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Abstract

Proving super-polynomial lower bounds against depth-2 threshold circuits of the
form THR ◦THR is a well-known open problem that represents a frontier of our under-
standing in boolean circuit complexity. By contrast, exponential lower bounds on the
size of THR◦MAJ circuits were shown by Razborov and Sherstov [31] even for computing
functions in depth-3 AC0. Yet, no separation among the two depth-2 threshold circuit
classes were known. In fact, it is not clear a priori that they ought to be different. In
particular, Goldmann, H̊astad and Razborov [14] showed that the class MAJ ◦MAJ is
identical to the class MAJ ◦ THR.

In this work, we provide an exponential separation between THR ◦MAJ and THR ◦
THR. We achieve this by showing a function f that is computed by linear size THR◦THR
circuits and yet has exponentially large sign rank. This, by a well-known result, implies
that f requires exponentially large THR ◦ MAJ circuits to be computed. Our result
suggests that the sign rank method alone is unlikely to prove strong lower bounds
against THR ◦ THR circuits.

The main technical ingredient of our work is to prove a strong sign rank lower bound
for an XOR function. This requires novel use of approximation theoretic tools.
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1 Introduction

Understanding the computational power of constant-depth, unbounded fan-in threshold
circuits is one of the most fundamental open problems in theoretical computer science.
Despite several years of intensive research [1, 16, 20, 14, 30, 5, 23, 24, 12, 13, 31, 17, 18,
22, 10], we still do not have strong lower bounds against depth-3 or depth-2 threshold
circuits, depending on how we define threshold gates. The most natural definition of such
a gate, denoted by THRw, is just a linear halfspace induced by the real weight vector
w = (w0, w1, . . . , wn) ∈ Rn+1. In other words, on an input x ∈ {−1, 1}n,

THRw

(
x
)
= sgn

(
w0 +

n∑

i=1

wixi

)
.

The class of all boolean functions that can be computed by circuits of depth d and poly-
nomial size, comprising such gates, is denoted by LTd. The seminal work of Minsky and
Papert [26] showed that the simple function, Parity, is not in LT1. While it is not hard to
verify that Parity is in LT2, an outstanding problem is to exhibit an explicit function that is
not in LT2. This problem is now a well-identified frontier for research in circuit complexity.

A natural question is how large the individual weights in the weight vector w need to
be if we allow just integer weights. It was well-known [27] that for every threshold gate
with n inputs, there exists a threshold representation for it that uses only integer weights
of magnitude at most 2O(n logn). While proving a 2Ω(n) lower bound is not very difficult, a
matching lower bound was shown only in the nineties by H̊astad [19]. Understanding the
power of large weights vs. small weights in the more general context of small-depth circuits
has attracted attention by several works [1, 14, 34, 17, 18, 30, 16, 21, 15]. More precisely,

let L̂T d denote the class of boolean functions that can be computed by polynomial size
and depth d circuits comprising only of threshold gates each of whose integer weights are
polynomially bounded in n, the number of input bits to the circuit. Interestingly, improving
upon an earlier line of work [8, 29, 34], Goldmann, H̊astad and Razborov [14] showed, among

other things, that LTd ⊆ L̂T d+1. It also remains open to exhibit an explicit function that
is not in L̂T 3. This is a very important frontier, as the work of Yao [35] and Beigel and
Tarui [4] show that the entire class ACC is contained in the class of functions computable by
quasi-polynomial size threshold circuits of small weight and depth three. By contrast, the
relatively early work of Hajnal et al. [16] established the fact that the Inner-Product modulo

2 function (denoted by IP), that is easily seen to be in L̂T 3, is not in L̂T 2. Summarizing,

we have L̂T 2 ⊆ LT2 ⊆ L̂T 3. Where precisely between L̂T 2 and L̂T 3 do current techniques
for lower bounds stop working?

In search of the answer to the above question, researchers have investigated the finer
structure of depth-2 threshold circuits, and this has generated many new techniques that
are interesting in their own right. Recall the Majority function, denoted by MAJ, that
outputs 1 precisely when the majority of its n input bits are set to 1. It is simple to verify
that L̂T 2 = MAJ ◦ MAJ. Goldmann et al. [14] proved two very interesting results. First,
they showed that the class MAJ ◦ MAJ and MAJ ◦ THR are identical, i.e. weights of the
bottom gates do not matter if the top gate is allowed only polynomial weight. Second, they
showed that MAJ ◦MAJ is strictly contained in the class THR ◦MAJ, i.e. the weight at the
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top does matter if the bottom weights are restricted to be polynomially bounded in the
input length. This revealed the following structure:

L̂T 2 = MAJ ◦ THR ( THR ◦MAJ ⊆ LT2 ⊆ L̂T 3.

This raised the following two questions: how powerful is the class THR◦MAJ and how does
one prove lower bounds on the size of such circuits?

In a breakthrough work, Forster [12] showed that IP requires size 2Ω(n) to be computed
by THR ◦ MAJ circuits. This yielded an exponential separation between THR ◦ MAJ and
L̂T 3. This also meant that at least one of the two containments THR ◦ MAJ ⊆ LT2 and
LT2 ⊆ L̂T 3 is strict. While it is quite possible that both of them are strict, until now no
progress on this question was made. In particular, Amano and Maruoka [1] and Hansen
and Podolskii [17] state that separating THR ◦ MAJ from THR ◦ THR = LT2 would be
an important step for shedding more light on the structure of depth-2 boolean circuits.
However, as far as we know, there was no clear target function identified for the purpose of
separating the two classes.

In this work, we exhibit such a function and prove that it achieves the desired separation.
To state our result formally, consider the following function that is a simple adaptation of
a well-known function called ODD-MAX-BIT, which we denote by OMB0

ℓ : it outputs −1
precisely if the rightmost bit that is set to 1 occurs at an odd index. It is simple to observe
that it is a linear threshold function:

OMB0
ℓ

(
x
)
= −1 ⇐⇒

ℓ∑

i=1

(−1)i+12i (1 + xi) ≥ 0.5

Let fm ◦ gn : {−1, 1}m×n → {−1, 1} be the composed function on mn input bits, where
each of the m input bits to the outer function f is obtained by applying the inner function
g to a block of n bits. Then, we show the following:

Theorem 1.1. Let Fn be defined on n = 2ℓ4/3 bits as OMB0
ℓ ◦ ORℓ1/3−log l ◦ XOR2. Every

THR ◦MAJ circuit computing Fn needs size 2Ω(n
1/4).

To show that the above suffices to provide us with the separation of threshold circuit
classes, we first observe the following: for each x ∈ {−1, 1}n, let ETHRw(x) = −1 ⇐⇒
w0 + w1x1 + · · · + wnxn = 0. Thus, ETHR gates are also called exact threshold gates. By
first observing that every function computed by a circuit of the form THR ◦OR can also be
computed by a circuit of the form THR ◦ AND with a linear blow-up in size, it follows that
Fn can be computed by linear size circuits of the form THR ◦ AND ◦ XOR2. Observe that
each AND ◦XOR2 is computed by an ETHR gate. Hence, Fn is in THR ◦ETHR, a class that
Hansen and Podolskii [17] showed is identical to the class THR ◦ THR. Thus, Theorem 1.1
yields the following fact:

Corollary 1.2. The function Fn (exponentially) separates the class THR◦MAJ from THR◦
THR.

3



1.1 Our Techniques and Related Work

The starting point for our lower bound is the same as for all known lower bounds (see, for
example, [12, 31, 7]) on the size of THR ◦MAJ circuits. We strive to prove a lower bound
on a quantity called the sign rank of our target function f . Given a partition of the input
bits of f into two parts X,Y , consider the real matrix Mf , given by Mf [x, y] = f(x, y) for
each x ∈ {−1, 1}|X|, y ∈ {−1, 1}|Y |. Any real matrix sign represents Mf if each if its entries
agrees in sign with the corresponding entry of Mf . The sign rank of Mf (also informally
called sign rank of f , when the input partition is clear from the context) is the rank of a
minimal rank matrix that sign represents it. It is not hard to see that the sign rank of
a function f computed by THR ◦ MAJ circuit of size s is at most O(n · s). This sets a
target of proving a strong lower bound on the sign rank of f for showing that it is hard for
THR ◦MAJ.

Sign rank has a matrix-rigidity flavor to it, and therefore is quite non-trivial to bound.
Forster’s [12] deep result (see Theorem 2.7) shows that the sign rank of a matrix can be lower
bounded by appropriately upper-bounding its spectral norm. This is enough to lower bound
the sign rank of functions like IP as the corresponding matrices are orthogonal and therefore
have relatively small spectral norm. However for other functions f , the spectral norm of
the sign matrix Mf can be large. This is true, for example, for many functions in AC0.
In a beautiful work, Razborov and Sherstov [31] showed that Forster’s basic method can
be adapted to prove exponentially strong lower bounds on the sign rank of such a function
f . However, our first problem is on devising an f that is in THR ◦ THR that plausibly
has high sign rank. On this, we were guided by another interpretation of sign rank, due
to Paturi and Simon [28]. Paturi and Simon introduced a model of 2-party randomized
communication, called the unbounded-error model. In this model, Alice and Bob have to
give the right answer with probability just greater than 1/2 on every input. This is, by far,
the strongest 2-party known model against which we know how to prove lower bounds. [28]
showed that the sign rank of the communication matrix of f essentially characterizes its
unbounded error complexity.

Why should some function f ∈ THR ◦ THR have large unbounded-error complexity?
The natural protocol one is tempted to use is the following: assume that the sum of the
magnitude of the weights of the top THR gate is 1. Sample a sub-circuit of the top gate with
a probability proportional to its weight. Then, use the best protocol for the sampled bottom
THR gate. Note that for any given input x, with probability 1/2+ ε, one samples a bottom
gate that agrees with the value of f(x). Here, ε can be as small as the smallest weight of the
top gate. Thus, if we had a small cost randomized protocol for the bottom THR gate that
errs with probability significantly less than ε we would have a small cost unbounded-error
protocol for our function f . Fortunately for us (the lower bound prover), there does not

seem to exist any such efficient randomized protocol for THR, when ε = 1/2n
Ω(1)

.
Taking this a step further, one could hope that the bottom gates could be any function

that is hard to compute with such tiny error ε. The simplest such canonical function is
Equality (denoted by EQ). Therefore, a plausible target is THR ◦ EQ. This still turns out
to be in THR◦THR as EQ ∈ ETHR. Moreover, EQ has a nice composed structure. It is just
AND◦XOR, which lets us re-express our target as f = THR◦AND◦XOR, for some top THR

that is ‘suitably’ hard; hard so that the sign rank of f becomes large! At this point, we
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view f as an XOR function whose outer function, g, needs to have sufficiently good analytic
properties for us to prove that g ◦ XOR has high sign rank.

We are naturally drawn to the work of Razborov and Sherstov [31] for inspiration as
they bound the sign rank of a three-level composed function as well. They showed that
AND ◦OR ◦AND2, an AND function, has high sign rank. They exploited the fact that AND
functions embed inside them pattern matrices, which have nice convenient spectral proper-
ties as observed in [33]. These spectral properties dictate them to look for an approximately
smooth orthogonalizing distribution w.r.t which the outer function f = AND ◦ OR has zero
correlation with small degree parities. This gives rise naturally to an LP that seeks to max-
imize the smoothness of the distribution under the constraints of low-degree orthogonality.
The main technical challenge that the Razborov-Sherstov work overcomes is the analysis of
the dual of this LP using and building appropriate tools of approximation theory. We take
cue from this work and follow its general framework of analysing the dual of a suitable LP.
However, as we are forced to work with an XOR function, there are new challenges that crop
up. This is expected for if we take the same outer function of AND ◦OR, then the resulting
XOR function has small sign rank. Indeed, this remains true even if one were to harden
the outer function to MAJ ◦OR. This is simply because a simple efficient UPP protocol for
MAJ◦EQ exists: pick a random EQ and then execute a protocol of cost O(log n) that solves
this EQ with error less than 1/n2.

The specific new technical challenge that one faces is the following: instead of low
degree orthogonality, one now needs a distribution µ w.r.t which the outer function has low
correlation with all parities (see LP1). Just dealing with high degree parity constraints,
though non-trivial, was done in the recent work of the authors [9]. However, unlike there,
here one needs the additional constraint of the distribution being (approximately) smooth
enough. Analysing this combination of high degree parity constraints and the smoothness
constraints, is the main new technical challenge that our work addresses. We do this by a
novel combination of ideas that differs entirely from the Razborov-Sherstov analysis.

Analyzing the dual of our LP (LP2) involves arguing against the existence of a certain
kind of (possibly high degree) polynomial representation. We require several ideas to deal
with it. First, the dual polynomial P has unit weight. While it does not necessarily sign
represent f = THRℓ ◦ ORm , it is constrained to not stray too far away from zero on the
wrong side on each point of its domain {−1, 1}n. Moreover, over a set X, where we want the
distribution to be smooth in in the primal LP, roughly speaking, P ’s margin in representing
f on average has to be good. Since the set X has to be large (to get good approximate
smoothness), we are essentially forced to include in X all inputs that are mapped to 1l by
the bottom ORs of f . In particular, we set X to be precisely the set of such points. With
this setting, our bound on the sign rank becomes roughly δ/OPT, where OPT is the optimal
value of the LP.

The first idea we use is an averaging argument that appeared in the work of Krause and
Pudlák [24]. What this does is that for each possible input y ∈ {−1, 1}ℓ to THRℓ, it takes
the average of all values of P under the uniform distribution over all points x such that
ORm

(
x
)
= y. This achieves the following as described in Lemma 3.1: the polynomial P over

x transforms to an OR polynomial Q, over y’s, of the same weight as P , plus an error term
whose magnitude is exponentially small in the fan-in of the bottom OR gates of f . Here,
an OR polynomial is a linear combination of ORs of subsets of variables. Assuming, for the
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sake of contradiction, OPT to be large enough, we can safely ignore the error term. This
gives us a passage to an OR polynomial of unit weight representing our top THR function g,
with the same worst-case guarantee that held for P . Additionally, we get the guarantee that
at y = −1l, Q’s margin is better by the average margin of P on the set X. The intuition is
that when OPT is large, this average margin is also large compared to ∆, the worst case
margin.

Now we want to argue that such a Q does not exist if we select our top threshold g
judiciously. We select the ODD-MAX-BIT function, denoted by OMB, for this purpose.
We then observe that if we randomly restrict each variable to −1, then the expected weight
of OR monomials of degree at least d that do not get fixed is as small as 1/2d. Ignoring
this high degree monomials, therefore does not decrease our margin by too much. Further,
with high probability, the restriction induces an OMB of sufficiently large number of free
variables. This now gives us a polynomial of Q′ of degree less than d that has worst case
margin not too small, but does somewhat better on −1l. While margin bounds against sign
representing polynomials of sufficiently small degree have been obtained several times before,
our setting is different. Q′ is not sign-representing OMB. It is here that our choice of the
ODD-MAX-BIT function comes in very handy. We show that a standard approximation
theoretic lemma of Ehlich and Zeller [11], Rivlin and Cheney [32] can be used to argue
against the existence of such a Q′ for OMB.

2 Preliminaries

In this section, we provide the necessary preliminaries.

Definition 2.1 (Threshold functions). A function f : {−1, 1}n → {−1, 1} is called a
linear threshold function if there exist integer weights a0, a1, . . . , an such that for all inputs
x ∈ {−1, 1}n, f(x) = sgn(a0 +

∑n
i=1 aixi). Let THR denote the class of all such functions.

Definition 2.2 (Exact threshold functions). A function f : {−1, 1}n → {−1, 1} is called
an exact threshold function if there exist reals w1, . . . , wn, t such that

f(x) = −1 ⇐⇒
n∑

i=1

wixi = t

Let ETHR denote the class of exact threshold functions.

Hansen and Podolskii [17] showed the following.

Theorem 2.3 (Hansen and Podolskii [17]). If a function f : {−1, 1}n → {−1, 1} can be
represented by a THR ◦ ETHR circuit of size s, then it can be represented by a THR ◦ THR
circuit of size 2s.

For the sake of completeness and clarity, we provide the proof below.

Proof. Let f be an exact threshold function with the representation
∑n

i=1wixi = t. There
exists an εf > 0 such that

∑n
i=1wixi > t =⇒ ∑n

i=1wixi > t + εf . Consider a THR ◦
ETHR circuit of size s, say it computes sgn(c0 +

∑s
i=1 fi), where fis have exact threshold
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representations
∑n

j=1wi,jxj = ti, respectively. Consider the THR ◦ THR circuit of size 2s,
given by sgn (

∑s
i=1 ci(gi,2 − gi,1 + 1)), where gis are threshold functions with representations

as follows.

gi,1 = 1 ⇐⇒
n∑

j=1

wi,jxj ≥ ti,

gi,2 = 1 ⇐⇒
n∑

j=1

wi,jxj ≥ ti + εfi .

It is easy to verify that this circuit computes f .

Remark 2.4. In fact, Hansen and Podolskii [17] showed that the circuit class THR ◦ THR
is identical to the circuit class THR ◦ ETHR. However, we do not require the full generality
of their result.

We now note that any function computable by a THR ◦OR circuit can be computed by
a THR ◦ AND circuit without a blowup in the size.

Lemma 2.5. Suppose f : {−1, 1}n → {−1, 1} can be computed by a THR ◦ OR circuit of
size s. Then, f can be computed by a THR ◦ AND circuit of size s.

Proof. Consider a THR ◦ OR circuit of size s, computing f , say

f(x) = sgn




s∑

i=1

wi

∨

j∈Si

xj




Note that
s∑

i=1

wi

∨

j∈Si

xj =
s∑

i=1

−wi

∧

j∈Si

xcj

Thus, sgn
(∑s

i=1−wi
∧

j∈Si
xcj

)
is a THR ◦ AND representation of f , of size s.

Definition 2.6 (OR polynomials). Define a function p : {−1, 1}n → R of the form p(x) =∑
S⊆[n] aS

∨
i∈S xi to be an OR polynomial. Define the weight of p to be

∑
S⊆[n] |aS |, and

its degree to be maxS⊆[n]{|S| : aS 6= 0}.

Define the sign rank of a real matrix A = [Aij ], denoted by sr(A) to be the least rank
of a matrix B = [Bij ] such that AijBij > 0 for all (i, j) such that Aij 6= 0.

Forster [12] proved the following relation between the sign rank of a {±1} valued matrix
and its spectral norm.

Theorem 2.7 (Forster [12]). Let A = [Axy]x∈X,y∈Y be a {±1} valued matrix. Then,

sr(A) ≥
√
|X||Y |
||A||

We require the following generalization of Forster’s theorem by Razborov and Sherstov
[31].
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Theorem 2.8 (Razborov and Sherstov [31]). Let A = [Axy]x∈X,y∈Y be a real valued matrix
with s = |X||Y | entries, such that A 6= 0. For arbitrary parameters h, γ > 0, if all but h of
the entries of A satisfy |Axy| ≥ γ, then

sr(A) ≥ γs

||A||√s+ γh

The following lemma from Forster et al. [13] tells us that functions that have efficient
THR ◦MAJ representations have low sign rank.

Lemma 2.9 (Forster et al. [13]). Let f : {−1, 1}n × {−1, 1}n → {−1, 1} be a boolean
function computed by a THR ◦MAJ circuit of size s. Then,

sr(Mf ) ≤ sn

where Mf denotes the communication matrix of f .

For the purpose of this paper, we abuse notation, and use sr(f) and sr(Mf ) interchange-
ably, to denote the sign rank of Mf .

In the model of communication we consider, two players, say Alice and Bob, are given
inputs X ∈ X and Y ∈ Y for some finite input sets X ,Y, they are given access to private
randomness and they wish to compute a given function f : X × Y → {−1, 1}. We will
use X = Y = {−1, 1}n for the purposes of this paper. Alice and Bob communicate using
a randomized protocol which has been agreed upon in advance. The cost of the protocol
is the maximum number of bits communicated on the worst case input and randomness.
A protocol Π computes f with advantage ε if the probability of f agreeing with Π is at
least 1/2 + ε for all inputs. We denote the cost of the best such protocol to be Rε(f).
Note here that we deviate from the notation used in [25], for example. Unbounded error
communication complexity was introduced by Paturi and Simon [28], and is defined as
follows.

UPP(f) = min
ε

(Rε(f)).

This measure gives rise to the following natural communication complexity class, as argued
by Babai et al. [2].

Definition 2.10.

UPPcc(f) ≡ {f : UPP(f) = polylog(n)}.

Paturi and Simon [28] showed an equivalence between UPP(f) and the sign rank of Mf ,
where Mf denotes the communication matrix of f .

Theorem 2.11 (Paturi and Simon [28]). For any function f : {−1, 1}n × {−1, 1}n →
{−1, 1},

UPP(f) = log sr(Mf )±O(1).

The following lemma characterizes the spectral norm of the communication matrix of
XOR functions.
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Lemma 2.12 (Folklore). Let f : {−1, 1}n × {−1, 1}n → R be any real valued function and
let M denote the communication matrix of f ◦ XOR. Then,

||M || = 2n · max
S⊆[n]

∣∣∣f̂(S)
∣∣∣.

Finally, we require the following well-known lemma by Minsky and Papert [26].

Lemma 2.13 (Minsky and Papert [26]). Let p : {−1, 1}n → R be any symmetric real
polynomial of degree d. Then, there exists a univariate polynomial q of degree at most d,
such that for all x ∈ {−1, 1}n,

p(x) = q(#1(x))

where #1(x) = |{i ∈ [n] : xi = 1}|.

3 Hardness of approximating OMB
0
l ◦ ORm

For notational convenience, denote g = OMB0
l , f = g ◦ ∨m. Let n = lm. We first use an

idea from Krause and Pudlák [24] which enables us work with g, rather than g ◦∨m.

Lemma 3.1. Let f = gl ◦
∨

m : {−1, 1}ml → {−1, 1},∆ ∈ R, ex ≥ 0 ∀x ∈ X, where X
denotes the set of all inputs x in {−1, 1}ml such that

∨
m(x) = −1l, and let p be a real

polynomial such that

∀x ∈ {−1, 1}ml, f(x)p(x) ≥ ∆,

∀x ∈ {−1, 1}ml such that
∨

m

(x) = −1l, f(x)p(x) ≥ ∆+ ex.

Then, there exists an OR polynomial p′, of weight at most wt(p′), such that

∀y ∈ {−1, 1}l, p′(y)g(y) ≥ wt(p)
(
∆− 2l · 2−m

)

g(−1l)p′(−1l) ≥ wt(p)

(
∆− 2l · 2−m +

∑
x∈X ex

|X|

)
.

Proof. For any y ∈ {−1, 1}l, denote by Ey[f(x)] the expected value of f(x) with respect to
the uniform distribution over all x ∈ {−1, 1}ml such that

∨
m(x) = y. For each Ik ⊆ [l]×[m],

define Jk ⊆ [l] to be the projection of Ik on [l]. Formally,

i ∈ Jk ⇐⇒ ∃j, xi,j ∈ Ik.

Note that for any y ∈ {−1, 1}l,

E
y
[f(x)p(x)] = g(y) · E

y
[p(x)] ≥ ∆

and

E
−1l

[f(x)p(x)] = g(−1l) · E
−1l

[p(x)] ≥ ∆+

∑
x∈X ex

|X| .
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Next, we approximate each monomial by an OR function. The following argument appears
in the proof of Lemma 2.3 in [24]. However, we reproduce the proof below for clarity and
completeness.

First observe that for all y ∈ {−1, 1}l, and for all x satisfying
∨

m(x) = y, the monomial
corresponding to Ik equals

⊕

(i,j)∈Ik

xi,j =
⊕

(i,j)∈Ik,yi=−1

xi,j .

Let A = {j ∈ [l] : yj = −1}. If A ∩ Jk = ∅, then

E
y


 ⊕

(i,j)∈Ik

xi,j


 =

∨

j∈Jk

yj = 1

Else, let B = A ∩ Jk. In this case,
∨

j∈Jk
yj = −1. Also,

E
y


 ⊕

(i,j)∈Ik

xi,j


 = E

x∈{−1,1}A∩Jk :
∨
(x)=−1|A∩Jk|


 ⊕

(i,j)∈Ik,yi=−1

xi,j


 (1)

Note that

E
x∈{−1,1}A∩Jk


 ⊕

(i,j)∈Ik,yi=−1

xi,j


 = 0 (2)

Denote |A ∩ Jk| = q. Using Equation 2 and a simple counting argument, the absolute value
of the RHS (and thus the LHS) of Equation 1 can be upper bounded as follows.

∣∣∣∣∣Ey

[
⊕

(i,j)∈Ik

xi,j

]∣∣∣∣∣ ≤
2mq − (2m − 1)q

(2m − 1)q

≤ q · 2mq−m

2mq
≤ l2−m

Hence, for all y ∈ {−1, 1}l, we have
∣∣∣∣∣∣
E
y


 ⊕

(i,j)∈Ik

xi,j


− 1

2
− 1

2

∨

j∈Jk

yj

∣∣∣∣∣∣
≤ 2l2−m. (3)

Say p = v0 +
∑

k vkpk, where pk(x) = ⊕(i,j)∈Ikxi,j is the unique multilinear expansion
of p. Define

p′ = v0 −
∑

k vk
2

−
∑

k

vk
2

∨

j∈Jk

yj .

Note that

wt(p′) = wt


v0 −

∑
k vk
2

−
∑

k

vk
2

∨

j∈Jk

yj


 =

∣∣∣∣v0 −
∑

k vk
2

∣∣∣∣+
∑

k

∣∣∣vk
2

∣∣∣ ≤ wt(p).

10



Thus, using linearity of expectation, we obtain that for all y ∈ {−1, 1}l,

g(y) · p′(y) ≥ ∆− wt(p)
(
2l · 2−m

)

and

g(−1l) · p′(−1l) ≥ ∆+

∑
x∈X ex

|X| − wt(p)
(
2l · 2−m

)

Next, we use random restrictions which reduces the degree of the approximating OR

polynomial, at the cost of a small error.

Lemma 3.2. Let gl = OMB0 : {−1, 1}l → {−1, 1}, f = gl ◦
∨

m, and ∆, {ex ≥ 0 : x ∈ X}
(where X is defined as in Lemma 3.1), and p be a real polynomial such that

{
∀x ∈ {−1, 1}ml, f(x)p(x) ≥ ∆

∀x ∈ {−1, 1}ml such that
∨

m(x) = −1l, p(x) ≥ ∆+ ex.

Then, for any integer d > 0, there exists an OR polynomial p′′, of degree d and weight at
most wt(p), such that

For all y ∈ {−1, 1}l/8, p′′(y)gl/8(y) ≥ ∆− wt(p)
(
2l · 2−m + 2−(d−1)

)

and p′′(−1l/8) ≥ ∆+

∑
x∈X ex

|X| − wt(p)
(
2l · 2−m + 2−(d−1)

)
.

Proof. Lemma 3.1 guarantees the existence of an OR polynomial p′, of weight at most wt(p),
such that

∀y ∈ {−1, 1}l, p′(y)g(y) ≥ ∆− wt(p)
(
2l · 2−m

)

p′(−1l) ≥ ∆+

∑
x∈X ex

|X| − wt(p)
(
2l · 2−m

)
.

Now, set each of the l variables to −1 with probability 1/2, and leave it unset with
probability 1/2. Call this random restriction r. Any OR monomial of degree at least d gets
fixed to −1 with probability 1−2−d. Thus, by linearity of expectation, the expected weight
of surviving monomials of degree at least d in p′ is at most wt(p) · 2−d. Let M |r denote the
value of a monomial M after the restriction r. By Markov’s inequality,

Pr
r


 ∑

M :deg(M |r)≥d

wt(M |r) > wt(p) · 2−d+1


 < 1/2

Consider l/2 pairs of variables, {(xi, xi+1) : i ∈ [l/2]} (assume w.l.o.g that l is even). For
any pair, the probability that both of its variables remain unset is 1/4. This probability is
independent over pairs. Thus, by a Chernoff bound, the probability that at most l/16 pairs

remain unset is at most 2−
l
64 .

11



By a union bound, there exists a setting of variables such that at least l/16 pairs of
variables are left free, and the weight of degree ≥ d monomials in p′ is at most wt(p) ·2−d+1.
Set the remaining 7l/8 variables to the value −1. After the restriction, drop the monomials
of degree ≥ d from p′ to obtain p′′, which is now an OR polynomial of degree less than d
and weight at most wt(p). Note that the function gl hit with this restriction just becomes
gl/8.

Thus,

For all y ∈ {−1, 1}l/8, p′′(y)gl/8(y) ≥ ∆− wt(p)
(
2l · 2−m + 2−(d−1)

)

and p′′(−1l/8) ≥ ∆+

∑
x∈X ex

|X| − wt(p)
(
2l · 2−m + 2−(d−1)

)
.

3.1 Hardness of OMB
0

In this section, we show that approximating OMB0 by a low weight polynomial p must
imply that the degree of p is large.

We require the following result by Ehlich and Zeller [11] and Rivlin and Cheney [32].

Lemma 3.3 ([11, 32]). The following holds true for any real valued α > 0 and k > 0. Let
p be a univariate polynomial of degree d <

√
k/4, such that p(0) ≥ α, and p(i) ≤ 0 for all

i ∈ [k]. Then, there exists i ∈ [k] such that p(i) < −2α.

We next use the idea of ‘doubling’ for the OMB0 function, as in [3, 6] to show that a
low degree polynomial of bounded weight cannot represent OMB0 well. This is our main
approximation theoretic lemma.

Lemma 3.4. Suppose p is a polynomial of degree d <
√
n/4 and a > 0, b ∈ R be reals

such that OMB0(−1n) ≥ a and OMB0(x)p(x) ≥ b for all x ∈ {−1, 1}n. Then, for all
i ∈ {0, 1, . . . , ⌊n/10d2⌋}, there exists an xi ∈ {−1, 1}n (not necessarily distinct) such that
|p(xi)| ≥ 2ia+

(
3 · 2i − 3

)
b.

The argument will be an iterative one, inspired by the arguments of Beigel and Buhrman
et al. [3, 6].

Claim 3.5. If a and b are reals such that a > 0, b ∈ R and 2ia+
(
3 · 2i − 2

)
b < 0 for some

i ≥ 0, then 2ja+
(
3 · 2j − 3

)
b < 0 for all j > i.

Proof. Note that since a > 0 and 2ia+
(
3 · 2i − 2

)
b < 0, b must be negative. For any j > i,

write 2ja+
(
3 · 2j − 3

)
b = 2j−i

(
2ia+

(
3 · 2i − 2

)
b
)
+ 3 · (2j−i+1 − 3)b < 0.

Proof of Lemma 3.4. We will assume, for the rest of the proof, that

2ia+
(
3 · 2i − 2

)
b ≥ 0 ∀i ∈

[
⌊n/10d2⌋

]
. (4)

If not, the lemma is trivially true by Claim 3.5.
Divide the variables into ⌊n/10d2⌋ contiguous blocks of size 10d2 each.
Induction hypothesis: For each i ∈ {1, . . . , ⌊n/10d2⌋}, there exists an input xi ∈

{−1, 1}n such that

12



• xij = −1 for all indices to the right of the ith block.

• The values of xij for indices j to the left of the ith block are set as dictated by the
previous step.

• |p(x)| ≥ 2ia+
(
3 · 2i − 3

)
b.

• The value of p(x) is negative if i is odd, and positive if i is even.

We now prove the induction hypothesis.

• Base case: Say i = 1. We know from our assumption that OMB0(−1n) ≥ a and
OMB0(x)p(x) ≥ b for all x ∈ {−1, 1}n. Set the variables corresponding to the even
indices in the first block to −1, and all variables to the right of the first block to −1.
Denote the free variables by y1, . . . , y5d2 . Define a polynomial p1 : {−1, 1}5d2 → R

by p1(y) = Eσ∈S5d2
p̃(σ(y)), where p̃(y) denotes the value of p on input y1, . . . , y5d2 ,

and the remaining variables are set as described earlier. The expectation is over the
uniform distribution. Note that p1 is a symmetric polynomial of degree at most d,
and satisfies

p1(−15d
2
) ≥ a, p1(y) ≤ −b ∀y 6= −15d

2
.

By Lemma 2.13, there exists a univariate polynomial p′1 such that for all i ∈ {0}∪[5d2],

p′1(i) = p1(y) ∀y such that #1(y) = i

Thus,
p′1(0) ≥ a, p′1(j) ≤ −b ∀j ∈ [5d2].

Define p′′1 = p′1 + b. Thus, p′′1(0) ≥ a+ b ≥ 0, and p′′1(j) ≤ 0 ∀j ∈ [5d2].

By Lemma 3.3, there exists a j ∈ [5d2] such that p′′1(j) < −2a−2b. This means p′1(j) <
−2a− 3b < 0, because of Equation 4. This implies existence of an x ∈ {−1, 1}n (with
all variables to the right of the first block still set to −1) such that p(x) < −2a− 3b.

• Inductive step: In the ith block, set the variables corresponding to the even indices
to −1 if i is odd, and set the odd indexed variables to −1 if i is even. Set the variables
outside the ith block as dictated by the previous step. Assume that i is odd (the
argument for even integers i follows in a similar fashion, with suitable sign changes).
Denote the free variables by y1, . . . , y5d2 . Define a polynomial pi : {−1, 1}5d2 → R

by pi(y) = Eσ∈S5d2
p̃(σ(y)), where p̃(y) denotes the value of p on input y1, . . . , y5d2 ,

and the remaining variables are set as described earlier. The expectation is over the
uniform distribution. Note that pi is a symmetric polynomial of degree at most d,
and satisfies

pi(−15d
2
) ≥ 2ia+

(
3 · 2i − 3

)
b, p1(y) ≤ −b ∀y 6= −15d

2
.

By Lemma 2.13, there exists a univariate polynomial p′i such that for all j ∈ {0}∪[5d2],

p′i(j) = pi(y) ∀y such that #1(y) = j.

13



Thus,
p′i(0) ≥ 2ia+

(
3 · 2i − 3

)
b, p′1(j) ≤ −b ∀j ∈ [5d2].

Define p′′i = p′i + b. Thus,

p′′i (0) ≥ 2ia+
(
3 · 2i − 2

)
b ≥ 0, p′′i (j) ≤ 0 ∀j ∈ [5d2].

By Lemma 3.3, there exists a j ∈ [5d2] such that p′′i (j) ≤ −2i+1a −
(
3 · 2i+1 − 2

)
b,

and hence p′i(j) ≤ −2i+1a−
(
3 · 2i+1 − 3

)
b, by Equation 4. This implies the existence

of an x in {−1, 1}n (with all variables to the right of the ith block still set to −1,
and variables to the left of the ith block as dictated by the previous step) such that
p(x) < −2i+1a−

(
3 · 2i+1 − 3

)
b.

4 Lower bounds

In this section, we prove our lower bounds. We first use linear programming duality to give
us a sufficient approximation theoretic condition f for showing that the sign rank of f ◦XOR
is large. Let δ > 0 be a parameter, and X be any subset of {−1, 1}n.

(LP1)

Variables ε, {µx : x ∈ {−1, 1}n}
Minimize ε

s.t.

∣∣∣∣
∑
x
µ(x)f(x)χS(x)

∣∣∣∣ ≤ ε ∀S ⊆ [n]
∑
x
µ(x) = 1

ε ≥ 0

µ(x) ≥ δ
2n ∀x ∈ X

The first two constraints above specify that correlation of f against all parities need to
be small w.r.t a distribution µ. The last constraint enforces the fact that µ is ‘δ-smooth’
over the set X. As we had indicated before in Section 1.1, these constraints make analyzing
the LP challenging.

Standard manipulations (as in [9], for example) and strong linear programming duality
reveal that the optimum of the above linear program equals the optimum of the following
program.

(LP2)

Variables ∆, {αS : S ⊆ [n]}, {ξx : x ∈ X}
Maximize ∆ + δ

2n
∑
x∈X

ξx

s.t. f(x)
∑

S⊆[n]

αSχS(x) ≥ ∆ ∀x ∈ {−1, 1}n

f(x)
∑

S⊆[n]

αSχS(x) ≥ ∆+ ξx ∀x ∈ X

∑
S⊆[n]

|αS | ≤ 1

∆ ∈ R

αS ∈ R ∀S ⊆ [n]
ξx ≥ 0 ∀x ∈ X

14



The variable ∆ represents the worst margin guaranteed to exist at all points. At each
point x over the smooth set, the dual polynomial has to better the worst margin by at least
ξx. If the OPT is large, then it means that on average the dual polynomial did significantly
better than the worst margin. Below is our main technical result of this section, which says
that no such dual polynomial exists, even when the smoothness parameter δ is as high as
1/4.

Theorem 4.1. Let f = OMB0
l ◦ ∨l1/3−log l : {−1, 1}l4/3−l log l → {−1, 1}, δ = 1/4 and

X = {x ∈ {−1, 1}l4/3−l log l :
∨
(x) = −1l}. Then the optimal value, OPT, of (LP2) is at

most 2−
l1/3

81 .

Proof. Let p be a polynomial of weight 1, for which (LP2) attains its optimum. Denote
the values taken by the variables at the optimum by ∆OPT, {ξx,OPT : x ∈ X}. Towards a

contradiction, assume OPT ≥ 2−
l1/3

81 .
Lemma 3.2 (set m = l1/3 − log l) shows the existence of an OR polynomial p′ on l/8

variables, of weight 1, such that

For all y ∈ {−1, 1}l/8, p′(y)OMB0(y) ≥ ∆OPT − 2 · 2−l1/3 − 2 · 2−l1/3

and p′(−1l/8) ≥ ∆+

∑
x∈X ξx,OPT

|X| − 2 · 2−l1/3 − 2 · 2−l1/3 .

Note that

OPT ≥ 2−
l1/3

81 =⇒ ∆OPT ≥ 2−
l1/3

81 − δ

∑
x∈X ξx,OPT

2n
(5)

p′ satisfies the assumptions of Lemma 3.4 with d = deg(p′) = l1/3 <
√
l/32 (since any

OR polynomial of degree d can be represented by a polynomial of degree at most d), a =

∆OPT +
∑

x∈X ξx,OPT

|X| − 4 · 2−l1/3 , and b = ∆OPT − 4 · 2−l1/3 .

a = ∆OPT +

∑
x∈X ξx,OPT

|X| − 4 · 2−l1/3

≥ 2−
l1/3

81 − 4 · 2−l1/3 ≥ 0.

Let us denote k = l1/3/80 for the remaining of this proof. Thus, by Lemma 3.4, there
exists an x ∈ {−1, 1}l/8 such that

|p′(x)| ≥ 2ka+
(
3 · 2k − 3

)
b

≥ ∆OPT(4 · 2k − 3) + 2k
∑

x∈X ξx,OPT

|X| − 4 · 2−80k(4 · 2k − 3)

≥
(
4 · 2k − 3

)(
2−

l1/3

81 − δ

∑
x∈X ξx,OPT

2n

)
+ 2k

∑
x∈X ξx,OPT

|X| − 4 · 2−80k(4 · 2k − 3)

Using Equation 5.

≥
(
4 · 2k − 3

)(
2−80k/81 − 4 · 2−80k

)
Since δ = 1/4.

> 1 Assuming k > 81.

This yields a contradiction, since p′ was a polynomial of weight at most 1.
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Theorem 4.2. Let f = OMB0
l ◦
∨

l1/3−log l : {−1, 1}l4/3−l log l → {−1, 1}. Then,

sr(f ◦ XOR) ≥ 2l
1/3−2 log l

16

Proof. Let n = l4/3 − l log l. Theorem 4.1 tells us that the optimum of (LP2) (and hence

(LP1), by duality) is at most 2−
l1/3

81 , when f = OMB0 ◦ ∨l1/3−log l. We first estimate the
size of Xc. The probability (over the uniform distribution on the inputs) of a particular OR
gate firing a 1 is 1

2l
1/3−log l

. By a union bound, the probability of any OR gate firing a 1 is

at most l2

2l
1/3 , and hence |Xc| ≤ 2n · l2

2l
1/3 . By Lemma 2.12 and Theorem 2.8,

sr(f ◦ XOR) ≥ sr(fµ ◦ XOR) ≥
δ
2n 2

2n

OPT · 2n + δ
2n · h

≥ 1/4

2−
l1/3

81 + 1
4
|Xc|
2n

≥ 1/4

2−
l1/3

81 + 1
4 l

2 · 2−l1/3

≥ 2l
1/3−2 log l

8

This gives us a function f on n input variables such that for large enough n,

sr(f ◦ XOR) ≥ 2n
1/4− 3

2
logn

8

Corollary 4.3. Let f = OMB0
l ◦ ∨l1/3−log l : {−1, 1}l4/3−l log l → {−1, 1}, and let n =

l4/3 − l log l denote the number of input variables. Then

UPP(f ◦ XOR) ≥ n1/4 − 3

2
logn− 3.

Proof. It follows from Theorem 4.2 and Theorem 2.11.

We now prove Theorem 1.1, which gives us a lower bound on the size of THR ◦ MAJ

circuits computing OMB0 ◦∨l1/3−log l ◦XOR2.

Proof of Theorem 1.1. Suppose OMB0 ◦∨l1/3−log l ◦XOR2 could be represented by a THR ◦
MAJ circuit of size s. Let n = 2l4/3 − 2l log l. By Lemma 2.9 and Theorem 4.2,

s
(
2l4/3 − 2l log l

)
≥ sr(f) ≥ 2l

1/3−2 log l

8
.

Thus,

s ≥ 2l
1/3− 10

3
log l

16
= 2Ω(n

1/4).
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Finally, we prove Corollary 1.2, which separates THR ◦MAJ from THR ◦ THR.

Proof of Corollary 1.2. Let n = 2l4/3−2l log l. By Lemma 2.5, f = OMB0◦∨l1/3−log l ◦XOR2

can be computed by a THR ◦ AND ◦ XOR2 circuit of size n. Hence f ∈ THR ◦ ETHR =
THR ◦ THR, by Theorem 2.3. By Theorem 1.1, THR ◦ MAJ circuits computing f require

size 2Ω(n
1/4).

5 Conclusions

This work refines our understanding of depth-2 threshold circuits by providing the following
summary:

L̂T 1 ( LT1 ( L̂T 2 = MAJ ◦ THR ( THR ◦MAJ ( LT2 ⊆ L̂T 3 ⊆ NP/poly

While we cannot rule out that SAT has efficient THR ◦ THR circuits, we do not even
know whether IP is in LT2. On the other hand, the most powerful method used to prove
lower bounds on the size of depth-2 threshold circuits for computing an explicit function
f exploits the fact that f has large sign rank. Before our work, it was not known if LT2

contained any function of large sign rank. Our main result shows that indeed there are such
functions, answering a question explicitly raised by Hansen and Podolskii [17] and Amano
and Maruoka [1].

The central open question in the area is to prove super-polynomial lower bounds on
the size of THR ◦ THR circuits. The best known explicit lower bounds due to Kane and
Williams [22] is roughly n3/2. We feel that there is a dire need of discovering new techniques
for proving strong lower bounds against THR ◦ THR circuits.
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