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Abstract

A function f : {0, 1}n → {0, 1} is said to be k-monotone if it flips between 0 and 1 at most k
times on every ascending chain. Such functions represent a natural generalization of (1-)monotone
functions, and have been recently studied in circuit complexity, PAC learning, and cryptography.
Our work is part of a renewed focus in understanding testability of properties characterized by
freeness of arbitrary order patterns as a generalization of monotonicity. Recently, Canonne et
al. (ITCS 2017) initiate the study of k-monotone functions in the area of property testing, and
Newman et al. (SODA 2017) study testability of families characterized by freeness from order
patterns on real-valued functions over the line [n] domain.

We study k-monotone functions in the more relaxed parametrized property testing model,
introduced by Parnas et al. (JCSS, 72(6), 2006). In this process we resolve a problem left open
in previous work. Specifically, our results include the following.

1. Testing 2-monotonicity on the hypercube non-adaptively with one-sided error requires an
exponential in

√
n number of queries. This behavior shows a stark contrast with testing

(1-)monotonicity, which only needs Õ(
√
n) queries (Khot et al. (FOCS 2015)). Furthermore,

even the apparently easier task of distinguishing 2-monotone functions from functions that
are far from being n.01-monotone also requires an exponential number of queries.

2. On the hypercube [n]d domain, there exists a testing algorithm that makes a constant
number of queries and distinguishes functions that are k-monotone from functions that are
far from being O(kd2)-monotone. Such a dependency is likely necessary, given the lower
bound above for the hypercube.
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1 Introduction
Property testing [BLR93, RS96, GGR98] studies the complexity of deciding if a large object satisfies
a property, or is far from satisfying the property, when the algorithm has only partial access to its
input. Two prolific lines of research in the study of Boolean functions have recently seen ultimate
results: on one hand, the study of families exhibiting algebraic symmetries (such as low-degree
polynomials, and triangle-freeness), explicitly initiated in [KS08], and on the other hand, the study
of functions with less symmetry, but whose values respect a monotone order relation, initiated in
[GGL+00]. Extending the structural features of these classes of functions, in this work we view
families of Boolean functions with less symmetry as interpolating from basic families of monotone
functions to families characterized by freeness of more complex order patterns. This perspective is
apparent in the recent works of Newman et al [NRRS17] and Canonne et al [CGG+17] (a superset of
the authors) who propose the study of families exhibiting freeness from more general order patterns
in the property testing setting. Here we study the property of being k-monotone, building towards
understanding testability of freeness from arbitrary order patterns.

We first introduce some standard definitions. A property of Boolean functions from a discrete
domain D to {0, 1} is a subset of {f : D → {0, 1}}. Given two functions f, g : D → {0, 1}, denote
by d(f, g) the (normalized) Hamming distance between them, i.e. d(f, g) = Prx∼D [ f(x) 6= g(x) ] .
The distance of a function f to P is defined as d(f,P) = ming∈P d(f, g). A q-query tester for P
is a randomized algorithm T that takes as input ε ∈ (0, 1], and has query access to a function
f : D → {0, 1}. After making at most q(ε) queries, T distinguishes between the following two cases:
i) if f ∈ P, then T accepts, with probability 2/3; ii) if d(f,P) ≥ ε, then T rejects w.p. 2/3. If the
algorithm only errs in the second case but accepts any function f ∈ P with probability 1, it is said
to be one-sided; otherwise, it is said to be two-sided. Moreover, if the queries made to the function
can only depend on the internal randomness of the algorithm, but not on the values obtained during
previous queries, it is said to be non-adaptive; otherwise, it is adaptive. The maximum number
of queries made to f in the worst case is the query complexity of the testing algorithm. When
d(f,P) ≥ ε, we say that f is ε-far from P. We will frequently use “far” to denote “Ω(1)-far”.

In this work we focus on the property of being k-monotone, which we formalize next.

Definition 1.1 (k-monotonicity). A function f : D → {0, 1} is k-monotone if there do not exist
x1 ≺ x2 ≺ . . . ≺ xk+1 in D, such that f(x1) = 1 and f(xi) 6= f(xi+1) for all i ∈ [k]. Equivalently, a
Boolean k-monotone function is free of the pattern 〈f(x1), f(x2), . . . , f(xk+1)〉 = 〈1, 0, 1, 0, . . . , 0, 1〉
1. Note that 1-monotone functions are exactly the functions that are monotone.

Testing monotonicity has drawn interest in the theoretical computer science community for
almost two decades (e.g., [GGL+00, DGL+99, EKK+00, FLN+02, Fis04, BRW05, AC06, HK08,
BGJ+09, BCGM12, FR10, BBM12, CS13b, CS13a, CS14, BRY14, CST14, CDST15, KMS15, BB16,
CWX17]), especially due to the naturalness of the property, as well as its evasiveness to tight analysis.

The notion of k-monotonicity has been studied ever since the 50’s in the context of circuit lower
bounds [Mar57]. Indeed, k-monotone functions correspond to functions computable by Boolean
circuits with log k negation gates, and in particular monotone functions correspond to circuits with
no negation gates. In proving lower bounds for circuits with few negation gates, it has been apparent
that the presence of even one negation gate leads either to failure of the common analysis techniques,
or to failure of the expected results, as remarked by Jukna [Juk12].

1Note that f(xk+1) could be 0 depending on the parity of k
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Interest in k-monotonicity has been recently rekindled from multiple angles, including PAC
learning, circuit complexity, cryptography and Fourier analysis [Ros15, GMOR15, GK15, LZ16,
DS18]. In these areas, as k increases, k-monotone functions are viewed as robust classes sitting
between the very structured monotone functions, and general Boolean functions. The study of
k-monotonicity in the property testing model was recently initiated in [CGG+17]. Here we continue
this study and reveal a stark difference from testing monotonicity, while disproving a conjecture
from [CGG+17]. Our study leads to open questions that might be relevant to monotonicity testing.

1.1 Testing 2-monotonicity on the hypercube

Recall that a function f : {0, 1}n → {0, 1} is 2-monotone if it is free from 〈f(x1), f(x2), f(x3)〉 =
〈1, 0, 1〉, for x1 ≺ x2 ≺ x3. How much more difficult can one-sided testing of this pattern be than
testing freeness from 〈f(x1), f(x2)〉 = 〈1, 0〉 (i.e., monotonicity)?

The first proof of the O(n)-query one-sided non-adaptive tester for monotonicity from [GGL+00]
relies on the following structural theorem: if f is far from monotone, then there are many edges
that contain a violation to monotonicity (i.e., x1 ≺ x2, with 〈f(x1), f(x2)〉 = 〈1, 0〉, and there is
no x3 such that x1 ≺ x3 ≺ x2). For k-monotonicity with k ≥ 2, there is no such result: since all
violations require at least 3 points, the violations can all be spread across many levels of the cube.
For example, consider a totally symmetric block function f(x) such that f(x) = 1 if |x| is between
n/2 − 2

√
n and n/2 −

√
n, or between n/2 +

√
n and n/2 + 2

√
n, and f(x) = 0 otherwise. This

function is far from 2-monotone, yet any triple of points that witnesses this fact will contain a pair
of points whose Hamming distance is at least

√
n.

This non-locality of a violation seems to be a reason why testing k-monotonicity (non-adaptively,
with one-sided error) turns out to be very different than just testing monotonicity. Initial lower
bounds from [CGG+17] only show a separation for k ≥ 3. Indeed, they [CGG+17] show that testing
k-monotonicity non-adaptively with one sided error requires Ω(n/k2)k/4 queries, which for k ≥ 3
beats the recent tester for monotonicity of Õ(

√
n) query complexity [CS13a, KMS15]. However,

no such separation was known for k = 2. Furthermore, they conjecture that k-monotonicity gets
gradually more difficult to test as k increases, and that k-monotonicity should be testable with
one-sided error with a budget of Θ(nO(k)) queries. In this work we show that this is not the case,
and in fact even testing 2-monotonicity itself requires an exponential number of queries.

Theorem 1.2. (Rephrasing Corollary 2.4) Testing 2-monotonicity non-adaptively with one-sided
error requires 2Ω(

√
n) queries.

For comparison, [CGG+17] obtains a tester for 2-monotonicity with 2O(
√
n·logn) queries, and

[BCO+15] obtains a 2Ω(
√
n) lower bound for PAC learning. Hence, testing 2-monotonicity is a

natural property for which testing is essentially as hard as PAC learning.
While being contrary to the intuition that since monotonicity testing is easy, so should 2-

monotonicity be, this result reinforces the theme discussed above in proving circuit complexity
lower bounds. The class of 2-monotone functions is exactly the class of functions computable by
a Boolean circuit with at most one negation gate [Mar57, BCO+15]. As in the circuit complexity
world, allowing one negation gate significantly increases complexity.

A canonical test for one-sided testing
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As alluded to above, in order to test k-monotonicity with one-sided error, a tester should only reject
if it finds a violation in the form of a sequence x1 ≺ x2 ≺ . . . ≺ xk+1 in {0, 1}n, such that f(x1) = 1
and f(xi) 6= f(xi+1) for all i ∈ [k]. Hence, a canonical candidate tester suggested in [CGG+17]
queries all points along a random chain and rejects only if it finds a violation.

Definition 1.3. We define the (basic) chain tester to be the algorithm that picks a uniformly
random chain Z = 〈0n ≺ z1 ≺ z2 ≺ · · · zn−1 ≺ 1n〉 of comparable points from {0, 1}n, and queries f
at all these points. The chain tester rejects if Z reveals a violation to k-monotonicity, otherwise
it accepts. We also sometimes denote by a chain tester an algorithm that picks multiple chains
(possibly from a joint distribution).

All previous tests for monotonicity (e.g., [GGL+00, CS13b, CST14, KMS15]) imply a chain
tester incurring only a small polynomial blow-up in the query complexity.

As expected, a chain tester is indeed implied by any non-adaptive one-sided algorithm for
k-monotonicity.

Theorem 1.4. (Corollary to Theorem 2.2) Any non-adaptive one-sided q-query tester for k-
monotonicity over {0, 1}n implies an O

(
qk+1n

)
-query tester that queries points on a distribution

over chains, and succeeds with constant probability. In particular, if p is the success probability of
the basic chain tester, then p = Ω(1/qk+1).

To prove our lower bounds, we create families for which the chain tester fails. We first remark
that the chain tester does very well on the ‘block functions’ described above in Section 1.1 that
are far from being 2-monotone. Indeed, every chain from 0n to 1n will uncover a violation to
2-monotonicity! In our constructions, we get around this by hiding such functions with “long”
violations on a small set of coordinates, while still making sure it comprises a constant fraction of
the cube. We show that a random chain is unlikely to visit enough of these coordinates to find a
violation.

Proving that these functions are far from k-monotone amounts to understanding the structure
of the violation hypergraph (i.e., the hypergraph whose vertices are elements of {0, 1}n, and whose
edges are the tuples that witness a violation). The violation graph is to some extent the only handle
we have on arguing structural properties of functions that are far from being k-monotone. A large
matching (edges with disjoint sets of vertices) in this hypergraph implies that the function is far
from k-monotone. Indeed, such families can be shown to have a large matching.

In fact, our results work in a larger context of parametrized testing, and our lower bounds hold
even for apparently much easier tasks, as we describe next.

1.2 Parametrized monotonicity testing on the hypercube

The notion of k-monotonicity allows us to propose the natural problem of approximating the
“monotonicity” of a function. For a concrete example, suppose we are promised that the unknown
function f is either 2-monotone or far from, say, n0.01-monotone. That is, either f changes value at
most twice on every chain, or a constant fraction of points of {0, 1}n need to be changed so that
f changes value at most n0.01 times on every chain. This promise problem can only require fewer
queries, and intuitively, it should be much fewer.

However, we show that intuition is incorrect: even the apparently much easier task of distinguish-
ing between functions that are 2-monotone and functions that are far from being n.01-monotone
requires an exponential number of queries.
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Theorem 1.5. (Rephrasing Corollary 2.3) Testing non-adaptively with one-sided error whether a
function is 2-monotone or far from being n0.01-monotone requires 2Ω(n0.48) queries.

This is also the setting of parametrized property testing introduced by Parnas et al [PRR06]. In
this setting, a property is parametrized by an integer k and denoted P = {Pk}k. A (k1, k2)-tester
for the family P is a randomized algorithm which, on input a proximity parameter ε ∈ (0, 1) and
oracle access to an unknown function f , must accept if f ∈ Pk1 , with probability at least 2/3; and
reject if d(f,Pk2) > ε, with probability at least 2/3.

Hence, we are interested in (k, g(k, n))-testing for parametrized monotonicity, denoted {Mk}k.
Following the notation just described, we will speak of property testers for (and query complexity
lower bounds for) (k, g(k, n))-testing the property {Mk}k.

Theorem 1.6. Given 2 ≤ k ≤ g(k, n) = o(
√
n), (k, g(k, n))-testing {Mk}k (on the hypercube)

non-adaptively with one-sided error requires 2
Ω
( √

n

(k+1)(g(k,n)/k)2

)
queries.

Parametrized monotonicity testing may provide a new angle for approaching yet unanswered
questions towards the goal of understanding the role of adaptivity in testing monotonicity. The
current strong lower bounds for testing monotonicity adaptively [CST14, CDST15, BB16] come
polynomially close to the one-sided error upper bounds [KMS15], yet the question of whether
adaptive algorithms can beat the current lower bounds still remain open.

1.3 Parametrized monotonicity testing on the hypergrid

We next study parametrized monotonicity testing of Boolean functions over the hypergrid [n]d
domain. For these domains [CGG+17] shows that testing k-monotonicity non-adaptively with
two-sided error can be performed with a number of queries independent of n, but exponential in the
dimension d. More explicitly, q(n, d, ε, k) = min

(
Õ
(

1
ε2 (5kd/ε)d

)
, 2Õ(k

√
d/ε2)) .

Our algorithmic results show a contrast to the hypercube case. We obtain a tester with constant
query complexity (independent of k, n, d), albeit trading off for the (k1, k2) parameters that the
tester needs to distinguish between.

Theorem 1.7. There is a non-adaptive two-sided tester which performs poly(1/ε) queries and
(k, 2kd2/ε)-tests {Mk}k on the hypergrid [n]d.

Two-sided versus one-sided testing for monotonicity on the hypercube is an unresolved problem.
Thus, in light of our exponential bounds for the {0, 1}n domain, the dependence in d in the
g(n, d, k) = 2kd2 function appears necessary. Achieving a sublinear dependence on d while controlling
the query complexity would require new ideas that also apply to the hypercube.

1.4 Related work and the larger perspective

As previously mentioned, [NRRS17] proposes studying more general order patterns for real-valued
functions defined over the line domain [n]. They view a pattern of length k as a permutation
π : [k]→ [k]. A function f : [n]→ R if π-free if there do not exist indices i1 < i2 < . . . < ik such
that f(ix) < f(iy) whenever π(x) < π(y). This is a more fine-grained notion than k-monotonicity;
for example, (2, 1)-freeness describes monotonicity, and the intersection of (2, 1, 3)-freeness and
(3, 1, 2)-freeness describes 2-monotonicity over the reals. The authors of [NRRS17] obtain several
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results for non-adaptive one-sided testing on the line, essentially distinguishing monotone and
non-monotone patterns. They further raise the question of characterizing the testing complexity as
a function of the structure of the pattern. Their lower bounds are Ω(

√
n); this is quite strong given

that the domain size is n, and this bound is likely not tight for most patterns. Recently, [BC18]
showed that for “most” permutations π testing π-freeness requires n1−1/(k−θ(1))

ε1/(k−θ(1)) queries. Transferring
this question to our setting, we may ask:

Question 1.8. On the hypercube, do all order patterns (longer than some constant length) require
exp(Ω(

√
n)) queries to test? Can this lower bound be strengthened to exp(Ω(n)) for most patterns?

Can these patterns be characterized?

The description of a function family as being free from a pattern is common in property testing
of Boolean functions, especially in the study of families that exhibit ‘affine-invariance’. In that line
of work, the Boolean domain {0, 1}n is viewed as a vector space over the field of two elements,
and now one may perform algebraic operations over the domain. For instance, the property of
being ‘triangle-free’ is defined as freeness from the pattern 〈f(x), f(y), f(z)〉 = 〈1, 1, 1〉 whenever
x + y + z = 0. An almost complete characterization of when such a property is testable with a
constant number of queries has recently been obtained as a result of sustained interest in this quest
[Gre05, KSV11, Sha10, BCSX11, BFL13, BFH+13, Yos14, BGS15].

Monotonicity and k-monotonicity however exhibit less symmetric structure, but these families are
still invariant under permutations of the variables. Invariance under permutations of the variables is
also maintained by properties defined by freeness of order patterns. While this symmetry is not so
strong as to imply constant query testers in general, it is however crucial in the design of algorithms
for such properties. For example, we use this invariance in showing the reduction to a canonical
tester in Theorem 1.4.

The notion of k-monotonicity can be easily extended to real-valued functions. In fact, this exten-
sion has already implied ‘tolerant’ monotonicity testers for families consisting of functions f : [n]d →
[0, 1] [CGG+17]. Furthermore, [CGG+17] reveals connections between testing k-monotonicity
and testing surface area [KR00, BBBY12, KNOW14, Nee14], as well as estimating support of
distributions [CR14].

Besides the relevant extensive literature on monotonicity testing mentioned before, another recent
direction that generalizes monotonicity is testing unateness. Namely, a unate function is monotone
on each full chain, however, edge-disjoint chains may be monotone in different directions. Initiated
in [GGL+00], query-efficient unateness testers were obtained in [GGL+00, CS16b, KS16, BCP+17],
and lower bounds in [CWX17, BCP+17].

A trickle of recent work in cryptography focuses on understanding how many negation gates are
needed to compute cryptographic primitives, such as one-way permutations, small bias generators,
hard core bits, and extractors [GMOR15, GK15, LZ16]. Very recently, motivated by connections to
log rank conjecture and the sensitivity conjecture, [DS18] explore connections between the sparsity,
sensitivity and alteration complexity of a boolean function (which is essentially identical to the
notion of k-monotonicity).

Organization We proceed with the proofs of our lower bounds for the hypercube domain in
Section 2 and with our algorithmic results for the hypergrid in Section 3.
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2 Lower Bounds over the Hypercube
We prove all of our results in this section. We first show in Theorem 2.1 that the basic chain tester
detects a violation with negligibly small probability, and hence the (k, g(k, n))-problem is hard for
chain testers.

Theorem 2.1. Given 2 ≤ k ≤ g(k, n) = o(
√
n), there exist C > 0, and a collection F of Boolean

functions, such that
(i) every f ∈ F is Ω(1)-far from being g(k, n)-monotone, and

(ii) the probability that a uniformly random chain in {0, 1}n detects a violation to k-monotonicity
for f is o

(
exp

(
−C

√
n

(g(k,n)/k)2

))
.

We then show that any other non-adaptive, one-sided tester gives rise to a chain tester, with
only a small blowup in the query complexity.

Theorem 2.2. Any non-adaptive one-sided q-query (k, g(k, n))-tester for Boolean monotonicity
over {0, 1}n implies an O

(
qk+1n

)
-query tester that queries points on a distribution over chains, and

succeeds with constant probability. In particular, if p is the success probability of the basic chain
tester, then p = Ω(1/qk+1).

Theorem 2.1 and Theorem 2.2 imply Theorem 1.6.
Instantiating k and g(k, n) in Theorem 1.6, we obtain the following immediate corollaries.

Corollary 2.3. Any non-adaptive one-sided (2, n0.01)-tester for parametrized monotonicity requires
exp(Ω

(
n0.48)) queries.

Corollary 2.4. Let 2 ≤ k = o(
√
n). Then any non-adaptive, one-sided tester for k-monotonicity

requires Ω
(
exp

( √
n

k+1

))
queries.

Note that the lower bound of Corollary 2.4 is > exp( 4
√
n) for 2 ≤ k ≤ 4

√
n. Using the previous

lower bound of Ω
((

n
k2

)k/4)
for any 2 ≤ k = o(

√
n) from [CGG+17], we obtain the following

immediate consequence.

Corollary 2.5. Any non-adaptive, one sided tester for k-monotonicity, for 2 ≤ k = o(
√
n), requires

Ω(exp( 4
√
n)) queries.

2.1 Proof of Theorem 2.1

Define the weight of an element x in {0, 1}n, denoted |x|, to be the number of non-zero entries of x.
We first recall some standard useful facts.

Fact 2.6. The maximum value of
(n
t

)
occurs when t = bn/2c, and this maximum value is less than

2 · 2n/
√
n.

Fact 2.7. There exists a constant C > 0, such that for every ε > 0, the number of points of {0, 1}n
that with weight outside the middle levels [n2 −

√
n log C

ε ,
n
2 +
√
n log C

ε ] is at most ε2n−1.
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In Section 2.1.1, we define our hard family, and show that every function in this family is indeed
far from g(k, n)-monotonicity. In Section 2.1.2 we show that this family is hard for the chain tester.

The hard family hides instances of a balanced blocks function, which was previously used
in [CGG+17] towards proving that testing k-monotonicity is at least as hard as testing monotonicity,
even for an adaptive two-sided tester.

Definition 2.8 (Balanced Blocks function). For every n and ` ≤ o(
√
n), let us partition the vertex

set of the Hamming cube into ` blocks B1, B2, . . . , B` where every block Bi consists of all points in
consecutive levels of the Hamming cube, such that all of the blocks have roughly the same size, i.e.,
for every i ∈ `, we have (

1− `√
n

) 2n

`
≤ |Bi| ≤

(
1 + `√

n

) 2n

`
.2

Then the corresponding balanced blocks function with ` blocks, denoted3 BB(n, `) : {0, 1}n →
{0, 1}, is defined to be the blockwise constant function which takes value 1 on all of B1 and whose
value alternates on consecutive blocks.

Note that BB(n, `) is a totally symmetric function: it is unchanged under permutations of its
inputs. Thus, we can partition {0, 1, . . . , n} into ` intervals I1, I2, . . . , I`, such that Ii is the set of
Hamming levels that Bi contains.

[CGG+17] shows that Balanced Blocks functions satisfy a useful property that we soon recall in
Claim 2.10, after making an important definition.

Definition 2.9 (Violation hypergraph with respect to `-monotonicity ([CGG+17])). Given a
function f : {0, 1}n → {0, 1}, the violation hypergraph of f is Hviol(f) = ({0, 1}n, E(Hviol)) where
(x1, x2, · · · , x`+1) ∈ E(Hviol) if the ordered (`+ 1)-tuple x1 ≺ x2 ≺ . . . ≺ x`+1 (which is a (`+ 1)-
uniform hyperedge) forms a violation to `-monotonicity in f . A collection Mh of pairwise disjoint
(`+ 1)-uniform hyperedges of the violation hypergraph is said to form a violated matching.

Claim 2.10 ([CGG+17, Claim 3.8]). Let h def= BB(n, `). Then h is (` − 1)-monotone and not
(`−2)-monotone. Furthermore, the violation graph of h with respect to (`−2)-monotonicity contains
a violated matching of size at least (1−o(1))2n

` , where every edge of the matching y1 � · · · � y`−1 has
h(y1) = 1 and h(yi) 6= h(yi+1) for 1 ≤ i < `− 1.

This machinery allows us to deduce the following.

Claim 2.11. Let h def= BB(n, 3k). Then d(h,Mk) ≥ Ω(1) 4.

Proof of Claim 2.11. By Claim 2.10, Hviol(h) contains a matching Mh of (3k − 1)-tuples of size
(1−o(1))2n

3k , and for every tuple in the matching y1 � · · · � y3k−1 we have h(y1) = 1 and h(yi) 6= h(yi+1)
for 1 ≤ i < 3k− 1. We see that any k-monotone function close to h must have at most k flips within
any such tuple, by definition. It follows that any k-monotone function differs from h in at least

2The blocks are stacked successively. The block with index i+1 lies immediately above the one with index i.
3We will arbitrarily fix a function that satisfies these conditions.
4d(f,g) here denotes the Hamming distance between boolean functions f and g defined on the binary cube. Thus,

2.11 says that the function h is sufficiently far from being k-monotone.
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k − 1 vertices in every tuple of Mh. Thus, the Hamming distance between h and any k-monotone
function is at least

(1− o(1))2n

3k · (k − 1) ≥ 2n

5 .

We are now ready to describe the hard family.

2.1.1 The Hard Family

In what follows, let s def= g(k, n). Also, let r def= g(k,n)
k . We now describe the hard instance for

(k, s)-testing.
Consider the partition of the set of indices in [n] into two different disjoint sets, L and R, with

sizes |L| = nL = n · (1 − 1
625r2 ) and |R| = nR = n

625r2 , respectively.5 We will write z ∈ {0, 1}n as
z = (x, y), where x ∈ {0, 1}|L| and y ∈ {0, 1}|R|. We define MIDL

def= {i :| i− nL
2 |≤

√
nL

100 }, to denote
the set of “balanced” inputs restricted to the set of indices in L.

Assuming k is even6, we define fnL : {0, 1}n → {0, 1} by

fnL(x, y) def=
{

0, if |x| 6∈ MIDL

BB(nR, 3s)(y), otherwise i.e., |x| ∈ MIDL,

where x ∈ {0, 1}|L| and y ∈ {0, 1}|R|.
For x ∈ {0, 1}L, let us denote by Hx the restriction of the hypercube {0, 1}n to the points (x, y),

with y ∈ {0, 1}|R|. Note that for x ∈ MIDL, the restriction of the function to Hx is a copy of
balanced blocks function on nR = n/625r2 variables with 3s blocks.

Claim 2.12. The function f = fnL is Ω(1)-far from being s-monotone.

Proof. By Fact 2.7, picking ε = 1
3 , say, it follows that for a constant fraction of the points x ∈ {0, 1}nL ,

the function f restricted to the cube Hx is a balanced blocks function on 3s blocks. By Claim 2.10,
there is a matching of violations to (3s− 2)-monotonicity within the violation graph on Hx, of size
at least Ω(1) · 2nR

3s . It follows that the there is a matching of violations to (3s− 2)-monotonicity
on the whole domain {0, 1}n of size at least Ω(1)2n

3s . As in the proof of Claim 2.11, to produce a
function that is s-monotone, one must change the value of f in at least s points of each matched
hyper-edge. It follows that f is Ω(1)-far from being s-monotone.

Our hard family of functions is the orbit of the function fnL under all the permutations of the
variables.

Definition 2.13. The family Fk,s, parameterized by k and s is defined as follows. Setting nL =
(1− k2

625s2 )n, we define

Fk,s
def= { fnL ◦ πσ : σ ∈ Sn }

5For the sake of presentation, we ignore integrality issues where possible.
6For odd k, the function is defined almost analogously – the only difference is that fnL (x, y) = 1 whenever

|x| > nL
2 +

√
nL

100 . We make this assumption throughout the paper.
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where πσ : {0, 1}n → {0, 1}n is a permutation that sends the string {(a1, a2, . . . , an)} to {aσ(1), aσ(2), . . . , aσ(n)}
for a permutation σ : [n]→ [n]. We omit the parameters k and s if it is clear from the context.

We now observe that these functions are indeed far from being s-monotone. This follows since
s-monotonicity is closed under permutation of the variables, and by Claim 2.12.

Claim 2.14. Every f ∈ Fk,s, f is Ω(1)-far from s-monotone.

Therefore, we proved the distance property from Theorem 2.1

2.1.2 The Hard Family vs. the Chain Tester

Recalling that the basic chain tester picks a uniformly random chain in {0, 1}n, note that the
distribution of the queries chosen by the chain tester is unchanged over permutations of the
variables. Thus, it suffices to analyze the probability that the chain tester discovers a violation to
k-monotonicity on fnL . We will show that this probability is very small if the quantity s/k is small.

Claim 2.15. There exists a constant C > 0, such that the probability that a random chain reveals a
violation to k-monotonicity in fnL is at most exp

(
−C k2

s2
√
n
)
.

Let Z be a fixed chain 0n = z0 ≺ z1 ≺ z2 ≺ · · · ≺ zn = 1n in {0, 1}n. Note that fnL(zi) =
fnL(xi, yi) = 0 if |xi| /∈ MIDL. Thus, if there is a violation to k-monotonicity in Z, then it can be
found among points in Z where |xi| ∈ MIDL. Thus, a chain can only exhibit a violation on points
zi = (xi, yi) where nL/2 −

√
nL/100 ≤ |xi| ≤ nL/2 + √nL/100. By definition, regardless of the

exact structure of xi in this interval, fnL(xi, yi) = BB(nR, 3s)(yi). Since BB is a totally symmetric
function, to determine if Z exhibits a violation, it is enough to analyze the set

V (Z) def= {j : there exists zi = (xi, yi) ∈ Z such that |xi| ∈ MIDL and |yi| = j}.

We remark that for every chain Z, V (Z) is a set of consecutive integers.

Claim 2.16. Suppose Z contains a violation to k-monotonicity. Then |V (Z)| ≥ k√nR/(16s).

Proof. By Fact 2.6, the maximum value of Pry∼{0,1}nR [|y| = t] over values of t is 2/√nR. Since
BB(nR, 3s) has 3s blocks, the number of consecutive levels of Ii in any block Bi must satisfy

(2/
√
nR)|Ii| ≥

1
3s(1− o(1)) ≥ 1

4s,

so |Ii| ≥
√
nR/(8s). To see a violation to k-monotonicity, the chain Z must contain points from each

Hamming level in k− 1 complete blocks, so this requires |V (Z)| ≥ (k− 1)√nR/(8s) ≥ k
√
nR/(16s),

as claimed.

We will show that that |V (Z)| reaching this value is very unlikely for a random chain Z. Let Z
be a random chain 0n ≺ z1 ≺ · · · ≺ zn−1 ≺ 1n.

Proof of Claim 2.15. The proof follows from Claim 2.16 and the following claim.

Claim 2.17. Let Z be a random chain. Then Pr[|V (Z)| ≥ k√nR/(20s)] ≤ exp
(
−0.00009

r2
√
n

)
.
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Proof. Let j be the smallest index such that zj = (xj ,yj) satisfies |xj | = nL/2−
√
nL/100. This is

the index where the chain enters the region where it could find violations.
Let w be the largest index such that zw = (xw,yw) satisfies |xw| = nL/2 + √nL/100. If Z

contains a violation to k-monotonicity, then it must occur on the subchain zj−1 ≺ zj ≺ · · · ≺
zw ≺ zw+1. By construction, we have f(z`) = 0 if ` ≤ j − 1 or ` ≥ w + 1. Further, V (Z) =
{|yj |, |yj+1|, . . . , |yw−1|, |yw|}, and |V (Z)| = |yw| − |yj |+ 1. Thus, to prove the claim, it satisfies to
analyze |yw| − |yj |. Note w − j is exactly √nL/50 + |V (Z)| − 1; this accounts for √nL/50 flips of
variables in L and |V (Z)|−1 flips of variables in R. Informally, we want to show that the ratio of the
number of variables flipped in L to number of variables flipped in R is, with very high probability,
too small for the chain tester to succeed in finding a violation to k-monotonicity.

To simplify our analysis, we will not work directly with w. Instead, define j as above, but
consider zj′ = (xj′ ,yj′), where j′ = j +

√
n/3. We will show that, with high probability, j′ ≥ w,

and |yj′ | − |yj | (and thus |yw| − |yj |) is small.
We claim that the value of |yj′ | − |yj | is a random variable with a (random) hypergeometric

distribution. Indeed, to draw a random variable distributed as this difference, we construct the
following experiment that simulates the behavior of a random chain with respect to the function f :
• The chain tester picks

√
n/3 coordinates from the n− |zj | coordinates set to 0.

• nR−|yj | of these coordinates are “successes” for the chain tester, which correspond to flipping
variables in R, and
• nL − |xj | of these coordinates are “failures” for the chain tester, which correspond to flipping
variables in L.

Let H(u,N, t, i) denote the probability of seeing exactly i successes in t independent samples,
drawn uniformly and without replacement, from a population of N objects containing exactly u
successes.

The chain tester is most likely to see successes in the above experiment if |yj | = 0; we will
assume that this happens. As seen in the proof of Claim 2.16, in order to successfully reject f , the
chain must witness at least k

√
nR

16s successes. Let t = k
√
nR

20s .
Note that if the number of successes is i < t, then the number of failures is at least

√
n

3 − t ≥√
n

3 −
√
n

500 >
√
nL

50 , and so in this case we have |V (Z)| < t; this corresponds to the chain missing a
complete balanced block. It follows that the proof reduces to upper bounding the quantity

Pr[|V (Z)| ≥ t] =
∑
i≥t

H(nR, nL/2 +
√
nL/100 + nR,

√
n/3, i).

We analyze the above quantity using a Chernoff bound for hypergeometric random variables,
where X = |yj′ | − |yj |.

Theorem 2.18 (Theorem 1.17 in [Doe11]). Let X be a hypergeometrically distributed random
variable. Then

Pr[X ≥ 5
4 · E[X]] ≤ exp(−E[X] /48).

We use the following claim.

Claim 2.19. 4
15 · t ≤ E[X] ≤ 4

5 · t.
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Proof. Standard facts about the hypergeometric distribution imply that

E[X] =
√
n

3 ·
nR

nL/2 +√nL/100 + nR
.

Recall that r = s/k ≥ 1, nL = n(1 − 1/(625r2)) > 2n/3, nR = n/(625r2), and t = k
√
nR

20s =
√
nR

20r =
√
n

500r2 . It follows that

nL/2 +
√
nL/100 + nR > nL/2 > n/3.

Therefore
E[X] <

√
n

3 ·
3nR
n

=
√
n · 1

625r2 = 4
5

√
n

500r2 = 4
5 · t.

Since nL/2 +√nL/100 + nR < n,

E[X] >
√
n

3 ·
nR
n

=
√
n

3 ·
1

625r2 = 4
15

√
n

500r2 = 4
15 · t.

We can now conclude that

Pr[X ≥ t] = Pr[|V (Z)| ≥ t] =
∑
i≥t

H(nR, nL/2 +
√
nL/100,

√
n/3, i)

= Pr
[
X ≥ E[X] · t

E[X]

]
≤ Pr

[
X ≥ E[X] · 5

4

]
≤ exp(−E[X] /48)

≤ exp(−t/180) = exp
( √

n

90000r2

)
.

2.2 The reduction

We now prove Theorem 2.2. As mentioned, Theorem 2.2 and Theorem 2.1 immediately imply
Theorem 1.6.

Proof of Theorem 2.2. We show that given a q-query non-adaptive, one-sided (k, s)-tester, one can
obtain a O

(
qk+1n

)
-query (k, s)-tester that only queries values on a distribution over random chains.

Let T be a q-query non-adaptive, one-sided (k, s)-monotonicity tester. Therefore, T accepts
functions that are k-monotone, and rejects functions that are ε-far from being s-monotone with
probability 2/3.

Define a tester T ′ that on input a function f does the following: it first gets the queries of
T , then for each (k + 1)-tuple q1 ≺ q2 ≺ · · · ≺ qk+1, T ′ queries an entire uniformly random chain

12



from 0n to 1n, conditioned on containing these k + 1 points. Therefore, T ′ is also one-sided, makes
O(
( q
k+1
)
n) = O(qk+1n) queries, and its success probability is no less than 7 the success probability

of T .
Define T ′′ that on input f picks a random permutation σ : [n]→ [n] and then applies the queries

of T ′ to the function f ◦πσ (where πσ is defined as in Definition 2.13). This means that if T ′ queries
q, T ′′ queries πσ(q). Then T ′′ ignores what T ′ answers and only rejects if it finds a violation on any
one of the chains.

Note that if f is k-monotone, then so is f ◦ πσ, and if f is ε-far from being s-monotone, then so
is f ◦ πσ.

Therefore, T ′′ is one-sided, non-adaptive, and makes O(qk+1n) queries. Since T ′ is one-sided, it
can only reject if it finds a (k + 1)-tuple forming a violation to k-monotonicity. So if T ′ rejects, so
does T ′′, and it follows that the success probability of T ′′ is at least the success probability of T ′,
which is at least 2/3.

We now claim that the queries of T ′′ are distributed as O(
( q
k+1
)
) uniformly random chains.

While the marginal distribution for each individual chain is the uniform distribution over chains,
the joint distribution over these chains is not necessarily independent. Suppose T ′ queries points
q1, q2, · · · qk+1 with q1 ≺ q2 ≺ · · · ≺ qk+1. Then πσ(qi) is a uniformly random point on its weight
level, and πσ(q1) ≺ πσ(q2) ≺ . . . ≺ πσ(qk+1). It follows that a chain chosen uniformly at random
conditioned on passing through these points is a uniformly random chain in {0, 1}n.

Let p be the success probability of the basic chain tester that picks a uniformly random chain in
{0, 1}n and rejects only if it finds a violation to k-monotonicity. Taking a union bound over the
chains chosen by T ′′, the success probability of T ′′ is at most p ·

( q
k+1
)
≤ p · qk+1. It follows that

p · qk+1 ≥ 2/3, from which it easily follows that p = Ω(q1/(k+1)), concluding the proof.

3 Upper Bounds over the Hypergrid
In this section we prove Theorem 1.7. In this section, we consider Boolean functions over the
hypergrid [n]d. For convenience, we will define [n] = {0, 1, 2, . . . , n− 1}. Assuming m divides n, we
define Bm,n : [n]d → [m]d be the mapping such that Bm,n(y)i = byi/mc for 1 ≤ i ≤ d. For x ∈ [m]d,
we define B−1

m,n(x) to be the inverse image of x under Bm,n. Specifically, B−1
m,n(x) is the set of points

of the form m ·x+ [n/m]d, using the standard definitions of scalar multiplication and coordinatewise
addition. That is, B−1

m,n is a “coset” of [n/m]d points in [n]d. We will call these cosets blocks, and we
will say that h : [n]d → {0, 1} is an m-block function if it is constant on B−1

m,n(x) for every x ∈ [m]d.
For readability, we will often suppress the dependence on m and n.

Claim 3.1 (Claim 7.1, [CGG+17]). Suppose f : [n]d → {0, 1} is k-monotone. Then there is an
m-block function h : [n]d → {0, 1} such that d(f, h) < kd/m.

Claim 3.2. Suppose h : [n]d → {0, 1} is an m-block function. Then h is ((m− 1)d− 1)-monotone.

Proof. Without loss of generality, we assume that h(0d) = 0. Suppose for the sake of contradiction
that h is an m-block function such that h contains a violation to ((m − 1)d − 1)-monotonicity.
Equivalently, there exists y0 ≺ y1 ≺ · · · ≺ y(m−1)d−1 in [n]d such that h(y0) = 1 and h(yi) 6= h(yi+1)

7We assume that every query made by T belongs to at least one (k + 1)-tuple. Queries that do not are of no help
to T , since these queries can not be part of a violation to k-monotonicity discovered by T , and we are assuming that
T is non-adaptive and one-sided.
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for 0 ≤ i ≤ (m− 1)d− 2. Since h is constant on each block, we have no two yi’s are in the same
block. Thus the set {Bm,n(yi) : 0 ≤ i ≤ (m− 1)d− 1} contains (m− 1)d distinct vectors in [m]d
that can be totally ordered. This implies that 0d and (m− 1)d (this is a vector of d coordinates, all
of which are m− 1) are in this set. Clearly, 0d is the “smallest” vector in this total order, and it
follows from our definition of violation that h(0d) = 1. This is a contradiction, since we assumed at
the outset that h(0d) = 0. Thus h does not contain a violation to ((m− 1)d− 1)-monotonicity, and
h is ((m− 1)d− 1)-monotone.

We define the m-block-coarsening of a function f : [n]d → {0, 1} to be the m-block function
h : [n]d → {0, 1} such that d(f, h) is as small as possible. We would like to use query access to f
to get query access to h, but it is not guaranteed we can do this. Rather, for each x ∈ [m]d, we
randomly select a set Sx of points in the block B−1(x), where we choose |Sx| to be large enough
such that ∣∣∣∣∣ Pr

z∼SB(y)
[f(z) = 0]− Pr

z∼B−1(B(y))
[f(z) = 0]

∣∣∣∣∣ ≤ 1/9,

with high probability. Our target query complexity is independent of m, so we can not necessarily
query points from each Sx; these points merely allow us to talk about a specific (randomly chosen)
function. We denote by h′ : [n]d → {0, 1} the m-block function such that

h′(y) = argmax
b∈{0,1}

Pr
z∼SB(y)

[f(z) = b],

breaking ties arbitrarily. In other words, h′ can be thought of as the m-block function obtained by
(randomized) “greedy” coarsening of f where we greedily select the majority bit (or the winning bit)
over the random sample Sx to be the value h′ over the corresponding block.

Claim 3.3. We have d(f,h′) ≤ 5
4d(f, h).

Proof. Let B be a block such that h and h′ disagree. Then the wrong bit was estimated to be the
majority value of f when restricted to B. By our construction of h′, we must have∣∣∣∣ Pr

y∼B
[f(y) = h(y)]− Pr

y∼B
[f(y) = h′(y)]

∣∣∣∣ ≤ 1/9,

since exactly one of h(y) and h′(y) is 0 and the other is 1. It follows that Pry∼B[f(y) 6= h(y)] ≥ 4/9
and Pry∼B[f(y) 6= h′(y)] ≤ 5/9. Combining these inequalities, we get Pry∼B[f(y) 6= h′(y)] ≤
5
4 Pry∼B[f(y) 6= h(y)].

Clearly, if h and h′ do not disagree on B, then the previous probabilities are equal and the
inequality holds. Thus, for all blocks B, Pry∼B[f(y) 6= h′(y)] ≤ 5

4 Pry∼B[f(y) 6= h(y)]. The claim
follows by taking the expected value of each side over a uniformly chosen block.

Proof of Theorem 1.7. In our tester, we set m = (2kd2/ε+ 1)/d+ 1, and the tester simply estimates
d(f,h′) to within ±ε/8, which can be done with Õ(1/ε2) queries. Note that query access to h′ can
be simulated because h′ is the result of the randomized greedy coarsening described earlier. By
Claim 3.1, if f is k-monotone, then there is an m-block function h such that

d(f, h) < kd/m = kd/((2kd2/ε+ 1)/d+ 1) < kd2/(2kd2/ε) = ε/2,
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and it follows that d(f,h′) ≤ 5
4d(f, h) ≤ 5

4(ε/2) = 5ε/8. By Claim 3.2, if f is far from 2kd2/ε-
monotone, then it is ε-far from everym-block function, as for our setting ofm, we have ((m−1)d−1) =
2kd2/ε. It follows that d(f,h′) ≥ ε. Thus, the tester correctly accepts if the estimate of d(f,h′) is
at most 3ε/4 and correctly rejects if this estimate is at least 7ε/8.

Acknowledgments. We thank our collaborators Clément Canonne and Siyao Guo, who have
gracefully refused to co-author this paper.
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