in the rest of the paper for
improved readability and ease of typesetting.

Proof of Lemma 4.7. Since B and D are sets of positive integers, it suffices to con-
sider an integer interval J = {1, 2, . . . , t}. Applying Proposition 3.5 to the alignment
S0
[1, t] || R0

[1, t] shows that

|E0 \ {1, 2, . . . , t}| > |G0 \ {1, 2, . . . , t}|

� ↵

1� ↵
|D0 \ {1, 2, . . . , t}|� 1

1� ↵
|I 0 \ {1, 2, . . . , t}|,

which can be succinctly written as

|E0|J > |G0|J �
↵

1� ↵
|D0|J �

1

1� ↵
|I 0|J . (4.4)

Now

|B0|J = |(G0 [I 0) \ E0|J
= |G0 [I 0|J � |E0|J
= |G0|J + |I 0|J � |E0|J

6 ↵

1� ↵
|D0|J +

2� ↵

1� ↵
|I 0|J , (4.5)

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 33

where the first step holds by definition, the second uses the containment E0 ✓ G0,
the third is valid by Lemma 4.3 (vii), and the fourth follows from (4.4). A symmetric
argument gives

|B00|J 6 ↵

1� ↵
|D00|J +

2� ↵

1� ↵
|I 00|J . (4.6)

As a result,

|B|J 6 ↵

1� ↵
(|D0|J + |D00|J) +

2� ↵

1� ↵
(|I 0|J + |I 00|J)

=

↵

1� ↵
|D|J +

2� ↵

1� ↵
|I|J

=

2

1� ↵
|D|J ,

where the first step follows from (4.5) and (4.6), the second uses Lemma 4.3 (ii), (iii),
and the third uses Lemma 4.3 (iv).

4.5. Virtual length. Key to our approach is a virtual view of communication that
centers around events rather than actual transmissions. In particular, we focus on
alternations in event addressee as opposed to alternations in sender. To start with,
we define for an arbitrary set Z ✓ R its virtual length by

|||Z||| = |G0 [I 0 [D0|Z + |G00 [I 00 [D00|Z . (4.7)

In other words, the virtual length |||Z||| is the number of transmissions in Z that
have an event addressed to Alice, plus the number of transmissions in Z that have
an event addressed to Bob. It follows immediately that

|Z| 6 |||Z||| 6 2|Z|

for any Z ✓ {1, 2, . . . , T}, and a moment’s thought reveals that the lower and
upper bounds can both be attained. We are of course interested only in subsets
Z ✓ {1, 2, . . . , T}, but defining virtual length as we did above for arbitrary Z ✓ R
greatly simplifies the notation. We now show that in the special case when Z is an
interval, the two summands in (4.7) differ by at most 1.

Lemma 4.8. For any interval J,

|||J ||| 6 2|G0 [I 0 [D0|J + 1, (4.8)
|||J ||| 6 2|G00 [I 00 [D00|J + 1 (4.9)

and

|||J ||| > 2|G0 [I 0 [D0|J � 1, (4.10)
|||J ||| > 2|G00 [I 00 [D00|J � 1. (4.11)

34 ALEXANDER A. SHERSTOV AND PEI WU

Proof. Consider arbitrary integers i1 < i2 such that

i1 2 (G00 [D00 [I 00) \ (G0 [D0 [I 0),

i2 2 (G00 [D00 [I 00) \ (G0 [D0 [I 0).

The first equation states that transmission i1 is sent by Alice and is not subject
to an out-of-sync attack. Recall that a transmission causes a change of speaker
if and only if it is not subject to an out-of-sync attack. As a result, a change
of speaker from Alice to Bob happens immediately after transmission i1. Since
the later transmission i2 is again sent by Alice, there must be an intermediate
transmission j that causes a change of speaker from Bob to Alice. This implies

j 2 (G0 [D0 [I 0) \ (G00 [D00 [I 00).

The previous paragraph shows that the interval between any two distinct integers
in (G00 [D00 [I 00) \ (G0 [D0 [I 0) contains at least one integer in (G0 [D0 [I 0) \
(G00 [D00 [I 00). We conclude that for any interval J,

|G00 [D00 [I 00|J 6 |G0 [D0 [I 0|J + 1.

Adding |G0 [D0 [I 0|J to both sides of this inequality yields (4.8), whereas adding
|G00 [D00 [I 00|J to both sides yields (4.11). A symmetric argument settles the
remaining inequalities (4.9) and (4.10).

We now show that the combined virtual length of all transmissions is at least
2N. This contrasts with the number of transmissions themselves, which can be
significantly less than 2N due to out-of-sync attacks.

Lemma 4.9. The total virtual length of all transmissions satisfies

|||[1, T]||| > 2N.

Proof. For the communication to stop, one of the players needs to terminate. This
happens only when that player has sent N symbols and received as many. Formu-
laically, this translates to

|G00 [D00| > N,

|G0 [I 0| > N

if Alice terminates first, and

|G0 [D0| > N,

|G00 [I 00| > N

if Bob terminates first. Either way,

|||[1, T]||| = |G0 [D0 [I 0|+ |G00 [D00 [I 00|
> 2N.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 35

Next, we relate the virtual length of any interval to the number of attacks expe-
rienced by Alice and Bob during that time.

Lemma 4.10. Let i, j be given integers with i 6 j. Then

|||[i, j]||| 6 4|D|[i,j]
�

+ 1 (4.12)

for any 0 < � 6 1 such that

max{�(S0
[i, j], R0

[i, j]), �(S00
[i, j], R00

[i, j])} > �. (4.13)

Proof. By hypothesis, �(S0
[i, j], R0

[i, j]) > � or �(S00
[i, j], R00

[i, j]) > �. Without
loss of generality, assume the former. Abbreviating J = [i, j], we have

|D0|J + |I 0|J
|D0|J + |G0|J

> �,

which along with � > 0 gives

|D0|J + |G0|J 6 |D0|J + |I 0|J
�

. (4.14)

Now

|||J |||� 1

2

6 |G0 [D0 [I 0|J

= |G0|J + |D0 [I 0|J
= |G0|J + |D0|J + |I 0 \D0|J

6 |D0|J + |I 0|J
�

+ |I 0 \D0|J

6 |D0|J + |I 0|J + |I 0 \D0|J
�

=

|I 0|J + |I 0 [D0|J
�

6 |I|J + |I [D|J
�

=

2|D|J
�

,

first step follows from Lemma 4.8, the second uses Lemma 4.3 (vii), (viii), the fourth
is valid by (4.14), the fifth uses 0 < � 6 1, and the last step is immediate from
Lemma 4.3 (iv).

Finally, we derive a useful bound on the virtual length of an interval in terms of
the number of excellent and bad transmissions in it.

36 ALEXANDER A. SHERSTOV AND PEI WU

Lemma 4.11. For any interval J,

|||J ||| 6 2(|B|J + |E0|J) + 1, (4.15)
|||J ||| 6 2(|B|J + |E00|J) + 1. (4.16)

Proof. By symmetry, it suffices to prove (4.15). We have

D0 \ I 0 = I 00 \D00

✓ I 00

✓ I 00 [(G00 \ E00
)

= (I 00 [G00
) \ E00

= B00, (4.17)

where the first and fourth steps use parts (vi) and (vii), respectively, of Lemma 4.3.
Now (4.15) can be verified as follows:

|||J |||� 1

2

6 |G0 [I 0 [D0|J

= |G0 [I 0|J + |D0 \ (G0 [I 0)|J
= |G0 [I 0|J + |D0 \ I 0|J
= |E0|J + |(G0 [I 0) \ E0|J + |D0 \ I 0|J
= |E0|J + |B0|J + |D0 \ I 0|J
6 |E0|J + |B0|J + |B00|J
= |E0|J + |B|J ,

where the first step is valid by Lemma 4.8, the third step uses Lemma 4.3 (viii),
the fourth step follows from the containment E0 ✓ G0, the fifth step applies the
definition of B0, the sixth step is immediate from (4.17), and the final step is justified
by Lemma 4.6.

4.6. Virtual corruption rate. In keeping with our focus on events rather than
transmissions, we define

corr J =

|D \ J |
|||J |||

for any interval J. We refer to this quantity as the virtual corruption rate of J. The
next lemma shows that over the course of the execution, the virtual corruption rate
is relatively low.

Lemma 4.12. Assumptions (i) and (ii) in Theorem 4.1 imply

corr[1, T] 6 1

4

� ✏ (4.18)

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 37

and

corr[1, T] 6 1

4

� ✏

2

, (4.19)

respectively.

Proof. Assumption (i) states that the total number of attacks does not exceed a
1
4�✏ fraction of the worst-case communication cost of the interactive coding scheme.
Formulaically,

|D| 6
✓
1

4

� ✏

◆
· 2N.

As a result,

corr[1, T] =
|D|

|||[1, T]||| 6
1

4

� ✏,

where the second step uses Lemma 4.9.
Assumption (ii) states that

Tsubs +
3

4

Toos 6
✓
1

4

� ✏

◆
T,

where Tsubs and Toos denote the total number of substitution attacks and the total
number of out-of-sync attacks, respectively. Straightforward manipulations now
reveal that

Tsubs + Toos

T + Toos
6 1

4

� ✏

2

.

By definition,

|D| = Tsubs + Toos.

On the other hand, the defining equation (4.7) of virtual length reveals that |||Z|||
for any set Z is the total number of transmissions in Z plus the total number of
out-of-sync attacks in Z. In particular,

|||[1, T]||| = T + Toos.

The last three equations immediately give (4.19).

38 ALEXANDER A. SHERSTOV AND PEI WU

4.7. Finish times. Let e1, e2, . . . , en be the edges of the unique root-to-leaf path
in X [Y, listed in increasing order of depth. For i = 1, 2, . . . , n, define fi to be the
index of the first transmission when ei is sent (whether or not that transmission
is subject to an attack). If ei is never sent, we define fi = 1. For notational
convenience, we also define f0 = f�1 = f�2 = · · · = 0. Recall from the description
of the interactive coding scheme that Alice never sends an edge e unless she has
previously sent all proper predecessors of e in X, and analogously for Bob. This
gives

f1 6 f3 6 f5 6 · · · ,
f2 6 f4 6 f6 6 · · · .

The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in sorted order, however,
due to interference by the adversary. We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi�1, fi) = [fi�1, fi), i = 1, 2, . . . , n. (4.20)

We now bound the virtual length of any such interval in terms of the number of
bad transmissions in it, thereby showing that Alice and Bob make rapid progress
as long as they do not experience too many attacks.

Lemma 4.13. For any integers i and t with fi�1 6 t < fi,

|||[fi�1, t]||| 6 2|B|[fi�1,t]
+ 3. (4.21)

Proof. We will only treat the case of i odd; the proof for even i can be obtained by
swapping the roles of Alice and Bob below.

Consider any transmission j 2 E0\ [fi�1, fi). Lemma 4.5 ensures that on receipt
of transmission j, Alice is able to correctly recover the set of edges that Bob has
sent her by that time, which includes e2, e4, e6, . . . , ei�1. At that same time, Alice
has sent Bob e1, e3, e5, . . . , ei�2 but not ei, as one can verify from j 2 [fi�1, fi).
Therefore, the arrival of transmission j causes Alice either to exit or to immediately
send ei. Either way, the interval [fi�1, fi) does not contain any transmissions
numbered j + 1 or higher. We conclude that there is at most one transmission in
E0 \ [fi�1, fi), and in particular

|E0|[fi�1,t]
6 1.

This upper bound directly implies (4.21) in light of Lemma 4.11.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 39

4.8. The progress lemma. We have reached the technical centerpiece of our
analysis. The result that we are about to prove shows that any sufficiently long
execution of the interactive coding scheme with a sufficiently low virtual corruption
rate allows Alice and Bob to exchange all the n edges of the unique root-to-leaf path
in X [Y, and moreover this progress is not “undone” by any subsequent attacks by
the adversary. The proof uses amortized analysis in an essential way.

Lemma 4.14 (Progress lemma). Let t 2 {1, 2, . . . , T} be given with

|||[1, t]||| > n+ 2

↵
, (4.22)

corr[1, t] 6 1

4

� ↵. (4.23)

Then there is an integer t⇤ 6 t such that

[fn, t
⇤
) \ E0 6= ?, (4.24)

[fn, t
⇤
) \ E00 6= ?, (4.25)

�(S0
[i, t], R0

[i, t]) < 1� ↵, i = 1, 2, . . . , t⇤, (4.26)
�(S00

[i, t], R00
[i, t]) < 1� ↵, i = 1, 2, . . . , t⇤. (4.27)

Proof. Equations (4.26) and (4.27) hold vacuously for t⇤ = 0. In what follows, we
will take t⇤ 2 {0, 1, 2, . . . , t} to be the largest integer for which (4.26) and (4.27)
hold. For the sake of contradiction, assume that at least one of the remaining
desiderata (4.24), (4.25) is violated, whence

|||[fn, t⇤)||| 6 2|B|[fn,t⇤) + 1 (4.28)

by Lemma 4.11. The proof strategy is to show that (4.28) is inconsistent with the
hypothesis of the lemma. To this end, let n⇤ 2 {0, 1, 2, . . . , n} be the largest integer
such that fn⇤ 6 t⇤. Then we have the partition

[0, t] = [f0, f1) [[f1, f2) [· · · [[fn⇤�1, fn⇤
) [[fn⇤ , t⇤) [{t⇤} [(t⇤, t].

The bulk of our proof is concerned with bounding the virtual length of each of the
intervals on the right-hand side.

To begin with,

|||[fi�1, fi)||| = |||[fi�1, fi)|||
6 2|B|[fi�1,fi)

+ 3

6 2|B|[fi�1,fi)
+ 3 (4.29)

for any i = 1, 2, . . . , n⇤, where the first and third steps use (4.20), and the second
step follows from Lemma 4.13. Next, the upper bound

|||[fn⇤ , t⇤)||| 6 2|B|[fn⇤ ,t⇤) + 3 (4.30)

40 ALEXANDER A. SHERSTOV AND PEI WU

follows from Lemma 4.13 if n⇤ < n and from (4.28) if n⇤
= n. The virtual length

of the singleton interval {t⇤} can be bounded from first principles:

|||{t⇤}||| 6 2. (4.31)

Finally, recall from the definition of t⇤ that either max{�(S0
[t⇤+1, t], R0

[t⇤+1, t]),
�(S00

[t⇤ + 1, t], R00
[t⇤ + 1, t])} > 1� ↵ or t⇤ = t, leading to

|||(t⇤, t]||| 6 4

1� ↵
|D|(t⇤,t] + 1 (4.32)

by Lemma 4.10 in the former case and trivially in the latter.
Putting everything together, we obtain

|||[1, t]||| 6 2|B|[0,t⇤) + 3(n⇤
+ 1) + 2 +

4

1� ↵
|D|(t⇤,t] + 1

6 4

1� ↵
|D|[0,t⇤) + 3(n⇤

+ 1) + 2 +

4

1� ↵
|D|(t⇤,t] + 1

6 4

1� ↵
|D|[0,t] + 3n+ 6

6 4

1� ↵
|D|[0,t] + 3↵|||[1, t]|||, (4.33)

where the first step is the result of adding (4.29)–(4.32), the second step applies
Lemma 4.7, and the final step uses (4.22). Since 0 < ↵ < 1, the conclusion of (4.33)
is equivalent to

corr[1, t] > (1� 3↵)(1� ↵)

4

,

which is inconsistent with (4.23). We have obtained the desired contradiction and
thereby proved that t⇤ satisfies each of the properties (4.24)–(4.27).

4.9. Finishing the proof. We have reached a “master theorem,” which gives a
sufficient condition for Alice and Bob to assign the correct value to their corre-
sponding copies of the out variable. Once established, this result will allow us to
easily finish the proof of Theorem 4.1.

Theorem 4.15. Consider a point in time when Alice updates her out variable, and
fix a corresponding integer t 6 T such that 6 ⇤(R0

[1, t]) is the complete sequence of
symbols that Alice has received by that time. Assume that

|||[1, t]||| > n+ 2

↵
, (4.34)

corr[1, t] 6 1

4

� ↵. (4.35)

Then as a result of the update, out is assigned the leaf vertex in the unique root-to-
leaf path in X [Y. An analogous theorem holds for Bob.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 41

Observe that Theorem 4.15 makes no assumption as to the actual timing of the
update to out. It may happen that the update takes place in response to the tth

transmission; but it may also take place significantly earlier, due to out-of-sync
attacks.

Proof of Theorem 4.15. We will only prove the claim for Alice; the proof of Bob is
entirely analogous. Lemma 4.14 implies the existence of j0 2 E0 and j00 2 E00 such
that

fn 6 j0 < t, (4.36)

fn 6 j00 < t, (4.37)
�(S0

[j0 + 1, t], R0
[j0 + 1, t]) < 1� ↵, (4.38)

�(S00
[j00 + 1, t], R00

[j00 + 1, t]) < 1� ↵. (4.39)

By the definition of E0 and E00,

SD(S0
[1, j0], R0

[1, j0]) < 1� ↵, (4.40)
SD(S00

[1, j00], R00
[1, j00]) < 1� ↵. (4.41)

As a result,

SD⇤(S0[1,j0])(S
0
[1, t], R0

[1, t])

= SD⇤(S0[1,j0])(S
0
[1, j0]S0

[j0 + 1, t], R0
[1, j0]R0

[j0 + 1, t])

6 max{SD⇤(S0[1,j0])(S
0
[1, j0], R0

[1, j0]), �(S0
[j0 + 1, t], R0

[j0 + 1, t])}
6 max{SD(S0

[1, j0], R0
[1, j0]), �(S0

[j0 + 1, t], R0
[j0 + 1, t])}

< 1� ↵, (4.42)

where the second step is valid by Proposition 3.1 (iv), the third step uses (2.5), and
the final step is immediate from (4.38) and (4.40).

When Alice updates her out variable, the sequence of symbols that she has
received is 6 ⇤(R0

[1, t]). By (4.42) and Theorem 3.4,

DecodeC,↵(6 ⇤(R0
[1, t])) ⌫ (6 ⇤(S0

[1, t]))6⇤(S0[1,j0])

= 6 ⇤(S0
[1, j0]).

Therefore, just prior to updating out, Alice is able to correctly recover the prefix
6 ⇤(S0

[1, j0]) of the sequence of symbols sent to her by Bob. By Lemma 4.4, this
means that she correctly recovers the complete set of edges encoded by the string
6 ⇤(S0

[1, j0]). By (4.36), this prefix 6 ⇤(S0
[1, j0]) contains the encoding of every edge of

Y that appears in the root-to-leaf path in X [Y . Moreover, every edge encoded in
6 ⇤(S0

[1, j0]) is correct in that it is an element of Y . Alice’s pseudocode now ensures
that she assigns to out the leaf vertex on the unique root-to-leaf path in X [Y.

The proof for Bob is entirely analogous, with (4.37), (4.39), (4.41), and j00 playing
the role of (4.36), (4.38), (4.40), and j0, respectively.

42 ALEXANDER A. SHERSTOV AND PEI WU

We are now in a position to establish the main result of this section.

Proof of Theorem 4.1. Recall that n = |⇡| denotes the communication cost of the
original protocol, and ✏ > 0 is a constant in the statement of Theorem 4.1. Consider
the interactive coding scheme given by Algorithms 2 and 3, with parameters set
according to

↵ =

✏

4

, (4.43)

N =

⇠
n+ 4

2↵

⇡
. (4.44)

By (4.2), the coding scheme uses an alphabet of size at most (|⌃| · n/✏)O(1/✏)
=

O(|⌃| · n)O(1)
= O(|⌃| · |⇡|)O(1). Furthermore, by (4.3), the combined number of

transmissions sent by Alice and Bob does not exceed 2N = O(n) = O(|⇡|).
It remains to show that when the communication stops, out is set for both Alice

and Bob to the leaf vertex on the unique root-to-leaf path in X [Y. To this end,
note from (4.43) and Lemma 4.12 that

corr[1, T] 6 1

4

� 2↵. (4.45)

By (4.44) and Lemma 4.9,

|||[1, T]||| > n+ 4

↵
(4.46)

and therefore

|||[1, T � 1]||| > n+ 2

↵
. (4.47)

Also,

corr[1, T � 1] 6 |||[1, T]|||
|||[1, T � 1]||| · corr[1, T]

6
✓
1 +

2

|||[1, T � 1]|||

◆
· corr[1, T]

6
✓
1 +

2↵

n+ 2

◆
·
✓
1

4

� 2↵

◆

6 1

4

� ↵, (4.48)

where the third step uses (4.45) and (4.47). Now, consider the last time that Alice
and Bob update their copies of out. The complete sequence of symbols that Alice has
received at the time of her last update is 6 ⇤(R0

[1, T �1]) or 6 ⇤(R0
[1, T]). Likewise, the

complete sequence of symbols that Bob has received at the time of his last update
is 6 ⇤(R00

[1, T � 1]) or 6 ⇤(R00
[1, T]). By (4.45)–(4.48) and Theorem 4.15, both players

set out to the leaf vertex in the unique root-to-leaf path in X [Y. This completes
the proof of Theorem 4.1.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 43

5. A coding scheme with a constant-size alphabet

In this section, we will adapt the proof of Theorem 4.1 to use an alphabet of con-
stant size. This modification will yield the main result of this paper (Theorems 1.1
and 1.2), which we restate here for the reader’s convenience.

Theorem 5.1. Fix an arbitrary constant ✏ > 0, and let ⇡ be an arbitrary protocol
with alphabet ⌃. Then there exists an interactive coding scheme for ⇡ with alphabet
size O(1) and communication cost O(|⇡| log |⌃|) that tolerates

(i) corruption rate 1
4 � ✏;

(ii) any normalized corruption rate (✏subs, ✏oos) with ✏subs +
3
4✏oos 6 1

4 � ✏.

In Section 5.8, we further generalize Theorem 5.1(i) to the setting when Alice and
Bob need to be ready with their answers by a certain round (based on each player’s
own counting) rather than when the communication stops. In that setting, too, our
interactive coding scheme is optimal and matches the lower bound due to Braver-
man et al. [5]. At a high level, our proofs of Theorem 5.1 and its generalization
are similar to the proof of Theorem 4.1 in the previous section, and we will be able
to reuse most of the auxiliary machinery developed there. The principal point of
departure is a new way of encoding and transferring edges, which in turn requires
subtle modifications to the amortized analysis.

5.1. Edge representation and transfer. We may assume without loss of gen-
erality that ⇡ is in canonical form, which can be achieved for any protocol at the
expense of doubling its communication cost. Canonical form allows us to identify
Alice’s input with a set X of odd-depth edges of the protocol tree for ⇡, and Bob’s
input with a set Y of even-depth edges. Execution of ⇡ corresponds to following
the unique root-to-leaf path in X [Y, whose length we denote by

n = |⇡|.

Recall that our previous interactive coding scheme in Section 4 involved Alice and
Bob sending each other edges from their respective input sets X and Y , with each
transmission representing precisely one such edge. The new coding scheme also
amounts to Alice and Bob exchanging edges from their respective input sets. This
time, however, any given transmission will contain information about as many as
⇤

2 edges, where ⇤ = ⇤(✏) > 0 is a constant to be chosen later. Moreover, to
accommodate the size restriction on the alphabet, the encoding of any given edge
will now be split across multiple transmissions. We say that a transmission fulfills
an edge e if it carries the last bit of e’s encoding.

Our approach to the encoding and transfer of edges is inspired by the interactive
coding schemes with constant-size alphabets due to Braverman and Rao [6] and
Braverman et al. [5]. We adapt their encoding and transfer in several ways to
support our more general setting and to make the overall proof simpler. A detailed
technical exposition follows.

Edge encoding. We will keep the policy that Alice does not start sending an edge e
unless she has already fulfilled all predecessors of e in X, and likewise for Bob. This
makes it possible for the sender to encode an edge e by referring to the previously
transmitted grandparent of e. Specifically, an edge is now encoded as a triple

44 ALEXANDER A. SHERSTOV AND PEI WU

(m, j,�), where m is the number of transmissions sent by the sender since his or
her most recent transmission that fulfilled the grandparent of e; the index j 2
{1, 2, 3, . . . ,⇤2} identifies that grandparent among the up to ⇤

2 edges featured in
that transmission; and � 2 ⌃ ⇥ ⌃ identifies e relative to that grandparent. As a
base case, an edge of depth 1 or 2 is encoded by a triple (m, j,�) where m is the
number of transmissions sent by the sender since the beginning of time, and j is
ignored. Note that how an edge is encoded is highly context-sensitive in that it
depends on previous transmissions by the sender. As a result, whenever we speak
of the encoding of an edge e, we are referring to the encoding of e at a particular
time that will be clear from the context.

Chunking. A constant-size alphabet makes it in general impossible to deliver the
entire encoding of an edge in a single transmission. Instead, we split the encoding
of every edge into chunks. A chunk contains a single bit of the encoding of the
edge as well as 3 bits of metadata. Thus, the number of chunks needed to transfer
an edge is equal to the bit length of e’s encoding. Alice and Bob each maintain
data structures called encoding and numBitsSent, indexed by edges. These data
structures store, for each of the edges currently being transferred, its encoding and
the number of bits sent so far.

Parallelism. Rather than send edges one by one, each player will send up to ⇤

2

edges in parallel. To see the intuitive reason for doing so, consider the transfer of
a typical edge e, which spans multiple transmissions. As Alice sends e chunk by
chunk to Bob, she simultaneously receives information from him, which in turn may
lead her to believe that she should be sending an edge other than e. The problem
is, she can never be sure! Simply aborting the transfer of e is wasteful if e later
turns out to be the right edge to send. Instead, we allow transfer of several edges in
parallel and use an additional, credit-based mechanism for identifying and aborting
unpromising transfers.

Specifically, each player maintains an ordered list L of edges that he or she is
currently transferring. New edges are inserted in L at the front rather than back,
reflecting that view that new information should be prioritized over old. To prepare
a transmission, a player looks at the first ⇤

2 edges in L and takes a chunk of each.
If L has fewer than ⇤

2 edges, the player simply takes a chunk of each edge in L. The
concatenation of these chunks, ordered the same way as the corresponding edges in
L, forms a page, which we view as a symbol from an auxiliary alphabet ⌃in. Since
an edge chunk is a 4 bits long, the size of ⌃in is bounded by a constant:

|⌃in| =
⇤2X

i=0

2

4i
=

16

⇤2+1 � 1

15

. (5.1)

Credit. As a crucial component of the transfer scheme, Alice and Bob each maintain
a data structure called credit. This data structure is indexed by edges and stores
the amount of “funds” available to pay for the transfer of any given edge e. The
credit of every edge is initialized to 0 at the beginning, and remains nonnegative
from then on. Every receive-send cycle identifies an edge e to send, which then gets
a credit increase of ⇤ and is additionally inserted in L unless it is already there.
Any time an edge chunk is sent, the credit of the corresponding edge is decreased

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 45

1 Global variables: encoding, numBitsSent, credit, L

2 Procedure AddEdge(e, i)
3 credit(e) credit(e) + ⇤

4 if e /2 L then

5 encoding(e) encoding of e based on current transmission count i

6 numBitsSent(e) 0

7 prepend e to L, ahead of any existing edges

8 end

9 Procedure NextChunk(e)
// Update edge statistics

10 numBitsSent(e) numBitsSent(e) + 1

11 credit(e) credit(e)� 1

// Compute edge chunk

12 return (encoding(e))numBitsSent(e)

13 � I[numBitsSent(e) = 1]

14 � I[numBitsSent(e) = |encoding(e)|]
15 � I[credit(e) = 0]

16 Procedure NextPage()
17 page NextChunk(L[1])

18 � NextChunk(L[2])

19 � · · ·
20 � NextChunk(L[min{⇤2

, |L|}])
// Clean up the edge list

21 foreach e 2 L do

22 if credit(e) = 0 or numBitsSent(e) = |encoding(e)| then

23 remove e from L

24 end

25 end

26 return page

Algorithm 4: Edge operations (identical for Alice and Bob). In the pseu-
docode above, � denotes string concatenation, |L| denotes the number of edges
in L, and L[i] denotes the ith edge in L.

by 1. An edge remains in L until its credit reaches 0 or until its last chunk is sent,
whichever comes first. At that point, the edge is removed from L.

Metadata. The purpose of the metadata in each edge chunk is to allow the receiver
to correctly piece together the encodings of the edges. A chunk for an edge e is
always prepared at send time rather than in advance and includes the following four
bits: the next bit of the encoding of e; a bit to indicate if this is the first chunk for
e; a bit to indicate if this is the last chunk for e; and a bit to indicate if e’s credit
has reached zero. The last two bits alert the receiver to the removal of e from the
sender’s edge list.

46 ALEXANDER A. SHERSTOV AND PEI WU

Input: X (set of Alice’s edges)

1 L ?

2 credit(e) 0 for every edge e

3 e the edge in X incident to the root

4 AddEdge(e, 1)

5 page NextPage()

6 encode and send page

7 foreach i = 1, 2, 3, . . . , N do

8 receive a symbol ri 2 ⌃
out

9 s DecodeC,↵(r1r2 . . . ri)

10 interpret s as a sequence B of even-depth edges

11 ` maximum length of a rooted path in X [B

12 compute the shortest prefix of B s.t. X [B contains a rooted path of length

`, and let P be the rooted path so obtained

13 out deepest vertex in P

14 if i 6 N � 1 then

15 e the deepest edge in P \X whose proper predecessors in X have all

been sent

16 AddEdge(e, i+ 1)

17 page NextPage()

18 encode and send page

19 end

20 end

Algorithm 5: Coding scheme for Alice

5.2. The simulation. Algorithm 4 gives the pseudocode to support our edge
encoding and transfer scheme. The pseudocode is identical for Alice and Bob and
features the following three operations.

(i) AddEdge is executed once by each player during his or her receive-send
cycle. As an argument, it receives an edge which that player wants to send
next. If e is already on the player’s edge list, AddEdge simply increments
e’s credit by ⇤. If not, AddEdge increments e’s credit by ⇤, computes an
encoding of e relative to the player’s current transmission count, and adds
e to the edge list ahead of any existing edges.

(ii) NextChunk receives as an argument an edge e and returns the next 4-
bit chunk of that edge, based on the stored encoding of e and the number
of bits of e’s encoding sent so far. This procedure uses numBitsSent(e),
credit(e), and encoding(e) to correctly set the metadata for the chunk. It
then updates numBitsSent(e) and credit(e) to reflect the remaining number
of bits to send and the edge’s available credit.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 47

Input: Y (set of Bob’s edges)

1 L ?

2 credit(e) 0 for every edge e

3 foreach i = 1, 2, 3, . . . , N do

4 receive a symbol ri 2 ⌃
out

5 s DecodeC,↵(r1r2 . . . ri)

6 interpret s as a sequence A of odd-depth edges

7 ` maximum length of a rooted path in Y [A

8 compute the shortest prefix of A s.t. Y [A contains a rooted path of length

`, and let P be the rooted path so obtained

9 out deepest vertex in P

10 e the deepest edge in P \ Y whose proper predecessors in Y have all

been sent

11 AddEdge(e, i)

12 page NextPage()

13 encode and send page

14 end

Algorithm 6: Coding scheme for Bob

(iii) NextPage is the procedure that assembles the next page to send. The
page is made up of at most ⇤2 chunks, one for each of the first ⇤2 edges on
the edge list. The chunks are prepared using NextChunk. Once the page
is assembled, NextPage updates the edge list by removing edges that have
been fully sent or have no credit left.

The overall interactive coding scheme is given by Algorithms 5 and 6 for Alice and
Bob, respectively. The main novelty relative to the scheme of Section 4 are the
calls to AddEdge and NextPage, which a player executes as soon as he or she
has identified an edge e to send. Apart from that, the remarks made in Section 4
apply here in full. In particular, ↵ = ↵(✏) 2 (0, 1) and N = N(n,↵) are parameters
to be chosen later. We set

⇤ =

⇠
2

↵

⇡
(5.2)

and fix an arbitrary ↵-good code C : ⌃

⇤
in ! ⌃

⇤
out whose existence is ensured by

Theorem 2.7. That theorem implies, in view of (5.1) and (5.2), that

|⌃out| 6 2

O(1/↵3). (5.3)

Alice and Bob use C to encode every transmission. In particular, the encoded
symbol from ⌃out at any given point depends not only on the symbol from ⌃in being
transmitted but also on the content of the previous transmissions by the sender.

48 ALEXANDER A. SHERSTOV AND PEI WU

The decoding is again done using the DecodeC,↵ algorithm of Theorem 3.4. Note
from the pseudocode that Alice and Bob send at most N transmissions each.

It remains to elaborate on the decoding and interpretation steps in the interactive
coding scheme. To do so, we first prove that the sequence of pages sent by one of
the players at any given point reveals the sequence of edges that that player has
fulfilled so far.

Lemma 5.2. Consider an arbitrary point in time, and let p1, p2, . . . , pt 2 ⌃in be the
sequence of pages sent by one of the players so far. Then that sequence uniquely
identifies the corresponding sequence of edges e1, e2, . . . , et0 fulfilled by that player.

Proof. We first reconstruct as completely as possible the sender’s state at the times
when each of the pages p1, p2, . . . , pt has just been assembled. Specifically, we
determine the length of the sender’s edge list, the transmission status of every edge
on the edge list (in progress, aborted, or fulfilled), and the corresponding part of
the encoding transferred for every edge so far. This reconstruction process involves
working inductively through the page sequence p1, p2, . . . , pt and using the metadata
to identify when an edge is new, in progress, aborted, or fulfilled. Recall that there
is at most one new edge per page, and it is always inserted at the front of the edge
list.

The first stage reconstructs the complete list of edge encodings sent so far by
the sender, along with the final status of each encoding (in progress, aborted, or
fulfilled), and the start and end times of each fulfilled encoding. We then interpret
the fulfilled encodings as a sequence (m1, j1,�1), (m2, j2,�2), . . . , (mt0 , jt0 ,�t0) of
edge representations. Using the end times of the fulfilled encodings and their indices
inside the pages than fulfilled them, we can reconstruct the corresponding sequence
of edges e1, e2, . . . , et0 via an inductive process analogous to that in Lemma 4.2.

With Lemma 5.2 in hand, the decoding and interpretation steps in lines 9–10 for
Alice and lines 5–6 for Bob are implemented the same way they were for a large
alphabet. Specifically, the decoding step produces a codeword s of C, which by
Fact 2.6 corresponds to a unique string in ⌃

⇤
in. This string is by definition a sequence

of pages p1, p2, p3, . . . , from which the receiving party can reconstruct the corre-
sponding sequence of fulfilled edges using the inductive procedure of Lemma 5.2. It
may happen that the page sequence p1, p2, p3, . . . is syntactically malformed; in that
case, the receiving party interrupts the interpretation process at the longest prefix
of p1, p2, p3, . . . that corresponds to a legitimate sequence of edges. This completes
the interpretation step, yielding a sequence of edges A for Bob and B for Alice.

Analogous to the interactive coding scheme of Section 4, Alice and Bob each
maintain a variable called out. In Sections 5.3–5.7 below, we will examine an
arbitrary but fixed execution of the interactive coding scheme. In particular, we
will henceforth consider the inputs X and Y and the adversary’s actions to be fixed.
We allow any behavior by the adversary as long as it meets one of the criteria (i), (ii)
in Theorem 5.1. We will show that as soon as the communication stops, out is set
for both Alice and Bob to the leaf vertex of the unique root-to-leaf path in X [Y .
This will prove Theorem 5.1.

5.3. Fundamental notions and facts. We adopt the notation and definitions
of Sections 4.2–4.6 in their entirety. These items carry over without any changes
because they pertain to the lowest level of abstraction (the “data link layer,” as

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 49

it were), which cannot distinguish between the old and new interactive coding
schemes. As a consequence, all results proved in Sections 4.2–4.6 apply here in full,
with the exception are Lemmas 4.4 and 4.5 whose wording needs to be clarified by
replacing “sent edges” with “fulfilled edges.” The result of this cosmetic modification
is as follows.

Lemma 5.3. Let t 2 {1, 2, . . . , T} be given. Then:

(i) the string 6 ⇤(S0
[1, t]) uniquely identifies the sequence of protocol tree edges

that Bob fulfills over the course of transmissions 1, 2, . . . , t;
(ii) the string 6 ⇤(S00

[1, t]) uniquely identifies the sequence of protocol tree edges
that Alice fulfills over the course of transmissions 1, 2, . . . , t.

Proof. By symmetry, it suffices to prove the former claim. By Fact 2.6, the code-
word 6 ⇤(S0

[1, t]) 2 ⌃

⇤
out corresponds to a unique string in ⌃

⇤
in, which is the sequence

of pages that Bob sends Alice over the course of the first t transmissions. By
Lemma 5.2, this sequence of pages uniquely identifies the corresponding fulfilled
edges.

Lemma 5.4. Let t 2 {1, 2, . . . , T} be given.

(i) If t 2 E0, then on receipt of transmission t, Alice is able to correctly recover
the complete sequence of edges that Bob has fulfilled by that time.

(ii) If t 2 E00, then on receipt of transmission t, Bob is able to correctly recover
the complete sequence of edges that Alice has fulfilled by that time.

Proof. By symmetry, it again suffices to prove the former claim. Let t 2 E0. Then
by definition, SD(S0

[1, t], R0
[1, t]) < 1 � ↵. Taking k = 1 in Theorem 3.4, we

conclude that DecodeC,↵(6 ⇤(R0
[1, t])) = 6 ⇤(S0

[1, t]). This means that on receipt of
transmission t, Alice is able to correctly recover the entire codeword 6 ⇤(S0

[1, t]) that
Bob has sent her so far. By Lemma 5.3, this in turn makes it possible for Alice to
correctly identify the corresponding sequence of fulfilled edges.

5.4. Full pages. Recall that a page can contain at most ⇤2 edge chunks. If a page
contains exactly ⇤

2 chunks, we call it full. We define F 0 ✓ {1, 2, . . . , T} as the set
of transmissions where Alice sends a full page, and analogously F 00 ✓ {1, 2, . . . , T}
as the set of transmissions where Bob sends a full page. In other words,

F 0
= {i : S00

[i, i] is a full page},
F 00

= {i : S0
[i, i] is a full page}.

We abbreviate

F = F 0 [F 00.

The following lemma, due to Braverman et al. [5, Lemma D.1], shows that full
pages are relatively uncommon.

50 ALEXANDER A. SHERSTOV AND PEI WU

Proposition 5.5 (Braverman et al.). For any interval J such that 1 2 J,

|F |J 6 |J \ {1, 2, 3, . . . , T}|
⇤

.

Proof (adapted from Braverman et al.) Since F ✓ {1, 2, . . . , T}, the proposition is
equivalent to the following statement:

|F \ {1, 2, . . . , t}| 6 t

⇤

for all 1 6 t 6 T. The proof proceeds by a potential argument. The potential
function to consider is the sum of the credit values of Alice’s edges. This quantity
is always nonnegative and is initially zero. Any full page sent by Alice causes a
decrement of the credit counter for each edge in the page, decreasing the potential
function by ⇤

2. On the other hand, any increase in the potential function is due to
the arrival of a symbol (i.e., a good event or insertion addressed to Alice) and is
precisely ⇤. Since the potential function is nonnegative, we conclude that

⇤|F 0 \ {1, 2, . . . , t}| 6 |(G0 [I 0) \ {1, 2, . . . , t}|.

Analogously,

⇤|F 00 \ {1, 2, . . . , t}| 6 |(G00 [I 00) \ {1, 2, . . . , t}|.

Therefore,

⇤|F \ {1,2, . . . , t}|
6 ⇤|F 0 \ {1, 2, . . . , t}|+ ⇤|F 00 \ {1, 2, . . . , t}|
6 |(G0 [I 0) \ {1, 2, . . . , t}|+ |(G00 [I 00) \ {1, 2, . . . , t}|. (5.4)

Parts (i), (ii), and (vii) of Lemma 4.3 imply that G0, G00, I 0, I 00 are pairwise disjoint.
Therefore, the right-hand side of (5.4) does not exceed t.

5.5. Finish times. We adopt the notation and definitions of Section 4.7, and
review them here for the reader’s convenience. Let e1, e2, . . . , en be the edges of
the unique root-to-leaf path in X [Y, listed in increasing order of depth. Recall
that a transmission fulfills an edge e if the corresponding page sent by the sender
carries the last bit of an encoding of e. For i = 1, 2, . . . , n, define fi to be the index
of the first transmission that fulfills ei (whether or not that transmission is subject
to an attack). If ei is never fulfilled, we set fi =1. For notational convenience, we
also define f0 = f�1 = f�2 = · · · = 0. Recall from the description of the interactive
coding scheme that Alice never starts sending an edge e unless she has finished
sending all proper predecessors of e in X, and analogously for Bob. This gives

f1 6 f3 6 f5 6 · · · ,
f2 6 f4 6 f6 6 · · · .

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 51

The overall sequence f1, f2, f3, f4, f5, f6, . . . need not be in sorted order, however,
due to interference by the adversary. We abbreviate

fi = max{0, f1, f2, . . . , fi}.

By basic arithmetic,

[fi�1, fi) = [fi�1, fi), i = 1, 2, . . . , n. (5.5)

Analogous to the analysis in Section 4.7, we need to bound the virtual length of
each interval [fi�1, fi). To this end, we first bound the bit length of any encoding
of ei.

Lemma 5.6. For given integers i and t, suppose that an encoding of ei is computed
prior to the sending of transmission t. Then that encoding has bit length at most

dlog(t� fi�2)e+ d2 log⇤|⌃|e.

Proof. Recall that ei is encoded as a triple (m, j,�), where m is the number of
transmissions sent by the sender since his or her page that contained the last bit
of ei�2 (for i > 3) or since the beginning of time (for i = 1, 2); j 2 {1, 2, . . . ,⇤2}
identifies ei�2 inside that page; and � 2 ⌃⇥⌃ identifies ei relative to ei�2. The pair
(j,�) takes on ⇤

2|⌃|2 distinct values and can therefore be represented by a binary
string of fixed length d2 log⇤|⌃|e. The remaining component m is a nonnegative
integer of magnitude at most t � fi�2 � 1 and can therefore be represented by a
binary string of length dlog(t � fi�2)e in the usual manner: ", 1, 10, 11, 100, . . . for
0, 1, 2, 3, 4, . . . , respectively.

We are now in a position to analyze the virtual length of any interval [fi�1, fi).
The lemma that we are about to prove is a counterpart of Lemma 4.13.

Lemma 5.7. For any t 2 {1, 2, . . . , T} and i with fi�1 6 t < fi,

|||[fi�1, t]||| 6
2⇤

⇤� 1

|B|[fi�1,t]
+ 2|F |[fi�1,t]

+ 2dlog(t � fi�2)e + 2d2 log 2⇤|⌃|e.

Proof. We will only treat the case of i odd; the proof for even i can be obtained by
swapping the roles of Alice and Bob below.

For an edge e of the protocol tree, let credit(e, j) denote the value of credit(e) on
Alice’s side at the moment when transmission j enters the communication channel,
i.e., immediately after the sender of transmission j has executed NextPage. For
notational convenience, we also define credit(e, 0) = 0 for all e. Let s 2 [fi�1, t+ 1]

be the smallest integer such that credit(ei, j) > 0 for j = s, s+ 1, . . . , t. Then

[fi�1, t] ✓ [fi�1, s� 1) [[s� 1, s) [[s, t].

With this in mind, we complete the proof of the lemma by bounding the virtual
length of each interval on the right-hand side and summing the resulting bounds.
Key to our analysis are the following two claims.

52 ALEXANDER A. SHERSTOV AND PEI WU

Claim 5.8. |E0|[fi�1,s�1) 6 |B0|[fi�1,s�1)/(⇤� 1).

Proof. Consider any transmission j 2 E0 \ [fi�1, t). Lemma 5.4 ensures that on
receipt of transmission j, Alice is able to correctly recover the complete set of edges
that Bob has finished sending her by that time, which includes e2, e4, e6, . . . , ei�1.
At that same time, Alice has finished sending Bob e1, e3, e5, . . . , ei�2 but not ei,
as one can verify from fi�1 6 j < t < fi. Therefore, the arrival of transmission
j causes Alice to increase the credit of ei by ⇤ in the call to AddEdge. The
subsequent call to NextPage either leaves ei’s credit unchanged or decreases it
by 1.

We now return to the proof of the claim. If [fi�1, s � 1) = ?, the claim holds
trivially. In the complementary case, the definition of s ensures that

credit(ei, s� 1) = 0. (5.6)

By the previous paragraph, the net effect of an incoming excellent transmission
in the interval [fi�1, t) is to increase ei’s credit by at least ⇤ � 1, whereas none
of the other incoming symbols decrease ei’s credit by more than 1. Since credit is
always nonnegative, we conclude from (5.6) that the number of incoming excellent
transmissions in the interval [fi�1, s�1) is at most a 1/(⇤�1) fraction of the number
of Alice’s other incoming symbols in that interval. Formulaically, this conclusion
translates to

|E0|[fi�1,s�1) 6
1

⇤� 1

|(G0 [I 0) \ E0|[fi�1,s�1),

which is equivalent to the claimed inequality by the definition of B0.

Claim 5.9. |G00 [D00|[s,t] 6 |F 0|[s,t] + dlog(t� fi�2)e+ d2 log⇤|⌃|e.

Proof. By the choice of s, the credit of ei is positive when transmissions s, s+1, . . . , t
enter the communication channel. Since Alice does not fulfill ei before or during
transmission t < fi, we conclude that ei is continuously present on Alice’s edge list
as transmissions s, s+1, . . . , t are prepared by their respective senders. In particular,
every transmission among s, s+ 1, . . . , t that is sent by Alice must contain a bit of
the encoding of ei unless it is a full page. We conclude that

|G00 [D00|[s,t] 6 |F 0|[s,t] + L,

where by definition G00 [D00 is the set of transmissions sent by Alice, F 0 is the set
of transmissions sent by Alice that are full pages, and L stands for the bit length
of ei’s encoding. This completes the proof in view of the upper bound on L in
Lemma 5.6.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 53

It remains to put everything together. We have

|||[fi�1, s� 1)||| 6 2(|B|[fi�1,s�1) + |E0|[fi�1,s�1)) + 1

6 2

✓
|B|[fi�1,s�1) +

1

⇤� 1

|B0|[fi�1,s�1)

◆
+ 1

6 2⇤

⇤� 1

|B|[fi�1,s�1) + 1, (5.7)

where the first and second steps follow from Lemma 4.11 and Claim 5.8, respectively.
Similarly,

|||[s, t]||| 6 2(|B|[s,t] + |E00|[s,t]) + 1

6 2(|B|[s,t] + |G00|[s,t]) + 1

6 2(|B|[s,t] + |F 0|[s,t] + dlog(t� fi�2)e+ d2 log⇤|⌃|e) + 1

6 2(|B|[s,t] + |F |[fi�1,t]
+ dlog(t� fi�2)e+ d2 log⇤|⌃|e) + 1, (5.8)

where the first and second steps follow from Lemma 4.11 and Claim 5.9, respectively.
Finally,

|||[s� 1, s)||| = |||{s� 1}|||
6 2. (5.9)

Adding the bounds in (5.7)–(5.9) proves the lemma.

5.6. The progress lemma. We have reached the technical centerpiece of our
analysis, which is the counterpart of Lemma 4.14 for a large alphabet. Analo-
gous to that earlier lemma, the result that we are about to prove shows that any
sufficiently long execution of the interactive coding scheme with a sufficiently low
virtual corruption rate allows Alice and Bob to exchange all the n edges of the
unique root-to-leaf path in X [Y, and moreover this progress is not “undone” by
any subsequent attacks by the adversary. Our exposition below emphasizes the
similarities between Lemma 4.14 and the new result.

Lemma 5.10 (Progress lemma). Let t 2 {1, 2, . . . , T} be given with

|||[1, t]||| > cn

↵
log

|⌃|
↵

, (5.10)

corr[1, t] 6 1

4

� ↵, (5.11)

where c > 1 is a sufficiently large absolute constant. Then there is an integer t⇤ 6 t
such that

[fn, t
⇤
) \ E0 6= ?, (5.12)

[fn, t
⇤
) \ E00 6= ?, (5.13)

�(S0
[i, t], R0

[i, t]) < 1� ↵, i = 1, 2, . . . , t⇤, (5.14)
�(S00

[i, t], R00
[i, t]) < 1� ↵, i = 1, 2, . . . , t⇤. (5.15)

54 ALEXANDER A. SHERSTOV AND PEI WU

Proof. Equations (5.14) and (5.15) hold vacuously for t⇤ = 0. In what follows, we
will take t⇤ 2 {0, 1, 2, . . . , t} to be the largest integer for which (5.14) and (5.15)
hold. For the sake of contradiction, assume that at least one of the remaining
desiderata (5.12), (5.13) is violated, whence

|||[fn, t⇤)||| 6 2|B|[fn,t⇤) + 1 (5.16)

by Lemma 4.11. The proof strategy is to show that (5.16) is inconsistent with the
hypothesis of the lemma. To this end, let n⇤ 2 {0, 1, 2, . . . , n} be the largest integer
such that fn⇤ 6 t⇤. Then we have the partition

[0, t] = [f0, f1) [[f1, f2) [· · · [[fn⇤�1, fn⇤
) [[fn⇤ , t⇤) [{t⇤} [(t⇤, t].

The bulk of our proof is concerned with bounding the virtual length of each of the
intervals on the right-hand side.

Abbreviate

M = 2d2 log 2⇤|⌃|e+ 2. (5.17)

Then

|||[fi�1, fi)||| = |||[fi�1, fi)|||

6 2⇤

⇤� 1

|B|[fi�1,fi)
+ 2|F |[fi�1,fi)

+ 2 log(fi � fi�2) +M

6 2⇤

⇤� 1

|B|[fi�1,fi)
+ 2|F |[fi�1,fi)

+ 2 log(fi � fi�2) +M

(5.18)

for any i = 1, 2, . . . , n⇤, where the first and third steps use (5.5), and the second
step follows from Lemma 5.7. Next, the upper bound

|||[fn⇤ , t⇤)||| 6 2⇤

⇤� 1

|B|[fn⇤ ,t⇤) + 2|F |[fn⇤ ,t⇤)

+ 2 log(t⇤ � fn⇤�1) +M (5.19)

follows from Lemma 5.7 if n⇤ < n and from (5.16) if n⇤
= n. The virtual length of

the singleton interval {t⇤} can be bounded from first principles:

|||{t⇤}||| 6 2. (5.20)

Finally, recall from the definition of t⇤ that either max{�(S0
[t⇤+1, t], R0

[t⇤+1, t]),
�(S00

[t⇤ + 1, t], R00
[t⇤ + 1, t])} > 1� ↵ or t⇤ = t, leading to

|||(t⇤, t]||| 6 4

1� ↵
|D|(t⇤,t] + 1 (5.21)

by Lemma 4.10 in the former case and trivially in the latter.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 55

It remains to put together the upper bounds in (5.18)–(5.21). We have

|||[1, t⇤)||| 6 2⇤

⇤� 1

|B|[0,t⇤) + 2|F |[0,t⇤) + (n⇤
+ 1)M

+ 2

n⇤X

i=1

log(fi � fi�2) + 2 log(t⇤ � fn⇤�1)

6 2⇤

⇤� 1

· 2

1� ↵
|D|[0,t⇤) +

2t⇤

⇤

+ (n⇤
+ 1)M

+ 2

n⇤X

i=1

log(fi � fi�2) + 2 log(t⇤ � fn⇤�1)

6 2⇤

⇤� 1

· 2

1� ↵
|D|[0,t⇤) +

2t⇤

⇤

+ (n⇤
+ 1)M

+ 2(n⇤
+ 1) log

Pn⇤

i=1(fi � fi�2) + (t⇤ � fn⇤�1)

n⇤
+ 1

=

2⇤

⇤� 1

· 2

1� ↵
|D|[0,t⇤) +

2t⇤

⇤

+ (n⇤
+ 1)M

+ 2(n⇤
+ 1) log

fn⇤
+ t⇤

n⇤
+ 1

6 2⇤

⇤� 1

· 2

1� ↵
|D|[0,t⇤) +

2t⇤

⇤

+ (n⇤
+ 1)M

+ 2(n⇤
+ 1) log

2t⇤

n⇤
+ 1

6 4

(1� ↵)2
|D|[0,t⇤) + ↵|||[1, t]|||+ 2(n⇤

+ 1) ·
⇠
1 + 2 log 2|⌃|

⇠
2

↵

⇡⇡

+ 2(n⇤
+ 1) log

2|||[1, t]|||
n⇤

+ 1

6 4

(1� ↵)2
|D|[0,t⇤) + 2↵|||[1, t]|||� 3, (5.22)

where the first step follows from (5.18) and (5.19); the second step applies Lem-
mas 4.7 and 5.5; the third step is valid by the concavity of the logarithm function;
the next-to-last step is immediate from (5.2), (5.17), and t⇤ 6 t 6 |||[1, t]|||; and the
last step follows from (5.10) and n⇤ 6 n. Adding (5.20)–(5.22), we obtain

|||[1, t]||| 6 4

(1� ↵)2
|D|[0,t] + 2↵|||[1, t]|||,

or equivalently

corr[1, t] > (1� 2↵)(1� ↵)2

4

.

This conclusion is inconsistent with (5.11) since 0 < ↵ < 1. We have reached the
desired contradiction and thereby proved that t⇤ satisfies each of the properties
(5.12)–(5.15).

56 ALEXANDER A. SHERSTOV AND PEI WU

5.7. Finishing the proof. We have reached a “master theorem” analogous to
Theorem 4.15 for a large alphabet, which gives a sufficient condition for Alice and
Bob to assign the correct value to their corresponding copies of the out variable.
Once established, this new result will allow us to easily finish the proof of Theo-
rem 5.1.

Theorem 5.11. Consider a point in time when Alice updates her out variable, and
fix a corresponding integer t 6 T such that 6 ⇤(R0

[1, t]) is the complete sequence of
symbols that Alice has received by that time. Assume that

|||[1, t]||| > cn

↵
log

|⌃|
↵

, (5.23)

corr[1, t] 6 1

4

� ↵, (5.24)

where c > 1 is the absolute constant from Lemma 5.10. Then as a result of the
update, out is set to the leaf vertex in the unique root-to-leaf path in X [Y. An
analogous theorem holds for Bob.

Proof. Analogous to the proof of Theorem 4.15 for a large alphabet, with the dif-
ference that the newly obtained Lemmas 5.3 and 5.10 should be used instead of
their large-alphabet counterparts (Lemmas 4.4 and 4.14).

We now establish the main result of this paper.

Proof of Theorem 5.1. The proof is nearly identical to that for a large alphabet
(Theorem 4.1). Recall that n = |⇡| denotes the communication cost of the original
protocol, and ✏ > 0 is a constant in the statement of Theorem 4.1. Consider
the interactive coding scheme given by Algorithms 5 and 6 with parameters set
according to

↵ =

✏

4

, (5.25)

N =

⇠
cn

2↵
log

|⌃|
↵

⇡
+ 1, (5.26)

where c > 1 is the absolute constant from Lemma 5.10. Then by (5.3), the interac-
tive coding scheme uses an alphabet of size at most 2

O(1/✏3)
= O(1). Furthermore,

the combined number of transmissions sent by Alice and Bob does not exceed
2N = O(

n
✏ log

|⌃|
✏) = O(|⇡| log |⌃|).

It remains to show that when the communication stops, out is set for both Alice
and Bob to the leaf vertex on the unique root-to-leaf path in X [Y. To this end,
recall from (5.25) and Lemma 4.12 that

corr[1, T] 6 1

4

� 2↵. (5.27)

By (5.26) and Lemma 4.9,

|||[1, T]||| > cn

↵
log

|⌃|
↵

+ 2 (5.28)

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 57

and therefore

|||[1, T � 1]||| > cn

↵
log

|⌃|
↵

. (5.29)

Also,

corr[1, T � 1] 6 |||[1, T]|||
|||[1, T � 1]||| · corr[1, T]

6
✓
1 +

2

|||[1, T � 1]|||

◆
· corr[1, T]

6
✓
1 +

2↵

n

◆
·
✓
1

4

� 2↵

◆

6 1

4

� ↵, (5.30)

where the third step uses (5.27) and (5.29). Now, consider the last time that Alice
and Bob update their copies of out. The complete sequence of symbols that Alice has
received at the time of her last update is 6 ⇤(R0

[1, T �1]) or 6 ⇤(R0
[1, T]). Likewise, the

complete sequence of symbols that Bob has received at the time of his last update
is 6 ⇤(R00

[1, T � 1]) or 6 ⇤(R00
[1, T]). By (5.27)–(5.30) and Theorem 5.11, both players

set out to the leaf vertex in the unique root-to-leaf path in X [Y.

5.8. Generalization to early output. Following Braverman et al. [5], we now
consider the setting when Alice and Bob need to be ready with their answers by
a certain round (based on each player’s own counting) rather than when the com-
munication stops. Let ⇧ be an interactive coding scheme. We define the �-early
output for a player in ⇧ as the chronologically ordered sequence of the player’s first
�|⇧|/2 symbols sent (or all of them, if the player sends fewer than �|⇧|/2 symbols)
and first �|⇧|/2 symbols received (or all of them, if the player receives fewer than
�|⇧|/2 symbols). In this early output model, Alice and Bob are still expected to
run their protocol to completion, which happens when one or both of them have
finished |⇧|/2 rounds of communication. The only difference is what information
they use when computing their answers. Both Definition 2.8 and Theorem 5.1(i)
generalize to the setting of early output, as follows.

Definition 5.12 (Coding scheme with early output). Let ⇡ be a given protocol
with input space X ⇥ Y . Protocol ⇧ is an interactive coding scheme for ⇡ with
corruption rate ✏ and �-early output if:

(i) ⇧ has input space X ⇥ Y and is in canonical form;
(ii) there are functions f 0, f 00 such that for any pair of inputs X 2 X and

Y 2 Y and any actions by an adversary with corruption rate ✏, Alice’s �-
early output a and Bob’s �-early output b satisfy f 0

(a) = f 00
(b) = ⇡(X,Y).

Theorem 5.13. Fix arbitrary constants ✏ > 0 and 0 < � 6 1, and let ⇡ be an
arbitrary protocol with alphabet ⌃. Then there exists an interactive coding scheme
for ⇡ with alphabet size O(1) and communication cost O(|⇡| log |⌃|) with �-early
output that tolerates corruption rate (

1
4 � ✏)�.

58 ALEXANDER A. SHERSTOV AND PEI WU

Proof. Let n = |⇡| denote the communication cost of the original protocol. Consider
the interactive coding scheme given by Algorithms 5 and 6 with parameters set
according to

↵ =

✏

2

, (5.31)

N =

⇠
cn

↵�
log

|⌃|
↵

+

3

↵�

⇡
, (5.32)

where c > 1 is the absolute constant from Lemma 5.10. Then by (5.3), the interac-
tive coding scheme uses an alphabet of size at most 2

O(1/✏3)
= O(1). Furthermore,

the combined number of transmissions sent by Alice and Bob does not exceed
2N = O(

n
✏� log

|⌃|
✏) = O(|⇡| log |⌃|).

It remains to show that each player’s �-early output uniquely determines the
output of ⇡. We will prove the following much stronger statement: at any point
in time when one of the players has processed �|⇧|/2 = �N or more incoming
symbols, the variable out is set for both Alice and Bob to the leaf vertex of the
unique root-to-leaf path in X [Y. This will prove the theorem since one of the
players is always guaranteed to be able to run the protocol to completion and in
particular to receive |⇧|/2 = N symbols.

We now provide the details. Fix any integer t 2 {1, 2, . . . , T} such that at least
one of the players receives �|⇧|/2 or more symbols over the course of transmissions
1, 2, . . . , t. This is equivalent to saying that max{|G0 [I 0|[1,t], |G00 [I 00|[1,t]} > �N.
Lemma 4.8 implies that

|||[1, t]||| > 2�N � 1. (5.33)

Now

max{corr[1, t� 1], corr[1, t]} 6 |D|
|||[1, t� 1]|||

6
�
1
4 � ✏

�
� · 2N

2�N � 3

6 1

4

� ↵, (5.34)

where the second step follows from the bound |D| 6 (

1
4 � ✏)� · 2N in the hypothesis

of the theorem, and the third step uses (5.31)–(5.33). Moreover, (5.32) and (5.33)
ensure that

|||[1, t]||| > |||[1, t� 1]||| > cn

↵
log

|⌃|
↵

. (5.35)

Now, consider the last time that Alice and Bob update their copies of out over
the course of transmissions 1, 2, . . . , t. The complete sequence of symbols that Alice
has received at the time of her update is 6 ⇤(R0

[1, t� 1]) or 6 ⇤(R0
[1, t]). Likewise, the

complete sequence of symbols that Bob has received at the time of his update is
6 ⇤(R00

[1, t� 1]) or 6 ⇤(R00
[1, t]). By (5.34), (5.35), and Theorem 5.11, both players set

out to the leaf vertex in the unique root-to-leaf path in X [Y.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 59

In the terminology of our paper, Braverman et al. [5] studied interactive coding
schemes with (1� 2⌘)-early output that tolerate corruption rate ⌘. As their main
result, they proved the existence of such a scheme with alphabet size O(1) and
communication cost O(|⇡| log |⌃|) for any constant ⌘ < 1/18. They also showed
that no such scheme exists in general for ⌘ > 1/6. Our paper closes the gap between
the 1/18 and 1/6, establishing the existence of an interactive coding scheme for any
⇡ and any constant ⌘ < 1/6. This can be seen by taking � = 1�2⌘ and ✏ = 1

4�
⌘

1�2⌘
in Theorem 5.13.

5.9. Optimality. We now establish the optimality of Theorem 5.1, showing that
it tolerates the highest possible corruption rate and normalized corruption rates.
We do so by studying the pointer jumping protocol PJPn, defined for n > 1 as
the protocol with input space {0, 1}n ⇥ {0, 1}n in which Alice and Bob exchange
their strings one bit at a time, taking turns after every bit. Thus, the sequence
of symbols exchanged on input (x, y) is x1y1 . . . xnyn. We show that no interactive
coding scheme with alphabet size 2

o(n) for PJPn can tolerate a corruption rate, or
normalized corruption rates, higher than those tolerated by Theorem 5.1 with a
constant-size alphabet. Our proof uses the “cut and paste” technique of previous
impossibility results [6, 5]. We will first establish a detailed technical theorem and
then deduce our impossibility results as corollaries.

Theorem 5.14. Let ✏subs, ✏oos > 0 be given. Suppose that ⇧ is an interactive
coding scheme with alphabet ⌃ for PJPn that tolerates normalized corruption rate
(✏subs, ✏oos). Then

✏subs +
3

4

✏oos <
1

4

+

log |⌃|
n

. (5.36)

Proof. Let N = |⇧|/2 be the number of communication rounds in ⇧. Since ⇧

simulates PJPn, the former produces at least as many distinct transcripts as the
latter. This leads to |⌃|2N > 4

n and

N > n

log |⌃| . (5.37)

The centerpiece of the proof is the following claim.

Claim 5.15. The system

k 6 ✏oos(2N � k), (5.38)
⇠
N

2

⇡
� k 6 ✏subs(2N � k) (5.39)

has no integral solution 0 6 k 6 dN/2e.

Proof. For the sake of contradiction, suppose that the system has a solution k 2
{0, 1, 2, . . . , dN/2e}. Fix arbitrary x, y, y0 2 {0, 1}n with y 6= y0, and consider the
following two executions of ⇧.

60 ALEXANDER A. SHERSTOV AND PEI WU

(i) Alice and Bob receive inputs x and y, respectively. The adversary uses sub-
stitution attacks to replace Bob’s first dN/2e�k responses to Alice with the
corresponding responses that he would send if his input were y0. Then the
adversary carries out k consecutive out-of-sync attacks, intercepting Alice’s
transmissions to Bob and sending back to Alice the responses that Bob
would send at that point if his input were y0. From then on, the adversary
does not interfere with the communication. We let �1,�2, . . . ,�N 2 ⌃ de-
note the complete sequence of symbols that Alice receives in this execution.

(ii) Alice and Bob receive inputs x and y0, respectively. The adversary does not
interfere with the first bN/2c rounds of communication. As a result, the
sequence of symbols that Alice receives in those rounds is �1,�2, . . . ,�bN/2c.
The adversary tampers with every symbol delivered to Alice from then on,
making sure that she receives the sequence �bN/2c+1, . . . ,�N�1,�N . The
adversary does so using dN/2e�k consecutive substitution attacks followed
by k consecutive out-of-sync attacks. At that point, the communication
stops because Alice has received N symbols.

Both executions feature 2N � k transmissions, dN/2e� k substitution attacks, and
k out-of-sync attacks. By (5.38) and (5.39), these numbers of substitution and
out-of-sync attacks are legitimate under normalized corruption rate (✏subs, ✏oos).
As a result, Alice and Bob’s simulation of PJPn is correct in both executions.
Since PJPn produces different transcripts on (x, y) and (x, y0), we conclude that
both Alice and Bob are able to distinguish between the two executions. We have
reached the promised contradiction because the two executions look identical to
Alice.

We now return to the proof of the theorem. The values k 2 [0, dN/2e] that
satisfy (5.38) form a subinterval of [0, dN/2e] that contains 0. Analogously, the
values k 2 [0, dN/2e] that satisfy (5.39) form a subinterval of [0, dN/2e] that con-
tains dN/2e. Since the system of these two inequalities has no integral solution in
[0, dN/2e], there exists k⇤ 2 [0, dN/2e � 1] such that k = k⇤ + 1 and k = k⇤ violate
(5.38) and (5.39), respectively:

✏oos <
k⇤ + 1

2N � k⇤ � 1

,

✏subs <
dN/2e � k⇤

2N � k⇤
.

Taking a weighted sum of these inequalities with weights 3/4 and 1,

3

4

✏oos + ✏subs <
3

4

· k⇤ + 1

2N � k⇤ � 1

+

1
2 (N + 1)� k⇤

2N � k⇤

=

1

4

+

5N � k⇤ � 1

2(2N � k⇤ � 1)(2N � k⇤)

6 1

4

+

1

N
,

where the last step uses k⇤ 6 (N � 1)/2. By (5.37), the proof is complete.

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 61

We now derive our claimed impossibility results as corollaries of Theorem 5.14.

Corollary 5.16. Suppose that for every n > 1, there is an interactive coding
scheme for the pointer jumping protocol PJPn with alphabet size 2

o(n) that tolerates
normalized corruption rate (✏subs, ✏oos). Then

✏subs +
3

4

✏oos 6
1

4

.

Proof. Substitute |⌃| = 2

o(n) in Theorem 5.14 and pass to the limit as n!1.

Corollary 5.17. Suppose that for every n > 1, there is an interactive coding
scheme for the pointer jumping protocol PJPn with alphabet size 2

o(n) that tolerates
corruption rate ✏. Then

✏ 6 1

4

.

Proof. Any scheme that tolerates corruption rate ✏ must also tolerate normalized
corruption rate (✏, 0). Therefore, the claim follows by taking ✏subs = ✏ and ✏oos = 0

in Corollary 5.16.

Acknowledgments

The authors are thankful to Mark Braverman and Rafail Ostrovsky for their
comments on an earlier version of this manuscript.

References

[1] S. Agrawal, R. Gelles, and A. Sahai, Adaptive protocols for interactive communication,
in IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain, July
10-15, 2016, 2016, pp. 595–599, doi:10.1109/ISIT.2016.7541368.

[2] Z. Brakerski, Y. T. Kalai, and M. Naor, Fast interactive coding against adversarial
noise, J. ACM, 61 (2014), pp. 35:1–35:30, doi:10.1145/2661628.

[3] G. Brassard, A. Nayak, A. Tapp, D. Touchette, and F. Unger, Noisy interac-
tive quantum communication, in Proceedings of the Fifty-Fifth Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2014, pp. 296–305, doi:10.1109/FOCS.2014.39.

[4] M. Braverman and K. Efremenko, List and unique coding for interactive commu-
nication in the presence of adversarial noise, in Proceedings of the Fifty-Fifth Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 236–245,
doi:10.1109/FOCS.2014.33.

[5] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky, Coding for interactive com-
munication correcting insertions and deletions, in Proceedings of the Forty-Third Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), 2016, pp. 61:1–
61:14, doi:10.4230/LIPIcs.ICALP.2016.61.

[6] M. Braverman and A. Rao, Toward coding for maximum errors in interac-
tive communication, IEEE Trans. Information Theory, 60 (2014), pp. 7248–7255,
doi:10.1109/TIT.2014.2353994.

[7] K. Efremenko, R. Gelles, and B. Haeupler, Maximal noise in interactive communica-
tion over erasure channels and channels with feedback, IEEE Trans. Information Theory, 62
(2016), pp. 4575–4588, doi:10.1109/TIT.2016.2582176.

[8] M. K. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman, Optimal coding for
streaming authentication and interactive communication, IEEE Trans. Information Theory,
61 (2015), pp. 133–145, doi:10.1109/TIT.2014.2367094.

http://dx.doi.org/10.1109/ISIT.2016.7541368
http://dx.doi.org/10.1145/2661628
http://dx.doi.org/10.1109/FOCS.2014.39
http://dx.doi.org/10.1109/FOCS.2014.33
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.61
http://dx.doi.org/10.1109/TIT.2014.2353994
http://dx.doi.org/10.1109/TIT.2016.2582176
http://dx.doi.org/10.1109/TIT.2014.2367094

62 ALEXANDER A. SHERSTOV AND PEI WU

[9] R. Gelles, Coding for interactive communication: A survey, 2015. Available at http://

www.eng.biu.ac.il/~gellesr/survey.pdf.
[10] R. Gelles and B. Haeupler, Capacity of interactive communication over erasure channels

and channels with feedback, in Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, 2015,
pp. 1296–1311, doi:10.1137/1.9781611973730.86.

[11] R. Gelles, A. Moitra, and A. Sahai, Efficient coding for interactive communication,
IEEE Trans. Information Theory, 60 (2014), pp. 1899–1913, doi:10.1109/TIT.2013.2294186.

[12] M. Ghaffari and B. Haeupler, Optimal error rates for interactive coding II: efficiency
and list decoding, in Proceedings of the Fifty-Fifth Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2014, pp. 394–403, doi:10.1109/FOCS.2014.49.

[13] M. Ghaffari, B. Haeupler, and M. Sudan, Optimal error rates for interactive coding I:
adaptivity and other settings, in Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing (STOC), 2014, pp. 794–803, doi:10.1145/2591796.2591872.

[14] B. Haeupler, Interactive channel capacity revisited, in Proceedings of the Fifty-Fifth An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), 2014, pp. 226–235,
doi:10.1109/FOCS.2014.32.

[15] J. Justesen, Class of constructive asymptotically good algebraic codes, IEEE Trans. Infor-
mation Theory, 18 (1972), pp. 652–656, doi:10.1109/TIT.1972.1054893.

[16] G. Kol and R. Raz, Interactive channel capacity, in Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing (STOC), 2013, pp. 715–724,
doi:10.1145/2488608.2488699.

[17] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals,
Soviet Physics Doklady, 10 (1966), pp. 707–710.

[18] R. Ostrovsky, Y. Rabani, and L. J. Schulman, Error-correcting codes for
automatic control, IEEE Trans. Information Theory, 55 (2009), pp. 2931–2941,
doi:10.1109/TIT.2009.2021303.

[19] L. J. Schulman, Communication on noisy channels: A coding theorem for computation,
in Proceedings of the Thirty-Third Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1992, pp. 724–733, doi:10.1109/SFCS.1992.267778.

[20] L. J. Schulman, Deterministic coding for interactive communication, in Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC), 1993, pp. 747–756,
doi:10.1145/167088.167279.

[21] L. J. Schulman, Coding for interactive communication, IEEE Trans. Information Theory,
42 (1996), pp. 1745–1756, doi:10.1109/18.556671.

[22] L. J. Schulman and D. Zuckerman, Asymptotically good codes correcting insertions,
deletions, and transpositions, IEEE Trans. Information Theory, 45 (1999), pp. 2552–2557,
doi:10.1109/18.796406.

[23] C. E. Shannon, A mathematical theory of communication, The Bell System Technical Jour-
nal, 27 (1948), pp. 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x.

[24] C. E. Shannon, A mathematical theory of communication, The Bell System Technical Jour-
nal, 27 (1948), pp. 623–656, doi:10.1002/j.1538-7305.1948.tb00917.x.

[25] A. C.-C. Yao, Some complexity questions related to distributive computing, in Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing (STOC), 1979, pp. 209–213,
doi:10.1145/800135.804414.

Appendix A. Existence of good tree codes

The purpose of this appendix is to prove Theorem 2.7 on the existence of ↵-good
codes, which we now restate for the reader’s convenience.

Theorem. For any alphabet ⌃in, any 0 < ↵ < 1, and any integer n > 0, there is
an ↵-good code C : ⌃

⇤
in ! ⌃

⇤
out of depth n with

|⌃out| =
⇠
(10|⌃in|)1/↵ e

↵

⇡2
. (A.1)

http://www.eng.biu.ac.il/~gellesr/survey.pdf
http://www.eng.biu.ac.il/~gellesr/survey.pdf
http://dx.doi.org/10.1137/1.9781611973730.86
http://dx.doi.org/10.1109/TIT.2013.2294186
http://dx.doi.org/10.1109/FOCS.2014.49
http://dx.doi.org/10.1145/2591796.2591872
http://dx.doi.org/10.1109/FOCS.2014.32
http://dx.doi.org/10.1109/TIT.1972.1054893
http://dx.doi.org/10.1145/2488608.2488699
http://dx.doi.org/10.1109/TIT.2009.2021303
http://dx.doi.org/10.1109/SFCS.1992.267778
http://dx.doi.org/10.1145/167088.167279
http://dx.doi.org/10.1109/18.556671
http://dx.doi.org/10.1109/18.796406
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1145/800135.804414

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 63

Our treatment is a reworked and simplified version of an argument of Braverman
et al. [5], who proved the existence of a closely related family of tree codes.

We fix ↵ for the rest of the proof and define ⌃out to be the alphabet of consecutive
natural numbers, with cardinality given by (A.1). For strings u and v, we write
u ⇧ v to mean that ED(u, v) < (1� ↵)(|u|+ |v|). For a tree code C : ⌃

⇤
in ! ⌃

⇤
out of

depth n and a string u 2 ⌃

⇤
in, we let Cu denote the tree code Cu : ⌃

⇤
in ! ⌃

⇤
out of

depth n� |u| given by Cu(v) = (C(uv))>|u|.
Our proof centers around two inductively defined families C0,C1,C2, . . . ,Cn, . . .

and C ⇤
0 ,C

⇤
1 ,C

⇤
2 , . . . ,C

⇤
n , . . . , where Cn and C ⇤

n are sets of tree codes of depth n.
As a base case, we let C0 = C ⇤

0 be the family whose only member is the tree
code " 7! ", which is by definition the only tree code of depth 0. Assuming that
C0,C1,C2, . . . ,Cn�1 and C ⇤

0 ,C
⇤
1 ,C

⇤
2 , . . . ,C

⇤
n�1 have been constructed, we define Cn

to be the family of all tree codes C : ⌃

⇤
in ! ⌃

⇤
out of depth n such that C� 2 C ⇤

n�1

for all � 2 ⌃in, and define C ⇤
n to be the family of all ↵-good codes in Cn. To settle

Theorem 2.7, it remains to prove that each C ⇤
n is nonempty. We will in fact prove

the following stronger claim:

|C ⇤
n |

|Cn|
> 1

2

, n = 0, 1, 2, 3, (A.2)

We will argue by induction on n. The base case n = 0 is trivial. For the inductive
step, fix n > 1 arbitrarily and assume that |C ⇤

i |/|Ci| > 1/2 for i = 0, 1, 2, . . . , n� 1.
A key technical element of our analysis is the following observation.

Claim A.1. Let u, v, w 2 ⌃

⇤
in be given, where v61 6= w61. Then

P
C2Cn

[C(uv) ⇧ Cu(w)] 6
✓

1

5|⌃in|

◆|u|+|v|+|w|
.

The hypothesis v61 6= w61 above amounts to saying that the longest common prefix
of v and w is the empty string.

64 ALEXANDER A. SHERSTOV AND PEI WU

Proof of Claim A.1. The claim follows from the following derivation, whose steps
we will justify shortly:

P
C2Cn

[C(uv) ⇧ Cu(w)] 6 2

|u| P
z2⌃|u|

out

C2Cn�|u|

[zC(v) ⇧ C(w)] (A.3)

= 2

|u| P
z2⌃|u|

out

C0,C002Cn�|u|

[zC 0
(v) ⇧ C 00

(w)] (A.4)

6 2

|u|+|v| P
z2⌃|u|

out

z02⌃|v|
out

C002Cn�|u|

[zz0 ⇧ C 00
(w)] (A.5)

6 2

|u|+|v|+|w| P
z2⌃|u|

out

z02⌃|v|
out

z002⌃|w|
out

[zz0 ⇧ z00] (A.6)

6 2

|u|+|v|+|w|

e

↵
p
|⌃out|

!↵(|u|+|v|+|w|)

(A.7)

6 1

(5|⌃in|)|u|+|v|+|w| . (A.8)

Inequality (A.3) is trivially true for u = ". To verify validity for |u| > 1, observe
that

P
C2Cn

[C(uv) ⇧ Cu(w)] = P
z12⌃

out

C2C⇤
n�1

[z1C(u>2v) ⇧ Cu>2
(w)]

6 P
z12⌃

out

C2Cn�1

[z1C(u>2v) ⇧ Cu>2
(w)] · |Cn�1|

|C ⇤
n�1|

6 P
z12⌃

out

C2Cn�1

[z1C(u>2v) ⇧ Cu>2
(w)] · 2,

where the last two steps use use C ⇤
n�1 ✓ Cn�1 and |C ⇤

n�1| > |Cn�1|/2. Applying
this maneuver an additional |u|�1 times settles (A.3). The next step, (A.4), is valid
because the longest common prefix of v and w is the empty string and therefore
C(v) and C(w) are independent. Steps (A.5) and (A.6) can be verified in a manner
identical to (A.3). The final steps (A.7) and (A.8) follow from Proposition 2.2
and (A.1), respectively.

Armed with Claim A.1, we are now in a position to complete the inductive step.
Our objective is to show that |C ⇤

n |/|Cn| > 1/2, or equivalently that a uniformly
random code C 2 Cn has an ↵-violation with probability at most 1/2. Recall that
an ↵-violation in C is a quadruple of vertices (A,B,D,E) in the tree representation
of C with the following properties:

(i) B is the deepest common predecessor of D and E;

INTERACTIVE CODING FOR INSERTIONS, DELETIONS, AND SUBSTITUTIONS 65

(ii) A is a predecessor of B;

(iii) AD ⇧ BE, where AD 2 ⌃

⇤
out and BE 2 ⌃

⇤
out denote the concatenation of

the code symbols along the path from A to D and the path from B to E,
respectively.

We further deduce that
(iv) A is the root;
(v) B 6= E.

The former holds because the codes in C ⇤
n�1 have no ↵-violations, and the latter

follows from Remark 2.5. These structural constraints allow us to identify an ↵-
violation (A,B,D,E) in C in a one-to-one manner with a triple of strings u, v, w 2
⌃

⇤
in such that v61 6= w61, w 6= ", and C(uv) ⇧ Cu(w). Applying the union bound

over all such triples u, v, w,

P
C2Cn

[C has an ↵-violation]

6
X

u2⌃⇤
in

:
|u|<n

X

v2⌃⇤
in

:
|v|6n�|u|

X

w2⌃+
in

:
|w|6n�|u|,
w61 6=v61

P
C2Cn

[C(uv) ⇧ Cu(w)].

Appealing to Claim A.1 and simplifying,

P
C2Cn

[C has an ↵-violation]

6
X

u2⌃⇤
in

:
|u|<n

X

v2⌃⇤
in

:
|v|6n�|u|

X

w2⌃+
in

:
|w|6n�|u|,
w61 6=v61

✓
1

5|⌃in|

◆|u|+|v|+|w|

6
X

u2⌃⇤
in

X

v2⌃⇤
in

X

w2⌃+
in

✓
1

5|⌃in|

◆|u|+|v|+|w|

=

1X

i=0

1X

j=0

1X

k=1

1

5

i+j+k

=

1

5

· 1

�
1� 1

5

�3

<
1

2

.

The final inequality is equivalent to |C ⇤
n |/|Cn| > 1/2, completing the inductive step.

We have settled (A.2) and thereby proved Theorem 2.7.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

