
K-Monotonicity is Not Testable on the Hypercube

Elena Grigorescu∗ Akash Kumar† Karl Wimmer‡

May 10, 2017

Abstract

We continue the study of k-monotone Boolean functions in the property testing model,
initiated by Canonne et al. (ITCS 2017). A function f : {0, 1}n → {0, 1} is said to be k-
monotone if it alternates between 0 and 1 at most k times on every ascending chain. Such
functions represent a natural generalization of (1-)monotone functions, and have been recently
studied in circuit complexity, PAC learning, and cryptography.

In property testing, the fact that 1-monotonicity can be locally tested with polyn queries led
to a previous conjecture that k-monotonicity can be tested with poly(nk) queries. In this work
we disprove the conjecture, and show that even 2-monotonicity requires an exponential in

√
n

number of queries. Furthermore, even the apparently easier task of distinguishing 2-monotone
functions from functions that are far from being n.01-monotone also requires an exponential
number of queries.

Our results follow from constructions of families that are hard for a canonical tester that
picks a random chain and queries all points on it. Our techniques rely on a simple property of
the violation graph and on probabilistic arguments necessary to understand chain tests.

∗Purdue University. Email: elena-g@purdue.edu. Research supported in part by NSF CCF-1649515.
†Purdue University. Email: akumar@purdue.edu. Research supported in part by NSF CCF-1649515 and NSF

CCF-1618918.
‡Duquesne University. Email: wimmerk@duq.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 88 (2017)

mailto:elena-g@purdue.edu
mailto:akumar@purdue.edu
mailto:wimmerk@duq.edu

1 Introduction
The model of property testing [BLR93, RS96, GGR98] studies the complexity of deciding if a large
object satisfies a property, or is far from satisfying the property, when the algorithm has only partial
access to its input, via queries. One of the most compelling feature of the model is that this notion of
approximation yields surprisingly fast algorithms for many natural properties. For instance, testing
if a sequence of n bits is sorted can be performed with a number of queries that is independent of
n, and hence constant. Testing sortedness of functions over more general posets than lines (a.k.a.,
testing monotonicity) has drawn interest for almost two decades [GGL+00, DGL+99, EKK+00,
FLN+02, AC06, BCGM12, FR10, CS13b, CS13a, CS14, CST14, CDST15, KMS15, BB16, CWX17],
especially due to the naturalness of the property, as well as its evasiveness to tight analysis.

Analyzing monotonicity over the hypercube {0, 1}n domain, in particular, has proven itself
a source of beautiful techniques in the quest for understanding its testing complexity. Indeed,
while we have known ever since the initial work of [GGL+00] that an O(n)-query tester exists,
and that one must make Ω(

√
n) queries [FLN+02], only a recent sequence of works establishes a

tight Õ(
√
n) upper bound [CS13b, KMS15]. This closure has however ignited further interest in

extending the techniques developed so far beyond monotonicity, to generalizations such as unateness
[KS16, CS16b], and k-monotonicity [CGG+17].

In this work we continue the study of k-monotonicity over the hypercube domain. A function
f : {0, 1}n → {0, 1} is k-monotone if there do not exist x1 ≺ x2 ≺ . . . ≺ xk+1 in {0, 1}n, such that
f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. Indeed, 1-monotone functions are exactly those ones
that are monotone.

The notion of k-monotonicity has been studied ever since the 50’s in the context of circuit lower
bounds [Mar57]. Indeed, k-monotone functions correspond to functions computable by Boolean
circuits with log k negation gates, and in particular monotone functions correspond to circuits with
no negation gates. In proving lower bounds for circuits with few negation gates, it has been apparent
that the presence of even one negation gate leads either to failure of the common analysis techniques,
or to failure of the expected results, as remarked by Jukna [Juk12].

Interest in k-monotonicity has been recently rekindled from multiple angles, including PAC
learning, circuit complexity, cryptography and Fourier analysis [Ros15, GMOR15, GK15, LZ16].
From all these angles, k-monotone functions can be viewed as a gradual interpolation between
the class of very structured monotone functions, and general Boolean functions. Following this
observation, on the property testing front [CGG+17] conjecture that their lower bounds of Ω(n/k2)k/4
queries should in fact be achievable up to a polynomial blowup, and pose this as the most important
follow-up direction.

To build some intuition, observe that in order to test k-monotonicity with one-sided error, a
test should only reject if it finds a violation in the form of a sequence x1 ≺ x2 ≺ . . . ≺ xk+1 in
{0, 1}n, such that f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. Hence, a canonical candidate tester
suggested in [CGG+17] queries all points along a random chain 0n = x1 ≺ x2 ≺ . . . ≺ xn+1 = 1n
and rejects only if it finds a violation. We call such a tester the chain tester. The chain tester is
indeed implied by all previous tests for monotonicity [GGL+00, CS13b, CST14, KMS15], incurring
only a small polynomial blow-up in the query complexity.

However, despite the strong analogy with monotonicity that allows some common analysis
techniques to extend to k-monotonicity, the main result of this paper disproves the conjecture from
[CGG+17] that the chain tester works. Specifically, we show that no one-sided tester with poly(nk)
queries can succeed on some carefully constructed hard families of Boolean functions.

2

Theorem 1.1. (Rephrasing Corollary 3.5) Testing 2-monotonicity non-adaptively with one-sided
error requires 2Ω(

√
n) queries.

This lower bounds can be compared to the 2O(
√
n·logn)-query chain tester provided in [CGG+17].

Hence, testing is essentially as hard as PAC learning, in light of the 2Ω(
√
n) lower bound from

[BCO+15].
While being contrary to the intuition that since monotonicity testing is easy, so should 2-

monotonicity be, this result reinforces the theme discussed above in proving circuit complexity
lower bounds. The class of 2-monotone functions is exactly the class of functions computable by
a Boolean circuit with at most one negation gate [Mar57, BCO+15]. As in the circuit complexity
world, allowing one negation gate significantly increases complexity.

One further natural question is approximating the “monotonicity” of a function. For a concrete
problem, suppose we are promised that the unknown function f is either 2-monotone or far from,
say, n0.01-monotone. That is, either f changes value at most twice on every chain, or a constant
fraction of points of {0, 1}n need to be changed so that f changes value at most n0.01 times on every
chain. This promise problem can only require fewer queries, and intuitively, it should be much fewer.

However, we show that intuition is incorrect: even the apparently much easier task of distinguish-
ing between functions that are 2-monotone and functions that are far from being n.01-monotone
requires an exponential number of queries.

Theorem 1.2. (Rephrasing Corollary 3.4) Testing non-adaptively with one-sided error whether a
function is 2-monotone or far from being n0.01-monotone requires 2Ω(n0.48) queries.

These results are essentially consequences of a more general statement.

Theorem 1.3. (Rephrasing Corollary 3.3) Given 2 ≤ k ≤ g(k, n) = o(
√
n), testing non-adaptively

with one-sided error whether a function is k-monotone or far from being g(k, n)-monotone requires

2
Ω
(√

n

(k+1)(g(k,n)/k)2

)
queries.

1.1 Overview of the proofs

We first observe that the chain tester is indeed a canonical tester for k-monotonicity, namely any
non-adaptive tester making q queries can be transformed into a chain tester making O(qk+1n)
queries (See Theorem 3.2).

Thus, the most intriguing question that we solve becomes: can one construct a function that is
far from every n.01-monotone function (not only far from every 2-monotone function), yet only a
tiny fraction of chains in {0, 1}n contain a violation to 2-monotonicity? Our construction manages
to overcome these two conflicting goals by carefully hiding the violations inside a region of the cube
that the chain tester can easily miss.

The proof of the O(n)-query tester from [GGL+00] relies on the following structural theorem: if
f is far from monotone, then there are many edges that contain a violation to monotonicity. For
k-monotonicity with k ≥ 2, there is no such result: since all violations require at least 3 points,
the violations can all be spread across many levels of the cube. For example, consider a totally
symmetric function f(x) such that f(x) = 1 if |x| is between n/2− 2

√
n and n/2−

√
n, or between

n/2 +
√
n and n/2 + 2

√
n, and f(x) = 0 otherwise. This function is far from 2-monotone, yet any

triple of points that witnesses this fact will contain a pair of points whose Hamming distance is at
least

√
n.

3

At the same time, the chain tester does very well on such a function, since every chain from
0n to 1n will uncover a violation to 2-monotonicity! We get around this by hiding such functions
with “long” violations on a small set of coordinates, while still making sure it comprises a constant
fraction of the cube. We show that a random chain is unlikely to visit enough of these coordinates
to find a violation.

Proving that these functions are far from k-monotone amounts to understanding the structure
of the violation hypergraph (i.e., the hypergraph whose vertices are elements of {0, 1}n, and whose
edges are the tuples that witness a violation). A large matching (edges with disjoint sets of vertices)
in this hypergraph implies that the function is far from k-monotone. Indeed, such families can be
shown to have a large matching.

1.2 Discussion and open problems

While non-adaptive, one-sided testing is inherently hard for k-monotonicity, it may be the case that
efficient 2-sided and/or adaptive tests exist. The question of whether these variants help in testing
monotonicity have been luring for a long time, yet it has witnessed no progress so far. In fact, it
would be quite exciting if these variants do help in testing k-monotonicity, or even in distinguishing
2-monotonicity from being far from n.01-monotonicity. All these questions are also relevant to
testing other domains, and in particular the hypergrid [n]d. Preliminary arguments using coarsening
similar to [CGG+17] show that distinguishing k-monotone functions from functions that are far
from g(k, n)-monotone does not need a dependence on n, but the exponential dependence on d
still remains. Thus, removing this dependence on d on the hypergrid domains could lead to similar
improved complexity over the hypercube.

1.3 Related work

The previous work on testing k-monotonicity [CGG+17] reveals connections with testing surface area
[KR00, BBBY12, KNOW14, Nee14], as well as estimating support of distributions [CR14]. Besides
the relevant extensive literature on monotonicity testing mentioned before, another recent direction
that generalizes monotonicity is testing unateness. Namely, a unate function is monotone on each full
chain, however, edge-disjoint chains may be monotone in different directions. Initiated in [GGL+00],
query-efficient unateness testers were obtained in [GGL+00, CS16b], and recently, [CWX17] shows
a matching one-sided non-adaptive Ω̃(n) bound.

A trickle of recent work in cryptography focuses on understanding how many negation gates are
needed to compute cryptographic primitives, such as one-way permutations, small bias generators,
hard core bits, and extractors [GMOR15, GK15, LZ16].

Yet another extension of monotonicity on the specific domain of a line, considers the point of
view that monotonicity is a property defined by freeness of a specific order pattern in the function:
indeed, the function is free of tuples x1 ≺ x2 with f(x1) = 1 ≥ f(x2) = 0. [NRRS17] extends this
view to real-valued inputs, where a sequence can follow more complex order patterns.

2 Preliminaries
The weight of an element x in {0, 1}n, denoted |x|, is the number of non-zero entries of x. Given two
functions f, g : {0, 1}n → {0, 1}, denote by d(f, g) for the (normalized) Hamming distance between

4

them, i.e.
d(f, g) = 1

2n
∑

x∈{0,1}n

1{f(x) 6=g(x)} = Pr
x∼{0,1}n

[f(x) 6= g(x)]

where x ∼ {0, 1}n refers to x being drawn from the uniform distribution on {0, 1}n. A property
of boolean functions from {0, 1}n to {0, 1} is a subset of all the boolean functions over the binary
hypercube. We define the distance of a function f to P as the minimum distance of f to any g ∈ P :

d(f,P) = min
g∈P

d(f, g).

Property testing. We recall the standard definition of testing algorithms, as well as some
terminology:

Definition 2.1. Let P be a property of functions from {0, 1}n to {0, 1}. A q-query testing algorithm
for P is a randomized algorithm T which takes as input ε ∈ (0, 1] as well as query access to a
function f : {0, 1}n → {0, 1}. After making at most q(ε) queries to the function, T either outputs
ACCEPT or REJECT, such that the following holds:
• if f ∈ P, then T outputs ACCEPT with probability at least 2/3; (Completeness)
• if d(f,P) ≥ ε, then T outputs REJECT with probability at least 2/3; (Soundness)

where the probability is taken over the algorithm’s randomness. If the algorithm only errs in the
second case but accepts any function f ∈ P with probability 1, it is said to be a one-sided tester;
otherwise, it is said to be two-sided. Moreover, if the queries made to the function can only depend
on the internal randomness of the algorithm, but not on the values obtained during previous queries,
it is said to be non-adaptive; otherwise, it is adaptive. The maximum number of queries made to f
in the worst case is the query complexity of the testing algorithm.

When d(f,P) ≥ ε, we say that f is ε-far from P . In this document, we will frequently use “far”
to denote “Ω(1)-far”.

The property of interest in this work is k-monotonicity. As mentioned earlier, a function
f : {0, 1}n → {0, 1} is k-monotone if there do not exist x1 ≺ x2 ≺ . . . ≺ xk+1 in {0, 1}n, such that
f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. We denote the set of k-monotone functions asMk. A
violation of k-monotonicity is a sequence x1 ≺ x2 ≺ . . . ≺ xk+1 in {0, 1}n, such that f(x1) = 1 and
f(xi) 6= f(xi+1) for all i ∈ [k].

Following Parnas, Ron, and Rubinfeld [PRR06], we also consider the following relaxation version
of property testers, for parameterized properties:

Definition 2.2. Let P = {Pk}k be a parameterized family of properties. A (k, `)-tester for the
family P is a randomized algorithm which, on input a proximity parameter ε ∈ (0, 1) and oracle
access to an unknown function f , satisfies the following.
• if f ∈ Pk, then the algorithm returns ACCEPT with probability at least 2/3;
• if d(f,P`) > ε, then the algorithm returns REJECT with probability at least 2/3.

As mentioned, we are also interested in (k, g(k, n))-testing for {Mk}k. We sometimes denote
the problem of distinguishing k-monotone functions from functions that are far from being g(k, n)-
monotone as the (k, g(k, n))-problem.

We define the (basic) chain tester to be the algorithm that picks a uniformly random chain
Z = 〈0n ≺ z1 ≺ z2 ≺ · · · zn−1 ≺ 1n〉 of comparable points from {0, 1}n, and queries f at all these

5

points. The chain tester rejects if Z reveals a violation to k-monotonicity, otherwise it accepts. We
also sometimes call a chain tester an algorithm that picks multiple chains (possibly dependently of
each other).

3 Lower Bounds over the Hypercube
We prove all of our results in this section. We first show in Theorem 3.1 that the basic chain tester
detects a violation with negligibly small probability, and hence the (k, g(k, n))-problem is hard for
chain testers.

Theorem 3.1. Given 2 ≤ k ≤ g(k, n) = o(
√
n), there exist C > 0, and a collection F of Boolean

functions, such that
(i) every f ∈ F is Ω(1)-far from being g(k, n)-monotone, and

(ii) the probability that a uniformly random chain in {0, 1}n detects a violation to k-monotonicity
for f is o

(
exp

(
−C

√
n

(g(k,n)/k)2

))
.

We then show that any other non-adaptive, one-sided tester gives rise to a chain tester, with
only a small blowup in the query complexity.

Theorem 3.2. Any non-adaptive one-sided q-query (k, g(k, n))-tester implies an O
(
qk+1n

)
-query

tester that queries points on a distribution over chains, and succeeds with constant probability. In
particular, if p is the success probability of the basic chain tester, then p = Ω(1/qk+1).

Theorem 3.1 and Theorem 3.2 imply the following general consequence.

Corollary 3.3. Given 2 ≤ k ≤ g(k, n) = o(
√
n), testing non-adaptively with one-sided error whether

a function is k-monotone or far from being g(k, n)-monotone requires exp
(
Ω
(√

n
(k+1)(g(k,n)/k)2

))
queries.

Instantiating k and g(k, n) in Corollary 3.3, we obtain the following immediate corollaries.

Corollary 3.4. Any non-adaptive one-sided (2, n0.01)-tester for the (2, n0.01)-problem requires
exp(Ω

(
n0.48)) queries.

Corollary 3.5. Let 2 ≤ k = o(
√
n). Then any non-adaptive, one-sided tester for k-monotonicity

requires Ω
(
exp

(√
n

k+1

))
queries.

Note that the lower bound of Corollary 3.5 is > exp(4
√
n) for 2 ≤ k ≤ 4

√
n. Using the previous

lower bound of Ω
((

n
k2

)k/4)
for any 2 ≤ k = o(

√
n) from [CGG+17], we obtain the following

immediate consequence.

Corollary 3.6. Any non-adaptive, one sided tester for k-monotonicity, for 2 ≤ k = o(
√
n), requires

Ω(exp(4
√
n)) queries.

6

3.1 Proof of Theorem 3.1

We first recall some standard useful facts.

Fact 3.7. The maximum value of
(n
t

)
occurs when t = bn/2c, and this maximum value is less than

2 · 2n/
√
n.

Fact 3.8. There exists a constant C > 0, such that for every ε > 0, the number of points of {0, 1}n
that with weight outside the middle levels [n2 −

√
n log C

ε ,
n
2 +
√
n log C

ε] is at most ε2n−1.

In Section 3.1.1, we define our hard family, and show that every function in this family is indeed
far from g(k, n)-monotonicity. In Section 3.1.2 we show that this family is hard for the chain tester.

The hard family hides instances of a balanced blocks function, which was previously used
in [CGG+17] towards proving that testing k-monotonicity is at least as hard as testing monotonicity,
even with adaptive, two-sided queries.

Definition 3.9 (Balanced Blocks function). For every n and ` ≤ o(
√
n), let us partition the vertex

set of the Hamming cube into ` blocks B1, B2, . . . , B` where every block Bi consists of all points in
consecutive levels of the Hamming cube, such that all of the blocks have roughly the same size, i.e.,
for every i ∈ `, we have (

1− `√
n

) 2n

`
≤ |Bi| ≤

(
1 + `√

n

) 2n

`
.

Then the corresponding balanced blocks function with ` blocks, denoted1 BB(n, `) : {0, 1}n →
{0, 1}, is defined to be the blockwise constant function which takes value 1 on all of B1 and whose
value alternates on consecutive blocks.

Note that BB(n, `) is a totally symmetric function: it is unchanged under permutations of its
inputs. Thus, we can partition {0, 1, . . . , n} into ` intervals I1, I2, . . . , I`, such that Ii is the set of
Hamming levels that Bi contains.

[CGG+17] shows that Balanced Blocks functions satisfy a useful property that we soon recall in
Claim 3.11, after making an important definition.

Definition 3.10 (Violation hypergraph ([CGG+17])). Given a function f : {0, 1}n → {0, 1}, the
violation hypergraph of f is Hviol(f) = ({0, 1}n, E(Hviol)) where (x1, x2, · · · , x`+1) ∈ E(Hviol) if the
ordered (`+ 1)-tuple x1 ≺ x2 ≺ . . . ≺ x`+1 (which is a (`+ 1)-uniform hyperedge) forms a violation
to `-monotonicity in f . A collection Mh of pairwise disjoint (` + 1)-uniform hyperedges of the
violation hypergraph is said to form a violated matching.

Claim 3.11 ([CGG+17, Claim 3.8]). Let h def= BB(n, `). Then h is (` − 1)-monotone and not
(`−2)-monotone. Furthermore, the violation graph of h with respect to (`−2)-monotonicity contains
a violated matching of size at least (1−o(1))2n

` , where every edge of the matching y1 � · · · � y`−1 has
h(y1) = 1 and h(yi) 6= h(yi+1) for 1 ≤ i < `− 1.

This machinery allows us to deduce the following.
1We will arbitrarily fix a function that satisfies these conditions.

7

Claim 3.12. Let h def= BB(n, 3k). Then d(h,Mk) ≥ Ω(1).

Proof of Claim 3.12. By Claim 3.11, Hviol(h) contains a matching Mh of (3k − 1)-tuples of size
(1−o(1))2n

3k , and for every tuple in the matching y1 � · · · � y3k−1 we have h(y1) = 1 and h(yi) 6= h(yi+1)
for 1 ≤ i < 3k− 1. We see that any k-monotone function close to h must have at most k flips within
any such tuple, by definition. It follows that any k-monotone function differs from h in at least
k − 1 vertices in every tuple of Mh. Thus, the Hamming distance between h and any k-monotone
function is at least

(1− o(1))2n

3k · (k − 1) ≥ 2n

5 .

We are now ready to describe the hard family.

3.1.1 The Hard Family

In what follows, let s def= g(k, n). Also, let r def= g(k,n)
k . We now describe the hard instance for

(k, s)-testing.
Consider the partition of the set of indices in [n] into two different sets, L and R, with sizes

|L| = nL = n ·(1− 1
625r2) and |R| = nR = n

625r2 , respectively.2 We will write z ∈ {0, 1}n as z = (x, y),
where x ∈ {0, 1}|L| and y ∈ {0, 1}|R|. We define MIDL

def= {i :| i− nL
2 |≤

√
nL

100 }, to denote the set of
“balanced” inputs restricted to the set of indices in L.

Assuming k is even3, we define fnL : {0, 1}n → {0, 1} by

fnL(x, y) def=
{

0, if |x| 6∈ MIDL

BB(nR, 3s)(y), otherwise i.e., |x| ∈ MIDL,

where x ∈ {0, 1}|L| and y ∈ {0, 1}|R|.
For x ∈ {0, 1}L, let us denote by Hx the restriction of the hypercube {0, 1}n to the points (x, y),

with y ∈ {0, 1}|R|. Note that for x ∈ MIDL, the restriction of the function to Hx is a copy of
balanced blocks function on nR = n/625r2 variables with 3s blocks.

Claim 3.13. The function f = fnL is Ω(1)-far from being s-monotone.

Proof. By Fact 3.8, picking ε = 1
3 , say, it follows that for a constant fraction of the points x ∈ {0, 1}nL ,

the function f restricted to the cube Hx is a balanced blocks function on 3s blocks. By Claim 3.11,
there is a matching of violations to (3s− 2)-monotonicity within the violation graph on Hx, of size
at least Ω(1) · 2nR

3s . It follows that the there is a matching of violations to (3s− 2)-monotonicity
on the whole domain {0, 1}n of size at least Ω(1)2n

3s . As in the proof of Claim 3.12, to produce a
function that is s-monotone, one must change the value of f in at least s points of each matched
hyper-edge. It follows that f is Ω(1)-far from being s-monotone.

Our hard family of functions is the orbit of the function fnL under all the permutations of the
variables.

2For the sake of presentation, we ignore integrality issues where possible.
3For odd k, the function is defined almost analogously – the only difference is that fnL (x, y) = 1 whenever

|x| > nL
2 +

√
nL

100 . We make this assumption throughout the paper.

8

Definition 3.14. The family Fk,s, parameterized by k and s is defined as follows. Setting nL =
(1− k2

625s2)n, we define

Fk,s
def= { fnL ◦ πσ : σ ∈ Sn }

where πσ : {0, 1}n → {0, 1}n is a permutation that sends the string {(a1, a2, . . . , an)} to {aσ(1), aσ(2), . . . , aσ(n)}
for a permutation σ : [n]→ [n]. We omit the parameters k and s if it is clear from the context.

We now observe that these functions are indeed far from being s-monotone. This follows since
s-monotonicity is closed under permutation of the variables, and by Claim 3.13.

Claim 3.15. Every f ∈ Fk,s, f is Ω(1)-far from s-monotone.

Therefore, we proved the distance property from Theorem 3.1

3.1.2 The Hard Family vs. the Chain Tester

Recalling that the basic chain tester picks a uniformly random chain in {0, 1}n, note that the
distribution of the queries chosen by the chain tester is unchanged over permutations of the
variables. Thus, it suffices to analyze the probability that the chain tester discovers a violation to
k-monotonicity on fnL . We will show that this probability is very small if the quantity s/k is small.

Claim 3.16. There exists a constant C > 0, such that the probability that a random chain reveals a
violation to k-monotonicity in fnL is at most exp

(
−C k2

s2
√
n
)
.

Let Z be a fixed chain 0n = z0 ≺ z1 ≺ z2 ≺ · · · ≺ zn = 1n in {0, 1}n. Note that fnL(zi) =
fnL(xi, yi) = 0 if |xi| /∈ MIDL. Thus, if there is a violation to k-monotonicity in Z, then it can be
found among points in Z where |xi| ∈ MIDL. Thus, a chain can only exhibit a violation on points
zi = (xi, yi) where nL/2 −

√
nL/100 ≤ |xi| ≤ nL/2 + √nL/100. By definition, regardless of the

exact structure of xi in this interval, fnL(xi, yi) = BB(nR, 3s)(yi). Since BB is a totally symmetric
function, to determine if Z exhibits a violation, it is enough to analyze the set

V (Z) def= {j : there exists zi = (xi, yi) ∈ Z such that |xi| ∈ MIDL and |yi| = j}.

We remark that for every chain Z, V (Z) is a set of consecutive integers.

Claim 3.17. Suppose Z contains a violation to k-monotonicity. Then |V (Z)| ≥ k√nR/(16s).

Proof. By Fact 3.7, the maximum value of Pry∼{0,1}nR [|y| = t] over values of t is 2/√nR. Since
BB(nR, 3s) has 3s blocks, the number of consecutive levels of Ii in any block Bj must satisfy

(2/
√
nR)|Ii| ≥

1
3s(1− o(1)) ≥ 1

4s,

so |Ii| ≥
√
nR/(8s). To see a violation to k-monotonicity, the chain Z must contain points from each

Hamming level in k− 1 complete blocks, so this requires |V (Z)| ≥ (k− 1)√nR/(8s) ≥ k
√
nR/(16s),

as claimed.

9

We will show that that |V (Z)| reaching this value is very unlikely for a random chain Z. Let Z
be a random chain 0n ≺ z1 ≺ · · · ≺ zn−1 ≺ 1n.

Proof of Claim 3.16. The proof follows from Claim 3.17 and the following claim.

Claim 3.18. Let Z be a random chain. Then Pr[|V (Z)| ≥ k√nR/(20s)] ≤ exp
(
−0.00009

r2
√
n

)
.

Proof. Let j be the smallest index such that zj = (xj ,yj) satisfies |xj | = nL/2−
√
nL/100. This is

the index where the chain enters the region where it could find violations.
Let w be the largest index such that zw = (zw,yw) satisfies |xw| = nL/2 + √nL/100. If Z

contains a violation to k-monotonicity, then it must occur on the subchain zj−1 ≺ zj ≺ · · · ≺
zw ≺ zw+1. By construction, we have f(z`) = 0 if ` ≤ j − 1 or ` ≥ w + 1. Further, V (Z) =
{|yj |, |yj+1|, . . . , |yw−1|, |yw|}, and |V (Z)| = |yw| − |yj |+ 1. Thus, to prove the claim, it satisfies to
analyze |yw| − |yj |. Note w − j is exactly √nL/50 + |V (Z)| − 1; this accounts for √nL/50 flips of
variables in L and |V (Z)|−1 flips of variables in R. Informally, we want to show that the ratio of the
number of variables flipped in L to number of variables flipped in R is, with very high probability,
too small for the chain tester to succeed in finding a violation to k-monotonicity.

To simplify our analysis, we will not work directly with w. Instead, define j as above, but
consider zj′ = (xj′ ,yj′), where j′ = j +

√
n/3. We will show that, with high probability, j′ ≥ w,

and |yj′ | − |yj | (and thus |yw| − |yj |) is small.
We claim that the value of |yj′ | − |yj | is a random variable with a (random) hypergeometric

distribution. Indeed, to draw a random variable distributed as this difference, we construct the
following experiment that simulates the behavior of a random chain with respect to the function f :
• The chain tester picks

√
n/3 coordinates from the n− |zj | coordinates set to 0.

• nR−|yj | of these coordinates are “successes” for the chain tester, which correspond to flipping
variables in R, and
• nL − |xj | of these coordinates are “failures” for the chain tester, which correspond to flipping
variables in L.

Let H(u,N, t, i) denote the probability of seeing exactly i successes in t independent samples,
drawn uniformly and without replacement, from a population of N objects containing exactly u
successes.

The chain tester is most likely to see successes in the above experiment if |yj | = 0; we will
assume that this happens. As seen in the proof of Claim 3.17, in order to successfully reject f , the
chain must witness at least k

√
nR

16s successes. Let t = k
√
nR

20s .
Note that if the number of successes is i < t, then the number of failures is at least

√
n

3 − t ≥√
n

3 −
√
n

500 >
√
nL

50 , and so in this case we have |V (Z)| < t; this corresponds to the chain missing a
complete balanced block. It follows that the proof reduces to upper bounding the quantity

Pr[|V (Z)| ≥ t] =
∑
i≥t

H(nR, nL/2 +
√
nL/100 + nR,

√
n/3, i).

We analyze the above quantity using a Chernoff bound for hypergeometric random variables,
where X = |yj′ | − |yj |.

10

Theorem 3.19 (Theorem 1.17 in [Doe11]). Let X be a hypergeometrically distributed random
variable. Then

Pr[X ≥ 5
4 · E[X]] ≤ exp(−E[X] /48).

We use the following claim.

Claim 3.20. 4
15 · t ≤ E[X] ≤ 4

5 · t.

Proof. Standard facts about the hypergeometric distribution imply that

E[X] =
√
n

3 ·
nR

nL/2 +√nL/100 + nR
.

Recall that r = s/k ≥ 1, nL = n(1− 1/(625r2)) > 2n/3, nR = n/(625r2), and t = k
√
nR

20s =
√
nR

20r =
√
n

500r2 . It follows that
nL/2 +

√
nL/100 + nR > nL/2 > n/3.

Therefore
E[X] <

√
n

3 ·
3nR
n

=
√
n · 1

625r2 = 4
5

√
n

500r2 = 4
5 · t.

Since nL/2 +√nL/100 + nR < n,

E[X] >
√
n

3 ·
nR
n

=
√
n

3 ·
1

625r2 = 4
15

√
n

500r2 = 4
15 · t.

It now follows that

Pr[X ≥ t] = Pr[|V (Z)| ≥ t] =
∑
i≥t

H(nR, nL/2 +
√
nL/100,

√
n/3, i)

= Pr
[
X ≥ E[X] · t

E[X]

]
≤ Pr

[
X ≥ E[X] · 5

4

]
≤ exp(−E[X] /48)

≤ exp(−t/180) = exp
(√

n

90000r2

)
,

which concludes the proof.

11

3.2 Proof of Theorem 3.2

We show that given a q-query non-adaptive, one-sided (k, s)-tester, one can obtain a O
(
qk+1n

)
-query

(k, s)-tester that only queries values on a distribution over random chains.
Let T be a q-query non-adaptive, one-sided (k, s)-monotonicity tester. Therefore, T accepts

functions that are k-monotone, and rejects functions that are ε-far from being s-monotone with
probability 2/3.

Define a tester T ′ that on input a function f does the following: it first gets the queries of
T , then for each (k + 1)-tuple q1 ≺ q2 ≺ · · · ≺ qk+1, T ′ queries an entire uniformly random chain
from 0n to 1n, conditioned on containing these k + 1 points. Therefore, T ′ is also one-sided, makes
O(
(q
k+1
)
n) = O(qk+1n) queries, and its success probability is no less than the success probability of

T 4.
Define T ′′ that on input f picks a random permutation σ : [n]→ [n] and then applies the queries

of T ′ to the function f ◦πσ (where πσ is defined as in Definition 3.14). This means that if T ′ queries
q, T ′′ queries πσ(q). Then T ′′ ignores what T ′ answers and only rejects if it finds a violation on any
one of the chains.

Note that if f is k-monotone, then so is f ◦ πσ, and if f is ε-far from being s-monotone, then so
is f ◦ πσ.

Therefore, T ′′ is one-sided, non-adaptive, and makes O(qk+1n) queries. Since T ′ is one-sided, it
can only reject if it finds a (k + 1)-tuple forming a violation to k-monotonicity. So if T ′ rejects, so
does T ′′, and it follows that the success probability of T ′′ is at least the success probability of T ′,
which is at least 2/3.

We now claim that the queries of T ′′ are distributed as O(
(q
k+1
)
) uniformly random chains.

While the marginal distribution for each individual chain is the uniform distribution over chains,
the joint distribution over these chains is not necessarily independent. Suppose T ′ queries points
q1, q2, · · · qk+1 with q1 ≺ q2 ≺ · · · ≺ qk+1. Then πσ(qi) is a uniformly random point on its weight
level, and πσ(q1) ≺ πσ(q2) ≺ . . . ≺ πσ(qk+1). It follows that a chain chosen uniformly at random
conditioned on passing through these points is a uniformly random chain in {0, 1}n.

Let p be the success probability of the basic chain tester that picks a uniformly random chain in
{0, 1}n and rejects only of it finds a violation to k-monotonicity. Taking a union bound over the
chains chosen by T ′′, the success probability of T ′′ is at most p ·

(q
k+1
)
≤ p · qk+1. It follows that

p · qk+1 ≥ 2/3, from which it easily follows that p = Ω(q1/(k+1)), concluding the proof.

Acknowledgments. We thank our collaborators Clément Canonne and Siyao Guo, who have
gracefully refused to co-author this paper.

References
[AC06] Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity

testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006. 1

[BB16] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity.
In STOC, pages 1021–1032. ACM, 2016. 1

4We assume that every query made by T belongs to at least one (k + 1)-tuple. Queries that do not are of no help
to T , since these queries can not be part of a violation to k-monotonicity discovered by T , and we are assuming that
T is non-adaptive and one-sided.

12

[BBBY12] Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing.
In FOCS, pages 21–30. IEEE Computer Society, 2012. 1.3

[BCGM12] Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012. 1

[BCO+15] Eric Blais, Clément L. Canonne, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang
Tan. Learning circuits with few negations. In APPROX-RANDOM, volume 40 of
LIPIcs, pages 512–527. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. 1

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993. 1

[CDST15] Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function mono-
tonicity testing requires (almost) n1/2 non-adaptive queries. In STOC, pages 519–528.
ACM, 2015. 1

[CGG+17] Clément L. Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wimmer.
Testing k-monotonicity. 2017. 1, 1, 1.2, 1.3, 3, 3.1, 3.1, 3.10, 3.11

[CR14] Clément L. Canonne and Ronitt Rubinfeld. Testing probability distributions underlying
aggregated data. In ICALP (1), volume 8572 of Lecture Notes in Computer Science,
pages 283–295. Springer, 2014. 1.3

[CS13a] Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean
functions over the hypercube. In STOC, pages 411–418. ACM, 2013. Journal version as
[CS16a]. 1

[CS13b] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
Lipschitz testing over hypercubes and hypergrids. In STOC, pages 419–428, 2013. 1

[CS14] Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity
testing over hypergrids. Theory of Computing, 10:453–464, 2014. 1

[CS16a] Deeparnab Chakrabarty and C. Seshadhri. An o(n) Monotonicity Tester for Boolean
Functions over the Hypercube. SIAM J. Comput., 45(2):461–472, 2016. 3.2

[CS16b] Deeparnab Chakrabarty and C. Seshadhri. A $\widetilde{O}(n)$ non-adaptive tester
for unateness. CoRR, 2016. 1, 1.3

[CST14] Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In FOCS, pages 286–295. IEEE Computer Society, 2014. 1

[CWX17] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: New lower
bounds for testing monotonicity and unateness. CoRR, abs/1702.06997, 2017. 1, 1.3

[DGL+99] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM-
APPROX, volume 1671 of Lecture Notes in Computer Science, pages 97–108. Springer,
1999. 1

13

[Doe11] Benjamin Doerr. Theory of Randomized Search Heuristics: Foundations and Recent
Developments. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2011. 3.19

[EKK+00] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000. 1

[FLN+02] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pages 474–483, 2002. 1

[FR10] Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high
dimensions. ACM Trans. Algorithms, 6(3), 2010. 1

[GGL+00] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000. 1, 1.1, 1.3

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45(4):653–750, 1998. 1

[GK15] Siyao Guo and Ilan Komargodski. Negation-limited formulas. In APPROX-RANDOM,
volume 40 of LIPIcs, pages 850–866. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015. 1, 1.3

[GMOR15] Siyao Guo, Tal Malkin, Igor Carboni Oliveira, and Alon Rosen. The power of negations
in cryptography. In TCC (1), volume 9014 of Lecture Notes in Computer Science, pages
36–65. Springer, 2015. 1, 1.3

[Juk12] Stasys Jukna. Boolean Function Complexity. Springer, 2012. 1

[KMS15] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean
isoperimetric type theorems. In FOCS, pages 52–58. IEEE Computer Society, 2015. 1

[KNOW14] Pravesh Kothari, Amir Nayyeri, Ryan O’Donnell, and Chenggang Wu. Testing surface
area. In SODA, pages 1204–1214. SIAM, 2014. 1.3

[KR00] Michael J. Kearns and Dana Ron. Testing problems with sublearning sample complexity.
J. Comput. Syst. Sci., 61(3):428–456, 2000. 1.3

[KS16] Subhash Khot and Igor Shinkar. An ~o(n) queries adaptive tester for unateness. In
APPROX/RANDOM 2016, Paris, France, pages 37:1–37:7, 2016. 1

[LZ16] Chengyu Lin and Shengyu Zhang. Sensitivity conjecture and log-rank conjecture for
functions with small alternating numbers. CoRR, abs/1602.06627, 2016. 1, 1.3

[Mar57] A. A. Markov. On the inversion complexity of systems of functions. Doklady Akademii
Nauk SSSR, 116:917–919, 1957. English translation in [Mar58]. 1, 1

[Mar58] A. A. Markov. On the inversion complexity of a system of functions. Journal of the
ACM, 5(4):331–334, October 1958. 3.2

14

[Nee14] Joe Neeman. Testing surface area with arbitrary accuracy. In STOC, pages 393–397.
ACM, 2014. 1.3

[NRRS17] Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing
for forbidden order patterns in an array. In SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1582–1597, 2017. 1.3

[PRR06] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006. 2

[Ros15] Benjamin Rossman. Correlation bounds against monotone NC1. In Conference on
Computational Complexity (CCC), 2015. 1

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM-J-COMPUT, 25(2):252–271, April 1996. 1

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

