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Abstract

We construct near optimal linear decision trees for a variety of decision problems
in combinatorics and discrete geometry. For example, for any constant k, we construct
linear decision trees that solve the k-SUM problem on n elements using O(n log2 n)
linear queries. Moreover, the queries we use are comparison queries, which compare
the sums of two k-subsets; when viewed as linear queries, comparison queries are 2k-
sparse and have only {−1, 0, 1} coefficients. We give similar constructions for sorting
sumsets A+B and for solving the SUBSET-SUM problem, both with optimal number
of queries, up to poly-logarithmic terms.

Our constructions are based on the notion of “inference dimension”, recently intro-
duced by the authors in the context of active classification with comparison queries.
This can be viewed as another contribution to the fruitful link between machine learn-
ing and discrete geometry, which goes back to the discovery of the VC dimension.

1 Introduction

This paper studies the linear decision tree complexity of several combinatorial problems, such
as k-SUM, SUBSET-SUM, KNAPSACK, sorting sumsets, and more. A common feature
these problems share is that they are all instances of the following fundamental problem in
computational geometry.

The point-location problem. Let H ⊂ Rn be a finite set. Consider the problem in
which given x ∈ Rn as an input, the goal is to compute the function

AH(x) :=
(
sign(〈x, h〉) : h ∈ H

)
∈ {−, 0,+}H ,
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Figure 1: Primal and dual forms of the point-location problem. H is the green lines/points,
and x is the black point/line, and AH(x) = (+,+, 0,−)

where sign : R→ {−, 0,+} is the sign function and 〈·, ·〉 is the standard inner product in Rn.
In discrete geometry this is known as the point-location in an hyperplane-arrangement

problem, in which each h ∈ H is identified with the hyperplane orthogonal to h, and AH(x)
corresponds to the cell in the partition induced by the hyperplanes in H to which the input
point x belongs.

A dual formulation of this problem has been considered in learning theory, specifically
within the context of active learning: here, each h ∈ H is thought of as a point, x is thought
of as the learned half-space, and computing AH(x) corresponds to learning how each point
h ∈ H is classified by x. In this work it will often be more intuitive to consider this dual
formulation. See Figure 1 for a planar illustration of both interpretations.

Linear decision tree. A linear decision tree for the point-location problem AH is an
adaptive deterministic algorithm T . The set H ⊂ Rn is known in advance, and the input
is x ∈ Rn. The algorithm does not have direct access to x. Instead, at each iteration the
algorithm chooses some h ∈ Rn and queries “sign(〈h, x〉) =?” (note that h is not necessarily
in H). At the end, the algorithm should be able to compute AH(x) correctly. The query
complexity is the maximum over x of the number of queries performed. Equivalently, such
an algorithm can be described by a ternary decision tree which computes the sign of a linear
query at each inner node. A query is s-sparse if it involves at most s nonzero coefficients. A
linear decision tree is s-sparse if all its queries are s-sparse.

Comparison decision tree. A comparison decision tree for the point-location problem
AH is a special type of a linear decision tree, where the only queries used are either of the
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form sign(〈h, x〉) for h ∈ H (label queries), or sign(〈h′ − h′′, x〉) for h′, h′′ ∈ H (comparison
queries). Note that 〈h′ − h′′, x〉 ≥ 0 if and only if 〈h′, x〉 ≥ 〈h′′, x〉, which is why we call these
comparison queries. In the dual version (in which we view H as a set of points), comparison
queries have a natural geometric interpretation: assuming that sign(〈h′, x〉) = sign(〈h′′, x〉),
a comparison query 〈h′ − h′′, x〉, corresponds to querying which one of h′, h′′ ∈ H is further
from the hyperplane defined by x. Observe that if all elements h ∈ H are s-sparse then a
comparison decision tree is 2s-sparse.

1.1 Results

Our main result is a method that produces near optimal decision trees for many natural and
well studied combinatorial instances for the point-location problems by using comparison
decision trees. We first describe a few concrete instances, and then the general framework.

1.1.1 k-SUM

In the k-SUM problem an input array x ∈ Rn of n numbers is given, and the goal is to
decide whether the sum of k distinct numbers is 0. This problem (in particular 3-SUM) has
been extensively studied since the 1990s, as it embeds into many problems in computational
geometry, see for example [GO95]. More recently, it has also been studied in the context of
fine-grained complexity, see for example the survey [VW15].

The k-SUM problem corresponds to the following point-location problem. Let H ⊆
{0, 1}n denote all vectors of hamming weight k. Thus, x ∈ Rn contains k numbers whose
sum is 0 if and only if AH(x) contains at least one 0 entry.

In this context, comparison decision trees allow for two types of linear queries: label
queries of the form “

∑
i∈I xi ≥ 0?” where I ⊂ [n] has size |I| = k, and comparison queries

of the form “
∑

i∈I xi ≥
∑

j∈J xj?” where I, J ⊂ [n] have size |I| = |J | = k.

Theorem 1.1. The k-SUM problem on n elements can be computed by a comparison deci-
sion tree of depth O(kn log2 n). In particular, all the queries are 2k-sparse and have only
{−1, 0, 1} coefficients.

This improves a series of works. There is a simple algorithm based on hashing that
solves k-SUM in time O(ndk/2e). It can be transformed to a linear decision tree with the
same number of queries, which in our language are all label queries. Erickson [Eri95] showed
that Ω(ndk/2e) queries are indeed necessary to solve k-SUM if only label queries are allowed
(or more generally, if only k-sparse linear queries are allowed). Ailon and Chazelle [AC05]
extended the lower bound, and showed that if the linear queries have sparsity less than 2k,
than a super-linear lower bound of n1+Ω(1) holds for the number of queries (note that indeed
the near-linear comparison decision tree given by Theorem 1.1 is 2k-sparse).

In a breakthrough work, Grønlund and Pettie [GP14] were the first to break the ndk/2e

bound. They constructed a randomized (2k−2)-linear decision tree for k-SUM which makes
O(nk/2

√
log n) queries. This was improved to O(nk/2) by Gold and Sharir [GS15].
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In the general linear decision tree model, without any sparsity assumptions, a series of
works in discrete geometry have designed linear decision trees for the general point-location
problem. In the context of k-SUM, the best result is of Ezra and Sharir [ES16], who con-
structed a linear decision tree of depth O(n2 log2 n) for any constant k. This improves on
previous results of Meyer auf der Heide [MadH84], Meiser [Mei93] and Cardinal et al. [CIO15].

1.1.2 Sorting A+B

Let A,B ⊂ R be sets of size |A| = |B| = n. Their sumset, denoted by A + B is the
set {a + b : a ∈ A, b ∈ B}. Consider the goal of sorting A + B while minimizing the
number of comparisons (here, by comparisons we mean the usual notion in sorting, that
is comparing two elements of A + B). While it is possible that |A + B| = n2, it is well
known that the number of possible orderings of A + B is only nO(n) [Fre76]. Thus, from
an information theoretic perspective it is conceivable that A + B can be sorted using only
O(n log n) comparisons. However, Fredman [Fre76] gave a tight bound of Θ(n2) on the
number of comparisons needed to sort A+B.

It is natural to ask whether enabling the algorithm more access to the data in the form of
simple local queries can achieve o(n2) query-complexity. We show that if the algorithm can
use differences-comparisons than an almost optimal query-complexity of O(n log2 n) suffices
to sort A+B. A differences-comparison on an array [x1, . . . , xn] is a query of the form

“xi − xj ≥ xk − xl ?”;

in words: “is xi greater than xj more than xk is greater than xl?”.
The problem of sorting A + B corresponds to the following point-location problem. Let

A = {a1, . . . , an}, B = {b1, . . . , bn} and identify x ∈ R2n with x = (a1, . . . , an, b1, . . . , bn). Let
H ⊂ {−1, 0, 1}2n consist of vectors with exactly one 1 and one −1 in the first n elements,
and exactly one 1 and one −1 in the last n elements. Then computing AH(x) corresponds
to answering all queries of the form “ai + bj ≥ ak + bl?” for all i, j, k, l ∈ [n], which amounts
to sorting A+B. In this context, the two types of queries used by comparison decision trees
are comparison queries in A + B, namely “ai + bj ≥ ak + bl?” where i, j, k, l ∈ [n] (which
correspond to the label queries in the point location problem), and differences-comparison
queries in A+B, namely “ai+bj−ai′−bj′ ≥ ak +bl−ak′−bl′?” where i, j, k, l, i′, j′, k′, l′ ∈ [n]
(which correspond to comparison queries in the point location problem).

Theorem 1.2. Given A,B ⊂ R of size |A| = |B| = n, their sumset A+B can be sorted by
a comparison decision tree of depth O(n log2 n). In particular, all queries are 8-sparse with
{−1, 0, 1} coefficients.

The problem of sorting sumsets has been considered by Fredman [Fre76], who showed
that if only comparison queries are allowed, then Θ(n2) queries are sufficient and necessary
to sort A + B. Grønlund and Pettie [GP14] use it in their work, and specifically ask for a
better linear decision tree for sorting sumsets.
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1.1.3 NP-hard problems

Several NP-hard problems can be phrased as point-location problems. For example, the
SUBSET-SUM problem is to decide, given a set A of n real numbers, whether there exists
a subset of A whose sum is 0. The KNAPSACK problem is to decide whether there exists
a subset of A whose sum is 1. We focus here on SUBSET-SUM for concreteness.

The SUBSET-SUM problem corresponds to the following point-location problem. Let
A = {a1, . . . , an} and take x = (a1, . . . , an) ∈ Rn. Let H = {0, 1}n\{0n}. Then A has a
subset whose sum is 0 if and only if AH(x) contains at least one 0.

In this context, comparison decision trees have two types of queries: label queries of the
form “

∑
i∈A′ ai ≥ 0?” for some A′ ⊆ A, and comparison queries of the form “

∑
i∈A′ ai ≥∑

i∈A′′ ai?” for some A′, A′′ ⊆ A.

Theorem 1.3. The SUBSET-SUM problem can be solved using a comparison decision tree
of depth O(n2 log n), where n is the size of the input-set. In particular, all the queries are
linear with {−1, 0, 1} coefficients.

Note that the bound is tight up to the log factor: indeed, in the corresponding point-
location problem, H = {0, 1}n, and thus {AH(x) : x ∈ Rn} corresponds to the family of
thresholds function on the boolean cube. It is well known that the number of such functions
is 2Θ(n2) [GT62], and thus any decision tree (even one that uses arbitrary queries, each with a
constant number of possible answers) that computes AH(x) must use at least Ω(n2) queries.

The surprising fact that SUBSET-SUM, an NP-hard problem, has a polynomial time
algorithm in a nonuniform model (namely, linear decision trees) was first discovered by Meyer
auf der Heide [MadH84], answering an open problem posed by Dobkin and Lipton [DL74]
and Yao [Yao81]. It originally required O(n4 log n) linear queries. It was generalized by
Meiser [Mei93] to the general point-location problem, and later improved by Cardinal [CIO15]
and Ezra and Sharir [ES16]. This last work, although it does not address the SUBSET-
SUM directly, seems to improves the number of queries to O(n3 log2 n). Observe that our
construction gives a near-optimal number of linear queries, namely O(n2 log n). Moreover,
the queries are simple, in the sense that they involve only {−1, 0, 1} coefficients, and natural
from a a computational perspective as they only compare the sums of subsets. This is unlike
the previous works mentioned, which requires arbitrary coefficients due to the geometric
nature of their techniques.

1.1.4 Other applications

Our framework (see Corollary 1.9) is pretty generic, and as such gives near optimal linear
decision trees for a host of problems considered in the literature. For example, the following
problems were considered in [GP14]. We discuss each one briefly, and refer the interested
reader to [GP14] for a deeper discussion.

k-LDT. Given a fixed linear equation φ(x1, . . . , xk) = α0+
∑k

i=1 αixi and a setA ⊂ R of size
|A| = n, the goal is to decide if there exist distinct a1, . . . , ak ∈ A such that φ(a1, . . . , ak) =
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0. This problem is a variant of the k-SUM problem, and can be embedded as a point-
location problem in Rnk+1 as follows. Let x = (1, α1a1, . . . , α1an, . . . , αka1, . . . , αkan) and
H ⊂ {−1, 0, 1}nk+1 consists of h which have a “−1” in their first coordinate, a single “+1” in
each of the k blocks of size n, and 0 elsewhere. Corollary 1.9 implies a comparison decision
tree with O(kn log2 n) queries which are (2k + 2)-sparse and with {−1, 0, 1} coefficients.
For constant k this gives O(n log2 n), which improves upon the previous best bound of
O(n2 log2 n) of [ES16].

Zero triangles. Let G = (V,E) be a graph on |V | = n vertices and |E| = m edges, which
is known in advance (it is not part of the input). The inputs are edge weights x : E → R.
The goal is to decide if there is a triangle in G whose sum is zero. This problem clearly
embeds as a point-location problem in Rm. Corollary 1.9 gives a comparison decision tree
which solves this problem with O(m log2m) queries. All the queries are 6-sparse and have
{−1, 0, 1} coefficients. This improves upon the previous bound of O(m5/4) of [GP14].

1.2 General framework

Our results are based on the notion of “inference dimension”, which was recently introduced
by the authors [KLMZ17] in the context of active learning.

Definition 1.4 (Inference). Let S ⊂ Rn and h, x ∈ Rn. We say that S infers h at x if
“sign(〈h, x〉)” is determined by the answers to the label and comparison queries on S. That
is, if we set

PS(x) := {x′ ∈ Rn : AS∪(S−S)(x
′) = AS∪(S−S)(x)}

then sign(〈x′, h〉) = sign(〈x, h〉) for all x′ ∈ PS(x). We further define the inference set of S
at x to be

infer(S, x) := {h ∈ Rn : S infers h at x}.

For each h ∈ infer(S, x), we refer to sign(〈h, x〉) as the inferred value of h at x.

An equivalent geometric condition to “S infers h at x” is that the hyperplane defined by
h is either disjoint from PS(x) or contains PS(x).

For example, if h1, h2 are such that sign(〈h1, x〉) = sign(〈h2, x〉) = 0, and h is in the
linear space spanned by h1, h2 then sign(〈h, x〉) = 0 and so {h1, h2} infer h at x. Similarly,
if sign(〈h1, x〉) = sign(〈h2 − h1, x〉) = +1, and h is in the cone spanned by h1, h2 − h1 (i.e.
h = αh1 + β(h2 − h1) for α, β > 0) then sign(〈h, x〉) = +1 and so {h1, h2} infer h at x.

Definition 1.5 (Inference dimension). Let H ⊂ Rn. The inference dimension of H is the
minimal d ≥ 1 for which the following holds. For any subset S ⊂ H of size |S| ≥ d, and for
any x ∈ Rn, there exists h ∈ S such that S \ {h} infers h at x.

We refer the reader to [KLMZ17] for some simple examples and further discussion re-
garding the inference dimension.
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The first step in the proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3, is to show
that the sets H in the corresponding point location problems are of low inference dimension.
The following general theorem provides a uniform treatment for this.

For h ∈ Zn defines it `1 norm as ‖h‖1 =
∑n

i=1 |hi|.

Theorem 1.6. The inference dimension of H = {h ∈ Zn : ‖h‖1 ≤ w} is d = O(n logw).

Next, we show that sets of low inference dimension have efficient comparison decision
trees. As a first step, we show this for zero-error randomized comparison decision trees. A
zero-error randomized comparison decision tree is a distribution over (deterministic) com-
parison decision trees T , each solves AH(x) correctly for all inputs. The expected query
complexity is the maximum over x, of the expected number of queries performed by T (x) to
compute AH(x).

Theorem 1.7. Let H ⊂ Rn be a finite set with inference dimension d. Then there exists a
zero-error randomized comparison decision tree which computes AH , whose expected query
complexity is O

(
(d+ n log d) log |H|

)
.

A slightly weaker version of Theorem 1.7 appears in [KLMZ17] (see Theorem 4.1 there).
The next step is to de-randomize Theorem 1.7 and obtain a deterministic comparison decision
tree.

Theorem 1.8. Let H ⊂ Rn be a finite set with inference dimension d. Then
there exists a comparison decision tree which computes AH , whose query complexity is
O((d+ n log(nd)) log |H|).

The proof of Theorem 1.8 uses a double-sampling argument, a technique originated in the
study of uniform convergence bounds in statistical learning theory [VC71]. The following
corollary summarizes the above theorems concisely. For h ∈ Zn define ‖h‖∞ = max |hi|.

Corollary 1.9. Let H ⊂ Zn be such that ‖h‖∞ ≤ w for all h ∈ H. Then there exists a
comparison decision tree computing AH whose query complexity is O

(
n log(nw) log |H|

)
.

Proof. Observe that ‖h‖1 ≤ n|h‖∞ ≤ nw. By Theorem 1.6, the inference dimension of H is
d = O(n log(nw)). The corollary now follows from Theorem 1.8.

One can now verify that Theorem 1.1, Theorem 1.2 and Theorem 1.3 follow from Corol-
lary 1.9 by setting w = 1.

Paper organization. We begin with some preliminaries in Section 2. We prove The-
orem 1.6 in Section 3. We prove Theorem 1.7 in Section 4. We prove Theorem 1.8 in
Section 5. We discuss further research and open problems in Section 6.

An acknowledgement. We thank the Simons institute at Berkeley, where this work was
performed, for their hospitality.
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2 Preliminaries

Let H ⊆ Rn be a finite set. For every x ∈ Rn, AH(x) denotes the function

AH(x) :=
(
sign(〈x, h〉) : h ∈ H

)
∈ {−, 0,+}H ,

where sign : R→ {−, 0,+} is the sign function and 〈·, ·〉 is the standard inner product in Rn.
The following lemma is a variant of standard bounds on the number of cells in a hyperplane
arrangement.

Lemma 2.1. Let H ⊂ Rn be a set of size |H| = m. Then |{AH(x) : x ∈ Rn}
∣∣ ≤ (2em)n.

Proof. It is well known that a set of m hyperplanes partitions Rn to at most
(
m
≤n

)
open cells.

The lemma follows by first choosing i ≤ n linearly independent hyperplanes to which x
belongs, and then applying the above bound to the remaining ones (restricted to a subspace
of dimension n− i). Thus

∣∣{AH(x) : x ∈ Rn}
∣∣ ≤ n∑

i=0

(
m

i

)(
m− i
≤ n− i

)
=

n∑
i=0

n−i∑
j=0

(
m

i

)(
m− i
j

)

=
n∑

s=0

s∑
i=0

(
m

s

)(
s

i

)
=

n∑
s=0

(
m

s

)
2s ≤

(
m

≤ n

)
2n ≤ (2em)n,

where the second equality follows from the identity
(
m
i

)(
m−i
j

)
=
(
m
s

)(
s
i

)
, where s = i+ j, and

the last inequality follows from the well known upper bound
(
m
≤n

)
≤ (em/n)n ≤ (em)n.

3 Bounding the inference dimension

We prove Theorem 1.6 in this section.

Theorem 1.6 (restated). The inference dimension of H = {h ∈ Zn : ‖h‖1 ≤ w} is
d = O(n logw).

Let S ⊂ Zn be such that ‖h‖1 ≤ w for all h ∈ S. We assume |S| = d where d is large
enough to be determined later. Fix x ∈ Rn. We will show that there exists h ∈ S such that
S \ {h} infers h at x.

Partition S into
{
Sb : b ∈ {−, 0,+}

}
, where

Sb := {h ∈ S : sign(〈h, x〉) = b}.

We will show that if S is sufficiently large then Sb \ {h} infers h at x for some s ∈ Sb and
b ∈ {−, 0,+}. The simplest case is when S0 is large:

Claim 3.1. If |S0| > n then there exists h ∈ S0 such that S0\{h} infers h at x. In particular,
S \ {h} infers h at x.
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Proof. Let h1, . . . , hn+1 ∈ S0 be distinct elements such that hn+1 belongs to the linear span
of h1, . . . , hn. We claim that {h1, . . . , hn} infer hn+1 at x. More specifically, we claim that
having

(i) sign(〈hi, x〉) = 0 for i ≤ n, and

(ii) hn+1 ∈ span{hi : i ≤ n}

imply that sign(〈hn+1, x〉) = 0. Indeed, by (ii) there exist coefficients αi’s such that
hn+1 =

∑n
i=1 αihi, and therefore, using (i), it follows that 〈hn+1, x〉 = 〈

∑n
i=1 αihi, x〉 =∑n

i=1 αi〈hi, x〉 = 0.

Thus, we assume from now on that |S0| ≤ n. We assume without loss of generality that
|S+| ≥ |S−|, and show that there is some h ∈ S+ such that S+ \ {h} infers h at x. The other
case is analogous. Set m = b(d− n)/2c and let h1, . . . , hm ∈ S+ sorted by

0 < 〈h1, x〉 ≤ . . . ≤ 〈hm, x〉.

The idea is to show that some hi satisfies that hi − h1 is in the cone spanned by the hk − hl
where 1 ≤ l ≤ k < i. Then, a simple argument shows that S+ \ {hi} infers hi at x. The
existence of such an hi is derived by a counting argument that boils down to the following
lemma.

Claim 3.2. Assume that 2m−1 > (2e(2w+1)m
n

)n. Then there exist α1, . . . , αm−1 ∈ {−1, 0, 1},
not all zero, such that

m−1∑
i=1

αi(hi+1 − hi) = 0.

In particular, this holds for m = O(n logw) with a large enough constant.

Proof. For any β ∈ {0, 1}m−1 define f(β) :=
∑
βi(hi+1 − hi). Note that f(β) ∈ Zn, and as

since ‖hi‖1 ≤ w for all i, it follows that ‖f(β)‖1 ≤ 2w(m− 1) by the triangle inequality. Let
F := {f(β) : β ∈ {0, 1}m−1}. Next, we bound |F |. We claim that

|F | ≤ 2n

(
2w(m− 1) + n

n

)
.

To see that, note that there are 2n possible signs for each f ∈ F . The number of patterns
for the absolute values is at most the number of ways to express 2w(m − 1) as the sum of
n+ 1 nonnegative integers. Equivalently, it is the number of ways of placing 2w(m−1) balls
in n+ 1 bins, which is

(
2w(m−1)+n

n

)
. We further simplify

|F | ≤ 2n

(
2w(m− 1) + n

n

)
≤ 2n

(
(2w + 1)m

n

)
≤
(

2e(2w + 1)m

n

)n

.

By our assumptions 2m−1 > |F |. Thus by the pigeonhole principle there exist distinct β′, β′′

for which f(β′) = f(β′′). The claim follows for α = β′ − β′′.
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We assume that d = O(n logw) with a large enough constant, so that the conditions of
Claim 3.2 hold. Let α1, . . . , αm−1 ∈ {−1, 0, 1}, not all zero, be such that

∑
αi(hi+1−hi) = 0.

Let 1 ≤ p ≤ m−1 be maximal such that αp 6= 0. We may assume that αp = −1, as otherwise
we can negate all of α1, . . . , αm−1.

Adding hp+1 − h1 =
∑p

i=1(hi+1 − hi) to 0 =
∑
αi(hi+1 − hi), we obtain that

hp+1 − h1 =

p∑
i=1

(αi + 1)(hi+1 − hi) =

p−1∑
i=1

(αi + 1)(hi+1 − hi),

where the first equality holds as αi = 0 if i > p, and the second equality holds as αp = −1.
We claim that R = {h1, . . . , hp} infers hp+1 at x, which completes the proof. More

specifically, we claim that having

(i) 0 < 〈h1, x〉 ≤ . . . ≤ 〈hp, x〉,

(ii) hp+1 − h1 =
∑p−1

i=1 (αi + 1)(hi+1 − hi), where the coefficients αi + 1 ≥ 0 for all i,

imply that sign(〈hp+1, x〉) ≥ 0. Indeed, item (i) implies that 〈x, hi − hj〉 ≥ 0, for every
1 ≤ j < i ≤ p, and item (ii) implies that hp+1 − h1 is in the cone spanned by hi − hj for
1 ≤ j < i ≤ p. Thus, also 〈x, hp+1 − h1〉 ≥ 0, which implies, by the left-most inequality of
item (ii), that 〈x, hp+1〉 ≥ 〈x, h1〉 > 0, as required.

4 Zero-error randomized comparison decision tree

We prove Theorem 1.7 in this section.

Theorem 1.7 (restated). Let H ⊂ Rn be a finite set with inference dimension d. Then
there exists a zero-error randomized comparison decision tree which computes AH , whose
expected query complexity is O

(
(d+ n log d) log |H|

)
.

We begin with the following claim. Recall that infer(S, x) is the set of h ∈ Rn which can
be inferred from S at x.

Claim 4.1. Let S ⊂ Rn with inference dimension d and |S| = d+m. Then for every x ∈ Rn,
there exist h1, . . . , hm ∈ S such that

hi ∈ infer(S \ {hi}, x).

Proof. We apply the definition of inference dimension iteratively. Fix x ∈ Rn. Assume that
we constructed h1, . . . , hi−1 so far for i ≤ m. Let Si = S \ {h1, . . . , hi−1}. As |Si| ≥ d there
exist hi ∈ Si such that Si \{hi} infers hi at x. That is, hi ∈ infer(Si \{hi}, x). But as Si ⊂ S
then also hi ∈ infer(S \ {hi}, x).

Lemma 4.2. Let H ⊂ Rn be a finite set with inference dimension d. Let S ⊂ H be a
uniformly chosen subset of size |S| = 2d. Then for every x ∈ Rn,

ES

[
|infer(S, x) ∩H|

]
≥ |H|

2
.

10



Proof. Fix x ∈ Rn. We have

ES

[
|infer(S, x) ∩H|

|H|

]
= Pr

S⊂H,h∈H
[h ∈ infer(S, x)]

≥ Pr
S⊂H,h∈H\S

[h ∈ infer(S, x)]

= Pr[h2d+1 ∈ infer({h1, . . . , h2d}, x)],

where h1, . . . , h2d+1 ∈ H are uniformly chosen distinct elements. The inequality
“PrS⊂H,h∈H [h ∈ infer(S, x)] ≥ PrS⊂H,h∈H\S[h ∈ infer(S, x)]” follows as h ∈ infer(S, x) for
any h ∈ S.

Let R := {h1, . . . , h2d+1}. By symmetry it holds that

Pr[h2d+1 ∈ infer({h1, . . . , h2d}, x)] =
1

2d+ 1

2d+1∑
i=1

Pr
R

[hi ∈ infer(R \ {hi}, x)]

= ER

[
|{hi ∈ R : hi ∈ infer(R \ {hi}, x)}|

2d+ 1

]
.

By Claim 4.1, for any R ⊂ H it holds that |{hi ∈ R : hi ∈ infer(R \ {hi}, x)}| ≥ |R| − d.
Thus,

ES

[
|infer(S, x) ∩H|

|H|

]
≥ d+ 1

2d+ 1
≥ 1

2
.

We are now in position to describe the algorithm which establishes Theorem 1.7.

11



Zero-error randomized comparison decision tree for AH

Input: x ∈ Rn

Output: AH(x)

(1) Initialize: H0 = H, i = 0, v(h) =? for all h ∈ H.

(2) Repeat while |Hi| ≥ 2d:

(2.1) Sample uniformly Si ⊂ Hi of size |Si| = 2d.

(2.2) Query sign(〈h, x〉) for h ∈ Si and sort the 〈h, x〉 using comparison queries.

(2.3) Compute infer(Si, x) ∩Hi.

(2.4) For all h ∈ infer(Si, x)∩Hi, set v(h) ∈ {−, 0,+} to be the inferred value of
h at x.

(2.5) Set Hi+1 := Hi \ (infer(Si, x) ∩Hi).

(2.6) Set i := i+ 1.

(3) Query sign(〈h, x〉) for all h ∈ Hi, and set v(h) accordingly.

(4) Return v as the value of AH(x).

Analysis. In order to establish Theorem 1.7, we first show that for every x ∈ Rn, the
algorithm terminates after O(log |H|) iterations in expectation. This follows as E[|Hi|] ≤
2−i|H|, which we show by induction on i. It clearly holds for i = 0. For i > 0 by Lemma 4.2,
if we condition on Hi−1 then

ESi
[|Hi| | Hi−1] ≤ |Hi−1|

2
.

and hence

E[|Hi|] = EHi−1
[ESi

[|Hi| | Hi−1]] ≤ E
[
|Hi−1|

2

]
≤ 2−i|H|.

Thus, it remains to bound the number of queries in every round. Observe that the only
queries to x are in steps (2.2) and (3). In step (3) the algorithm makes at most 2d label
queries. In step (2.2), we need to compute sign(〈x, h〉) for all h ∈ Si, which requires |Si| =
2d label queries; and to compute sign(〈x, h′ − h′′〉) for all h′, h′′ ∈ Si. This can be done
in O(d log d) comparison queries by sorting the elements {〈x, h〉 : h ∈ Si} giving some
O(d log d log |H|) bound on the expected total number of queries.

This bound can be improved using Fredman’s sorting algorithm [Fre76].

Theorem 4.3 ( [Fre76]). Let Π be a family of orderings over a set of m elements. Then
there exists a comparison decision tree that sorts every π ∈ Π using at most

2m+ log|Π|

12



comparisons.

To use Fredman’s algorithm, observe that the ordering, “≺”, on Si that is being sorted
in the i’th round is defined by the inner product with x,

h′ ≺ h′′ ⇐⇒ 〈h′, x〉 ≤ 〈h′′, x〉.

The following claim bounds the number of such orderings.

Claim 4.4. Let S ⊂ Rn. Let ΠS,x be the ordering on S define by inner product with x ∈ Rn.
Then

|{ΠS,x : x ∈ Rn}| ≤ (2e|S|2)n.

Proof. Observe that ΠS,x′ 6= ΠS,x′′ if and only if there are h′, h′′ ∈ S such that
sign(〈h′ − h′′, x′〉) 6= sign(〈h′ − h′′, x′′〉). Thus, the number of different orderings is at most
the size of {AS−S(x) : x ∈ Rn}, where S − S = {h′ − h′′ : h′, h′′ ∈ S}. Since |S − S| ≤ |S|2,
Lemma 2.1 implies an upper bound of (2e|S|2)n as claimed.

Thus, by using Fredman’s algorithm we can sort Si with just O(|Si|+ n log |Si|) =
O(d+ n log d) comparisons in each round, which gives a total number of

O((d+ n log d) log |H|)

queries in total.

5 Deterministic comparison decision tree

We prove Theorem 1.8 in this section, which is a de-randomization of Theorem 1.7.

Theorem 1.8 (restated). Let H ⊂ Rn with inference dimension d. Then there exists
a deterministic comparison decision tree which computes AH , whose query complexity is
O((d+ n log(nd)) log |H|).

First, note the following straightforward Corollary of Lemma 4.2.

Corollary 5.1. Let H ⊂ Rn be a finite set with inference dimension d. Let S ⊂ H be
uniformly chosen of size |S| = 2d. Then(

∀x ∈ Rn
)

: Pr
S

[
|infer(S, x) ∩H| ≥ |H|

4

]
≥ 1

4
.

Theorem 1.8 follows by establishing a universal set S which is good for all x ∈ Rn.

Lemma 5.2. Let H ⊂ Rn be a finite set with inference dimension d. Then there exists
S ⊆ H of size |S| = O(d+ n log d) such that:(

∀x ∈ Rn
)

: |infer(S, x) ∩H| ≥ |H|
8
.
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We first argue that Theorem 1.8 follows directly from the existence of such an S. The
algorithm is a straightforward adaptation of the zero-error randomized comparison algorithm,
except that now we use this set S which works for all x ∈ Rn in parallel.

Deterministic comparison decision tree for AH

Input: x ∈ Rn

Output: AH(x)

(1) Initialize: H0 = H, i = 0, v(h) =? for all h ∈ H. Let s = O(d + n log d) as in
Lemma 5.2.

(2) Repeat while |Hi| ≥ s:

(2.1) Pick Si ⊂ Hi of size |Si| = s such that

∀x ∈ Rn, |infer(Si, x) ∩H| ≥ |H|
8
.

(2.2) Query sign(〈h, x〉) for h ∈ Si and sort the 〈h, x〉 using comparison queries.

(2.3) Compute infer(Si, x) ∩Hi.

(2.4) For all h ∈ infer(Si, x)∩Hi, set v(h) ∈ {−, 0,+} to be the inferred value of
h at x.

(2.5) Set Hi+1 := Hi \ (infer(Si, x) ∩Hi).

(2.6) Set i := i+ 1.

(3) Query sign(〈h, x〉) for all h ∈ Hi, and set v(h) accordingly.

(4) Return v as the value of AH(x).

Analysis. Lemma 5.2 ensures that a set Si always exist. Thus, for any x, the algorithm
terminates after O(log |H|) rounds. Observe that the only queries to x are in steps (2.2)
and (3). In step (3) the algorithm makes at most s = O(d + n log d) label queries. In step
(2.2), we need to compute sign(〈x, h〉) for all h ∈ Si, and to compute sign(〈x, h′ − h′′〉) for
all h′, h′′ ∈ Si, which can be done sorting the elements {〈x, h〉 : h ∈ Si}. Using Fredman’s
algorithm, this requires O(|Si| + n log |Si|) = O(d + n log(dn)) many comparisons in each
round, which gives a total number of

O((d+ n log(dn)) log |H|)

queries.
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5.1 Proof of Lemma 5.2

Let S ⊂ H be a uniform subset of size |S| = s where s = O(d+ n log d). Define the event

E(S) :=

[
∃x ∈ Rn, |infer(S, x) ∩H| < |H|

8

]
.

It suffices to prove that Pr[E(S)] < 1 to prove the existence of S. In fact, as we will see,
by choosing sufficiently large constants in the choice of s = O(d + n log d), the probability
Pr[E(S)] can be made ≤ 1/2 (say), so a random set would also work.

In order to establish that E(S) < 1 we use a variant of the double sampling method [VC71]
(see also [VC15]). Let T ⊂ S be a uniformly chosen subset of size |T | = 2d. Define the event

E(S, T ) :=

[
∃x ∈ Rn, |infer(T, x) ∩H| < |H|

8

∧
|infer(T, x) ∩ S| ≥ |S|

4

]
.

We bound Pr(E(S)) in two steps. We first show that (i) Pr[E(S)] ≤ 4 Pr[E(S, T )], and then
that (ii) Pr[E(S, T )] ≤ 1

8
.

Claim 5.3. Pr[E(S)] ≤ 4 Pr[E(S, T )].

Proof. For each S for which E(S) holds fix xS ∈ Rn such that |infer(S, xS)∩H| < |H|
8

. Then

Pr[E(S, T ) | S] ≥ Pr

[
|infer(T, xS) ∩H| < |H|

8

∧
|infer(T, xS) ∩ S| ≥ |S|

4

]
.

The first condition holds with probability one, since T ⊂ S and hence infer(T, xS) ⊂
infer(S, xS). For the second condition, as T ⊂ S is a uniformly chosen subset of size |T | = 2d,
Corollary 5.1 gives

Pr
T

[
|infer(T, xS) ∩ S| ≥ |S|

4

∣∣∣∣ S] ≥ 1

4
.

Thus

Pr[E(S, T ) | S] ≥ 1

4

As this holds for every S for which E(S) holds, we have Pr[E(S, T )|E(S)] ≥ 1/4, which
implies the claim.

We next bound the probability of E(S, T ). We will prove that for every fixed T ,

Pr[E(S, T ) | T ] ≤ 1

8
,

which will conclude the proof. So, fix T ⊂ H of size |T | = 2d. Let T − T denote the set
{h′ − h′′ : h′, h′′ ∈ T}, and let T ∗ = T ∪ (T − T ). Recall that AT ∗(x) is defined by

AT ∗(x) = (sign(〈h, x〉) : h ∈ T ∗) ∈ {−, 0,+}T ∗ .

15



Observe that the set infer(T, x) depends only on AT ∗(x); that is, if AT ∗(x
′) = AT ∗(x

′′) then
infer(T, x′) = infer(T, x′′). Let XT ⊂ Rn be a set that contains one representative from each
equivalence class of the relation x′ ∼ x′′ ⇐⇒ AT ∗(x

′) = AT ∗(x
′′). Thus we can rephrase

the event E(S, T ) as

E(S, T ) =

[
∃x ∈ XT , |infer(T, x) ∩H| < |H|

8

∧
|infer(T, x) ∩ S| ≥ |S|

4

]
.

The advantage of considering XT is that now we can bound the probability of E(S, T ) using
a union bound that depends on the (finite) set XT . More specifically, let

X ′T :=

{
x ∈ XT : |infer(T, x) ∩H| < |H|

8

}
.

We thus established the following claim.

Claim 5.4. For every T ⊂ H,

Pr[E(S, T ) | T ] ≤
∑
x∈X′T

Pr
S

[
|infer(T, x) ∩ S| ≥ |S|

4

∣∣∣∣ T] .
To conclude, it suffices to upper bound |X ′T | and the probability that |infer(T, x)∩S| ≥ |S|

4

for x ∈ X ′T . Lemma 2.1 gives an upper bound on |XT | which also bounds |X ′T |,
|X ′T | ≤ |XT | = |AT ∗| ≤ (2e|T ∗|)n = 2O(n log d).

We next bound the probability (over S ⊃ T ) that |infer(T, x) ∩ S| ≥ |S|
4

for x ∈ X ′T .

Claim 5.5. Fix T ⊂ H of size |T | = 2d and fix x ∈ X ′T . Assume that s ≥ 10|T |, and let S
be a uniformly sampled set of size |S| = s such that T ⊂ S ⊂ H. Then

Pr
T

[
|infer(T, x) ∩ S| ≥ |S|

4

∣∣∣ T] ≤ 2−Ω(s).

Proof. Let R = S\T . It suffices to bound the probability of the event that |infer(T, x)∩R| ≥
|R|
6

. Indeed, if |infer(T, x) ∩ S| ≥ |S|
4

then

|infer(T, x) ∩R| ≥ |S|
4
− |T | = |R|+ |T |

4
− |T | ≥ |R|

6
,

where in the last inequality we used the assumption that |R| ≥ 9|T |.
The set R is a uniform subset of H \ T of size |R| = |S| − |T |. By assumption, at most

|H\T |
8

of the elements in H \ T are in infer(T, x). By the Chernoff bound, the probability
that at least |R|/6 of the sampled elements belong to infer(T, x) is thus exponentially small
in |R|. This finishes the proof as |R| ≥ (9/10)s.

We now conclude the proof.

Pr[E(S, T ) | T ] ≤ |X ′T |2−Ω(s) ≤ 2O(n log d)−Ω(s) ≤ 1/8,

as we choose s = O(d + n log d) with a large enough hidden constant. Then we also have
Pr[E(S, T )] ≤ 1/8 and

Pr[E(S)] ≤ 4 Pr[E(S, T )] ≤ 1/2.
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6 Further research

We prove that many combinatorial point-location problems have near optimal linear deci-
sion trees. Moreover, these are comparison decision trees, in which the linear queries are
particularly simple: both sparse (in many cases) and have only {−1, 0, 1} coefficients. This
raises the possibility of having improved algorithms for these problems in other models of
computations. To be concrete, we focus on 3-SUM below, but the same questions can be
asked for any other problem of a similar flavor.

Uniform computation. The most obvious question is whether the existence of a near op-
timal linear decision tree implies anything about uniform computation. As showed in [GP14],
this can lead to log-factor savings. It is very interesting whether greater savings can be
achieved. We do not discuss this further here, as this question has been extensively dis-
cussed in the literature (see e.g. [VW15]).

Nonuniform computation. Let A ⊂ R be a set of size |A| = n. It is very easy to “prove”
that A is a positive instance of 3-SUM, by demonstrating three elements whose sum is zero.
However, it is much less obvious how to prove that A is a negative instance of 3-SUM. This
problem was explicitly studied in [CGI+16] in the context of nondeterministic ETH. They
constructed such a proof which can be verified in time O(n3/2). It seems plausible that our
current approach may lead to improved bounds. Thus, we propose the following problem.

Open problem 6.1. Given a set of n real numbers no three of which sums to 0. Is there a
proof of that fact which can be verified in near-linear time?

3-SUM with preprocessing. Let A ⊂ R of size |A| = n. The 3-SUM with preprocessing
problem allows one to preprocess the set A in quadratic time. Then, given any subset A′ ⊂ A,
the goal is to solve that 3-SUM problem on A′ in time significantly faster then n2. Chan
and Lewenstein [CL15] designed such an algorithm, which solves that 3-SUM problem on
any subset in time O(n2−ε) for some small constant ε > 0. It is interesting whether our
techniques can help improve this to near-linear time.

Open problem 6.2. Given a set of n real numbers, can they be preprocessed in O(n2) time,
such that later on, for every subset of the numbers the 3-SUM problem can be solved in time
near-linear in n?

General point-location problem. It is natural to ask whether the techniques used in
this paper, and in particular, the inference-dimension, can be used to improve the state-of-
the-art upper bounds for general point location problems. Unfortunately, unless the set of
hyperplanes H has some combinatorial structure, its inference dimension may be unbounded:
in [KLMZ17] we construct examples of H ⊂ R3 whose inference dimension is unbounded.
Nevertheless, we conjecture that by generalizing comparison queries (which are ±1 linear
combinations of two elements in H) to arbitrary linear combinations of two elements from
H might solve the problem.
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Conjecture 6.3. Let H ⊂ Rn. There exists a linear decision tree which computes AH of
depth O(n log |H|). Moreover, all the linear queries are in {αh′+βh′′ : α, β ∈ R, h′, h′′ ∈ H}.

Optimal bounds. We suspect that our analysis can be sharpened to improve the log-
factors that separate it from the information theoretical lower bounds. For concreteness, we
pose the following conjecture.

Conjecture 6.4. For any H ⊂ {−1, 0, 1}n there exists a comparison decision tree which
computes AH with O(n log |H|) many queries. In particular,

• 3-SUM on n real numbers can be solved by a 6-sparse linear decision tree which makes
O(n log n) queries.

• Sorting A+B, where A,B are sets of n real numbers, can be solved by a 4-sparse linear
decision tree which makes O(n log n) queries.

• SUBSET-SUM on n real numbers can be solved by a linear decision tree which makes
O(n2) queries.

Note that Corollary 1.9 gives a bound of O(n log n log |H|) for this problem. So, the goal
is to shave the log n factor.
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