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Abstract

An n-variate Vandermonde polynomial is the determinant of the n × n matrix
where the ith column is the vector (1, xi, x

2
i , . . . , x

n−1
i )T . Vandermonde polynomials

play a crucial role in the theory of alternating polynomials and occur in Lagrangian
polynomial interpolation as well as in the theory of error correcting codes. In
this work we study structural and computational aspects of linear projections of
Vandermonde polynomials.

Firstly, we consider the problem of testing if a given polynomial is linearly
equivalent to the Vandermonde polynomial. We obtain a deterministic polynomial
time algorithm to test if f is linearly equivalent to the Vandermonde polynomial
when f is given as product of linear factors. In the case when f is given as a
black-box our algorithm runs in randomized polynomial time.

Exploring the structure of projections of Vandermonde polynomials further, we
describe the group of symmetries of a Vandermonde polynomial and obtain a basis
for the associated Lie algebra.

Finally, we study arithmetic circuits built over projections of Vandermonde
polynomials. We show universality property for some of the models and obtain a
lower bounds against sum of projections of Vandermonde determinant.
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1 Introduction

The n× n symbolic Vandermonde matrix is given by

V =



1 1 1 1 1
x1 x2 · · · · · · xn
x2

1 x2
2 · · · · · · x2

n
...

...
...

...
...

...
...

...
...

...
xn−1

1 xn−1
2 · · · · · · xn−1

n


(1)

where x1, . . . , xn are variables. The determinant of the symbolic Vandermonde matrix is a
homogeneous polynomial of degree

(
n
2

)
given by VDn(x1, . . . , xn) , det(V ) =

∏
i<j(xi−xj)

and is known as the n-variate Vandermonde polynomial. An alternating polynomial is
one that changes sign when any two variables of {x1, . . . , xn} are swapped. Vandermonde
polynomials are central to the theory of alternating polynomials. In fact, any alternating
polynomial is divisible by the Vandermonde polynomial [11, 6]. Further, Vandermonde
matrix and Vandermonde polynomial occur very often in the theory of error correcting
codes and are useful in Lagrangian interpolation.

Linear projections are the most important form of reductions in Algebraic Complexity
Theory developed by Valiant [14]. Comparison between classes of polynomials in Valiant’s
theory depends on the types of linear projections. (See [1] for a detailed exposition.)
Taking a geometric view on linear projections of polynomials, Mulmuley and Shohoni [10]
proposed the study of geometry of orbits of polynomials under the action of GL(n,F), i.e,
the group of n×n non-singular matrices over F. This lead to the development of Geometric
Complexity Theory, whose primary objective is to classify families of polynomials based
on the geometric and representation theoretic structure of their GL(n,F) orbits.

In this article, we investigate computational and structural aspects of linear projec-
tions of the family VD = (VDn)n≥0 of Vandermonde polynomials over the fields of real
and complex numbers.

Firstly, we consider the polynomial equivalence problem when one of the polynomials
is fixed to be the Vandermonde polynomial. Recall that, in the polynomial equivalence
problem (POLY-EQUIV) given a pair of polynomials f and g we ask if f is equivalent
to g under a non-singular linear change of variables, i.e., is there a A ∈ GL(n,F) such
that f(AX) = g(X), where X = (x1, . . . , xn)? POLY-EQUIV is one of the fundamen-
tal computational problems over polynomials and received significant attention in the
literature.

POLY-EQUIV can be solved in PSPACE over reals [2] and any algebraically closed
field [12], and is in NP ∩ co-AM [13] over finite fields. However, it is not known if the
problem is even decidable over the field of rational numbers [12]. Saxena [12] showed
that POLY-EQUIV is at least as hard as the graph isomorphism problem even in the case
of degree three forms. Given the lack of progress on the general problem, authors have
focussed on special cases over the recent years. Kayal [8] showed that testing if a given
polynomial f is linearly equivalent to the elementary symmetric polynomial, or to the
power symmetric polynomial can be done in randomized polynomial time. Further, in [9],
Kayal obtained randomized polynomial time algorithms for POLY-EQUIV when one of the
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polynomials is either the determinant or permanent and the other polynomial is given as
a black-box.

We consider the problem of testing equivalence to Vandermonde polynomials:

Problem : VD-EQUIV
Input : f ∈ F[x1, . . . , xn]
Output : Homogeneous linearly independent linear forms
L1, L2, . . . , Ln such that f = VD(L1, L2, . . . , Ln) if they exist, else
output ‘No such equivalence exists’.

Remark 1. Although Vandermonde polynomial is a special form of determinant, ran-
domized polynomial time algorithm to test equivalence to determinant polynomial due to
[9] does not directly give an algorithm for VD-EQUIV.

We show that VD-EQUIV can be solved in deterministic polynomial time when f
is given as a product of linear factors (Theorem 1). Combining this with Kaltofen’s
factorization algorithm, [7], we get a randomized polynomial time algorithm for VD-
EQUIV when f is given as a black-box.

For an n-variate polynomial f ∈ F[x1, . . . , xn], the group of symmetry Gf of f is the
set of non-singular matrices that fix the polynomial f . The group of symmetry of a
polynomial and the associated Lie algebra have significant importance in geometric com-
plexity theory. More recently, Kayal [9] used the structure of Lie algebras of permanent
and determinant in his algorithms for special cases of POLY-EQUIV. Further, Grochow [5]
studied the problem of testing conjugacy of matrix Lie algebras. In general, obtaining
a complete description of group of symmetry and the associated Lie algebra of a given
family of polynomials is an interesting task.

In this paper we obtain a description of the group of symmetry for Vandermonde
polynomials (Theorem 3). Further, we obtain a basis for the associated Lie algebra
(Lemma 2).

Finally, we explore linear projections of Vandermonde polynomials as a computational
model. We prove closure properties (or lack of) and lower bounds for representing a
polynomial as sum of projections of Vandermonde polynomials (Section 5).

2 Preliminaries

Throughout the paper, unless otherwise stated, F ∈ {C,R}. We briefly review different
types of projections of polynomials that are useful for the article. For a more detailed
exposition, see [1].

Definition 1. (Projections). Let f, g ∈ F[x1, x2, . . . , xn]. We say that f is projection
reducible to g denoted by f ≤ g, if there are linear forms `1, . . . , `n ∈ F[x1, . . . , xn] such
that f = g(`1, . . . , `n). Further, we say

• f ≤proj g if `1, . . . , `n ∈ F ∪ {x1, . . . , xn}.

• f ≤homo g if `1, . . . , `n are homogeneous linear forms.

• f ≤aff g if `1, . . . , `n are affine linear forms.
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Based on the types of projections, we consider the following classes of polynomials
that are projections of the Vandermonde polynomial.

VD = {VD(x1, x2, . . . , xn) | n ≥ 1}; and

VDproj = {VD(ρ1, ρ2, . . . , ρn) | ρi ∈ (X ∪ F),∀i ∈ [n]}; and

VDhomo = {VD(`1, `2, . . . , `n) | `i ∈ F[x1, x2, . . . , xn], deg(`i) = 1, `i(0) = 0 ∀i ∈ [n]};
VDaff = {VD(`1, `2, . . . , `n) | `i ∈ F[x1, x2, . . . , xn], deg(`i) ≤ 1 ∀i ∈ [n]};

Among the different types mentioned above, the case when `1, . . . , `n are homogeneous
and linearly independent is particularly interesting. Let f, g ∈ F[x1, . . . , xn]. f is said
to be linearly equivalent to g (denoted by f ≡lin g) if g ≤homo f via a set of linearly
independent homogeneous linear forms `1, . . . , `n. In the language of invariant theory,
f ≡lin g if and only if g is in the GL(n,F) orbit of f .

The group of symmetry of a polynomial is one of the fundamental objects associated
with a polynomial:

Definition 2. Let f ∈ F[x1, x2, . . . , xn]. The group of symmetries of f ( denoted by Gf)
is defined as:

Gf = {A | A ∈ GL(n,F), f(Ax) = f(x)}.
i.e., the group of invertible n× n matrices A such that f(Ax) = A(x).

The Lie algebra of a polynomial f is the tangent space of Gf at the identity matrix
and is defined as follows:

Definition 3 ([9]). Let f ∈ F[x1, x2, . . . , xn]. Let ε be a formal variable with ε2 = 0.
Then gf is defined to be the set of all matrices A ∈ Fn×n such that

f((1n + εA)x) = f(x).

It can be noted that gf is non-trivial only when Gf is a continuous group. For a
random polynomial, both Gf as well as gf are trivial.

For a polynomial f ∈ F[x1, . . . , xn], k ≥ 0, let ∂=k(f) denote the F-linear span of the
set of all partial derivatives of f of order k, i.e.,

∂=k(f) , F-Span

{
∂kf

∂xi1 . . . ∂xik
i1, . . . , ik ∈ [n]

}
.

3 Testing Equivalence to Vandermonde Polynomials

Recall the problem VD− EQUIV from Section 1. In this section, we obtain an efficient
algorithm for VD− EQUIV. The complexity of the algorithm depends on the input rep-
resentation of the polynomials. When the polynomial is given as product of linear forms,
we show:

Theorem 1. There is a deterministic polynomial time algorithm for VD− EQUIV when
the input polynomial f is given as a product of homogeneous linear forms.
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The proof of Theorem 1 is based on the correctness of Algorithm 1 described next.

Algorithm 1: VD− EQUIV

Input : f = `1 · `2 · · · `p
Output: ‘f is linearly equivalent to VD(x1, . . . , xn)’ if f ≡lin VD. Else

‘No’

1 if p 6=
(
n
2

)
for any n < p or dim(span{`1, `2, . . . , `p}) 6= n− 1 then

2 return ‘No such equivalence exists’

3 end
4 else
5 S ← {`1, `2, . . . , `p}
6 Let T (0) = {r1, r2, . . . , rn−1} be n− 1 linearly independent linear forms in S.
7 i← 1

8 S ′ ← S \ T (0)

9 while true do
10 Di ← {a+ b, a− b, b− a | a, b ∈ T (i−1)} . Di is the set of differences

11 T (i) ← {T (i−1) ∪Di} ∩ S
12 S ′ ← S \ T (i)

13 if |S ′| = 0 then
14 Output ‘f is linearly equivalent to VD(x1, . . . , xn)’
15 Exit.

16 end

17 if T (i−1) = T (i) and |S ′| 6= 0 then
18 Output ‘No such equivalence exists’

19 Exit.

20 end

21 end

22 end

As a first step, we observe that lines (1)-(3) of algorithm are correct:

Observation 1. If f = `1 · · · · · `p ≡lin VD then p =
(
n
2

)
and dim(span{`1, `2, . . . , `p}) =

n− 1.

Proof. Clearly if f ≡lin VD we have p =
(
n
2

)
. For the second part if f = VD(L1, . . . , Ln),

for some linearly independent homogeneous linear forms L1, . . . , Ln then {`1, . . . , `p} =
{Li − Lj | i < j}, and therefore dim(span{`1, `2, . . . , `p}) = n− 1.

The following theorem proves the correctness of the Algorithm 1.

Theorem 2. f ≡lin VD if and only if Algorithm 1 outputs ‘f is linearly equivalent

to VD(x1, . . . , xn)’.

Proof. We first argue the forward direction. Suppose there are n homogeneous linearly
independent linear forms L′1, L

′
2, . . . , L

′
n such that f = `1 · `2 · · · `p =

∏
i<ji,j∈[n]

(L′i − L′j).

Consider the linear forms L1 = L′1 − L′n, L2 = L′2 − L′n, · · · , Ln−1 = L′n−1 − L′n. Then

f = `1 · `2 · · · `p =
n−1∏
i=1

Li ·
∏
i<j

(Li − Lj). (2)
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Let S , {`1, `2, . . . , `p} as in line (5) of the algorithm. By equation (2), we have

S = {L1, L2, . . . , Ln−1} ∪ {Li − Lj | i < j, i, j ∈ [n− 1]}.

Let S1 , {L1, L2, . . . , Ln−1} and S2 , {Li − Lj | i < j, i, j ∈ [n − 1]}. Consider the
undirected complete graph G with vertices {v1, v2, . . . , vn−1}. For every vertex vi ∈ V (G),
let label(vi) denote the linear form Li associated with the vertex vi. Similarly for every
edge e = (vi, vj) ∈ E(G) let label(e) be defined as follows :

label(e) =

{
Li − Lj if i < j

Lj − Li if j < i
(3)

Using notations used in line (5) of Algorithm 1, we have {r1, r2, . . . , rn−1} ⊆ S. Ob-
serve that for every i ∈ [n−1] the linear form ri corresponds to either a vertex or an edge
label in G. Let Q1 , {r1, r2, . . . , rn−1} ∩ S1 and Q2 , {r1, r2, . . . , rn−1} ∩ S2. Suppose
|Q2| = k and |Q1| = n−k−1, linear forms in Q1 correspond to labels of vertices in V (G)
and linear forms in Q2 correspond to labels of edges in E(G). For some k ≥ 0, let

Q1 = {label(u1), label(u2), . . . , label(un−k−1)} for u1, u2, . . . , un−k−1 ∈ V (G)

Q2 = {label(e1), label(e2), . . . , label(ek)} for e1, e2, . . . , ek ∈ E(G)

Let G[r1, . . . , rn−1] denote the sub-graph {u1, . . . , un−k−1} ∪ {e1, . . . , ek}, i.e., consisting
of edges with labels in Q2 and vertices incident on them and vertices with labels in Q1.

We need the following claim:

Claim 2.1. For any choice of linearly independent linear forms {r1, r2, . . . , rn−1} by the
algorithm in line (5), any connected component C in G[r1, r2, . . . , rn−1] has exactly one

vertex with label in Q1. More formally, if QC ,
(⋃

v∈Q1
label(v)

)⋂(⋃
w∈V (C) label(w)

)
then |QC | = 1.

Proof of Claim 2.1 Proof is by contradiction. Suppose there is a connected com-
ponent C in G[r1, r2, . . . , rn−1] with |QC | ≥ 2. Let vi, vj ∈ QC . Assume without loss of
generality that i < j. Consider the path P̄ = (vi, ec1 , ec2 , . . . , ec|P̄ |−1

, vj) between vi and
vj in the connected component C, where ec1 , . . . , ec|P̄ |−1 are edges. From the definition of

G, we know that there are constants α1, . . . α|P̄ |−1 ∈ {−1, 1} such that

α1label(ec1) + α2label(ec2) + · · ·+ α|P̄ |−1label(ec|P̄ |−1
) = label(vi)− label(vj).

Therefore, {label(vi), label(ec1), label(ec2), . . . , label(ec|P̄ |−1
), label(vj)} is a linearly depen-

dent set. Since C is a connected component in G[r1, r2, . . . , rn−1] we have that the lin-
ear forms {label(vi), label(ec1), label(ec2), . . . , label(ec|P̄ |−1

), label(vj)} ⊆ {r1, r2, . . . , rn−1},
hence a contradiction. Now, suppose there exists a connected component C with QC = ∅.
Let v be any vertex in C. Clearly, {label(v)∪{r1, . . . , rn−1}} is a linearly independent set,
a contradiction since dim(F-span(S)) = n− 1. /
Now, the following claim completes the proof of the forward direction:

Claim 2.2. (i) If f ≡lin VD then there exists an m such that {L1, , . . . , Ln−1} ⊆ T (m).

(ii) For any m, if {L1, L2, . . . , Ln−1} ⊆ T (m) then the set T (m+1) = S and the algorithm
outputs ‘f is linearly equivalent to VD(x1, . . . , xn)’ in line 14.
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Proof of Claim 2.2 (i) Let C be a connected component in G[r1, . . . , rn−1]. By Claim
2.1 we have |QC | = 1. Let QC = {b} and L = label(b). We argue by induction on i that
for every vertex v ∈ V (C) with dist(L, v) ≤ i, label(v) ∈ T (i). Base case is when i = 0
and follows from the definition of T (0). For the induction step, let u ∈ V (C) be such that
(u, v) ∈ E(G[r1, . . . , rn−1]) and dist(L, u) ≤ i− 1. By the induction hypothesis, we have
label(u) ∈ T (i−1). Also, since label(u, v) ∈ {r1, . . . , rn−1} = T (0), we have label(u, v) ∈
T (i−1). By line 10 of the algorithm, the linear form label(u, v) + label(u) ∈ Di where Di

is the set of differences in the ith iteration of the while loop. Now, by the definition of
labels in 3, (Lv − Lu) + Lu ∈ Di if v < u or Lu − (Lu − Lv) ∈ Di if u < v. In any case,
Lv = label(v) ∈ T (i) as required. Now, if m ≥ n− 1 then we have {L1, . . . , Ln−1} ⊆ T (m).
(ii) If {L1, L2, . . . , Ln−1} ⊆ T (m) then clearly T (m) ∪ Dm = S. Hence T (m+1) = S and
algorithm outputs ‘f is linearly equivalent to VD(x1, . . . , xn)’ in line 14. /

Suppose Algorithm 1 outputs ‘f is linearly equivalent to VD(x1, . . . , xn)’ in
k steps. Consider the polynomial VD(`, r1, r2, . . . , rn−1) where {r1, r2, . . . , rn−1} is the
linearly independent set chosen in line 5 of Algorithm 1 and ` is an arbitrary linear form
such that the set {`, r1, r2, . . . , rn−1} is linearly independent. Then, we have `1`2 · · · `p =
VD(`, `− r1, `− r2, . . . , `− rn−1).

Corollary 1. VD− EQUIV is in RP when f is given as a black-box.

Proof. The result immediately follows from Algorithm 2 and Theorem 1.

Algorithm 2: VD− EQUIV − 2

Input : f ∈ F[x1, x2, . . . , xn] as a black-box
Output: ‘f is linearly equivalent to VD(x1, . . . , xn)’ if f ≡lin VD. Else ‘No

such equivalence exists’

1 Run Kaltofen’s factorization Algorithm [7]
2 if f is irreducible then
3 Output ‘No such equivalence exists’

4 end
5 else
6 Let B1, B2, . . . , Bp be black-boxes to the irreducible factors of f obtained from

Kaltofen’s Algorithm.
7 Interpolate the black-boxes B1, . . . , Bp to get the explicit linear forms

`1, `2, . . . , `p respectively.
8 Run Algorithm 1 with `1 . . . `p as input.

9 end

Finally, in the black-box setting we show:

Corollary 2. PIT is polynomial time equivalent to VD− EQUIV in the black-box setting.

Proof. Since polynomial factorization is polynomial time equivalent to PIT in the black-
box setting, by Theorem 1 we have, VD− EQUIV ≤P PIT. For the converse direction, let
f ∈ F[x1, . . . , xn] be a polynomial of degree d. Given black-box access to f we construct
black-box to a polynomial g such that f ≡ 0 if and only if g ≡lin VD. Consider the

polynomial g = x
(n

2)+1

1 f+VD(x1, x2, . . . , xn). If f ≡ 0 then clearly g = VD(x1, x2, . . . , xn).
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If f 6≡ 0 then deg(g) >
(
n
2

)
and hence g is not linearly equivalent to VD. Observe that

given black-box access to f we can construct in polynomial time a black-box for g.

4 Group of symmetries and Lie algebra of Vander-

monde Polynomial

In this section we characterize the group of symmetries and Lie algebra of the Vander-
monde polynomial.

Theorem 3. Let VD denote the determinant of the symbolic n×n Vandermonde matrix.
Then,

GVD = {(I + (v ⊗ 1)) · P | P ∈ An, v ∈ Fn}

where An is the alternating group on n elements.

Proof. We first argue the forward direction. Let A = B + (v⊗ 1) where B ∈ An and v =
(v1, v2, . . . , vn) ∈ Fn. We show that A ∈ GVD : Let σ be the permutation defined by the
permutation matrix B. Then the transformation defined by A is A ·xi = xσ(i) +

∑n
i=1 vixi.

Now it is easy to observe that
∏

i<j(xi−xj) =
∏

i<j((A·xi)−(A·xj)). Therefore A ∈ GVD.
For the converse direction, consider A ∈ GVD. To show that A = B + (v ⊗ 1) where

B ∈ An and v = (v1, v2, . . . , vn) ∈ Fn. A defines a linear transformation on the set of
variables {x1, x2, . . . , xn} and let `i = A · xi. We have

∏
i<j(xi − xj) =

∏
i<j(`i − `j). By

unique factorization of polynomials, we have that there exists a bijection σ : {(i, j) | i <
j} → {(i, j) | i < j} such that σ(i, j) = (i′, j′) iff `i − `j = xi′ − xj′ .

We now show that the σ is induced by a permutation π ∈ Sn:

Claim 3.1. Let σ be as defined above. Then there exists a permutation π of {1, . . . , n}
such that σ(i, j) = (π(i), π(j)).

Proof of Claim 3.1 : Let G be a complete graph on n vertices such that edge (i, j) is
labelled by (`i − `j) for i < j. Let H be the complete graph on n vertices with the edge
(i, j) labelled by (xi − xj) for i < j. Now σ can be viewed as a bijection from E(G) to
E(H). It is enough to argue that for any 1 ≤ i ≤ n,

σ({(1, i), (2, i), . . . , (i− 1, i), (i, i+ 1), . . . , (i, n)}) =

{(1, ki), (2, ki), . . . , (ki − 1, ki), (ki, ki + 1), . . . , (ki, n)} (4)

for some unique ki ∈ [n]. Then π : i 7→ ki is the required permutation.
For the sake of contradiction, suppose that (4) is not satisfied for some i ∈ [n]. Then
there are distinct j, k,m ∈ [n] such that the edges {(i, j), (i, k), (i,m)} in G under σ map
to edges in {(α, β), (γ, δ), (η, κ)} in H where the edges (α, β), (γ, δ) and (η, κ) do not form
a star in H. Note that α, β, γ, δ, η, κ need not be distinct. Various possibilities for the
vertices α, β, γ, δ, η, κ and the corresponding vertex-edge incidences in H are depicted in
the Figure 1. Observe that in the figure the edges are labelled with a ± sign to denote
that based on whether i < j or j < i one of + or − is chosen.
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(a)

(b)

(c)

(d)

σ
i

j

k

m

α β γ δ

η κ

α β

γ

δ

η

In G In H

±(
ì −

m̀ )

±(`i − `k)
±(`

i
− ` j

)

±(
x α
−
x γ
)

±(xα − xβ)

α β γ δ

±(xβ − xγ) ±(xγ − xδ)

±(xγ − xδ)

±
(x
β −

x
γ )

±(xη − xκ)

±(xη − xδ)

±(
x α
−
x γ
) ±

(x
β −

x
γ )

±(xα − xβ)

±(xα − xβ)

γ

α β

Figure 1: The map σ on vertex i in G

Recall that we have,
∀i < j |var(`i − `j)| = 2. (5)

We denote by P the edges {(i, j), (i, k), (i,m)} in G. Consider the following two cases :

Case 1 : P in G maps to one of (a), (b) or (c) in H under σ (see Figure 1). In
each of the possibilities, it can be seen that there exist linear forms `′ and `′′ in
{`i, `j, `k, `m} such that |var(±(`′ − `′′))| = 4 which is a contradiction to Equation
5.

Case 2 : P in G maps to (d) in H under σ (see Figure 1). Without loss of
generality suppose σ(i, j) = (α, β), σ(i, k) = (α, γ) and σ(i,m) = (β, γ). Recall
that σ(i, j) = (i′, j′) if and only if `i− `j = xi′ − xj′ . Then we get `j − `k = xβ − xγ
by the definition of σ. Therefore, we have σ(j, k) = (β, γ) = σ(i,m) which is a
contradiction since σ is a bijection.

Therefore, for all 1 ≤ i ≤ n, Equation 4 is satisfied and there exists a permutation π such
that σ(i, j) = (π(i), π(j)). /

Let Pπ be the permutation matrix corresponding to the permutation π obtained from
the claim above. To complete the proof, we need to show that A = Pπ + (v ⊗ 1) for
v ∈ Fn. Let

`1 = a11x1 + a12x2 + · · ·+ a1nxn
`2 = a21x1 + a22x2 + · · ·+ a2nxn

...
`n = an1x1 + an2x2 + · · ·+ annxn

Now suppose π is the identity permutation, i.e., σ(i, j) = (i, j) for all i < j, therefore
`1 − `2 = x1 − x2, `1 − `2 = x1 − x2, . . . , `1 − `n = x1 − xn. Now, we have the following
system of linear equations

a11 − a21 = 1, a12 − a22 = −1, a13 − a23 = 0, a14 − a24 = 0, . . . , a1n − a2n = 0
a11 − a31 = 1, a12 − a32 = 0, a13 − a33 = −1, a14 − a34 = 0, . . . , a1n − a3n = 0
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...
a11 − an1 = 1, a12 − an2 = 0, a13 − an3 = 0, a14 − an4 = 0, . . . , a1n − ann = −1.

From the equations above, it follows that when π is the identity permutation, A−I = v⊗1
for some v ∈ Fn where 1 is the vector with all entries as 1. When π is not identity, it
follows from the above arguments that π−1A = I + v ⊗ 1 for some v ∈ Fn. Since
VD((I + v ⊗ 1)X) = VD(X), we conclude that π ∈ An.

Now we show that Vandermonde polynomial are characterized by its group of symmetry
GVD.

Lemma 1. Let f ∈ F[x1, . . . , xn] be a homogeneous polynomial of degree
(
n
2

)
. If Gf = GVD

then f(x1, . . . , xn) = α · VD(x1, . . . , xn) for some α ∈ F.

Proof. Let f ∈ F[x1, . . . , xn]. Since Gf = GVD = {(I + (v⊗ 1)) ·P | P ∈ An, v ∈ Fn}, Gf ∩
Sn = An. Hence f is an alternating polynomial. By the fundamental theorem of alternat-
ing polynomials [4, 11], there exists a symmetric polynomial g ∈ F[x1, . . . , xn] such that
f(x1, . . . , xn) = g(x1, . . . , xn)·VD(x1, . . . , xn). Since deg(f) =

(
n
2

)
= deg(VD(x1, . . . , xn)),

g = α for some α ∈ F.

Using the description of GVD above, we now describe the Lie algebra of GVD.

Lemma 2. We have gVD = {v ⊗ 1 | v ∈ Fn}.

Proof. We have

A ∈ gVD ⇐⇒
∏
i>j

(xi − xj + ε(A(xi)− A(xj))) =
∏
i>j

(xi − xj)

⇐⇒ A(xi) = A(xj) ∀i 6= j

⇐⇒ A = v ⊗ 1 for some v ∈ Fn.

5 Models of Computation

In this section we study polynomials that can be represented as projections of Vander-
monde polynomials. Recall the definitions of the classes VD,VDproj,VDhomo and VDaff

from Section 2. For any arithmetic model of computation, universality and closure under
addition and multiplication are among the most fundamental and necessary properties
to be investigated. Here, we study these properties for projections of the Vandermonde
polynomial and their sums. Most of the proofs follow from elementary arguments and
can be found in the Appendix.

By definition, VD,VDproj,VDhomo ⊆ VDaff . Also, any polynomial with at least one
irreducible non-linear factor cannot be written as a projection of VD. As expected,
we observe that there are products of linear forms that cannot cannot be written as a
projection of VD.

Lemma 3. Let (x1 − y1)(x2 − y2) 6∈ VDaff .
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Proof. Suppose f ∈ VDaff , then there are affine linear forms `1, . . . , `n such that (x1 −
y1)(x1 − y2) =

∏
1≤i<j≤n(`i − `j). Clearly, only two factors of

∏
1≤i<j≤n(`i − `j) are non

constant polynomials. Without loss of generality, let `i−`j = x1−y1 and `i′−`j′ = x2−y2.
Then, we must have `i′ − `i, `j′ − `j, `i′ − `j and `j′ − `i as constant polynomials, as they
are factors of VD(`1, . . . , `n) and hence `i′ − `j′ = `i′ − `i − (`j′ − `i) is a constant, which
is a contradiction.

Lemma 4. The classes VD,VDproj,VDhom and VDaff are not closed under addition and
multiplication.

Proof. Since sum of any two variable disjoint polynomials is irreducible, it is clear that
VD,VDproj,VDhom and VDaff are not closed under addition. For multiplication, take f1 =
x1−y1, and f1 = x2−y2. By Lemma 3, f1f2 /∈ VDaff and hence f1f2 /∈ VD∪VDproj∪VDhom.
Since f1, f2 ∈ VD∩VDproj ∩VDhom ∩VDaff , we have that VD,VDproj,VDhom and VDaff are
not closed under multiplication.

It can also be seen that the classes of polynomials VD,VDproj,VDhom and VDaff are
properly separated from each other:

Lemma 5. (1) VDproj ( VDaff and VDhomo ( VDaff .

(2) VDproj 6⊂ VDhomo and VDhomo 6⊂ VDproj.

Proof. • VDproj ( VDaff : Let f = (x1−y1)+(x2−y2).Then f = det

[
1 1

y2 − x2 x1 − y1

]
.

By comparing factors it can be seen that (x1 − y1) + (x2 − y2) 6∈ VDproj.

• VDhomo ( VDaff : Let f = x1 + x2 − 2. Then f = det

[
1 1

x2 − 1 x1 − 1

]
. Sup-

pose f ∈ VDhomo, then there exists an n × n Vandermonde matrix M ′ such that
f ≤homo det(M ′). In other words, x1 + x2 − 2 =

∏
i<j i,j∈[n](`j − `i). where `i’s are

homogeneous linear forms which is impossible since x1 +x2−2 is non-homogeneous.

• VDhomo ( VDproj : Let f = (x1−1)(x1−2). Observe that f ∈ VDproj. However, since
VDhomo consists only of polynomials with homogeneous linear factors, f /∈ VDhomo.

• VDproj ( VDhomo : Let f = (x1− y1) + (x2− y2). For M =

[
1 1

y2 − x2 x1 − y1

]
, we

have det(M) ∈ VDhomo and f = det(M). It can be seen that (x1− y1) + (x2− y2) 6∈
VDproj.

Sum of projections of Vandermonde polynomials

In this section, we consider polynomials that can be expressed as sum of projections of
Vandermonde polynomials.

Definition 4. For a class C of polynomials, let Σ · C be defined as

Σ · C =

{
f

f = (fn)n≥0 where ∀n ≥ 0 ∃ g1, g2, . . . , gs ∈ C,α1, . . . , αs ∈ F
such that f = α1g1 + α2g2 + · · ·+ αsgs, s = nO(1)

}
.
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Lemma 6. x1 · x2 6∈ Σ · VD.

Proof. Suppose there exists g1, g2, . . . , gs ∈ VD. Note that for every i, either deg(gi) ≤ 1
or deg(gi) ≥ 3. Since deg(g) = 2, it is impossible that x1x2 = g1 + · · · + gs for any
s ≥ 0.

Lemma 7. The class Σ · VD is closed under addition but not under multiplication.

(i) If f1, f2 ∈ Σ · VD then f1 + f2 ∈ Σ · VD.

(ii) There exists f1, f2 ∈ Σ · VD such that f1 · f2 6∈ Σ · VD

Proof. (i) Closure under addition follows by definition.

(ii) Let f1 = x1 − y1 and f2 = x2 − y2, clearly f1, f2 ∈ Σ · VD. since for any g ∈ VD,
deg(g) 6= 2, one can conclude that f1f2 /∈ Σ · VD.

We now consider polynomials in the class ΣVDproj. Any univariate polynomial f of
degree d can be computed by depth-2 circuits of size poly(d). However there are univariate
polynomials not in VDaff which is a subclass of depth 2 circuits (Consider any univariate
polynomial irreducible over F). Here, we show that the class of all univariate polynomials
can be computed efficiently by circuits in ΣVDproj.

Lemma 8. Let f = a0 + a1x+ a2x
2 + · · ·+ adx

d be a univariate polynomial of degree d.
Then there are gi ∈ VDproj, 1 ≤ i ≤ s ≤ O(d2) for some αi ∈ F such that f = g1 + · · ·+gs.

Proof. Consider the (d+ 1)× (d+ 1) Vandermonde matrix M0,

M0 =



1 1 1 1 1
x β1 · · · · · · βd−1

x2 β2
1 · · · · · · β2

d−1
...

...
...

...
...

...
...

...
...

...
xd−1 βd−1

1 · · · · · · βd−1
d−1

xd βd1 · · · · · · βdd−1


Let g0 = det(M0) = γ00 +γ01x+γ02x

2 + · · ·+γ0,d−1x
d−1 +γ0dx

d where γ00, . . . , γ0d ∈ F
and γ0d 6= 0. Note that g0 ∈ VDproj. Setting α0 = ad

γ0d
we get α0f0 = adx

d +
adγ0,d−1

γ0d
xd−1 +

· · ·+ adγ01

γ0d
x+ adγ00

γ0d
. Now, let M1 be the d× d Vandermonde matrix,

M1 =



1 1 1 1 1
x β1 · · · · · · βd−1

x2 β2
1 · · · · · · β2

d−1
...

...
...

...
...

...
...

...
...

...
xd−1 βd−1

1 · · · · · · βd−1
d−1


Then

g1 = det(M1) = γ10 + γ11x+ γ12x
2 + · · ·+ γ1,d−1x

d−1.
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where γ10, . . . , γ1d ∈ F. Observe that xd is not a monomial in α1g1. Set α1 = ad−1

γ1,d−1
−

adγ0,d−1

γ0d
. Then α1g1 = ad−1x

d−1 + · · · + adγ01

γ0d
x + adγ00

γ0d
. Extending this approach : Let Mi

be a (d− (i− 1))× (d− (i− 1)) Vandermonde matrix,

Mi =



1 1 1 1 1
x β1 · · · · · · βd−i
x2 β2

1 · · · · · · β2
d−i

...
...

...
...

...
...

...
...

...
...

xd−i βd−i1 · · · · · · βd−id−i


Now observe that by setting αi = ad−i

γi,d−i
− (α0γ0,d−i + α1γ1,d−i + · · · + αi−1γi−1,d−i) we

ensure that
∑i

j=0 αjgj does not contain any term of the form xp for d − i ≤ p ≤ d − 1.

Thus
∑d

k=0 αkgk = adx
d. Hence to compute adx

d we require d summands. Then, using
O(d2) summands f can be obtained.

Recall that the n-variate power symmetric polynomial of degree d is defined as
Pown,d = xd1 + xd2 + · · · + xdn. From the arguments in Lemma 8, it follows that Pown,d

can be expressed by polynomial size circuits in Σ · VDproj.

Corollary 3. There are polynomials fi ∈ VDproj 1 ≤ i ≤ nd such that Pown,d =
∑s

i=1 αifi.

Now, to argue that VDhomo and VDaff are universal, we need the following:

Lemma 9 ([3]). Over any infinite field containing the set of integers, there exists 2d

homogeneous linear forms L1, . . . , L2d such that

d∏
i=1

xi =
2d∑
i=1

Ldi

Combining with Corollary 3 with Lemma 9 we establish the universality of the classes
Σ · VDhomo and Σ · VDaff .

Lemma 10. The classes Σ · VDhomo and Σ · VDaff are universal.

Also, in the following, we note that VDaff is more powerful than depth three Σ ∧ Σ
circuits:

Lemma 11. poly − size Σ ∧ Σ ( poly−size Σ · VDaff .

Proof. Let f ∈ Σ ∧ Σ. Then f =
s∑
i=1

`di . Then for any k ≥ 1, dim ∂=k(f) ≤ s. Now, for

any 1 ≤ k ≤ n/2 we have dim ∂=k(VD) ≥
(
n
k

)
. Therefore, if f = VD we have s = 2Ω(n)

by setting k = n/2. Hence poly − size Σ ∧ Σ ( poly−size Σ · VDaff .
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A Lower Bound against Σ · VDproj

Observe that Σ ·VDproj is a subclass of non-homogeneous depth circuits of bottom fan-in
2, i.e., ΣΠΣ[2]. It is known that Sym2n,n can be computed by non-homogeneous ΣΠΣ[2]

circuits of size O(n2). We show that any Σ · VDproj computing Symn,n/2 requires a top
fan-in of 2Ω(n) and hence Σ · VDproj ( ΣΠΣ[2]. The lower bound is obtained by a variant
of the evaluation dimension as a complexity measure for polynomials.

Definition 5. (Restricted Evaluation Dimension.) Let f ∈ F[x1, . . . , xn] and S =
{i1, . . . , ik} ⊆ [n]. Let ā = (ai1 , ai2 , . . . , aik) ∈ {0, 1, ∗}k and f |S=ā be the polynomial
obtained by substituting for all ij ∈ S,

xij =


1 if aij = 1

0 if aij = 0

xij if aij = ∗

Let f |S def
= {f |S=ā | ā ∈ {0, 1, ∗}k}. The restricted evaluation dimension of f is defined

as:

REDS(f)
def
= dim(F-span(f |S))

It is not hard to see that the measure REDS is sub-additive:

Lemma 12. For any f, g ∈ F[x1, x2, . . . , xn], REDS(f + g) ≤ REDS(f) + REDS(g).

In the following, we show that Vandermonde polynomials and their projections have
low restricted evaluation dimension:

Lemma 13. Let M be a m×m Vandermonde matrix with entries from {x1, . . . , xn}∪F
and f = det(M). Then for any S ⊂ {1 . . . , n} with |S| = k, we have REDS(f) ≤ (k+1)2.

Proof. Without loss of generality suppose S = {j1, j2, . . . , jk} ⊆ [n] and |S| = k. Let
T = {xj1 , xj2 , . . . , xjk} ∩ var(f) = {i1, i2, . . . , im}. Observe that m ≤ k. For a vector
v ∈ {0, 1, ∗}n and b ∈ {0, 1}, let #b(v) denote the number of occurrences of b in the
vector v. Then, for any ā = (aj1 , aj2 , . . . , ajk) ∈ {0, 1, ∗}k,

• If #0((ai1 , ai2 , . . . , aim)) ≥ 2 or #1((ai1 , ai2 , . . . , aim)) ≥ 2 then f |S=ā = 0.

• If #0((ai1 , ai2 , . . . , aim)) = #1((ai1 , ai2 , . . . , aim)) = 1. Let T1 be the set of polyno-
mials obtained from such evaluations of fd. The number of such assignments is at
most

(
m
2

)
≤
(
k
2

)
≤ k2 and hence |T1| ≤ k2.

• If #0({ai1 , ai2 , . . . , aim}) = 1 or #1({ai1 , ai2 , . . . , aim}) = 1. Let T2 denote the set of
polynomials obtained from such evaluations. Since number of such assignments is
2
(
m
m−1

)
≤ 2
(
m
1

)
≤ 2
(
k
1

)
≤ 2k, we have |T2| ≤ 2k.

• If, #0({ai1 , ai2 , . . . , aim}) = #1({ai1 , ai2 , . . . , aim}) = 0, in this case, the polynomial
f does not change under these evaluations.

From the above case analysis, we have F-span(f |S = a) = F-span(T1 ∪T2 ∪{f}). There-
fore REDS(f) ≤ k2 + 2k + 1 ≤ (k + 1)2.
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Lemma 14. Let Symn,k be the elementary symmetric polynomial in n variables of degree
k. Then for any S ⊂ {1, . . . , n}, |S| = k, we have REDS(Symn,k) ≥ 2k − 1.

Proof. Let Symn,k be the elementary symmetric polynomial in n variables of degree k.
For T ⊆ S, T 6= ∅, define āT = (a1, . . . , ak) ∈ {1, ∗}k as:

ai =

{
∗ if xi ∈ T
1 if xi ∈ S \ T

Note that it is enough to prove:

dim({Symn,k|S=āT | T ⊆ S, T 6= ∅}) ≥ 2k − 1 (6)

Since {Symn,k|S=āT | T ⊆ S, T 6= ∅} ⊆ {F-span(Symn,k|S=ā) | ā = (a1, . . . , ak) ∈
{1, ∗}k}, by Equation (6) we have

REDS(Symn,k) ≥ dim({Symn,k|S=āT | T ⊆ S, T 6= ∅}) = 2k − 1.

To prove (6), note that for any distinct T1, T2 ⊆ S, we have Symn,k|S=āT1
and Symn,k|S=āT2

have distinct leading monomials with respect to the lex ordering since they have distinct
supports. Since the number of distinct leading monomials in a space of polynomials is a
lower bound on its dimension, this concludes the proof of (6).

Theorem 4. If
s∑
i=1

αifi = Symn,n/2 where fi ∈ VDproj then s = 2Ω(n).

Proof. The proof is a straightforward application of sub-additivity of REDS combined
with Lemmas 14 and 13.
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