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Abstract

We study an extension of active learning in which the learning algorithm may ask the
annotator to compare the distances of two examples from the boundary of their label-class.
For example, in a recommendation system application (say for restaurants), the annotator
may be asked whether she liked or disliked a specific restaurant (a label query); or which
one of two restaurants did she like more (a comparison query).

We focus on the class of half spaces, and show that under natural assumptions, such
as large margin or bounded bit-description of the input examples, it is possible to reveal
all the labels of a sample of size n using approximately O(log n) queries. This implies an
exponential improvement over classical active learning, where only label queries are allowed.
We complement these results by showing that if any of these assumptions is removed then,
in the worst case, Ω(n) queries are required.

Our results follow from a new general framework of active learning with additional
queries. We identify a combinatorial dimension, called the inference dimension, that cap-
tures the query complexity when each additional query is determined by O(1) examples
(such as comparison queries, each of which is determined by the two compared examples).
Our results for half spaces follow by bounding the inference dimension in the cases discussed
above.
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1 Introduction

A central goal of interactive learning is understanding what type of interaction between a
learner and a domain expert enhances the learning process, compared to the classical passive
learning from labeled examples.

A basic model that was studied in this context is pool-based active learning (McCallum
and Nigam, 1998). Here, the algorithm has an access to a large pool of unlabeled examples
from which it can pick examples and query their labels. The goal is to make as few queries as
possible while achieving generalization-guarantees which are comparable with these of a passive
algorithm with an access to all of the labels.

A canonical example that demonstrates an advantage of active learning is the class of
threshold functions1 over the real line. Indeed, let c denote the learned threshold function, and
let x1 < x2 < . . . < xn in R be the given pool of unlabeled examples. It is possible to infer the
labels of all n points by making at most log n+2 queries: query the labels of the extreme points
c(x1), c(xn); if c(x1) = c(xn) then the remaining points must be labeled the same; otherwise,
continue in a binary search fashion, by labeling the middle point of the interval whose extreme
points have opposite labels. After at most log n such queries, the labels of all n points are
revealed.

Unfortunately, this exponential improvement in the query complexity breaks for more gen-
eral concept classes. In fact, even for the class of 2 dimensional threshold functions2, namely
the class of half-planes, the (worst-case) query complexity of active learning equals that of pas-
sive learning (see e.g. Dasgupta (2004)). Consequently, much of the literature was dedicated to
developing theory that takes into consideration further properties of the unknown underlying
distribution or the target concept (Balcan et al., 2007; Hanneke, 2007; Dasgupta et al., 2008;
Balcan et al., 2009; Beygelzimer et al., 2010; Balcan et al., 2010; Koltchinskii, 2010; Balcan
and Hanneke, 2011; Hanneke and Yang, 2012; El-Yaniv and Wiener, 2012; Balcan and Long,
2013; Gonen et al., 2013; Urner et al., 2013; Zhang and Chaudhuri, 2014; Wiener et al., 2015;
Berlind and Urner, 2015).

We consider another approach by allowing the learning algorithm to further interact with
the domain expert by asking additional queries. This poses a question:

Which additional queries can the algorithm use?

Allowing arbitrary queries will result in a very strong learner (indeed, by halving the set of
potential hypothesis in every query, the number of queries can be made logarithmic). However,
arbitrary queries are useless in practice: as experimental work by Lang and Baum (1992)
shows, algorithms that use set of queries that are too rich may result in a poor practical
performance. This is not surprising if we keep in mind that the human annotator who answers
the queries is restricted (computationally and in other ways). Thus, a crucial factor in choosing
the additional queries is compatibility with the annotator who answers them. A popular type
of queries, which is used in applications involving human annotators, is relative queries. These
queries poll relative information between two or more data points.

This work focuses on a basic kind of relative queries — comparison queries. Using such
queries is sensible in settings in which there is some natural ordering of the instances with
respect to the learned concept. As a toy example, consider the goal of classifying films according
to whether a certain individual is likely to enjoy them or not (e.g. for recommending new films
for this person). In this context, the input sample consists of films watched by the individual,
a label query asks whether the person liked a film, and a comparison query asks which of two
given films did the individual prefer. As we will see, comparison queries may significantly help.

1 These are “R→ {±1}” functions of the form c(x) = sign(a · x− b), where a, b ∈ R.
2 These are “R2 → {±1}” functions of the form c(x) = sign

(
〈a, x〉 − b

)
, where a ∈ R2, b ∈ R.
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Another aspect implied by the restricted nature of the human annotator is that the learned
concept resides in the class of concepts that can be computed by the annotator, which presum-
ably has low capacity. Thus, realizability assumptions about the generating data distributions
are plausible in this context.

1.1 Active learning with additional comparison queries

Consider a learned concept of the form c(x) = sign
(
f(x)

)
, where f is a real valued function

(e.g. half spaces, neural nets), and consider two instances x1, x2 such that, say f(x1) = 10, and
f(x2) = 1000. Both c(x1) and c(x2) equal +1, however that f(x2) >> f(x1) suggests that
x2 is a “more positive instance” than x2. In the setting of film classification this is naturally
interpreted as that the person likes the film x2 more than the film x1. We call the query
“f(x2) ≥ f(x1)?” a comparison query.

1.1.1 Example: learning half-planes with comparison and label queries

To be concrete, consider the class of half-planes in R2. Here, a comparison query is equivalent
to asking which of two sample points x1, x2 lies closer to the boundary line. Do such queries
improve the query complexity over standard active learning? It is known that without such
queries, in the worst-case, the learner essentially has to query all labels (Dasgupta, 2004).

The following algorithm demonstrates an exponential improvement when comparison queries
are allowed. Later, we will present more general results showing that this can be generalized
to higher dimensions under some natural restrictions, and that such restrictions are indeed
necessary.

Interactive learning algorithm with comparison queries for half planes in R2

(see Figure 1 for a graphical illustration)

Setting: an unlabeled input sample of n points x1, . . . , xn ∈ R2 with hidden labels
according to a half-plane c(x) = sign

(
f(x)

)
, where f : R2 → R is affine.

Repeat until all points are labeled:

1. Sample uniformly a subsample S of 30 points.

2. Query the labels of the points in S, and denote by:
P — points in S labeled by +1,
N — points in S labeled by −1.

3. Use comparison queries to find:
(i) q – the closest point in P to the boundary line,
(ii) v – the closest point in N to the boundary line.

4. Denote by:
[p, q], [q, r] — the two edges of the convex hull of P that are incident to q,
[u, v], [v, w] — the two edges of the convex hull of N that are incident to v.

5. Infer that:
all points inside the cone ∠pqr are labeled +1,
all points inside the cone ∠uvw are labeled −1.

6. Repeat on the remaining unlabeled points.
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Figure 1: An illustration of a single iteration.

The algorithm proceeds by iterations: it repeats steps 1-5 until all points are labeled. At
each iteration at most 60 queries are performed: 30 label queries in step 2 and at most 30
comparison queries in step 3, for finding the points q, v of minimal distance. In each iteration,
the algorithm infers the labels of all points in the union of the angles ∠pqr,∠uvw. We will
refer to this region as “the confident region”.

We claim that after an expected number of O(log n) iterations (and therefore using only
O(log n) queries) the algorithm infers the labels of all input points. Establishing this statement
boils down, via a boosting argument (Theorem 3.2) to the following two important properties,
which are easy to verify:

• Confidence: every point which is labeled by the algorithm is labeled correctly.

• Inference from a small subsample: the confident region is determined by a subsample
of 6 labeled points of S (i.e. p, q, r and u, v, w).

These properties imply that at each iteration, with probability at least 1/2, half of the remaining
unlabeled points are labeled correctly (see Lemma 3.3). Thus, the expected number of queries
is O(log n).

Paper organization. In Section 1.2 we present and discuss our results, later, in Section 1.3
we survey previous related works, and in Section 1.4 we ceil the introduction with suggested
directions of future research and open problems. Sections 2, 3, and 4 contain the technical
definitions and proofs.

1.2 Results

We next present and discuss our main results.
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1. Subsection 1.2.1 is dedicated to our results concerning half spaces,

2. Subsection 1.2.2 is dedicated to the inference dimension, and how it captures the query
complexity of active learning with additional comparison queries, and

3. Subsection 1.2.3 focuses on the general framework of active learning with additional
queries.

1.2.1 Interactive learning of half spaces with comparison queries

We start by discussing our results for interactive learning of half spaces in Rd when both label
queries and comparison queries are allowed. We show that a general algorithm, as the one we
described for R2, cannot exist for d ≥ 3. However, we identify two useful properties that allow
for such a learning algorithm: bounded bit complexity and margin.

Exact recovery of labels. We first describe our results in the context of exact recovery.
Here, the labels of all n sample points needs to be revealed, using as few queries as possible.

We first show that in the worst case, in Rd this requires Ω(n) queries for any d ≥ 3 (recall
that O(log n) queries suffice in R2).

Theorem 1.1 (Theorem 4.11, informal version). There are n points in R3 that require Ω(n)
label and comparison queries for revealing all labels.

Our first positive result shows that efficient exact recovery of labels is possible if the points
have low bit complexity.

Theorem 1.2 (Theorem 4.1, informal version). Consider an arbitrary realizable sample of n
points in Rd whose individual bit complexity is B. The labels of all sample points can be learned
using Õ(B log n) label and comparison queries.

As an example, consider the sample consisting of the 2N point in the boolean hypercube
{0, 1}N . The bit complexity of every point is N . The above thoerem implies that given an
unknown threshold function on {0, 1}N , it is possible to reveal all 2N labels using Õ(N2)
comparison and label queries. This should be compared to the situation where only label
queries are allowed, where all 2N queries are necessary. We discuss this example in more detail
in Section 1.4.4, and leave as an open question whether revealing the 2N labels can be done
efficiently (the above Õ(N2) bound applies only to the query complexity, and not to the total
running time).

Our second positive result shows that a similar algorithm exists if the margin is large.

Theorem 1.3 (Theorem 4.7, informal version). Assume a sample of n points in Rd with
maximal `2 norm ρ and margin at least γ. The labels of all points can be recovered using
Õ
(
d log(ρ/γ) log n

)
label and comparison queries.

Our bound is in fact stronger: it is

Õ
(
d log(1/η) log n

)
,

where η is the minimal-ratio of the input sample, defined by |mini f(xi)|
|maxi f(xi)| , where x1, . . . , xn are

the sample points and sign
(
f(x)

)
is the learned concept. In Section 4.1.2 we show that the

maximal ratio is lower bounded by the margin (and therefore yields a stronger statement).
Note that the above bound depends on ρ/γ logarithmically, and therefore applies even in

settings when the margin is exponentially small. Similar dependence of on ρ/γ is obtained by
the Ellipsoid method (Karmarkar, 1984), and Vaidya Cutting Plane method (Vaidya, 1996),
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that use O(d2 log(ρ/γ)) and O(d log(dρ/γ)) iterations respectively, when used to find a linear
classifier that is consistent with a realizable sample with margin ρ/γ in Rd.

The upper bound in the above theorem depends on the dimension, which is often avoided
in bounds that depend on the margin. It is therefore natural to ask whether there is a bound
that depends only on the margin. We show that it is impossible:

Theorem 1.4 (Theorem 4.17, informal version). There is a sample of n unit vectors in Rn+1

with Ω(1) margin that require Ω(n) label and comparison queries to recover all the labels.

Statistical learning. Using standard arguments, we translate the results above to the sta-
tistical setting and get bounds on the sample and query complexity: the algorithmic results
above directly give a learning algorithm for realizable distributions with sample complexity

n(ε, δ) = O
(
d+log(1/δ)

ε

)
and query complexity approximately logarithmic in n(ε, δ), where ε is

the error and 1− δ is the confidence of the algorithm. (See Section 4.1.1 for the bit complex-
ity and Section 4.1.2 for the margin.) Our lower bounds translate analogously to realizable
distributions that require Ω(1/ε) queries for achieving error ε and constant confidence (say
1− δ = 5/6). See Section 4.2 for details.

1.2.2 Inference dimension

Our results for learning half spaces rely on a common combinatorial property that we describe
next. Let X be a set and H a concept class where each concept is of the form sign(f(x)) for
f : X → R. For example, X may be a finite set X = {x1, . . . , xn} ⊆ Rd and H the class of
all half spaces with margin at least 1/100 with respect to X; or X = {0, 1}d and H is all half
spaces; or X = Rd and H a class of (signs of) low degree polynomials; etcetera.

Let S ⊆ X be an unlabeled sample. An S−query is either a label query regarding some
x ∈ S, or a comparison query regarding x1, x2 ∈ S. Namely, the allowed queries are “f(x) ≥ 0?”
(label query) or “f(x1) ≥ f(x2)” (comparison query). For x ∈ X and c ∈ H, let

S =⇒
f

x

denote the statement that the comparison and label queries on S determine the label of x,
when the learned concept is c = sign

(
f(x)

)
.

The inference-dimension of (X,H) is the smallest number k such that for every c =
sign(f(x)) ∈ H, and every S ⊂ X of size at least k, there exists x ∈ S such that

S \ {x} =⇒
f

x.

In other words, if the inference dimension is k then in every sample of size k or more, there is
a point whose label can be inferred from the label and comparison queries on the remaining
points.

For example the inference dimension of (X,H), where X = R, and H is the class of threshold
functions is 3: indeed, to see it is at most 3, note that if all 3 points have the same label, then
the label of the midpoint can be inferred from the other two labels, and if not all points have
the same label then the midpoint and, say the right point have the same label, and so the label
of the right point can be inferred from the other 2 labels. In this example comparison queries
are not required. Another example, which requires comparison queries, is where X = R2 and
H is the class of half-planes. Here the inference dimension3 is at most 7: indeed, in any sample
of at least 7 points there are 4 points with the same label, and the label of one of these points
can be inferred from the other 3 (see Figure 1 and Section 1.1.1).

3One can show the inference dimension here is 5.
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The next Theorem shows that inference dimension captures the query-complexity in active
learning with comparison queries. It is worth noting that in the classical setting of active
learning, when only label queries are allowed, the inference dimension specializes to the the
star dimension (Hanneke and Yang, 2015), which similarly captures the (worst-case) query
complexity in this setting.

Theorem 1.5. Let k denote the inference dimension of (X,H). Then:

1. There is an algorithm that reveals the labels of any realizable sample of size n using at
most O(k log k log n) queries.

2. Any algorithm that reveals the labels of any realizable sample of size k must use Ω(k)
queries in the worst-case.

The upper bound (the first item) is a corollary of Theorem 3.2, and the lower bound is
a corollary of Theorem 3.5. Both Theorems are discussed in the next subsection. While the
lower bound is relatively straight forward, our derivation of the upper bound requires several
steps, which we summarize next.

(i) Low inference dimension =⇒ weak confident learner: we first show that if the
inference dimension is at most k then there is a weak confident learner for (X,H) with
query complexity O(k log k) (see Lemma 3.3). A confident learner is a learning algorithm
that may abstain from predicting on some points x ∈ X, but must be correct on every
point where it does not abstain. A weak confident learner is a confident learner that with
constant probability does not abstain on a constant fraction of X (see Section 3.1 for a
formal definition).

(ii) Boosting the weak confident learner: once a weak confident learner is derived, we
transform it into the desired learning algorithm using a simple boosting argument.

While the boosting part is rather standard, showing that low inference dimension implies
a weak confident learner relies on a symmetrization argument. This symmetrization argument
can be replaced by a more standard sample compression argument, however this would result
in a suboptimal query complexity bound.

We get the following corollary of Theorem 1.5 in the statistical setting:

Corollary 1.6. Let k denote the inference dimension of (X,H).

1. Let n(ε, δ) denote the passive sample complexity of learning (X,H) with error ε and
confidence 1− δ. There is an algorithm that learns (X,H) with sample complexity n(ε, δ)
and query complexity O

(
k log k log(n(ε, δ))

)
.

2. Any algorithm that learns (X,H) with error at most ε = 1/k and confidence at least 5/6

must use at least Ω
(

1/ε
)

queries for some realizable distribution.

This Corollary follows from Corrolaries 1.8 and 3.6.

A dichotomy. The passive sample complexity of (X,H) is n(ε, δ) = Θ(d+log(1/δ)
ε ), where d

is the VC-dimension of H (Hanneke, 2015). Thus the above corollary implies a dichotomy: if
the inference dimension is finite then the query complexity is logarithmic in 1/ε, and if it is
infinite then the query complexity is Ω(1/ε).

The results presented in the previous section regarding learning half spaces with comparison
and label queries are derived by analyzing the inference-dimension of the relevant classes, which
we sketch next.
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Sketch of upper bounding the inference dimension of half spaces. Our upper bounds
in terms of margin and bit-complexity follow a similar outline. We next give a rough sketch of
the arguments in order to convey their flavor.

Consider the case where every instance x ∈ X has bounded bit-complexity, say X ⊂ [N ]d

for some bounded N ∈ N. We wish to show that for a sufficiently large Y ⊆ X, and every
half space c = sign(f) there is some x ∈ Y such that

Y \ {x} =⇒
f

x.

By removing at most half of the elements of Y , we may assume that c is constant on Y , without
loss of generality assume that c(x) = +1, for every x ∈ Y . Let x1, x2, . . . be an ordering of the
elements of Y such that

f(x1) ≤ f(x2) ≤ . . .
The first observation is that it suffices to show that there exists i0 such that xi0 − x1 is a
nonnegative linear combination of the xi − xj , where i > j (see Claim 4.5).

The existence of such an i0 is achieved by a pigeon hole argument showing that if Y
is sufficiently large then there are two distinct linear combinations of the xi+1 − xi’s with
coefficients from {0, 1} that yield the same vector:

k/2∑
i=1

βi(xi+1 − xi) =

k/2∑
i=1

γi(xi+1 − xi),

Then a short calculation yields that the maximal j such that βj 6= γj serves as the desired i0.
The upper bound in terms of margin is technically more involved. Instead of nonnegative

linear combinations, one can consider linear combinations such that every coefficient is at least
−γ, where γ is the margin, and the pigeon hole argument is replaced by a volume argument.

Sketch of lower bounding the inference dimension of half spaces. Our lower bounds
are based on embedding the class

{
∅, {i} : 1 ≤ i ≤ n

}
as half spaces in a way that the

n + 1 half spaces induce the same ordering on the n points in terms of distance from the
boundary. Comparison queries are useless for such an embedding, which implies that the
inference dimension is at least n, Indeed, consider the half space c∅ that corresponds to the
empty-set; then for any subset Y of at most n− 1 points c∅ is indistinguishable from c{i}, the
half space corresponding to {i}, where i /∈ Y .

1.2.3 General framework

We next describe how the notion of inference-dimension, as well as Theorem 1.5 extend to
settings where the additional queries are not necessarily comparison queries.

Consider an interactive model, where the learning algorithm is allowed to use additional
queries from a prescribed set of queries Q. More formally, let S be the unlabeled input sample.
In pool-based active learning, the algorithm may query the label of any point in S. Here, the
algorithm is allowed to use additional queries from a set Q = Q(S) (we stress that the allowable
queries depend on the input sample). For example, in the setting discussed in the previous
section, Q(S) contains all comparison queries among points in S. Another example, which is
used by crowd-sourcing algorithms (Tamuz et al., 2011) involve 3-wise queries of the form “Is
x2 more similar to x1 than to x3?”.

Upper bound. The next “boosting result” generalizes the upper bound from Theorem 1.5
and shows that if there are not too many queries inQ(S), or alternatively if there is an algorithm
that infers the answers to the queries in Q(S) using a few queries, then it is possible to reveal
all labels using a logarithmic number of queries:
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Theorem 1.7 (Restatement of Theorem 3.2). Let k denote the inference dimension of (X,H).
Assume that there is an algorithm that, given a realizable sample S of size n as input, uses at
most q(n) queries and infers the answers to all queries in Q(S) and all labels in S. Then there
is a randomized algorithm that infers all the labels in S using at most

2q(4k) log n

queries in expectation.

For example, in the setting of comparison queries, q(n) = n+n log n queries suffice to infer
all comparison queries and label queries in Q(S), and thus, the upper bound in Theorem 1.5
follows from the above theorem.

An interactive algorithm that infers all labels using a few queries can be combined with any
passive learner by first using the interactive learner to reveal all labels of the input sample, and
then apply the passive learner on the labeled sample. Thus, we get:

Corollary 1.8. Let (X,H) be as in Theorem 3.2, and let n(ε, δ) denote the (passive) sample
complexity of learning (X,H) with error ε and confidence 1−δ. Then there exists an algorithm
that learns H with sample complexity n(ε, δ), and query complexity O(q(4k) log n(ε, δ)).

Lower bound. The next lower bound on the query complexity generalizes the one from
Theorem 1.5. It demonstrates a property of comparison and label queries which suffices for the
lower bound in Theorem 1.5 to hold. Call an additional query t-local, if its answer is determined
by f(x1), . . . , f(xt) for some x1, . . . , xt ∈ X. For example, every label-query is 1-local and every
comparison query is 2-local. The following Theorem extends Theorem 1.5 to this setting:

Theorem 1.9 (Restatement of Theorem 3.5). Assume that the inference dimension of (X,H)
is > k. Assume that every additional query is t-local, and that for every sample S the set of
allowable queries Q(S) is the set of all queries that are determined by subsets (of size at most
t) of S. Then any algorithm that reveals the labels of any realizable sample of size k must use
Ω(k/t) queries in the worst-case.

In the statistical setting, we get the following Corollary:

Corollary 1.10 (Restatement of Corollary 3.6). Set ε = 1
k , δ = 1

6 . Then any algorithm that
learns (X,H) with error ε and confidence 1− δ must use Ω(1/tε) queries.

1.3 Related work

Studying statistical learning where the learner has access to additional queries was considered
by various works. A partial list includes: Angluin (1987); Baum (1991); Lang and Baum (1992);
Turán (1993); Jackson (1997); Kwek and Pitt (1998); Blum et al. (1998); Bshouty et al. (2004);
Feldman (2009a,b); Nowak (2011); Chen et al. (2016). Many of these focus on the case where
the additional queries are membership queries. We discuss some of these results in Section 1.4.1.

In the context of active learning, which is considered in this paper, Balcan and Hanneke
(2011) considered additional queries of two types: Class conditional queries and Mistake queries,
in the first type the learner provides the annotator with a list of examples, and a label and asks
her to point out an example in this list with the given label. In the second type, the learner
gives the oracle a list of examples with proposed labels and she replies whether it is correct
or points out a mistake. Note that these queries may have more than two answers, which is
different than binary queries, which are considered in this paper.

Wauthier et al. (2012) give an active learning algorithm for clustering using pairwise sim-
ilarity queries, and Ashtiani et al. (2016) gives a clustering algorithm that uses queries that
ask whether two elements belong to the same cluster. Vikram and Dasgupta (2016) consider
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clustering in an interactive setting where the algorithm may present the annotator a clustering
of a O(1) size subset of the domain, and the annotator replies whether the target-clustering
agrees with this partition, and points out a difference in case it does not.

Jamieson and Nowak (2011) give an active ranking algorithm from pairwise comparisons.
They consider a setting that bears resemblance with ours: their goal is to find the ranking
among a sample of points in Rd, where the ranking is determined according to the euclidean
distance from a fixed, unknown reference point. They present an algorithm that use an expected
number of O(d log n) comparisons when the ranking is chosen uniformly at random.

More recently, ? considered a similar setting to ours. They also study active classification
with additional comparison queries, but they focus on minimizing the total number of label
queries, while the number of comparison queries can be large (roughly (1/ε)2, where ε is the
error). They also extend their study to noisy settings.

1.4 Discussion and suggested future research

We next offer few potential directions for future research.

1.4.1 Other types of additional queries

Relative queries It is natural to study other types of additional queries, and when do they
enhance the learning process. Comparison queries belong to a type of queries, called relative
queries, which is popular in many applications involving human annotators. A popular example
of relative queries, which are used in practice, take 3 data points x1, x2, x3 and queries “is x2

more similar to x1 than to x3?”. Such queries were studied in various works, including Xing
et al. (2002); Schultz and Joachims (2003); Agarwal et al. (2007); McFee and Lanckriet (2010);
Huang et al. (2011); Tamuz et al. (2011); Qian et al. (2013).

Membership queries from generative models A natural and well-studied type of queries
is membership queries; thus, the learner is allowed to query the labels of any point in the domain,
including points outside the input sample. Using membership queries to enhance learning was
considered in the PAC model (Baum, 1991; Turán, 1993; Jackson, 1997; Kwek and Pitt, 1998;
Bshouty et al., 2004; Feldman, 2009a,b; Chen et al., 2016). However, as an experimental work
by Lang and Baum (1992) suggested, querying the labels of arbitrary points may result in
a poor practical performance. A possible explanation is that some domain points represent
noise; for example, if the data distribution is supported on some low dimensional manifold,
then querying outside it may make no sense to the human annotator. Consequently, various
restrictions on this model were studied (Blum et al., 1998; Sloan and Turán, 1997; Awasthi
et al., 2013; Bary-Weisberg et al., 2016). One option, studied by Awasthi et al. (2013); Bary-
Weisberg et al. (2016)) is to restrict the type of membership queries by considering only local
queries, within a small neighborhood of the input sample. Another possible restriction is to
consider only membership queries of points that are sums and differences of a few sample points
(e.g. a comparison query is a membership query on the difference of the two compared points
in the case of half spaces).

An alternative direction for dealing with querying noise is to use a generative model for
constructing data outside of the input sample: imagine we have an access to a generative model
(e.g. Generative Adversarial Networks (Goodfellow et al., 2014)) g that gets as an input any
point s ∈ [0, 1]d, and outputs a (non-noisy) unlabeled example g(s) ∈ X. This gives an access
to a large pool membership queries the learning algorithm can use.

From a theoretical perspective, this motivates the study of active learning with additional
membership queries, where the learned concept is some c : [0, 1]d → {±1} of low complexity
(say c is the sign of a low degree polynomial or a small network, etc.). It is worth noting
that the case where c is a half space was studied in the discrete geometry community in the
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context of linear decision trees (Meyer auf der Heide, 1984; Meiser, 1993; Liu, 2004; Cardinal
et al., 2016; Ezra and Sharir, 2016). The currently best known upper bound are due to Ezra
and Sharir (2016), who give an algorithm that reveals all labels of a realizable sample of size
n using Õ(d2 log d log n) membership queries (the best known lower bound is the information
theoretical Ω(d log n), which applies more generally for any type of additional yes/no queries).

1.4.2 Noisy comparisons

It is natural to extend our algorithms by making them robust in the presence of noisy com-
parisons. Imagine, for example that f(x1) = 1.001, and f(x2) = 1.0001. Our algorithms are
based on the assumption that the answer to the query “f(x1) ≥ f(x2)?” will always be “yes”.
It is plausible to consider a noise model that may give the wrong answer in such cases where
f(x1) ≈ f(x2). One such model is suggested by Bradley and Terry (1952). According to this
model, when4 f(x1), f(x2) > 0 then the answer to the query “f(x1) ≥ f(x2)?”, is “yes” with

probability f(x1)
f(x1)+f(x2) .

1.4.3 Streaming-based interactive learning with comparison queries

This paper focused on the pool-based model. Another natural and well studied model is the
streaming-based model. Here, the algorithm gets to observe the unlabeled examples one-by-
one in an online fashion, and has to decide whether to query the current example. Consider a
setting in which the algorithm has a bounded memory in which it may store M past examples.
Upon receiving a new example it may query its label and/or compare it with any of the saved
examples. In the realizable setting, a possible goal is to minimize the number of queries and
the memory size while maintaining a (partial) hypothesis that is correct on all past examples.

Consider for example the class of threshold function over R. Given an infinite sequence
of independent unlabeled examples x1, x2, . . . drawn from an unknown distribution over R. A
simple online algorithm with memory M = 2 saves the 2 examples x, y where the sign-change
occurs. Upon receiving a new example xn, it checks whether xn is between x and y; if it is
then it queries its label and replaces it with x or y (according to the label of xn), otherwise the
label of xn can be inferred and the algorithm moves to the next example. One can show that
this algorithm makes an expected number of log n queries after observing the first n examples.
One can show that a slightly more complicated algorithm, which uses comparison queries and
memory M ≤ 10, has a similar behaviour for half-planes in R2. We leave as an open question
whether similar algorithms exist for arbitrarty classes (X,H) with low inference dimension.

1.4.4 Exactly learning threshold functions

Consider the class of thresholds functions over the N -dimensional hypercube {0, 1}N . By
Lemma 4.2, the inference dimension of this class is O(N logN). Therefore, Theorem 4.1 im-
plies that the 2n labels of any threshold function can be revealed using at most O(N2 log2N)
queries in expectation. This demonstrates the additional power of comparison queries over
label queries: indeed, standard arguments show that if only label queries are allowed then at
least 2Ω(N) queries are needed.

While just O(N2 log2N) queries suffice to reveal all 2N labels, it remains open whether
this can be done efficiently, in a poly(N) time. A naive implementation of the algorithm from
Theorem 4.1 would check at each step for each point in {0, 1}N whose label is still no known,
whether its be inferred by the queries performed in this step. This takes at least 2N such
checks. We leave the question, of efficiently learning all 2N labels of an unknown threshold
function as an open question for future work.

4if f(x1), f(x2) < 0 then it is “yes” with probability f(x2)
f(x1)+f(x2)

.
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Another comment that seems in place is that the O(N2 log2N) upper bound is tight up to
the log2N factor: indeed, it is known that there are some 2Θ(N2) threshold functions (Goto and
Takahasi, 1962), and therefore an information theoretic lower bound of Ω(N2) queries holds
even if the algorithm is allowed to use arbitrary yes/no queries. While it remains open whether
the information theoretic barrier can be achieved using comparison queries, it is possible shave
one log factor from the upper bound and achieve O(N2 logN) queries in expectation, as we
sketch next. This follows since: (i) the number of linear orders over a set {x1, . . . .xm} ⊆ RN
that are induced by a linear function is at most some5 mO(2N), and therefore (ii) Fredman’s
algorithm (Fredman, 1976) finds such an ordering using q(m) = O(m+N logm) comparisons
(which is better than the standard O(m logm) when m >> N). Thus, in Theorem 3.2 we can
plug q(4k) = O(k +N log k), instead of q(4k) = O(k log k) (recall that k = O(N logN), which
yields O(N2 logN) queries in expectation.

2 Preliminaries

Basic definitions. A hypothesis class is a pair (X,H), where X is a set, and H is a class of
functions h : X → {±1}. Each function h : X → {±1} is called a hypothesis, or a concept. In
this paper we study classes H = HF of the form

H = {sign(f) : f ∈ F},

where F = {f : X → R} is a class of real-valued functions. For example, when F is the class
of Rd → R affine functions then H is the class of d-dimensional half spaces. Other examples
include neural-nets, low degree polynomials, and more. The class F will be later used to define
comparison queries. An example is a pair (x, y) ∈ X × {±1}. A labeled sample S̄ is a finite
sequence of examples. We denote by S the unlabeled sample underlying S̄ that is obtained by
removing the labels from the examples in S̄. We will sometimes abuse notation and treat S as
a subset of X (formally it is a sequence). Given a distribution D on X ×{±1}, the (expected)
loss of a hypothesis h is defined by:

LD(h) , E
(x,y)∼D

[
1h(x)6=y

]
.

Given a labeled sample S̄, the empirical loss of h is defined by:

LS̄(h) ,
1∣∣S̄∣∣ ∑

(x,y)∈S̄

1h(x)6=y.

A distribution D on X × {±1} is realizable by H if there exists c ∈ H with LD(c) = 0. We
will sometimes refer to such a c as the “learned concept”. A labeled sample S̄ is realizable by
H if there exists c ∈ H with LS̄(c) = 0.

Passive learning (PAC learning). A learning algorithm is an (efficiently computable)
mapping that gets a sample as an input and outputs a hypothesis. An algorithm A learns H
if there exists a sample complexity bound n(ε, δ), such that for every realizable distribution D,
given a labeled sample S̄ of size n ≥ n(ε, δ), A outputs h = A

(
S̄
)

such that:

Pr
S̄∼Dn

[
LD(h) > ε

]
≤ δ.

The parameter ε is called the error of the algorithm, and 1 − δ is called the confidence of the
algorithm We will assume throughout that a learning algorithm for H also receives ε, δ as part
of the input and can compute n(ε, δ).

5if f1, f2 : RN → R are linear and induce a different linear orders on {x1, . . . , xm}, then sign(f1(xi − xj)) 6=
sign(f2(xi − xj)) for some i, j, and so the number of distinct orders is at most the number of sign patterns
(sign(f(xi − xj)))1≤i<j≤m, which is at most O(m2N ).
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2.1 Active learning

It is helpful to recall the framework of active learning before extending it by allowing additional
queries. A (pool-based) active learning algorithm has an access to the unlabeled sample S
underlying the input labeled sample S̄. It queries the labels of a subsample of it, and outputs
a hypothesis. The choice of which subsample A queries may be adaptive. Each active learning
algorithm is associated with two complexity measures: (i) the sample-complexity n(ε, δ), is the
number of examples required to achieve error at most ε with confidence at least 1− δ (like in
the passive setting), and (ii) the query-complexity (also called label complexity) q(ε, δ), is the
number of queries it makes.

In the process of active learning, it is natural to distinguish between points whose label
can be inferred and points for which there is uncertainty concerning their label. It is therefore
convenient to consider partial hypotheses. A partial hypothesis is a partially labeled hypothesis
h : X → (Y ∪ {?}), where if h(x) = ”?” it means that h abstains from labeling x. We extend
the 0/1 loss function to ”?”, such that abstaining is always treated as a mistake. The coverage
of h with respect to a distribution D is defined as

CD(h) , Pr
x∼D

[
h(x) 6=?

]
,

and the empirical-coverage of h with respect to a sample S is defined as

CS(h) ,

∣∣{x ∈ SX : h(x) 6=?}
∣∣

|S|
.

Since abstaining counts as error it follows that CD(h) ≤ 1−LD(h) for every partial hypothesis
h, and every distribution D.

Confident algorithms. A learning algorithm is confident if it outputs a partial hypothesis
that is correct on all points where it does not abstain:

Definition 2.1 (Confident learning algorithm). A learning algorithm A is confident with re-
spect to a class (X,H) if it satisfies the following additional requirement. For every realizable
labeled sample S̄ that is consistent with a learned concept c ∈ H, the output hypothesis h , A

(
S̄
)

satisfies that whenever h(x) 6=? then h(x) = c(x).

Thus, if A is confident then CD(h) = 1−LD(h) for every distribution D, where h = A
(
S̄
)
.

Therefore, in the context of confident learners we will only discuss their coverage, and omit
explicit reference to their error. For example a class (X,H) is learned by a confident learner A
if there exists a sample complexity n(ε, δ) such that for every realizable distribution D, given
a labeled sample S̄ of size n ≥ n(ε, δ), A outputs h = A

(
S̄
)

such that

Pr
S̄∼Dn

[
CD(h) < 1− ε

]
≤ δ.

2.2 Interactive learning with additional queries

Consider an extension of the active learning setting, by allowing the learning algorithm to
use additional queries from a prescribed set of queries Q. An additional query is modeled as a
boolean function q : F → {True, False}. We stress that the query may depend on the function
f that underlies the learned concept c = sign(f) (consider a comparison query as an example).
In this setting, given an input sample S̄, the algorithm is given access to S, the unlabeled
sample underlying S̄, and is allowed to:

• query the label of any of point in S,

13



• query an additional query q from a prescribed set of queries Q(S).

We stress that the set of allowable queries Q(S) depend on the input sample S̄. For example,
a comparison query on x1, x2 is the query “f(x1) ≤ f(x2)?”, where c = sign(f) is the learned
concept. An answered query in a pair (q, b), where q is a comparison/label-query, and b is a
possible answer to q. For example,

(
“f(x1) ≤ f(x2)?”, T rue

)
is an answered comparison query,

and
(
“c(x1) = ?”,−1

)
is an answered label query. The standard notions of version space and

agreement set are naturally extended to this context. Let

Q̄ =
(
(q1, b1), (q2, b2), . . . (qm, bm)

)
be a sequence of answered queries. Define the version space, denoted by V (Q̄), as the set of
hypotheses in H that are consistent with Q̄:

V (Q̄) ,
{
h ∈ H : qi(h) = bi, i = 1, . . . ,m

}
,

and the confidence region, Conf(Q̄), as the agreement set of V (Q̄):

Conf(Q̄) ,
{
x ∈ X : all hypotheses in V (Q̄) agree on x

}
.

3 Inference Dimension

Let (X,H) be a hypothesis class, where H = HF for some class of real functions F , and let Q
be a set of additional queries. For S ⊆ X, x ∈ X, f : X → R where f ∈ F and c = sign(f) ∈ H,
let

S =⇒
f

x

denote the statement that there exists a sequence Q̄ of answered label queries of S and/or
additional queries from Q(S) that determine the label of x, when the learned concept is c.
Namely, that x ∈ Conf(Q̄).

Definition 3.1 (Inference dimension). The inference dimension of (X,H) is the minimal
number k such that for every S ⊆ X of size k, and every c ∈ H there exists x ∈ S such
that

S \ {x} =⇒
f

x.

If no such k exists then the inference dimension of (X,H) is defined as ∞.

3.1 Upper bound

Theorem 3.2 (Boosting). Let k denote the inference dimension of (X,H). Assume that there
is an algorithm that, given a realizable sample S̄ of size n as input, uses at most q(n) queries
and infers the answers to all queries in Q(S) and all labels in S̄. Then there is a randomized
algorithm that infers all the labels in S̄ using at most

2q(4k) log n

queries in expectation.

We prove Theorem 3.2 in two steps: (i) First, Lemma 3.3 shows that (X,H) has a weak
confident learner A that, given a realizable input sample of size 4k, uses at most q(4k) queries,
and outputs a partial hypothesis h with coverage 1/2. (ii) Then, we show that the labels of
a given sample S̄ of size n are revealed after applying A on roughly log n random subsamples
of S̄.
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Lemma 3.3 (Weak confident-learning). Let k denote the inference dimension of (X,H). Then
there exists a confident learner for (X,H) that is defined on input samples of length 4k, makes at
most q(4k) queries, and has coverage ≥ 1/2 with probability ≥ 1/2. That is, for any distribution
D over X,

Pr
S∼D4k

[
CD(h) ≥ 1/2

]
≥ 1/2,

where h is the output hypothesis of the algorithm.

Proof. The learner is defined as follows. Given a realizable input sample S =
((
xi, c(xi)

))4k
i=1

,

from D4k, the algorithm infers the answers to all queries in Q(S) and all labels in S̄ (by
assumption, this can be done with q(4k) queries). It outputs the partial hypothesis h, which
labels any x whose label can be inferred from the queries. Namely:

h(x) ,

c(x) S =⇒
f

x

? otherwise

We next claim that the expected coverage of h, CD(h), is at least 3/4. This implies that
PrS [CD(h) ≥ 1/2] ≥ 1/2, which shows that the learning algorithm is a weak confident learner.

To this end we use the following observation.

Observation 3.4. For any set Y of size 4k + 1, there are xi1 , . . . , xi3k+1
∈ Y such that for all

1 ≤ j ≤ 3k + 1 it holds that
Y \ {xij} =⇒

f
xij .

Proof. This follows since the inference dimension of (X,H) is k. Assume we already constructed
xi1 , . . . , xij−1 for j ≤ 3k + 1. Let Y ′ = Y \ {xi1 , . . . , xij−1}. As |Y ′| ≥ k, there exists xij ∈ Y ′
such that Y ′ \ {xij} =⇒

f
xij . But then also Y \ {xij} =⇒

f
xij .

Next, we show that this observation implies that ES [CD(h)] ≥ 3/4. Clearly, we have that

E
S

[
CD(h)

]
= Pr(x1,x2,...,x4k+1)∼D4k+1

[
{x1, . . . , x4k} =⇒

f
x4k+1

]
.

Letting T = {x1, x2, . . . , x4k+1}, this is the probability that T\{x4k+1} =⇒
f

x4k+1. However,

by symmetry, this is the same as the probability that T\{xi} =⇒
f

xi for any 1 ≤ i ≤ 4k + 1.

Taking the average over i, we have

E
S

[
CD(h)

]
= E

T

[
1

4k + 1

∣∣{i : T\{xi} =⇒
f

xi}
∣∣] ≥ 3k + 1

4k + 1
≥ 3

4
.

Proof of Theorem 3.2. Let A denote the weak confident learner from Lemma 3.3. Let S̄ be a
realizable sample, corresponding to an unknown concept c ∈ H. Our goal is to fully recover
the labels of S̄.

The algorithm proceed in iterations t = 1, 2, . . ., At each iteration it applies A on a sub-
sample of size 4k of S̄. Let ht denote the output hypothesis of A on iteration t, and let

DISt = {x : hs(x) =? for all s ≤ t}.

Since A is confident it follows for any point x /∈ DISt, the label c(x) is equal to hs(x) for any
hs(x) such that hs(x) 6=?. As long as DISt ∩ S 6= ∅, perform the following update step.
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Update step at time t:

(1) Let Dt be the uniform distribution over DISt ∩ S. Sample R̄t ∼ (Dt)
4k.

(2) Apply A to Rt, the unlabeled sample underlying R̄t.

(3) Let ht = A
(
R̄t
)

be the confident partial hypothesis that A outputs on R̄t.

(4) Compute et = CDt [ht] = Prx∼Dt [ht(x) 6=?].

(5) If et < 1/2 then go back to step (1). Otherwise set t← t+ 1 and continue.

Since A is confident, it follows that once DISt ∩S = ∅ then all the labels of S̄ are revealed.

Query-complexity. In order to analyze the query-complexity of the algorithm, first observe
that since Pr[et ≥ 1/2] ≥ 1/2 then in expectation, we proceed to the next iteration after at
most two samples of R̄t. Next, if et ≥ 1/2 then by definition |DISt+1 ∩ SX | ≤ |DISt ∩ SX |/2.
Thus, we only apply the update step at most tmax ≤ 2 log n many times. It follows that the
expected query-complexity is at most 2q(4k) log n.

Computational complexity. The algorithm derived in Theorem 3.2 has expected running
time of O(Tupdate log n), where Tupdate is the running time of the update step. In every update
step the algorithm makes q(4k) queries and determines et, by checking for each unlabeled point,
whether its label can be inferred by the queries performed in this step. Assume that testing
this for each point takes take Tinfer. So,

Tupdate = O (q(4k) + n · Tinfer)

and the total running time is

Ttotal = O ((q(4k) + n · Tinfer) log n) .

For example, when the hypothesis class is half spaces in Rd, and the the set of additional queries
is comparisons, the total running time is polynomial in n. This is since q(4k) = O(k log k) (by
sorting), and since checking if the label of a point is inferred by a set of label and comparison
queries can be phrased as a linear program and solved in polynomial time (see Claim 4.5).

3.2 Lower bound

Next, we show that if the inference dimension is large then many queries are needed to infer
all the labels. We further assume that every query is t-local, in the sense that it depends on
f(x1), . . . , f(xt) for some x1, . . . , xt ∈ X. We set of allowable queries Q(S) to be all queries
that are associated with subsets of S of size t.

Let (X,H) be a hypothesis class with inference dimension > k, for some k ≥ 3. This means
that there exists Z ⊆ X of size k and a concept c ∈ H such that for every z ∈ Z there is cz ∈ C
with cz(z) 6= c(z), but cz(x) = c(x) for all x ∈ Z \ {z}, and moreover, q(c) = q(cz) for every
query q ∈ Q

(
Z \ {z}

)
.

Theorem 3.5. Any algorithm that reveals the labels of any realizable sample of size k must
use at least k/t queries in the worst-case.
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Proof. Consider the realizable sample S̄ =
(
x, c(x)

)
x∈Z , and assume that less than k/t queries

were used on it. This means that there exist z ∈ S that is not associated with any of the queries
that were used, and hence only queries from Q

(
Z \ {z}

)
were used. However, this implies that

both cz and c are consistent with the queries that were used, and cz(z) 6= c(z). Thus, the label
of z can not be inferred by the queries that were used.

Corollary 3.6. Let ε = 1
k , δ = 1

6 , and let D be the uniform distribution over Z. Then any
learning algorithm that makes less than 1

tε queries suffers a loss of ε, with probability at least δ.

Proof. Let A be a learning algorithm. Consider an adversary that picks the secret-concept
c = cz where z ∈ Z is chosen uniformly. Define

E ,
{
cx : a query associated with x was queried by A

}
.

If A makes less than k
2t queries (i.e. |E| < k

2 ) then:

1. Pr
[
cz /∈ E

]
≥ 1

2 , and

2. Pr
[
L(A) ≥ 1

k

∣∣ cz /∈ E] ≥ 1− 2
k ≥

1
3 ,

where

L(A) =

∣∣{x ∈ Z : h(x) 6= cz(x)}
∣∣

k
is the loss of the hypothesis h that A outputs. To see why the second item holds, note that
since the answers to the queries are the same for every cx /∈ E, it follows that the distribution
of cz conditioned on cz /∈ E is uniform over Ec whose size is at least k

2 , and so the probability
that A outputs ci is at most 2

k . In any other case, the loss of h is at least 1
k .

Combining the above two items together yields that

Pr
[
L(A) ≥ 1

k

]
= Pr

[
cz /∈ E

]
· Pr
[
L(A) ≥ 1

k

∣∣ cz /∈ E] ≥ 1

6
.

4 Interactive learning of half spaces with comparison-queries

In this section we restrict our attention to the class Hd = {sign(f) : f : Rd → R} of half spaces
in Rd, where for simplicity of exposition we consider linear functions f (these correspond to ho-
mogeneous half spaces). Our results extend to the non-homogeneous case, as non-homogeneous
half spaces in dimension d can be embedded as homogeneous half spaces in dimension d+1. The
additional queries allowed are comparison queries. That is, a label query returns the answer to
sign(f(x)) and a comparison query returns the answer to f(x1) ≥ f(x2).

In Subsection 4.1 we present our upper bounds on the query complexity, under two natural
conditions: small bit complexity, or large margin. In Subsection 4.2 we present lower bounds
showing that these conditions are indeed necessary for obtaining query complexity sub-linear
in the sample complexity.

4.1 Upper bounds

4.1.1 Bit-complexity

Here we show that if the examples can be represented using a bounded number of bits then
comparison-queries can reduce the query-complexity. We formalize bounded bit-complexity by
assuming that X = [N ]d, where [N ] = {0, . . . , N}. Note that each example can be represented
by B = d logN bits. We provide a bound on the query-complexity that depends efficiently
ond and logN . Variants of the arguments we use apply to other standard ways of quantifying
bounded bit-complexity.
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Theorem 4.1. Consider the class
(
[N ]d, Hd

)
. There exists an algorithm that reveals the labels

of any realizable input sample of size n using at most O(k log k log n) label/comparison-queries
in expectation, where k = O

(
d log(Nd)

)
.

As a consequence it follows that the hypothesis class
(
[N ]d, Hd

)
is learnable with

sample complexity Õ
(
d/ε
)

and query-complexity Õ
(
d log(N) log(1/ε)

)
,

where the Õ notation suppresses lower order terms and the usual log(1/δ) dependence.
In order to prove the above theorem, we use Theorem 1.5 that reduces it to the following

lemma.

Lemma 4.2. Let k such that 2k/2 > 2(kN + 1)d. Then the inference dimension of the class(
[N ]d, Hd

)
is at most k. In particular, it is at most 16d log(4Nd).

Proof. Let c = sign(f) ∈ Hd. We will use the following claims.

Observation 4.3. Let x ∈ Rd, and y ∈ {±1}. Then

yf(x) > 0 =⇒ c(x) = y.

Observation 4.4. Let x1, x2 ∈ Rd such that c(x1) = c(x2) = y. Then

yf(x2 − x1) > 0 =⇒ |f(x2)| > |f(x1)|.

Claim 4.5. Let x1, . . . , xm ∈ Rd, y ∈ {±1} such that:

• (i) c(xi) = y for all i, and

• (ii) |f(x1)| < . . . < |f(xm)|.

Then, if x ∈ Rd satisfies x − x1 =
∑m−1

i=1 αi(xi+1 − xi) where αi ≥ 0, then c(x) = y. In
particular {x1, . . . , xm} =⇒

f
x.

Proof. If x = x1 then clearly c(x) = y. Thus, assume x 6= x1. Therefore, at least one of the
αi’s is positive, and by linearity of f , and Observation 4.4:

yf(x− x1) =
∑
i

αiyf(xi+1 − xi) > 0.

Therefore yf(x) > yf(x1) ≥ 0, which implies that c(x) = y (by Observation 4.3).

Let k be as in the formulation of the lemma, and let Y ⊆ [N ]d of size k. For simplicity
of exposition assume k is even, and let m = k/2. We need to show that there exists x ∈ Y
such that Y \ {x} =⇒

f
x. Without loss of generality, assume that at least m of the points

in Y have a 1-label. Let x1, x2, . . . , xm ∈ Y be an ordering of the 1-labeled points such that
|f(x1)| ≤ . . . ≤ |f(xm)|. By Claim 4.5 it suffices to show that there exists 2 ≤ i∗ ≤ m such
that

xi∗ − x1 =

i∗−2∑
i=1

αi(xi+1 − xi) where αi ≥ 0. (1)

This follows by the following pigeon hole argument: consider all possible boolean combina-
tions of the form

∑m−1
i=1 βi(xi+1 − xi) where βi ∈ {0, 1}. There are 2m−1 boolean combinations,

each of which yields a vector in {−mN, . . . ,mN}d. Therefore, by our assumptions on k we
have that

2m−1 > (2mN + 1)d
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there exists two boolean combinations:

m−1∑
i=1

βi(xi+1 − xi) =

m−1∑
i=1

γi(xi+1 − xi),

such that βi 6= γi for at least one i. Let i0 be the maximal such i. We verify that i∗ = i0 + 1
satisfies Equation (1) above.

Assume without loss of generality that βi0 = 0, γi0 = 1. Let αi = βi − γi. Thus αi0 = −1,
αi = 0 for all i > i0 and αi ∈ {0,±1} for i < i0. So

i0∑
i=1

αi(xi+1 − xi) = 0.

Next, add xi0+1 − x1 =
∑i0

i=1(xi+1 − xi) to both sides. This yields

xi0+1 − x1 =

i0∑
i=1

(αi + 1)(xi+1 − xi).

This concludes the proof as αi0 + 1 = 0 and αi + 1 ≥ 0 for all i < i0.

4.1.2 Minimal-ratio and margin

Let X ⊆ Rd and let c = sign(f) ∈ Hd. The minimal-ratio of X with respect to c is defined by

η = η(c,X) ,
minx∈X |f(x)|
maxx∈X |f(x)|

.

Here we show that it is possible to reveal all labels using at most Õ
(
d log(1/η) log n

)
, where the

minimal-ratio is η. Note that the minimal-ratio is invariant under scaling and that it is upper
bounded by the margin:

Claim 4.6. Let η be the minimal-ratio of X with respect to c, let ρ = maxx∈X ||x||2, and let γ
be the margin of X with respect to c. Then

γ

ρ
≤ η.

Proof. Let w such that f(x) = 〈w, x〉, and set w′ = w
||w|| . Thus,

γ

ρ
=

minx
∣∣〈w′, x〉∣∣

maxx||x||2
≤

minx
∣∣〈w′, x〉∣∣

maxx
∣∣〈w′, x〉∣∣ =

minx∈X |f(x)|
maxx∈X |f(x)|

= η.

Thus, the upper bound in Theorem 4.7 below applies when the minimal-ratio is replaced
by the standard margin parameter γ/ρ.

Note that there are cases where η >> γ/ρ. For example, assume X = {e1, . . . , ed} is the
standard basis and cw ∈ Hd is determined by the normal w = 1√

d
(+1,−1,+1,−1, . . .). In this

case, γ/ρ = 1/
√
d << 1 = η.

We next state and prove the upper bound. Let X ⊆ Rd, and let Hd,η ⊆ Hd be the set of
all half spaces with minimal-ratio at least η with respect to X.

Theorem 4.7. Consider the class (X,Hd,η). There exists an algorithm that reveals the labels
of any realizable input sample of size n using at most O

(
k log k log n

)
label/comparison-queries

in expectation, where k = O
(
d log(d) log(1/η)

)
.
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As a consequence it follows that the hypothesis class (X,Hd,η) is learnable with

sample complexity Õ
(
d/ε
)

and query-complexity Õ
(
d log(1/η) log(1/ε)

)
,

As before, the Õ notation suppresses lower order terms and the usual log(1/δ) dependence.
The above theorem is a corollary of Theorem 1.5 via the following lemma, which upper

bounds the inference dimension of the class (X,Hd,η).

Lemma 4.8. Let k such that (k/2 + 1)d < 2k/2(η/6)d. Then the inference dimension of the
class

(
X,Hd,η

)
is at most k. In particular, it is at most 10d log(d+ 1) log(2/η).

Proof. Let c = sign(f) ∈ Hd,η. We will use the following claims (note the analogy with the
claims in the proof of Lemma 4.2).

Observation 4.9. Let x ∈ X, and y ∈ {±1}. Then

yf(x)

maxx′∈X |f(x′)|
≥ −η =⇒ c(x) = y.

Claim 4.10. Let x1, . . . , xm ∈ X, y ∈ {±1} such that:

(i) c(xi) = y for all i, and

(ii) |f(x1)| < . . . < |f(xm)|.

Then, if x ∈ X satisfies x − x1 =
∑m−1

i=1 αi(xi+1 − xi) where αi ≥ −η, then c(x) = y. In
particular {x1, . . . , xm} =⇒

f
x.

Proof. Assume towards contradiction that c(x) 6= y, namely that yf(x) ≤ 0. By assumption,
x satisfies:

yf(x− x1) =

m−1∑
i=1

αiyf(xi+1 − xi) ≥ −ηy
m−1∑
i=1

f(xi+1 − xi) = −ηyf(xm − x1),

where the equality follows by linearity of f and our assumptions. Therefore,

yf(x) ≥ yf(x1)− ηyf(xm) + ηyf(x1) ≥ −ηyf(xm),

which implies that

0 ≥ yf(x)

maxx′∈X |f(x′)|
≥ yf(x)

|f(xm)|
=

yf(x)

yf(xm)
≥ −η.

By Observation 4.9 this implies that c(x) = y, which contradicts the assumption that c(x) 6=
y.

Let k be as in the formulation of the lemma, and let Y ⊆ X of size k. For simplicity
of exposition assume k is even, and let m = k/2. We need to show that there exists x ∈ Y
such that Y \ {x} =⇒

f
x. Without loss of generality, assume that at least half of the points

in Y have a 1-label. Let x1, x2, . . . , xm ∈ Y be an ordering of the 1-labeled points such that
|f(x1)| ≤ . . . ≤ |f(xm)|. By Claim 4.10 it suffices to show that there exists 2 ≤ i∗ ≤ m such
that

xi∗ − x1 =
m−1∑
i=1

αi(xi+1 − xi) where αi ≥ −η and αi∗−1 = αi∗ . (2)
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This follows by a volume argument: let C be the convex hull of {x2−x1, x3−x1, . . . , xm−x1}.
For a set A ⊆

[
m
]
, let6

CA ,
(∑
j∈A

xj+1 − xj
)

+
η

6
C.

We claim that there are A 6= B such that CA ∩ CB 6= ∅. Indeed, assume towards contradiction
that the CA are all mutually disjoint. Note that for all A: (i) CA ⊆

(
m + η/6

)
C, and (ii)

vol(CA) = (η/6)dvol(C). So, if all the CA’s are mutually disjoint then

(m+ 1)dvol(C) ≥ 2m(η/6)dvol(C),

which means that (m+1)d > 2m(η/6)d, which contradicts the property k is assumed to satisfy.
Thus, there exist two combinations:

m∑
i=1

βi(xi+1 − xi) =

m∑
i=1

γi(xi+1 − xi),

such that βi ∈ [bi, bi + γ/6] and γi ∈ [ci, ci + γ/6] for some bi, ci ∈ {0, 1}, not all the same. Let
i0 be maximal such that bi0 6= ci0 . We will prove that Equation (2) holds for i∗ = i0 + 1.

Assume without loss of generality that bi0 = 0, ci0 = 1. Define αi = βi − γi. Thus
αi0 ∈ [−1− η/6,−1 + η/6], and αi ≥ −η/6 for all i > i0. Now, adding

(αi0+1 − αi0)(xi0+1 − x1) =

i0∑
j=1

(αi0+1 − αi0)(xi+1 − xi)

to both sides of
∑m

j=1 αi(xi+1 − xi) = 0 gives:

(αi0+1 − αi0)(xi0+1 − x1) =

i0−1∑
j=1

(αi + αi0+1 − αi0)(xi+1 − xi) + αi0+1(xi0+2 − xi0) +
m∑

j=i0+2

αi(xi+1 − xi).

We conclude the proof by verifying that Equation (2) is satisfied after after dividing both sides
of the above formula by

αi0+1 − αi0 ≥ 1− η/3 ≥ 1/2.

Indeed, the coefficients in front of (xi0 − xi0−1) and (xi0+1 − xi0) are both equal to αi0+1; if
i ≥ i0 + 2 then as αi ≥ −η/6 we have αi/(αi0+1 − αi0) ≥ (−η/6)/(1/2) ≥ −η; and if i ≤ i0 − 1
then as αi+αi0+1−αi0 ≥ −(3η)/6 = −η/2, we have (αi+αi0+1−αi0)/(αi0+1−αi0) ≥ −η.

4.2 Lower bounds

In this Section we show that (in the worst-case) comparison-queries yield no advantage when
the bit complexity is large in dimension d ≥ 3, or when the dimension is large even if the
margin is large.

4.2.1 Dimension d ≥ 3

We show that (in the worst-case) comparison-queries do not yield a significant saving in query
complexity for learning half spaces, already in R3. This is tight since, as discussed in the
introduction, in R2 comparison-queries yield an exponential saving.

6We use here the standard notation of u+ αA = {u+ αa : a ∈ A}, where u ∈ Rd, α ∈ R, and A ⊆ Rd.
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Theorem 4.11. Consider the class (R3, H3) of half spaces in R3, Any algorithm that reveals
the labels of any realizable sample of size n must use Ω(n) comparison/label queries in the
worst-case.

In the statistical setting, we get that

Corollary 4.12. Let ε > 0. Then any algorithm that learns (R3, H3) with error ε and confi-
dence at least 5/6 must use Ω(1/ε) comparison/label queries on some realizable distributions.

We derive these statements by showing that the inference dimension of (R3, H3) is∞. Then,
Theorem 4.11 and Corollary 4.12 follow by plugging t = 2 in Theorem 3.5 and Corollary 3.6
respectively. (Note that comparison queries are 2-local, and thus t = 2).

Theorem 4.13. The inference dimension of (R3, H3) is ∞.

Proof. We need to show that for every n, there is c = sign(f) ∈ H3, and a set Xn ⊆ R3 of
n points such that for every x ∈ Xn, it is not the case that Xn \ {x} =⇒

f
x. We use the

following lemma.

Lemma 4.14. There exists a 3 dimensional linear space Vn of functions g : {1, . . . n} → R,
and n+ 1 functions g0, g1, . . . , gn ∈ Vn with the following properties:

• gi(j) > 0 if and only if i 6= j (in particular, g0(j) > 0 for all j).

• |gi(1)| < |gi(2)| < . . . < |gi(n)| for all 0 ≤ i ≤ n.

We first use Lemma 4.14 to prove Theorem 4.13. Let v1, v2, v3 ∈ Vn be a basis for the linear
space from Lemma 4.14. Define

xj ,
(
v1(j), v2(j), v3(j)

)
∈ R3

and set Xn = {x1, . . . , xn}. Note that each function gi can be represented by a linear combi-
nation αi,1v1 + αi,2v2 + αi,3v3. Define fi : R3 → R by fi = 〈αi, x〉, and set ci = sign(fi). Thus,
for all i, j,

fi(xj) = gi(j). (3)

Consider the set Xn \ {xi}. Equation (3) implies that there is no comparison nor label query
that distinguishes c0 = sign(f0) from ci = sign(fi) on this set. This means that it is not the
case that Xn \ {xi} =⇒

f0
xi, which finishes the proof of Theorem 4.13.

It remains to prove Lemma 4.14.

Proof of Lemma 4.14. For a sufficiently large M , let Vn denote the space of functions g :
{1, . . . , n} → R that is spanned by the three functions Mx, x ·Mx, x2 ·Mx. Define

gi(x) = Mx
(
1− 2(x− i)2

)
∈ Vn.

It is easy to check that the first item in the conclusion is satisfied by the gi’s, and that if M is
sufficiently large, then so does the second item.
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4.2.2 Margin

We show here that, in the worst-case, comparison-queries do not yield a significant saving in
query complexity for learning half spaces, even if it is guaranteed that the margin is large, say
at least 1/8.

Theorem 4.15. For every n there is a class (X,H), where X ⊆ Rn+1, and H ⊆ Hn+1 contains
all the half spaces with margin at least 1/8 such that the following holds: any algorithm that
reveals the labels of any realizable sample of size n must use Ω(n) comparison/label queries in
the worst-case.

In the statistical setting, we get that

Corollary 4.16. For every ε > 0, there is n and a class (X,H), where X ⊆ Rn+1, and
H ⊆ Hn+1 contains all the half spaces with margin at least 1/8 such that the following holds:
any algorithm that learns (X,H) with error ε and confidence at least 5/6 must use Ω(1/ε) com-
parison/label queries on some realizable distributions.

We derive these statements by establishing the existence of classes with large margin and
large infrence dimension. Then, Theorem 4.15 and Corollary 4.16 follow by plugging t = 2 in
Theorem 3.5 and Corollary 3.6 respectively.

Theorem 4.17. For every n, there is a set of n unit vectors X = {x1, x2, . . . , xn} ⊂ Rn+1

such that the class (X,H) has inference dimension at least n, where H contains all half spaces
with margin at least 1/6 with respect to X.

Proof. Define xi , ei+en+1√
2

where the ei’s are the vectors in the standard basis, and define

wi ∈ Rn+1 for i = 1, . . . , n by

wi(j) ,


1 + j

10n2 j = i

−1
2 j = n+ 1

− j
10n2 otherwise

and w0 ∈ Rn+1 by

w0(j) ,

{
−1

2 j = n+ 1

− j
10n2 otherwise

Let fi(x) = 〈wi, x〉, and define ci = sign(fi), for i = 0, . . . , n. A short calculation shows that the

margin γ(ci) = minj
〈wi,xj〉
||wi||2 ≥ 1/8, and therefore, ci ∈ H for all 0 ≤ i ≤ n. Another calculation

shows that ci(xj) = +1 if and only if i = j, and that
∣∣fi(xj)∣∣ =

1/2+j/10n2√
2

. In particular note

that |fi(xj)| does not depend on i.
Consider the set Xn \ {xi}. The previous paragraph implies that there is no comparison

nor label query that distinguishes c0 = sign(f0) from ci = sign(fi) on this set. This means that
it is not the case that Xn \ {xi} =⇒

f0
xi, which finishes the proof of Theorem 4.17.
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