
On Weak-Space Complexity over Complex Numbers

Pushkar S Joglekar1, B. V. Raghavendra Rao2, and Siddhartha Sivakumar2

1 Vishwakarma Institute of Technology, Pune, India joglekar.pushkar@gmail.com
2 Indian Institute of Technology Madras, Chennai, India, bvrr@cse.iitm.ac.in, sith1992@gmail.com

Abstract. Defining a feasible notion of space over the Blum-Shub-Smale (BSS) model of algebraic
computation is a long standing open problem. In an attempt to define a right notion of space complex-
ity for the BSS model, Naurois [CiE, 2007] introduced the notion of weak-space. We investigate the
weak-space bounded computations and their plausible relationship with the classical space bounded
computations. For weak-space bounded, division-free computations over BSS machines over complex

numbers with
?
= 0 tests, we show the following:

1. The Boolean part of the weak log-space class is contained in deterministic log-space, i.e.,

BP(LOGSPACEW) ⊆ DLOG.

2. There is a set L ∈ NC1
C that cannot be decided by any deterministic BSS machine whose weak-space

is bounded above by a polynomial in the input length, i.e., NC1
C 6⊆ PSPACEW.

The second result above resolves the first part of Conjecture 1 stated in [6] over complex numbers and
exhibits a limitation of weak-space. The proof is based on the structural properties of the semi-algebraic
sets contained in PSPACEW and the result that any polynomial divisible by a degree-ω(1) elementary
symmetric polynomial cannot be sparse. The lower bound on the sparsity is proved via an argument
involving Newton polytopes of polynomials and bounds on number of vertices of these polytopes, which
might be of an independent interest.

1 Introduction

The theory of algebraic computation aims at classifying algebraic computational problems in
terms of their intrinsic algebraic complexity. Valiant [25] developed a non-uniform notion of
complexity for polynomial evaluations based on arithmetic circuits as a model of computa-
tion. Valiant’s work lead to intensive research efforts towards classifying polynomials based
on their complexity. (See [23] for a survey). Valiant’s model is non-uniform and it does not
allow comparison operation on the values computed. This lead to the seminal work by Blum,
Shub and Smale [3] where a real and complex number counterpart of Turning machines, now
known as BSS machines has been proposed.

Blum, Shub, Smale and Cucker [2] defined the complexity classes such as PR and NPR in
analogy to the classical complexity classes P and NP and proposed the conjecture: PR 6= NPR.
Several natural problems such as Hilbert’s Nullstellensatz, Feasibility of quadratic equations
are complete for the class NPR [2]. Further, there has been a significant amount of work on the
structural aspects of real computation with various restrictions placed on the computational
model. See [17] for a survey of these results.

One of the fundamental objectives of algebraic complexity theory is to obtain transfer
theorems, i.e., to translate separations of algebraic complexity classes to either the Boolean
world or other models of algebraic computation. Though establishing a relation between
the BSS model of computation and the classical Turing machine is a hard task, Fournier

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 87 (2017)

and Koiran [7] showed that proving super polynomial time lower bounds against the BSS
model would imply separation of classical complexity classes. Also, there has been a study
of algebraic circuits leading to the definition of parallel complexity classes NCR. In contrast
to the Boolean counterparts, Cucker [4] showed that there are sets in PR that cannot have
efficient parallel algorithms, i.e., PR 6= NCR.

One of the pre-requisites for transfer theorems would be a comparison with the complexity
classes in the Boolean world. One approach towards this is restricting the BSS machines over
Boolean inputs. A restriction of a real complexity class to Boolean inputs is called Boolean
part and is denoted using the prefix the prefix BP, e.g, BP(PR) denotes the class of all
languages over {0, 1}∗ that can be decided by polynomial time bounded BSS machines [2,
10]. Koiran [10] did an extensive study of Boolean parts of real complexity classes. Cucker
and Grigoriev [5] showed that BP(PR) ⊆ PSPACE/poly. Further, Allender et.al, [1] studied
computational tasks arising from numerical computation and showed that the task of testing
positivity of an integer represented as an arithmetic circuit is complete for the class BP(PR).

Though the notion of time complexity has been well understood in the real model of
computation, it turned out that, setting up a notion of space is difficult. Michaux [18] showed
that any computation over the real numbers in the BSS model can be done with only a
constant number of cells. This rules out the possibility of using the number of cells used in
the computation as a measure of space. Despite the fact that there has been study of parallel
complexity classes, a natural measure of space that leads to interesting space complexity
classes in analogy with the classical world is still missing.

Naurois [6] proposed the notion of weak-space for computation over real numbers in
the BSS model. This is motivated by the weak BSS model of computation proposed by
Koiran [12]. The notion of weak-space takes into account the number of bits needed to
represent the polynomials representing each cell of a configuration. (See Section 2 or [6] for
a formal definition.) Based on this notion of space Naruois [6] introduced weak-space classes
LOGSPACEW and PSPACEW as analogues of the classical space complexity classes DLOG
and PSPACE and showed that LOGSPACEW is contained in PW ∩ NC2

R, where PW is the
class of sets decidable in weak polynomial time [12]. The notion of weak-space enables space
bounded computations to have a finite number of configurations, and hence opening the
scope for possible analogy with the classical counterparts. However, [6] left several intriguing
questions open. Among them; a real analogue of NC1 versus DLOG, and an upper bound for
the Boolean parts of weak space classes.

In this paper, we continue the study of weak-space classes initiated by Naurois [6] and
investigate weak-space bounded division free computations where equality is the only test
operation allowed. In particular, we address some of the questions left open in [6].

Our Results: We begin with the study of Boolean parts of weak space complexity classes.
We show that the Boolean part of LOGSPACEW is contained in DLOG. (See Theorem 2.) Our
proof involves a careful adaptation of the constant elimination technique used by Koiran [11]
to weak space bounded computation.

We show that there is a set L ∈ NC1
F that cannot be accepted by any polynomial weak-

space bounded BSS machine, i.e., NC1
F 6⊂ PSPACEW (Theorem 3 and Corollary 1) where

2

F ∈ {C,R}. This resolves the first part of the Conjecture 1 in [6] where the computation is
division free and only equality tests are allowed. Also, this result is in stark contrast to the
Boolean case, where NC1 ⊆ DLOG.

Our Techniques: For the proof of Theorem 3, we consider the restriction Ln = L∩Fn for
a set L ∈ LOGSPACEW and obtain a characterization for the defining polynomials of Ln as
a semi-algebraic set in Fn. Then using properties of the Zarisky topology, we observe that if
Ln is an irreducible algebraic set, then the defining polynomial for Ln has small weak size.
With this, it suffices to obtain a set L ∈ NC1

F such that each slice Ln is a hyper-surface
such that any non-trivial hyper-surface containing it cannot have sparse polynomial as its
defining equations. We achieve this by considering the elementary symmetric polynomial of
degree n/2 as the defining equation for Ln. For every polynomial multiple of the elementary
symmetric polynomial, we prove a lower bound on its sparsity by appealing to the structure
of Newton polytopes of these polynomials. (See Theorem 4 for a precise statement.)

Related Results Koiran and Perfiel [14, 13] have studied the notion of polynomial space in
Valiant’s algebraic model and obtained transfer theorems over the real and complex num-
bers. Mahajan and Rao [16] obtained small space complexity classes in Valiant’s algebraic
model. To the best of our knowledge, apart from these, and the results by Michaux [18] and
Naurois [6], there have been no significant study of space complexity classes in the broad
area of algebraic complexity theory.

Organization of the paper In Section 2, we briefly review the BSS model of computation,
and provide all necessary but non-standard definitions used in the paper. In Section 3 we
look at the Boolean part of LOGSPACEW. Section 4 we prove the main theorem (Theorem 3)
of the paper. Section 5 proves Corollary 2 which is an important component in the proof of
Theorem 3.

2 Preliminaries

An overview of the BSS model of real computation

We give a brief description of a Blum-Shub-Smale (BSS) machine over F. For details, the
reader is referred to [3].

Definition 1. A Blum-Shub-Smale (BSS) machine M over F with parameters α1, . . . , αk ∈
F with k ≥ 0 and an admissible input Y ⊆ F∞ is a Random Access Machine with a countable
number of registers (or cells) each capable of a storing a value from F. The machine is
permitted to perform three kinds of operations:

Computation: Perform cl = ci op cj, where ci, cj and cl are either cells of M or among the
parameters and op ∈ {+,×,−} and move to the next state.

Branch (test): Perform the test c
?
= 0 for some cell c and move to the next state depending

on the result, i.e., branch as per the outcome of the test.
Copy: ci = cj, copy the value of the cell cj into ci. Here cj can also be one of the parameters
α1. . . . , αk of M .

3

It should be noted that in the definition of a real BSS machine the test instruction is usually
?

≥ 0 rather than equality. Throughout the paper, we restrict ourselves to BSS machines

where the test operation is
?
= 0. Also, in general, BSS machines allow the division operation,

however, we restrict to BSS machines where division is not allowed.
Notion of acceptance and rejection of an input, configurations and time complexity of

computation can be defined similar to the case of classical Turing Machines, see [2] for details.
For a BSS machine that halts on all admissible inputs, the set accepted by M is denoted

by L(M). For an input x ∈ Fn, the size of the input x is n.

Definition 2 (Complexity Class PF). [2] Let F be a field of real or complex numbers
then the complexity class PF is defined as the set of all languages L ⊆ F∞ such that, there
is a polynomial time BSS machine accepting L.

The classes NPF and EXPF are defined analogously.
A BSS machine M is said to be constant free if the number of parameters k = 0. The

restrictions of the above defined classes that are based on constant-free machine are denoted
with a superscript of 0, e.g., P0

F denotes the class of all sets in PF that are accepted by
polynomial time bounded constant-free BSS machines.

Arithmetic and Algebraic circuits An arithmetic circuit is an implicit representation
of a polynomial. It is a labelled directed acyclic graph where vertices have in-degree either
zero or two. Vertices of zero in-degree are called input gates and are labelled by elements in
F∪{x1, . . . , xn}. Vertices of in-degree two are called internal gates and have their labels from
{×,+}, and vertices of zero out-degree are called output gates. Every gate of an arithmetic
circuit computes a polynomial over F. The polynomial(s) computed by an arithmetic circuit
is the (set of) polynomial(s) computed at its output gate(s). Size of an arithmetic circuit is
the number of gates in it. Depth of an arithmetic circuit is the longest length of a path from
an input gate to an output gate in the circuit.

An algebraic circuit is an arithmetic circuit where in addition to the × and + gates a

test gate
?
= 0 is allowed. A test gate has a single input and outputs either 0 or 1 depending

on the outcome of the test. Size and depth of algebraic circuits are defined analogously. For
the purpose comparing with BSS complexity classes, we assume that algebraic circuits have

a single output gate which is a
?
= 0 gate. The following complexity classes are defined based

on algebraic circuits.

Definition 3. [2] Let F be a field of real or complex numbers then the complexity class NCiF
is defined as, the set of all languages L ⊆ F∗, for which there is an algebraic circuit family
(Cn)n≥0, size of Cn is polynomial in n and depth of Cn is O((log n)i) such that for all n ≥ 0
and x ∈ Fn, x is in L iff Cn(x) = 1.

Definition 4. [17] Let F be a field of real or complex numbers then the complexity class
PARF is defined as, the set of all languages L ⊆ F∗, for which there is an algebraic circuit
family (Cn)n≥0 such that depth of Cn is nO(1) and for all n ≥ 0 and x ∈ Fn, x is in L iff
Cn(x) = 1.

4

Note that in the definition of PARF above, size of the circuit is allowed to be exponential.
Further, we have assumed that the admissible input is F∗ in our definitions, though, in
general, an algebraic circuit need to output the correct decision only on admissible inputs.
Further, for comparison with BSS machine based classes, a suitable notion of uniformity is
required. For more details see [2].

Weak Time In order to be able to compare BSS complexity classes with classical Boolean
complexity classes, Koiran [12] introduced a weak notion of time in the BSS model, called
the weak BSS model. Intuitively, the weak BSS model takes the size of the integers being
represented in the cells of the BSS machine during the process of computation. In the weak
BSS model, an arithmetic operation x = y op z comes associated with a cost. Cost of an
operation is the maximum degree of the resulting polynomial representing x and maximum of
bit sizes of coefficients. (See [12] for more details.) Using this notion of cost, [12] defined the
weak variants of complexity classes. The corresponding classes are denoted with a subscript
w. See [12] for a detailed exposition.

Weak Space Following the notion of weak time defined by Koiran [12], Naurois [6], intro-
duced the notion of weak space for BSS machines. To begin with, we need a measure of weak
size of polynomials with integer coefficients. Let g ∈ Z[x1, . . . , xn] be a polynomial of degree
d. The binary encoding φ(m) corresponding to a monomial m = xα1

i1
xα2
i2
. . . xαkik is simply

concatenation of dlog ne bit binary encoding of index ij and dlog de bit binary encoding of
exponent αj for j ∈ [k], i.e.,

φ(m) = 〈i1〉〈α1〉 · 〈i2〉〈α2〉 . . . 〈ik〉〈αk〉

where 〈ij〉, 〈αj〉 denotes binary encoding of integers ij and αj respectively. Let g =
∑

m∈M gmm
where gm 6= 0 is the coefficient of monomial m in g and M = {m1,m2, . . . ,ms} be the set of
monomials of g with non-zero coefficients. Then the binary encoding of g is

φ(g) = b1〈gm1〉φ(m1) · b2〈gm2〉φ(m2) · · · . . . bs〈gms〉φ(ms)

where bi = 1 if gmi ≥ 0 else bi = 0 and 〈gmi〉 denotes dlogCe-bit binary encoding of gmi for
i ∈ [s] where C = maxi|gmi |. We denote length of encoding φ(g) by Sweak(g) and call it weak
size of polynomial g. It is easy to see that Sweak(g) ≤ s(n(dlog ne+ dlog de) + 1 + dlogCe).
Remark 1. Our definition above, there is a possibility that bit size φ(g) depends on the
labelling of the variables. For example, if g = xn−1xn, when φ(g) would require 2 log n + 1
bits, whereas, if we index xn−1 by number 1 and xn by 2, then φ(g) requires ar most 6 bits.
Due to this, Nauraois [6] in his definition allowed a cyclic shift of the indices of variables
in the binary encoding. It should be noted that this is useful only when the polynomial g
depends on a small set of variables. However, when we need the computation to depend on
all of the variables, the definition above is without loss of generality.

Definition 5. (Weak-space complexity) Let M be a BSS machine with parameters α1, α2.., αm ∈
F, and an input x = (x1, x2, . . . , xn). Let CM(x) denote the set of all configurations of M on x

5

reachable from the initial configuration. For a configuration c ∈ CM(x), let f
(c)
1 , f

(c)
2 , . . . , f

(c)
r

be the polynomial functions representing the non-empty cells in the configuration such that

f
(c)
i (x1, x2, . . . , xn) = g

(c)
i (x1, x2, . . . , xn, α1, α2, . . . , αm)

where g
(c)
i ∈ Z[x1, x2, . . . , xn, y1, y2, . . . , ym] for i ∈ [m]. Define the weak size of a configuration

c as Sweak(c) =
∑r

j=1 Sweak(g
(c)
j) Then the weak-space complexity of M is defined as

WSpaceM(n) = max
x∈Fn

max
c∈CM (x)

Sweak(c).

We say that a BSS machine M is said do be s weak-space bounded, if WSpaceM(n) ≤
s(n). The following concrete weak space classes have been defined in [6].

Definition 6 (Complexity class SPACEW(s)). For a non-decreasing space constructible
function s, SPACEW(s) is the set of all languages L ⊆ F∗, for which there is a BSS machine
M over F such that L(M) = L and WSpaceM(n) = O(s(n)).

Note that we have omitted the subscript F in the above definition, this is not an issue
since the field will always be clear from the context. The following inclusions are known
from [6].

Proposition 1 [6] LOGSPACEW ⊆ Pw ∩ NC2
R; and PSPACEW ⊂ PARR.

For definition of an algebraic variety and the Zariski topology, the reader is referred to [22].
The elementary symmetric polynomial of degree d is defined as:

symn,d(x1, . . . , xn) =
∑

S⊆[n],|S|=d

∏
i∈S

xi,

where [n] = {1, . . . , n}.

Convex Polytopes For the proof of our lowebound result in Section 5 we need to review
some basic concepts about convex polytopes. For a detailed exposition on convex polytopes,
see e.g. [9], [26].

A point set K ⊆ Rd is convex if for any two points x, y ∈ K, the point λx + (1− λ)y is
in K for any λ, 0 ≤ λ ≤ 1. The intersection of convex sets is convex. For any K ⊆ Rd, the
intersection of all convex sets containing K is called as convex-hull of K, conv(K) =

⋂
{T ⊆

Rd|K ⊆ T, T is convex}.
From the above definition and a simple inductive argument it follows that

Lemma 1. If K ⊆ Rd and x1, x2, . . . , xn ∈ K then
∑n

i=1 λixi ∈ conv(K) where λi ≥ 0 and∑n
i=1 λi = 1 and if K = {x1, . . . , xn} is a finite set of points then conv(K) = {

∑n
i=1 λixi|λi ≥

0 and
∑n

i=1 λi = 1}.

Definition 7. (Convex Polytope) A convex-hull of a finite set of points in Rd is called as
convex polytope.

6

Let P = conv({x1, . . . , xn}) ⊂ Rd be a convex polytope. Then the dimension of P (denoted
as dim(P)) is the dimension of the affine space {

∑
i λixi|λi ∈ R,

∑
i λi = 1}. Clearly if

P ⊂ Rd then dim(P) ≤ d.
We can equivalently think of convex polytopes as bounded sets which are intersections

of finitely many closed half spaces in some Rd. More precisely,

Theorem 1. (Chapter 1, [26]) P is convex-hull of finite set of points in Rd iff there exists
A ∈ Rm×d and z ∈ Rm such that the set {x ∈ Rd|Ax ≤ z} is bounded and P = {x ∈ Rd|Ax ≤
z}.

Definition 8. (Face of Polytope) Let P is a convex polytope in Rd. For a = (a1, a2, . . . , ad) ∈
Rd and b ∈ R we say the linear inequality 〈a, x〉 ≤ b (where 〈a, x〉 =

∑d
i=1 aixi) is valid for

P if every point x = (x1, . . . , xd) ∈ P satisfy it. A face of P is any set of points in Rd of
the form P ∩ {x ∈ Rd|〈a, x〉 = b} for some a ∈ Rd and b ∈ R such that 〈a, x〉 ≤ b is a valid
linear inequality for P .

From the above definition and theorem 1 it is clear that every face of a convex polytope is
also a convex polytope. So we can use notion of dimension of convex polytope to talk about
dimension of a face of a convex polytope. The faces of dimension 0 are called as the vertices
of the polytope. Following proposition gives useful criteria for a point v ∈ P to be a vertex
of P . For the proof of following standard propositions refer to Chapter 1,2 of [26].

Proposition 2 For a convex polytope P , a point v ∈ P is vertex of P iff for any n ≥ 1,
and any x1, . . . , xn ∈ P , v 6=

∑n
i=1 λixi for 0 ≤ λi < 1,

∑
i λi = 1

Proposition 3 Every convex polytope P is convex-hull of set of its vertices, P = conv(ver(P))
and if P = conv(S) for finite S then ver(P) ⊆ S, where ver(P) denotes the set of vertices
of a polytope P .

3 Boolean parts of weak space classes

Though the BSS model is intended to capture the intrinsic complexity of computations over
real and complex numbers, it is natural to study the power of such computations restricted
to the Boolean input. The Boolean parts of real/complex complexity classes have been well
studied in the literature [1]. We consider Boolean parts of the weak- space classes introduced
by Naurois [6]

Definition 9. Let C be a complexity class in the BSS model of computation, then the
Boolean part of C denoted by BP(C) is the set BP(C) = {L ∩ {0, 1}∗ | L ∈ C}

We observe that the Boolean part of LOGSPACEW is contained in DLOG, i.e. the class of
languages accepted deterministic logarithmic space bounded Turing Machines.

Theorem 2. For F ∈ {C,R}, BP(LOGSPACEW) ⊆ DLOG.

7

Proof. Let L ∈ LOGSPACEW and M be a BSS machine over F with WSpaceM(n) = s(n) =
c log n for some c > 0 and such that ∀x ∈ F∗, x ∈ L ⇐⇒ M accepts x. Our proof is a careful
analysis of the constant elimination procedure developed by Koiran [11]. The argument is
divided into three cases:
Case 1: Suppose that M does not use any constants from F. Let x1, . . . , xn ∈ {0, 1} be an
input. Construct a Turing Machine M ′ that on input x1, . . . , xn ∈ {0, 1} simulates M as
follows. M ′ stores content of each cell of M explicitly as a polynomial. For each step of M :

1. If the step is an arithmetic operation, then M ′ explicitly computes the resulting polyno-
mial and stores it in the target cell and proceeds.

2. If the step is a comparison operation, then M ′ evaluates the corresponding polynomial
corresponding and proceeds to the next step of M .

Since the total number of bits required to store all of the polynomials in any given configura-
tion is bounded by c log n and the arithmetic operations on log-bit representable polynomials
can be done in deterministic log-space, it is not difficult to see that the resulting Turing Ma-
chine M is log-space bounded.
Case 2: M uses algebraic constants. Suppose β1, . . . , βk ∈ F are the algebraic constants used
in M . We begin with the special case when k = 1. Let p1(x) be the minimal polynomial of
β1 with coefficients in Z. Let d be the degree of p1. We show that Koiran’s [11] technique
for elimination of algebraic constants can indeed be implemented in weak log-space. We
view the content of each cell of M on a given input x1, . . . , xn ∈ {0, 1} as a polynomial in
x1, . . . , xn and a new variable y1. For any polynomial q(x1, . . . , xn, y1) with integer coeffi-
cients, q(x1, . . . , xn, β1) = 0 if and only if q(x1, . . . , xn, y1) = 0 mod p1. Consider the Turing
machine M ′ that simulates M as follows. M ′ stores contents of each cell of M as polynomial
p(x1, . . . , xn, y1) mod p1. Note that every such polynomial has degree d in the variable y1.
For each step of the machine M , the new Turing machine M ′ does the following:

1. If the step is an arithmetic (add or multiply) operation, then perform the same arithmetic
operation on the corresponding polynomials modulo p1 and store the resulting polynomial
in the polynomial corresponding to the cell where result was designated to be stored in
M .

2. If the step is an
?
= 0 test, then evaluate the polynomial corresponding to the cell whose

value is to be tested at the given input x1, . . . , xn ∈ {0, 1} modulo p1. If the result is zero
treat the test as affirmative, else in the negative.

We analyse the space of M ′ on a given input x1, . . . , xn ∈ {0, 1}. Consider a cell c of M .
Let gc = gc(x1, . . . , xn, y1) be the polynomial representing the value stored at cell c at a
fixed point of time in the computation. Note that degree of y1 in gc at most d− 1. Suppose
gc = f0+f1y1+f2y

2
1 +· · ·+fd−1yd−11 mod p1. We have Sweak(fi) ≤ Sweak(gc) for 0 ≤ i ≤ d−1.

The overall weak space requirement of M ′ is bounded by d·WSpaceM(n) = ds(n) = O(log n).
For the case when k > 1, Let G = Q(β1, . . . , βk) be the extension field of Q obtained by

adding β1, . . . , βk. Clearly G is a finite extension of Q. By the primitive element theorem [19],
there is a β ∈ F such that Q(β) = G. Let p be the minimal polynomial for β of degree σ

8

with coefficients from Q. Let p1(y), . . . , pk(y) be univariate polynomials of minimum degree
such that pi(β) = βi, and let ∆ be the maximum of degrees of pis.

Consider an input x1, . . . , xn ∈ {0, 1} and a cell c ofM . Suppose gc = gc(x1, . . . , xn, y1, y2, . . . , yk)
is the polynomial representing the value stored at the cell c at any fixed point of time in the

computation. Let d be the degree of gc and gc =
∑

δ∈Nk fδ
∏k

j=1 y
δj
j , where fδ is a polynomial

of degree at most d−
∑

i δi in x1, . . . , xn. Let

g′c = gc(x1, . . . , xn, p1(y), . . . , pk(y)) =
∑
δ∈Nk

fδ

k∏
j=1

pj(y)δj =

d∑
i=0

g′i(x1, . . . , xn)yi.

Note that, Sweak(gc) =
∑
δ∈Nk

Sweak(fδ)(
∑
i

log δi). (1)

We first bound Sweak(g′c mod p). For δ ∈ Nk with
∑

i δi ≤ d, let qδ =
∏k

j=1 pi(y)δi . qδ is
a polynomial of degree at most d∆. Then g′i =

∑
δ:coeffqδ (y

i) 6=0 fδ, thus the number of bits

required to store g′i is bounded by
∑

δ:coeffqδ (y
i)6=0 Sweak(fδ). Since qδ is of degree at most d∆

and hence Sweak(g′i) can be dependent on d. However, qδ mod p is a polynomial of degree at
most σ − 1 and hence any given fδ will be a summand for at most σ many g′is. Therefore,
Sweak(g′c mod p) is at most σ · Sweak(gc).

To conclude the argument for Case 2, we describe the simulation of the machine M ′: M ′

simulates M as in the case when k = 1 by storing the polynomials g′c mod p explicitly, i.e.,
it stores the polynomials g′i mod p. The number of bits required to store g′c is bounded by
Sweak(g′c) which in turn is bounded by (σ+ 1)Sweak(gc). Now the simulation is done as in the
case k = 1.
Case 3: M uses transcendental constants. Let γ be a transcendental number. Then for
any polynomial p with integer coefficients, we have p(γ) 6= 0. Thus, for any cell c of M
and for any x1, . . . , xn ∈ {0, 1}, gc(x1, . . . , xn, γ) = 0 if and only if gc(x1, . . . , xn, y) ≡ 0.
The simulation of M by M ′ can be done the same fashion as in Case 2, except that the
polynomials gc are stored as they are. Suppose gc(x1, . . . , xn, y) =

∑d
i=0 fiy

i, then Sweak(gc) =∑
i Sweak(fi) log i, there fore the space required to store gc by storing fi’s explicitly is bounded

by Sweak(gc), M
′ requires space at most O(s(n)) = O(log n). Now, consider the case when M

uses more than one transcendental constants, and let γ1, . . . , γk be the constants used by M
that are transcendental. Suppose t ≤ k is such that γi is transcendental in Q(γ1) · · · (γi−1)
(where Q(γ1) is the field extension of Q that contains γ1) for i ≤ t and γj is algebraic
over G = ((Q(γ1)) · · ·)(γt) for j ≥ t + 1. By the primitive element theorem, let γ be such
that G(γ) = G(γt+1, . . . , γk). Let pi(y) be a polynomial over G of minimal degree such that
γi = pi(γ) for t + 1 ≤ i ≤ k. Now the simulation of M by M ′ can be done as in Case
2, however, the only difference is polynomials pi can have rational functions over γ1, . . . , γt
as coefficients. However, any coefficient of pi can be written as an evaluation of fraction
of polynomials of constant degree over t variables, hence contributing a constant factor in
the overall space requirement. Thus, for any cell c of M at any point of computation on a
given input x1, . . . , xn ∈ {0, 1} can be represented as a polynomial gc(x1, . . . , xn, y) mod p
over G. By the observations in Case 2, and the fact that any fixed element in G can be
represented in constant space, the overall space required by M ′ to simulate M is bounded
by O(Γ · s(n)) = O(log(n)) where Γ is a constant that depends on k , the maximum degree

9

of the polynomials pt+1, . . . , pk and the number bits required to represent the coefficients of
these polynomials as rational functions over Q in γ1, . . . , γt. ut

However, we are unable to show the converse of the above theorem, i.e., the question DLOG ⊆
LOGSPACEW? remains open. The main difficulty is, we can easily construct deterministic
log-space bounded machines that evaluate non-sparse polynomials such as the elementary
symmetric polynomials over a Boolean input.

4 Weak space lower bounds

In this section we exhibit languages in F∗ that are not in LOGSPACEW. We begin with a simple
structural observations on the languages in SPACEW(s) for any non-decreasing function s.

Lemma 2. Let L ∈ SPACEW(s), then for every n > 0, there exist t ≥ 1 and polynomials
fi,j, 1 ≤ i ≤ t, 1 ≤ j ≤ mi, gi,j and 1 ≤ i ≤ t, 1 ≤ j ≤ mi in Z[x1, . . . , xn] such that:

1. Sweak(fi,j) ≤ s(n), for every 1 ≤ i ≤ t1, 1 ≤ j ≤ mi; and
2. Sweak(gi,j) ≤ s(n), for every 1 ≤ i ≤ t2, 1 ≤ j ≤ mi; and
3. L ∩ Fn =

⋃t
i=1

⋂mi
j=1[fi,j = 0] ∩

⋂
j = 1mi [gi,j 6= 0].

Proof. Let L ∈ SPACEW(s), and M be an s weak space bounded BSS machine accepting
L. On any input x ∈ Fn, let T be the computation tree of M on an input of length n,
where the branches represent the possibilities after each test. Note that every node t in T

corresponds to a test f
?
= 0, and the polynomial f depends only on the path from root of

the tree to t and not on the actual input. Then any leaf ` in T represents a set of the form⋂m
j=1[fj = 0] ∩

⋂
j = 1m[gj 6= 0] for some m and f1, . . . , fm, g1, . . . , gm that depend only

on n and `. Since the f ′is and g′is are polynomials computed by the machine, they satisfy
the required space bound. Taking union of the sets of inputs corresponding to all accepting
leaves of T proves the required result.

Definition 10. For n ≥ 0, d ≤ n, let

Sn,d
def
= {(a1, . . . , an) ∈ Fn | symn,d(a1, . . . , an) = 0}

i.e., the hyper surface defined by the n-variate elementary symmetric polynomial of degree d.

For d = d(n) ≤ n define the language: L(d) def
=
⋃
n≥0 Sn,d(n).

Theorem 3. For any constant c > 0 L(n/2) /∈ SPACEW(nc).

Proof. We argue for the case F = C. An exactly similar argument is applicable to the case
when F = R. For any c > 0 consider an arbitrary language L′ ∈ SPACEW(nc). Then, for
every n ≥ 1, there are n-variate polynomials fi,j, 1 ≤ i ≤ t, 1 ≤ j ≤ mi, gi,j, 1 ≤ i ≤ t,
1 ≤ j ≤ mi in Z[x1, . . . , xn] as promised by Lemma 2. Let

Vi
def
=

mi⋂
j=1

[fi,j = 0]; Wi
def
=

mi⋂
j=1

[gi,j 6= 0]; and Ti
def
= Vi ∩Wi.

10

Then we have L′∩Cn =
⋃t
i=1 Ti. We argue that for large enough n,

⋃t
i=1 Ti 6= Sn,n/2 and hence

conclude L′ 6= L(n/2). Let T̂i denote the Zariski closure of the set Ti in Cn, i.e, the smallest
algebraic variety containing Ti. Proof is by contradiction. Suppose that

⋃t
i=1 Ti = Sn,n/2. As

Sn,n/2 is a closed set in the Zariski topology over Cn, we have Ti ⊆ T̂i ⊆ Sn,n/2 and hence⋃t
i=1 T̂i = Sn,n/2. Then, there should be an i such that T̂i = Sn,n/2, for, Sn,n/2 is an irreducible

algebraic variety. Now there are two cases:
Case 1: Vi = Cn. In this case, Ti = Wi i.e., an open set in the Zariski topology. Since
Cn is dense in the Zariski topology, closure of any open set is in fact Cn itself. Therefore,
T̂i = Cn 6= Sn,n/2, hence a contradiction.

Case 2: Vi 6= Cn. Then we have Ti = Vi∩Wi ⊆ Vi, therefore Sn,n/2 = T̂i ⊆ Vi =
⋂mi
j=1[fij = 0].

It is enough to argue that Sn,n/2 is not contained in any of the varieties [fi,j = 0]. Suppose
Sn,n/2 ⊆ [fi,j = 0] for some 1 ≤ j ≤ mi. Since symn,n/2 is an irreducible polynomial, we have

symn,n/2|fi,j. By Corollary 2, the number of monomials in fi,j is nω(1) . However, by Lemma 2,
the number of monomials in fij is at most O(nc), obtaining a contradiction for large enough
n. Thus Sn,n/2 6⊆ [fi,j = 0] for any 1 ≤ j ≤ mi which in turn implies Sn,n/2 6⊆ Vi and hence

Sn,n/2 6⊆ T̂i. Thus in both of the cases above we obtain a contradiction, as a result we have

Sn,n/2 6=
⋃t
i=1 Ti. Thus L′ 6= L(n/2) as required.

As an immediate corollary we have:

Corollary 1. NC1
F 6⊆ PSPACEW

Proof. It is known that symn,d is computable by polynomial size arithmetic circuits of loga-

rithmic depth [24] and hence L(d) ∈ NC1
F. The result follows.

Now, to complete the proof of Theorem 3, we need to prove Corollary 2. This is done in the
next section using the properties of Newton’s polytope of elementary symmetric polynomials.

5 Polynomials divisible by elementary symmetric polynomials

Let g be a polynomial in F[x1, . . . , xn]. In this section we prove that, for any polynomial f
which is a polynomial multiple of g, the number of monomials of f are lower bounded by
number of vertices of Newton polytope of g. As an implication we get an exponential lower
bound on number of monomials of any polynomial multiple of symn,d. The key step in the
proof is a simple Lemma which lower bounds number of vertices of convex polytope R in
terms of number of vertices of convex polytopes P and Q when R is Minkowski sum of P
and Q. We begin with definition of Minkowski sum.

Definition 11 (Minkowski sum). For A,B ⊆ Rd, Minkowski sum of A and B (denoted
by A⊕B) is defined as A⊕B = {a+ b|a ∈ A, b ∈ B}.

Minkowski sums of convex sets have been extensively studied in mathematics literature,
and has interesting applications in complexity theory, see for example [21, 8, 15]. The next
proposition shows that the Minkowski sum of two convex polytopes is a convex polytope and

11

every vertex of resulting polytope can be uniquely expressed as sum of vertices of the two
polytopes. In fact, a more general statement about unique decomposition of a face (of any
dimension) of Minkowski sum of convex polytopes into faces of individual polytopes holds
true, see for example [9], [21].

Proposition 4 If P,Q ⊆ Rd are convex polytopes then the Minkowski sum of P and Q
is a convex polytope P ⊕ Q = conv({p + q|p ∈ ver(P), q ∈ ver(Q)}) and for every vertex
r ∈ ver(P⊕Q) there exist unique p ∈ P, q ∈ Q such that r = p+q, moreover p ∈ ver(P), q ∈
ver(Q).

Proof. Let ver(P) = {p1, . . . , pm} and ver(Q) = {q1, . . . , qn}. First we prove R = conv({p+
q|p ∈ ver(P), q ∈ ver(Q)}) ⊆ P ⊕Q. Let v ∈ R. So v can be written as convex combination
of points pi + qj for i ∈ [m], j ∈ [n].

v =
∑
`

λ`(pi` + qj`) for 0 ≤ λ` ≤ 1,
∑
`

λ` = 1

where pi` ∈ ver(P) and qj` ∈ ver(Q). So for vp =
∑

` λ`pi` and vq =
∑

` λ`qj` , v = vp + vq,
where vp ∈ P and vq ∈ Q. Which imply v ∈ P ⊕Q.

To see the other inclusion, consider point vp + vq ∈ P ⊕ Q for vp =
∑

` λ`p`, 0 ≤ λ` ≤
1,
∑

` λ` = 1 and vq =
∑

` λ`q`, 0 ≤ λ′` ≤ 1,
∑

` λ
′
` = 1. To prove that v ∈ R we need to

express v as a convex combination of points (pi + qj)’s. Consider the following sum

m∑
i=1

n∑
j=1

λiλ
′
j(pi + qj) =

m∑
i=1

(λipi

n∑
j=1

λ′j + λi

q∑
j=1

λ′jqj)

=
m∑
i=1

(λipi + λivq)

= vp + vq

So clearly v = vp + vq ∈ R = conv({p+ q|p ∈ ver(P), q ∈ ver(Q)}).
Now we will argue that if vertex v ∈ ver(P ⊕ Q) is expressed as v = vp + vq for vp ∈ P

and vq ∈ Q then vp and vq must be vertices of P and Q respectively. Let v = vp + vq for
vp ∈ P and vq ∈ Q and with out loss of generality assume that vp is not a vertex of P . So
from Proposition 2 vp can be expressed as non-trivial convex combination of ver(P)

v =
m∑
`=1

λ`p`, 0 ≤ λ` < 1,
∑
`

λl = 1

Let vq =
∑n

`=1 λ
′
`q`, 0 ≤ λ′` ≤ 1,

∑
` λ
′
l = 1. As λ` < 1 for ` ∈ [m] and λ′` ≤ 1 for ` ∈ [n],

we get 0 ≤ λiλ
′
j < 1 for i ∈ [m], j ∈ [n]. we have,

v = vp + vq =
m∑
i=1

n∑
j=1

λiλ
′
j(pi + qj)

12

where 0 ≤ λiλ
′
j < 1 and

∑
i,j λiλ

′
j = 1. So we can express v ∈ ver(P ⊕Q) as non-trivial

convex combination of ver(P⊕Q), a contradiction to Proposition 2. This shows that if vertex
v ∈ ver(P ⊕ Q) is expressed as v = vp + vq for vp ∈ P and vq ∈ Q then vp and vq must be
vertices of P and Q respectively.

Now we will prove the uniqueness. Suppose vertex v ∈ ver(P⊕Q) can be expressed as sum
of vertices of P and Q in two different ways, v = vp+vq = vp′ +vq′ for v ∈ ver(P⊕Q), vp, vp′ ∈
ver(P), vq, vq′ ∈ ver(Q) and without loss of generality assume that vp 6= vp′ . We have

v =
1

2
(vp + vp′) +

1

2
(vq + vq′).

By Proposition 2 1
2
(vp + vp′) 6∈ ver(P). This is a contradiction as we have already proved

above that for a vertex v ∈ ver(P ⊕Q) if v = u+ w for u ∈ P,w ∈ Q then u ∈ ver(P) and
w ∈ ver(Q).

ut

Lemma 3. For convex polytopes P,Q ⊆ Rd,

|ver(P ⊕Q)| ≥ max(|ver(P)|, |ver(Q)|).

Proof. Let ver(P) = {p1, p2, . . . , pm}, ver(Q) = {q1, q2, . . . , qn} and m ≥ n. To the contrary
assume that |ver(P ⊕ Q)| < m and let R = P ⊕ Q and ver(R) = {r1, r2, . . . , rt}, where
t < m. From Proposition 4, for ` ∈ [t] every vertex r` ∈ ver(R) can be uniquely expressed
as r` = pi` + qj` where pi` ∈ ver(P) and qj` ∈ ver(Q). But as t = |ver(R)| < m = |ver(P)|,
there must be a vertex p′ ∈ ver(P) which plays no role in determining any vertex of P ⊕Q,
that is, every r` ∈ ver(P ⊕ Q) can be expressed as r` = pi` + qj` where pi` ∈ ver(P) \ {p′}
and qj` ∈ ver(Q). Without loss of generality assume that p′ = p1. Since p1 is a vertex of P ,
there exist a valid linear inequality 〈v, p1〉 ≤ k,k ∈ R, v ∈ Rd such that 〈v, p1〉 = k and for
any x ∈ P \ {p1}, 〈v, x〉 < k. Let q ∈ Q such that 〈v, y〉 ≤ 〈v, q〉 = k′, k′ ∈ R for any y ∈ Q.
Let z = p1 + q ∈ P ⊕Q.

From Proposition 3 we know that R = P⊕Q = conv(ver(P⊕Q)). So the point z ∈ P⊕Q
can be expressed as z =

∑t
`=1 λ`(pi` + qj`) where λ` ≥ 0,

∑
` λ` = 1 where pi` ∈ ver(P) \

{p1} and qj` ∈ ver(Q). Let zP =
∑t

`=1 λ`pi` ∈ P and zQ =
∑t

`=1 λ`qj` ∈ Q. So we get
z = zP + zQ = p1 + q. First we argue that p1 6= zP . Assume p1 = zP =

∑t
`=1 λ`pi` , where

pi` ∈ ver(P) \ {p1}. Clearly if λ` = 1 for some ` ∈ [t] then λi = 0 for i ∈ [t] \ {`} and we
get p1 = pi` but that is not possible as pi` ∈ ver(P) \ {p1}. So we can express a vertex p1 of
P as a nontrivial convex combination of pi1 , pi2 , . . . pit ∈ ver(P) \ {p1}. A contradiction to
Proposition 2. So p1 6= zP .

We know that 〈v, p1〉 = k and for any x ∈ P \ {p1},〈v, p1〉 < k. In particular, 〈v, zP 〉 < k.
Also, by choice of q we have 〈v, y〉 ≤ 〈v, q〉 for y ∈ Q. As a result we get 〈v, zP 〉 + 〈v, zQ〉 <
〈v, p1〉+ 〈v, q〉. A contradiction, since z = zP + zQ = p1 + q.

Now we recall the notion of Newton’s polytope of polynomial in F[x1, . . . , xn]. Let f
be a polynomial in F[x1, . . . , xn]. Let f(α1,α2,...,αn) denote the coefficient of the monomial
xα1
1 x

α2
2 . . . xαnn in f ,

f =
∑

f(α1,α2,...,αn)x
α1
1 x

α2
2 . . . xαnn .

13

A vector (α1, α2, . . . , αn) ∈ Rn is called as an exponent vector of the monomial xα1
1 x

α2
2 . . . xαnn

of f . The Newtone polytope of f is defined as the convex-hull of set of exponent vectors
(α1, α2, . . . , αn) in Rn for which f(α1,α2,...,αn) 6= 0. The Newton polytope of f is denoted by
Pf .

For a polynomial f , let mon(f) denote the set of monomials with non-zero coefficient in
f . Following Lemma is from [8]. As per [8] a more general version of Lemma 4 appears in
[20]. We include the proof of Lemma 4 in the Appendix.

Lemma 4. ([20]) Let f, g, h ∈ F[x1, . . . , xn] with f = gh then Pf = Pg ⊕ Ph.

Proof. First we will prove the inclusion Pf ⊆ Pg ⊕ Ph. Let γ = (γ1, . . . , γn) ∈ ver(Pf).
So the monomial m = xγ11 x

γ2
2 . . . xγnn ∈ mon(f). Since, f = gh, there exists monomials

m1 = xα1
1 x

α2
2 . . . xαnn ∈ mon(g) and m2 = xβ11 x

β2
2 . . . xβnn ∈ mon(h) such that m = m1m2. So

clearly, for α = (α1, . . . , αn) and β = (β1, . . . , βn) we have α ∈ Pg, β ∈ Ph and γ = α+β. That
implies γ ∈ Pg⊕Ph. So every vertex of Pf is in Pg⊕Ph. By Proposition 3, Pf = conv(ver(Pf)).
By definition of convex-hull and Lemma 1 it clearly implies Pf ⊆ Pg ⊕ Ph.

Now we prove that Pg ⊕ Ph ⊆ Pf . It is enough to prove that ver(Pg ⊕ Ph) ⊆ Pf , as the
desired inclusion will then follow from Proposition 3 and Lemma 1. Let vf = (e1, . . . , en) ∈
ver(Pf). By Proposition 4, there exist unique vg ∈ ver(Pg) and vh ∈ ver(Ph) such that
vf = vg + vh. So there exist unique monomials m1 ∈ mon(g) and m2 ∈ mon(h) such that
xe11 x

e2
2 . . . xenn = m1m2. Since the monomial xe11 x

e2
2 . . . xenn can be uniquely generated as a

product of monomial from g and h, it can not be cancelled off and will be present in mon(f).
As a result vf ∈ Pf . This completes the proof. ut

The Proof of Theorem 4 below follows immediately from Lemma 3, 4.

Theorem 4. Let f, g, h be nonzero polynomials in F[x1, . . . , xn] with f = gh then |mon(f)| ≥
max(|ver(Pg)|, |ver(Ph)|).

Corollary 2. For any nonzero polynomial g ∈ F[x1, . . . , xn] let f = g·symn,n
2

then |mon(f)| ∈
2Ω(n).

Proof. For a subset S ⊆ [n] of size k, let vS be the exponent vector corresponding to the
monomial Πj∈Sxj ∈ mon(symn,k), i.e. vS(j) = 1 for j ∈ S and vS(j) = 0 otherwise. We
will argue that every vector vS for S ⊆ [n], |S| = k is a vertex of the Newton polytope
of symn,k. Suppose vS is not a vertex for some S ⊆ [n]. So by Proposition 2 vS can be
expressed as non-trivial convex combination of exponent vectors, vS =

∑
T⊂[n],|T |=k λTvT

where 0 ≤ λT < 1,
∑

T λT = 1. Consider any U such that λU > 0 and let i ∈ U \ S. Since
λT ≥ 0, clearly vS(i) =

∑
T⊂[n],|T |=k λTvT (i) ≥ λUvU(i) > 0. A contradiction, as by choice

of i, vS(i) = 0. So every vector vS for S ⊆ [n], |S| = k is a vertex of Newton polytope of
symn,k. So |ver(Ph)| =

(
n
n
2

)
∈ 2Ω(n) for h = symn,n

2
. The desired result follows from Theorem

4.

14

6 Conclusions and Future directions

Our study reveals that obtaining a good notion of space for the BSS model of algebraic com-
putation still remains a challenging task. We showed that the Boolean part of LOGSPACEw
is contained in DLOG, however the converse containment is unlikely and it remains open to
show that DLOG 6⊂ LOGSPACEw.

Acknowledgements We thank the anonymous reviewers for an earlier version of the paper
for suggestions that helped to improve the presentation of proofs.

References

1. Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity of
numerical analysis. SIAM J. Comput., 38(5):1987–2006, January 2009.

2. Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real Computation. Springer, 1997.
3. Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions and universal machines. Bulletin (New Series) of the American Mathemat-
ical Society, 21(1):1–46, 1989.

4. Felipe Cucker. Pr != NCr. J. Complexity, 8(3):230–238, 1992.
5. Felipe Cucker and Dima Grigoriev. On the power of real turing machines over binary inputs. SIAM Journal on

Computing, 26(1):243–254, 1997.
6. Paulin Jacobé de Naurois. A Measure of Space for Computing over the Reals. In CiE, pages 231–240, 2006.
7. Hervé Fournier and Pascal Koiran. Are lower bounds easier over the reals? In Proceedings of the Thirtieth Annual

ACM Symposium on Theory of Computing, STOC ’98, pages 507–513, New York, NY, USA, 1998. ACM.
8. Shuhong Gao. Absolute irreducibility of polynomials via newton polytopes. Journal of Algebra, 237(1):501–520,

1997.
9. B. Gruenbaum. Convex Polytopes. Interscience Publisher, 1967.

10. Pascal Koiran. Computing over the reals with addition and order. Theoretical Computer Science, 133(1):35–47,
1994.

11. Pascal Koiran. Elimination of constants from machines over algebraically closed fields. J. Complexity, 13(1):65–
82, 1997.

12. Pascal Koiran. A weak version of the blum, shub, and smale model. J. Comput. Syst. Sci., 54(1):177–189, 1997.
13. Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the complex field. Theor. Comput.

Sci., 410(50):5244–5251, 2009.
14. Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the reals. Computational Complexity,

18(4):551–575, 2009.
15. Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. A $$\tau $$ τ -conjecture for newton

polygons. Foundations of Computational Mathematics, 15(1):185–197, 2015.
16. Meena Mahajan and B. V. Raghavendra Rao. Small space analogues of valiant’s classes and the limitations of

skew formulas. Computational Complexity, 22(1):1–38, 2013.
17. Klaus Meer and Christian Michaux. A survey on real structural complexity theory. Bull. Belg. Math. Soc. Simon

Stevin, 4(1):113–148, 1997.
18. Christian Michaux. Une remarque à propos des machines sur R introduites par Blum, Shub et Smale. Comptes

Rendus de l’Académie des Sciences de Paris, 309(7):435–437, 1989.
19. P. Morandi. Field and Galois Theory. Graduate Texts in Mathematics. Springer, 1996.
20. Alexander Markowich Ostrowski. On multiplication and factorization of polynomials, i. lexicographic ordering

and extreme aggregates of terms. Aequations Math, 13:201–228, 1975.
21. R. Schneider. Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, 1993.
22. Igor R Shafarevich. Basic algebraic geometry; 3rd ed. Springer, Berlin, 2013.
23. Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Founda-

tions and Trends R© in Theoretical Computer Science, 5(3–4):207–388, 2010.
24. Iddo Tzamaret. Studies in Algebraic and Propositional Proof Complexity. PhD thesis, Tel Aviv University, 2008.
25. Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.
26. G. M Ziegler. Lectures on Polytopes. Sprnger verlag, 1995.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

