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Abstract

We show that high dimensional expanders imply derandomized direct product tests,
with a number of subsets that is linear in the size of the universe.

Direct product tests belong to a family of tests called agreement tests that are important
components in PCP constructions and include, for example, low degree tests such as line vs.
line and plane vs. plane.

For a generic hypergraph, we introduce the notion of agreement expansion, which captures
the usefulness of the hypergraph for an agreement test. We show that explicit bounded
degree agreement expanders exist, based on Ramanujan complexes.

to Oded Goldreich, with love and admiration, on the occasion of his 60th birthday

1 Introduction

This paper shows that derandomized direct product tests can be obtained from high dimensional
expanders. Direct product tests fit into a more general family of tests called agreement tests
which include low degree agreement tests such as the plane vs. plane [RS97] and line vs. line
test [AS97], and were first abstracted by Goldreich and Safra in [GS97]. These are important
components in the construction of nearly all probabilistically checkable proofs (PCPs) and
capture a certain local to global behavior.

PCPs and agreement tests. In all efficient PCP constructions we break a proof into small pieces,
use inefficient PCPs (i.e. PCP encodings that incur a large blowup) to encode each small piece,
and then through an agreement test put the pieces back together. The agreement test is needed
because given the collection of encoded pieces, there is no guarantee that the different pieces
come from the same underlying global proof, i.e. that the proofs of each piece can be “put back
together again”. The PCP system must ensure this through agreement testing: take two pieces
that have some overlap, and check that they agree. For this idea to work we must be able to pass
from good pairwise (local) agreement to consistency with a single global proof.

That is, the scheme should have two features,
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1. “Sampling property”: the collection of subsets X = {s ⊂ [n]} should be a good sampler, so
that any set of µn elements are seen by almost all sets s ∈ X with the correct proportion (i.e.
each s should see roughly µ|s| elements). We want the subsets in X to be small, and we
want the number of subsets to be not too large.

2. “Agreement expansion”: There should be an agreement test for X. An agreement test is a
distribution over say pairs of subsets such that, roughly speaking, if a given collection has
high pairwise agreement on average, then it is close to being consistent with some global
string.

We initiate a study of the following general question: which collections of subsets X satisfy
the two above properties? We formulate this as a type of high dimensional expansion of X which
we term agreement expansion, and show a construction of such an X that has only O(n) subsets.

1.1 Agreement Expansion - definition and main theorem

Let [n] be a ground set and let X(d) be a collection of subsets of [n] which, for concreteness, can
be the set of all d-dimensional faces of a simplicial complex X on n vertices.

A local assignment is a collection f = { fs} of local functions fs ∈ {0, 1}s, one per subset s ∈ X(d).
To be clear, fs specifies a 0/1 value for each x ∈ s. It has no information about elements x < s so it
is “local”. A local assignment is called global if there is a global function 1 : [n]→ {0, 1} such that

∀s ∈ X, fs ≡ 1|s

We denote by Global = Global(X(d)) the set of global assignments over X(d).
An agreement-check for a pair of subsets s1, s2 checks whether their local functions agree,

denoted fs1 ∼ fs2 . Formally,

fs1 ∼ fs2 ⇔ ∀x ∈ s1 ∩ s2, fs1(x) = fs2(x).

It is easy to see that any local assignment that is global passes all agreement checks. The converse
is also true: a local assignment that passes all agreement checks must be global.

An agreement test is specified by giving a distributionD over pairs of subsets s1, s2. We define
the agreement of a local assignment to be the probability of agreement,

agree
D

( f ) .
= P

s1,s2∼D

[
fs1 ∼ fs2

]
.

An agreement theorem shows that if f is a local assignment with agree
D

( f ) > 1 − ε then
f is 1 − O(ε) close to a global assignment. Such a theorem relates two ways of measuring
the closeness of f to being global: the actual distance dist( f ,Global) and the distance we
observe when looking at the “boundary”, namely the checks that fail. The latter we denote by
disagree

D
( f ) .

= 1 − agree
D

( f ). This gives rise to the following definition of agreement expansion
of X andD as a type of “Rayleigh quotient”,

Υ(X,D) = inf
f

disagree
D

( f )
dist( f ,Global(X))

, (1.1)
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where the infimum is over all possible non-global assignments f . A lower bound on Υ implies
that when the disagreement is small then the distance to global is also small. This means that
the test “works” in that it provides a good approximation to the actual distance of f from being
global. We are now ready to provide the formal definition of an agreement expander,

Definition 1.1 (Agreement expander). A d-dimensional complex X is a c-agreement-expander if
its underlying graph1 is connected and if there exists a distributionD such that

Υ(X,D) > c.

In other words, for every f = { fs}s∈X(d),

If agree
D

( f ) > 1 − ε, ⇒ ∃1 : X(0)→ {0, 1}, s.t. P
s

[ fs = 1|s] > 1 − ε/c.

The “in other words” part of the definition is a statement that is the bread and butter of
property testing: if a test passes with probability at least 1 − ε then the object is 1 − ε′ to the
property. Thus, proving that a certain pair (X,D) is an agreement expander is equivalent to
showing that the property Global(X) is testable withD as the test distribution.

For a d + 1 dimensional complex, there is one arguably most natural distributionD↑ over
pairs of subsets in X(d), which we shall call the one-up distribution. It is the distribution obtained
by choosing a random d + 1 dimensional face r, and then two random d-faces in it s1, s2 ⊂ r
independently. (The name is explained from the point of view of s1: we move “one-dimension-up”
towards r and then to s2).

Definition 1.2 (One-up agreement-expander). A d + 1-dimensional complex X is a c-one-up
agreement-expander if its underlying graph is connected and if

Υ(X,D↑) > c ·
1
d

In other words, for every f = { fs}s∈X(d),

If agree
D↑

( f ) > 1 − ε/d, ⇒ ∃1 : X(0)→ {0, 1}, s.t. P
s

[ fs = 1|s] > 1 − ε/c.

For the one-up distributionD↑ the factor 1
d is necessary as can be seen from its presence also

in the complete d-dimensional complex on n vertices (whose d-faces are all d + 1 element subsets
of the vertices). We prove,

Theorem 1.3 (Main). There exists a constant c > 0 and an explicit infinite family of bounded degree
complexes that are c-agreement expanders, and c-one-up agreement expanders.

This theorem implies a very strong derandomization of direct product tests. Previously,
the only known agreement test with comparable parameters was known for the complete
d-dimensional complex [DS14] which has ≈ nd+1 subsets. In comparison, the construction
here has only Od(n) subsets. There are some known derandomizations of direct product
tests [GS97, IKW09] (but none have a linear number of subsets) which we discuss later in the
introduction.

1The graph underlying a complex has an edge between u and v whenever they belong to a common face.
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1.2 Agreement expansion from high dimensional expanders

Our main theorem shows that high dimensional expansion implies agreement expansion. We
begin by introducing high dimensional expanders.

High dimensional expansion of simplicial complexes. A d-dimensional simplicial complex
X is a hypergraph on n vertices such that for every hyperedge s that belongs to the hypergraph,
all of its subsets also belong to the hypergraph. Hyperedges of a simplicial complex are also
called faces, and the dimension of a face is one less than its cardinality. Simplicial complexes
are viewed as higher dimensional analogs of graphs. It is standard to denote the vertices of the
complex by X(0), the edges by X(1) and in general X(i) is the collection of i-dimensional faces,
which are subsets of cardinality i + 1. The following two definitions are important,

– The graph underlying a complex is simply the graph obtained by keeping only the vertices
and the edges of the complex.

– The link of a face s ∈ X(i) in the complex, for i < d − 1, is itself a complex that is the
neighborhood of s, formally defined as

Xs = {t \ s | s ⊂ t ∈ X} .

In recent years several distinct notions of high dimensional expansion (of simplicial complexes)
have been explored. Coboundary expansion, introduced by Linial and Meshulam [LM06] and by
Gromov [Gro10], is an extension of graph expansion to higher dimensions, from a cohomological
perspective. A relaxation of the notion of coboundary expansion which is called cosystolic
expansion was introduced by [EK16]. Cosystolic expansion was shown [KKL14, DKW16]
to imply the topological overlapping property defined by Gromov [Gro10]. In [KM17] a
combinatorial “random-walk” type of expansion was defined. This notion is concerned with
the convergence speed of high dimensional random walks to the stationary distribution. Our
work is most related to the notion studied in [KM17], since we essentially prove that agreement
expansion is implied by high order random walks with optimal convergence rate. The work
of [KM17] showed that high order random walks in Ramanujan complexes converge rapidly to
their stationary distribution, and in this work we derive optimal bounds on the convergence
rate.

Marvelous Ramanujan Complexes. Much of the work on high dimensional expanders is
motivated by the existence of the Ramanujan complexes whose properties seem to be nearly
impossible. More than ten years ago Lubotzky, Samuels, and Vishne [LSV05b] constructed
higher-dimensional analogs to the celebrated LPS Ramanujan expander graphs [LPS88]. The
LPS graphs come from quotients of the infinite tree. In the algebraic world there is a higher
dimensional version of the infinite tree called the Bruhat-Tits building. This lead [LSV05b] to
study quotients of this infinite object as a generalization of [LPS88] (both [LPS88] and [LSV05b]
rely on deep number theoretic theorems establishing the Ramanujan conjectures for GL2 by
Drinfeld and for GLd by L. Lafforgue). In [LSV05b] the authors describe an explicit construction
of a family of quotients and show that they are simplicial complexes with uniformly bounded
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degree (i.e. every vertex participates in a bounded number of faces) that look locally exactly like
the infinite building.

The technical tools for reasoning about their construction are representation theoretic, and
the local similarity to the infinite building. A typical argument would first analyze what’s going
on in the infinite building and then proceed to prove that the same holds for the quotient. Thus
the infinite building is used as a “model” for understanding the quotient. In contrast, we use the
complete complex as a model. The advantage is that the complete complex is a finite and simple
combinatorial object that is easier to analyze than is the infinite building.

Previous works on the Ramanujan complex [KKL14, EK16] developed a combinatorial
property called there λ-skeleton expansion that these complexes enjoy, and that is much easier
to reason about. The power of this property is that on one hand it is easy to understand
combinatorially, and on the other hand it is powerful enough to imply interesting results. It is
also quite baffling in that except for the [LSV05b] construction there seems to be ‘no way’ to
satisfy the property.

Indeed this property was shown by [KKL14, EK16] to imply co-systolic expansion which
implies the topological overlapping property. Additionally in [KM17] it was shown that for a
complex with the λ-skeleton expansion property it holds that all its high order random walks
converge rapidly to their stationary distribution.

In this work we continue this approach of trying to capture a simple combinatorial property
of simplicial complexes and using that in order to understand further properties of the complex.
We introduce an arguably cleaner variant of the λ-skeleton expansion which we term λ-HD
expansion.

Definition 1.4 (λ-HD expander). A d dimensional simplicial complex is a λ-HD expander if for
every i < d − 1 and every s ∈ X(i), the underlying graph of the link Xs is a λ-spectral expander
graph, namely its second largest normalized eigenvalue is bounded in absolute value by λ.

This definition is nice in that the graphs underlying each link are expanding in the most
convenient way, namely spectrally. Previous work used a different and more subtle definition
(namely, the λ-skeleton expansion) because the LSV complexes are not λ-linik expanders: they
only have “one sided” spectral expansion. This is because the links of LSV complexes are
d-partite, which means that even though all eigenvalues are at most some small λ, there is a
negative eigenvalue with magnitude 1/d. We observe however that it is easy to derive λ-HD
expanders from LSV complexes by taking an appropriately small-dimensional skeleton. Relying
on the work of [LSV05b, EK16] we prove

Lemma 1.5 (λ-HD expanders exist). For every λ > 0 and every d ∈N there exists an explicit infinite
family of bounded degree d-dimensional complexes which are λ-HD expanders.

We remark that for d > 1 we know of only one way to obtain such complexes, and in
particular there is no known random construction that is a λ-HD expander, even for d = 2. In
contrast, for d = 1 they are in abundance.

Returning to agreement expansion: We show that every λ-HD expander has a lower-
dimensional skeleton that is an agreement expander. Recall that the k-skeleton of a d-dimensional
complex X is the k-dimensional complex obtained by keeping only faces of X of dimensions at
most k.
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Theorem 1.6 (λ-HD expanders give agreement expanders). There is some constant c > 0 such that
for every 1 < d ∈N and every d2-dimensional complex that is a λ-HD expander, its k-skeleton for k 6 d
is a k-dimensional complex that is a c-agreement expander.

Our main theorem (Theorem 1.3) is an immediate corollary of Lemma 1.5 and Theorem 1.6.
Thus, the bulk of this paper is devoted to proving Theorem 1.6.

1.3 Technical results on the way to proving the criterion for agreement expansion

Our proof of Theorem 1.6 has two main components. First, we analyze high order random walks
on a λ-HD expander, namely walks that move from k-face to k-face if they belong together to a
(k + t)-face (see Section 3 for precise definitions). We show that these walks are strongly mixing
in the sense that their spectral behavior is just like that of the analogous random walks on the
complete complex, up to an error term bounded by λ.

The second component is a proof of agreement expansion that proceeds by reduction to the
agreement expansion of the complete complex. The reduction crucially uses the strong mixing
of the high order random walks: we essentially prove that strong mixing of high order random
walks suffices for inheriting the agreement expansion of the complete complex.

1.3.1 Optimal high order random walks from decreasing differences

The key to our proof is an analysis of random walks that move from k-face to k-face if they
belong together to a k + 1 face.

Theorem 1.7 (Spectral gap of one-up random walk). Let X be a d-dimensional λ-HD expander. For
any k < d consider the random walk distributionD↑ that moves from a k-face s1 to a random k + 1 face
r ⊃ s1, and then to a random k-face s2 ⊂ r. Let Ak,k+1 be its transition matrix. Then the second largest
eigenvalue of Ak,k+1 is at most 1 − 1

k+1 + O(kλ).

If X is the complete complex, then it is not hard to see that the second largest eigenvalue is
1 − 1

k+1 − on(1). So this theorem is “best possible” in the sense that the loss in comparison to the
complete complex is negligible. This random walk was analyzed also in [KM17] who proved
that the second largest eigenvalue is at most 1 −O(1/k2). However, we will see below that for
our application this bound is insufficient and it is crucial to have the spectral gap close to that of
the complete complex.

Our proof of Theorem 1.7 introduces a method of decreasing differences. We study the
variance of a random walk simultaneously in multiple dimensions. It is easy to see that the
variance decreases as we go down in dimension, but in fact a stronger property holds. If we
look at the difference between the variance of successive dimensions, this difference itself turns
out to be (λ-approximately) decreasing as the dimension decreases from k to 0.

1.3.2 Samplers from optimal high order random walks

One can write the transition matrix Ak,k+1 of the one-up distribution as Ak,k+1 = M†M, where M
is the transition matrix taking us from a k face to a random k + 1 face that contains it. This matrix
is denoted Mk↗k+1 in Section 3. It turns out that the adjoint operator M† is the reverse transition
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matrix, moving us from a k + 1 face to a random k face contained in it. By multiplying these
matrices for increasing dimensions one after the other we get a description of the t-step random
walk: Ak,k+t = B†B where

B = Mk+t−1↗k+1Mk+t−2↗k+t−1 · · ·Mk↗k+1.

Once we have this description of B as a product of the M’s, the proof of the next theorem follows
directly from the previous one through a telescoping product of the eigenvalue bounds.

Theorem 1.8 (Spectral gap of t-up random walk). Let X be a d-dimensional λ-HD expander. Consider
the random walk that moves from a k-face s1 to a random k + t face r ⊃ s1, and then to a random k-face
s2 ⊂ r. Let Ak,k+t be the transition matrix of this random walk, then the second largest eigenvalue of
Ak,k+t is at most k+1

t+k+1 + O(tkλ).

Recall that we think of λ as arbitrarily small so this means that the eigenvalue above is nearly
k+1

t+k+1 . The fact that k+1
t+k+1 can be arbitrarily small as t increases is crucial. If t� k then λ(Ak,k+t)

is small and this implies that the bipartite graph whose left vertices are the k-faces and whose
right vertices are the (k + t)-faces is a good sampler. This sampling property drives our proof of
agreement expansion. We remark that for the argument above to hold it is crucial that we have
a bound on the spectral gap of D↑ of at most 1 − O(1/k). The spectral gap proven in [KM17]
which is 1 −O( 1

k2 ) only gives a constant bound on λ(Ak,k+t), and not one that tends to zero as
t→∞, and this is insufficient for sampling.

1.3.3 Double Sampler

We wish to highlight the combinatorial object that we now have in our hands, and in particular
its strong double sampling property. Combining Theorem 1.8 with Lemma 1.5, we get the
following theorem,

Theorem 1.9 (Double sampler). For every 1 < k < d and γ > 0, there is an infinite family of three-
partite incidence graphs {G(U,V,W,E)}n with three sets of vertices U = [n], V ⊂

([n]
k
)
, and W ⊂

([n]
d
)

and
non-negative weights on the vertices such that there is an edge between x ∈ [n] and s ∈ V iff x ∈ s, and
there is an edge between s ∈ V and r ∈W iff s ⊂ r, and such that the following properties hold

– |V| + |W| + |E| = O(n) where the constant depends on k, d, γ.

– G has the following double expansion property,

λ(G(U,V))2 6 1/k + γ and λ(G(V,W))2 6 k/d + γ (1.2)

where G(U,V) and G(V,W) are the respective bipartite graphs and λ is the second largest normalized
singular value of the appropriate transition matrix.

We refer to (1.2) as a double sampling property because if 1� k� d then both spectral gaps
are small and this implies good sampling properties: every set V′ ⊂ V is seen with the correct
proportion by almost all w ∈W, and at the same time, every set U′ ⊂ U is seen with the correct
proportion by almost all v ∈ V. We know of no other way of obtaining such an incidence graph.
In fact, it is interesting to compare this to the complete and to the random construction:
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– The complete construction is a construction as above for which V =
([n]

k
)

and W =
([n]

d
)
. The

complete construction has the same spectral gap but |W| =
(n

d
)
� Ω(n).

– Every random construction that is obtained by choosing a sparsification parameter p and
then leaving alive edges or vertices with probability p, is easily seen to fail to give these
properties. For example, if we choose to keep each r ∈

([n]
d
)

with probability O(n/
(n

d
)
) so as

to leave a linear number of subsets in W, the induced graph will be highly disconnected.

1.3.4 Reduction to agreement expansion on the complete complex, using the double sampler

Given a d dimensional complex X we move to a lower dimensional skeleton X(k) consisting
of all the k-faces of X, and prove agreement expansion for X(k). Our proof capitalizes on the
fact that X(k) contains many copies of the complete complex: one for every a ∈ X(d) consisting
of all sets {s ∈ X(k) | s ⊂ a}. (In fact X(k) can be viewed as a “convex combination” of complete
complexes). On each complete sub-complex we can apply the agreement expansion theorem
of [DS14] to deduce that the sets s ⊂ a must usually agree with one function 1a : a→ {0, 1}. We
crucially use the double sampling property as follows,

– Sampling from d-sets to k-sets is used to prove that for many d-faces a ∈ X(d) we have high
agreement inside the complete sub-complex of sets contained in a.

– Sampling from k-sets to points is used to move from distance ε between the global majority
and 1a on the level of k sets, to a distance of ε/k on the level of points. This shrinkage in
distance allows us to deduce that fs agrees with the majority for every x ∈ s.

1.4 Derandomized direct products and sums

The study of agreement tests continues a line of work on direct product tests which are
combinatorial analogs of parallel repetition (a PCP transformation that obtains strong gap
amplification). Parallel repetition has a high cost in terms of the blow up which is exactly
analogous to the fact that the complete complex on n vertices has ≈ nk k-faces. This lead
researchers to look for “derandomized parallel repetition”, and unfortunately this has hit a wall
in that there are known limitations to generic derandomization [FK95].

Nevertheless, in the world of direct product tests which are the combinatorial analog
of parallel repetition derandomization is not ruled out and [IKW09] have come up with a
derandomization for which they proved an agreement testing theorem (i.e., in our terms,
agreement expansion). This construction was later used [DM11] for a bona fide PCP construction.
The difficulty in moving from an agreement test to a PCP construction is in incorporating the
arbitrary PCP query structure into the test. In [DM11] this was done by modifying the PCP itself
to fit into the agreement expander.

This raises the question of whether a PCP test can be made to fit into the high dimensional
expanders that we study here. This would potentially allow using the agreement expansion in a
PCP construction. Whether or not this is possible is left to future work, but in the meantime,
in this work we show for the first time a derandomized direct product test with a mere linear
number of subsets. We define, for every simplicial complex X, the direct product encoding
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corresponding to X (see Definition 7.2). Our main theorem can be rephrased as a theorem about
the two-query testability of this encoding, see Lemma 7.3.

The direct product encoding has been used for hardness amplification in settings outside of
PCPs, and it is possible that this derandomization would be useful there as well.

The direct sum encoding is very related to the direct product one: for every subset s we
replace fs by

∑
x∈s fs(x) mod 2, i.e. we simply take the XOR of the bits. This gives an encoding

from n bits to |X(k)| bits, i.e. when we map a function on the vertices to a “cochain” which is
a Boolean function on the k-faces. Concretely, we define for every simplicial complex X, the
direct sum encoding corresponding to X (see Definition 7.1). When X(k) is bounded-degree this
encoding has “constant rate” since it maps n bits to O(n) bits. We show in Lemma 7.4 that if X(k)
is an agreement expander then this encoding is testable with the minimal number of 3 queries.

Distance amplification code. Note that this encoding is far from an error correcting code
because of its poor relative distance, which is about k

n , but nevertheless it has the interesting
distance amplification property: the distance between every two message strings w,w′ grows
roughly k-fold. This gives the first construction, to the best of our knowledge, of a distance
amplification code with constant rate that is locally testable with a constant number of queries,
independent of k.

One can view the set {0, 1}n of possible functions on the vertices as a code of distance 1/n
that is transformed, through the direct sum encoding, to a new code whose distance is Ω(k/n). If
we begin with a restricted set of functions, say a code C ⊂ {0, 1}n whose distance is δ, then this
transformation results in a new code whose distance is Ω(kδ) (as long as δ < 1/k), see Lemma 7.5.
However, even if C is locally testable to begin with, it is not clear how to retain the local testability
of the amplified code.

1.5 More related work

Works on PCP agreement tests. Agreement tests were initially studied as a type of low degree
test, e.g. the line vs. line test of [RS92a, RS92b, AS97] and the plane vs. plane test of [RS97].
Goldreich and Safra [GS97] were the first to consider the more general question of agreement
tests and listed a set of axioms that imply agreement expansion (in current terminology). They
were interested in finding a smaller collection of subsets on which such a theorem holds and
proved agreement expansion of a certain (derandomized) collection of subsets. However, their
result employs a weaker notion of approximate global consistency, namely that fs ≈ 1|s instead
of fs ≡ 1|s. Further works [DR06, DG08, IKW09] adopted this approximate consistency notion
which is in fact inherent in the small acceptance regime. The only setting where an agreement
test is known to have the (more natural) exact global consistency is in the work of [DS14] on the
complete complex (see a statement of that result in Theorem 2.12).

For the approximate global consistency notion, Impagliazzo et. al. [IKW09] suggested to look
at a collection of subsets that corresponds to affine subspaces inside a high-dimensional vector
space. The collection has size that is polynomial in the size of the ground set which is much
better than the exponential size of the complete complex, but still far from linear and certainly at
least quadratic. The [IKW09] agreement test theorem holds also in the so-called small acceptance
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regime, also known as the 1% regime. Extending our results on the bounded-degree complexes
to this regime is an intriguing open question. In particular, we conjecture the following to be true

Conjecture 1.10 (Derandomization in the 1% regime). For every δ > 0 there exists a d ∈N and an
infinite family X1,X2, . . . of sparse d-dimensional complexes, and for each Xn a distribution Dn over
pairs of subsets, such that for each X = Xn the following holds. For every f = { fs}s∈X(d), if agree

D
( f ) > δ

then there is a global 1 : X(0)→ {0, 1} such that P[ fs ≈ 1|s] > Ω(δ).

Such a result holds for the complete complex [DG08], and the subspaces complex [IKW09].
So far in the PCP literature essentially two constructions are known that give non trivial

agreement tests. The first, called the direct product construction, is where X is the collection of
all subsets of size d, i.e. the complete complex. The second, called the subspaces construction, is
where the ground set [n] is identified with the points of some vector space Fm and the subsets
correspond to all fixed-dimensional linear (or affine) sub-spaces of Fm. Apart from these two
constructions (and some very similar variants) no other construction is known and certainly not
one with linear or nearly-linear size that so much as comes close to results cited above.

Recently agreement tests on the subspaces complex (Grassmann) were studied [KMS16,
DKK+16] towards proving strong inapproximability results and in particular the so-called 2-to-1
conjecture. This may be taken as further indication of the importance of agreement tests inside
PCP constructions.

We remark that although finding a smaller collection of subsets is called a derandomization
task (and this can be justified because we want to use fewer random bits to choose a random
subset in the collection), it is unlike most other derandomization questions studied in the context
of pseudorandom generators or extractors. The difference is that in standard derandomization a
random object with the correct size almost surely has the desired property, and the difficulty is
coming up with an explicit construction that imitates the random object. Here, in contrast, a
random collection of linearly many subsets, also called the random sparse complex, is very far
from having the desired agreement behavior. This is for a very similar reason to the fact that a
random sparse simplicial complex is not at all a good high-dimensional expander.

Works on high order random walks. Combinatorial high order random walks on high
dimensional expanders were first defined and analysed by [KM17], who showed that these
walks are rapidly mixing. However the second largest eigenvalue bound obtained by [KM17] is
1 −O( 1

k2 ) and not 1 −O( 1
k ). This innocent looking difference is quite important since only the

optimal gap of 1/k (that we end up showing in Theorem 1.7) suffices for proving the strong
sampling properties that underly our proof.

First [Fir16] studies a broad collection of high order random walks and shows that their
spectral behavior is the same as that of the infinite Affine Building. This could potentially lead to
an alternate way of calculating the spectral gap of these walks: understand them on the infinite
building and then transfer the results to the finite quotient. However, this path has so far not
been carried out.

We refer the reader to the work [LLP17] and the references therein for a broader discussion
of high order random walks.
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1.6 Discussion

High dimensional expanders and PCPs. We believe that there is a true connection between
high dimensional expanders and PCPs. These objects posses a mixture of pseudo-randomness
and structure that can not be obtained by any known random construction. This is in striking
contrast to the one dimensional case, where random graphs easily give nearly optimal expanders.

We think that further exploration of the relations between these two objects could be beneficial.
It could well be the case that known high dimensional expanders can be used to construct better
PCPs, either towards the sliding scale conjecture or towards linear size PCPs and locally testable
codes. Additionally, it can be the case that known PCP constructions based on composition can be
used to obtain new constructions of high dimensional expanders that are not algebraic. Remark:
although some limitations are known regarding constructing high dimensional expanders (under
some conditions only number theoretic constructions can be Ramanujan) there is no limitation
for constructing a generic λ-HD high dimensional expander. It would be very interesting to
construct such an object without using representation theory; This could possibly be achieved
through PCP techniques.

Agreement expansion is a kind of approximate cohomology with local coefficients. Func-
tions on a topological space are sometimes easier to specify by giving them as a collection of
local functions, one per small part of the space. It is required of course that the different local
functions agree on the intersection of their domains. This is called the sheaf condition, and
corresponds exactly to our notion of agreement. If the collection of local functions satisfies
agreement perfectly then it is a global section (or a cohomology with local coefficients). In this
language what we are studying is a notion of “approximate sections”.

The fact that agreement testing has a natural countepart in topology (although exact and not
approximate), hints towards promising relations between these seemingly different areas.

1.7 Organization

We start with a longish preliminaries section that contains known material about spectral theory
on graphs and bipartite graphs that have non-uniform vertex and edge distributions; and
definitions related to high dimensional expanders.

High order random walks are introduced in Section 3 and this section also contains the proof
of Theorem 1.7 and Theorem 1.8, modulo a key lemma regarding the spectral gap which is the
subject of Section 4. In Section 5 we prove Theorem 1.6 showing that every λ-HD gives rise to an
agreement expander. In Section 6 we prove Lemma 1.5 showing the existence of explicit λ-HD
expanders for all dimensions. In Section 7 we discuss derandomized direct products and sums.
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2 Preliminaries

2.1 Markov operators and singular values

The following is a slight generalization of the theory of spectral decomposition of graphs to the
case of bipartite graphs with nonnegative weights. By normalizing the weights to sum up to one
we can always think of such a bipartite graph as a probability distribution over pairs of vertices
(u, v) ∈ U × V.

Throughout the paper we will be working with Markov operators that are defined via a
distribution. We define this next,

Definition 2.1 (Markov operator of a bipartite graph). Let G = (U,V,E) be a bipartite graph, and
assume that each edge carries a non-negative weight puv such that

∑
u,v puv = 1.

– The probability distribution {puv} induces a marginal probability distribution on U and
similarly on V given by

pu =
∑
v∈V

puv, pv =
∑
u∈U

puv

All expectations on U,V are with respect to these distributions. Moreover, we define an
inner product on the space L2(U) of functions f : U→ R by

〈 f , f ′〉 .
= E

u
[ f (u) f ′(u)] =

∑
u∈U

pu f (u) f ′(u).

and similarly on the space L2(V).

– There are two natural linear operators A : L2(U)→ L2(V) and A† : L2(V)→ L2(U) that are
associated with G. These are the conditional expectation operators given by,

∀ f ∈ L2(U), A f (v) .
= E

u|v
[ f (u)],

∀1 ∈ L2(V), A†1(u) .
= E

v|u
[1(v)],

or, in terms of the normalized adjacency matrix, Auv =
puv
pu

and (A†)vu =
puv
pv

.

In case U = V and the distribution is symmetric (i.e. puv = pvu which corresponds to an
undirected graph), then it is more natural to view G simply as an undirected graph instead of
connecting two copies of V. Indeed there will be only one marginal distribution on the vertices
and only one (self-adjoint) operator A = A†, and so this definition coincides with that of a
Markov operator for undirected non-bipartite graphs.

12



One can check that for every f ∈ L2(U), 1 ∈ L2(V)

〈A f , 1〉 = E
xy

[ f (x)1(y)] = 〈 f ,A†1〉

justifying the notation. Note that the inner product on the right is over the space L2(U) whereas
the inner product on the left is over the space L2(V). The following claim justifies the use of the
term Markov operator,

Claim 2.2. Let A : L2(U) → L2(V) be a Markov operator as defined above. Then for every
f ∈ L2(U), ‖A f ‖2 6 ‖ f ‖2 and also A1 = 1.

Proof. This is immediate because A is an averaging operator. �

It now makes sense to consider the space of functions orthogonal to 1 and upper bound
‖A f ‖/‖ f ‖ in this space,

Definition 2.3 (Second largest singular value). Let A be a Markov operator. Define

λ(A) = sup
f⊥1

‖A f ‖
‖ f ‖

.

We remark that it also holds that

λ(A) = sup
f ,1⊥1

〈A f , 1〉
‖ f ‖ · ‖1‖

. (2.1)

Clearly this second definition is only larger because one can plug in 1 = A f , observing that if
f ⊥ 1 then also A f ⊥ 1. For the other direction use Cauchy Schwartz.

The following definition coincides with the standard definition, but is slightly more general
as it pertains to general and not necessarily uniform edge distribution,

Definition 2.4 (λ-expander). A bipartite graph G = (U,V,E) is called a λ-expander if λ(A) 6 λ,
where A : L2(U)→ L2(V) is the associated Markov operator.

A non-bipartite graph G = (V,E) is called a λ-expander if λ(A) 6 λ, where A : L2(V)→ L2(V)
is the associated Markov operator.

2.1.1 Concatenation of two Markov operators

Let U,V,W be three vertex sets. Let G′ = (U,V,E′) and G′′ = (V,W,E′′) each be a bipartite graph
with a probability distribution P′ and P′′ on the respective sets of edges E′ and E′′. Assume
further that the marginal distribution that P′ induces on V is identical to the marginal distribution
that P′′ induces on V. Define the bipartite graph G = (U,W,E) with edge distribution P defined
by

puw :=
∑

v
p′uvp′′vw = P

u1,v1,w1
[u1 = u,w1 = w].

Lemma 2.5. Let A,A′,A′′ be the Markov operators associated with G,G′,G′′ respectively. Then
A = A′′A′ and λ(A) 6 λ(A′) · λ(A′′).
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Proof. It is clear from the definition that A = A′′A′. Let f ∈ L2(U) such that E[ f ] = 0.
Clearly E[A′ f ] = 0 as well, and ‖A′ f ‖ 6 λ(A′)‖ f ‖. The claim is immediate since ‖A′′(A′ f )‖ 6
λ(A′′) · ‖A′ f ‖ 6 λ(A′′)λ(A′) · ‖ f ‖. �

Let G = (U,V,E) be a weighted bipartite graph and let A : L2(U) → L2(V) be its Markov
operator. The operator A†A : L2(U)→ L2(U) is self adjoint, i.e. (A†A)† = A†A, as is the operator
AA† : L2(V)→ L2(V). Every self-adjoint operator M on an n-dimensional space has a spectral
decomposition, namely there is a basis of eigenfunctions f1, . . . , fn ∈ L2(U) and real eigenvalues
λ1 > . . . > λn such that M fi = λi fi. Clearly if M is self-adjoint then λ(M) = max(|λ2|, |λn|).

Claim 2.6. If f is an eigenfunction of A†A with eigenvalue λ , 0, then 1 = A f is an eigenfunction
of AA† with eigenvalue λ. In particular λ(A†A) = λ(AA†).

Proof. By definition, λ f = A†A f = A†1. Applying A to both sides of the equation, we get
λ1 = A(λ f ) = AA†1. �

Claim 2.7. Let A : L2(U) → L2(V) and let A† : L2(V) → L2(U). Then λ(A†A) = λ(A)λ(A†) =
λ(A)2. �

Proof. The first equality follows immediately from Lemma 2.5. The second is by using (2.1) since

λ(A) = sup
f ,1⊥1

〈A f , 1〉
‖ f ‖ · ‖1‖

= sup
f ,1⊥1

〈 f ,A†1〉
‖ f ‖ · ‖1‖

= λ(A†) .

�

2.1.2 Expander mixing lemma and sampling

The following is quite standard.

Lemma 2.8 (Expander mixing lemma). For every U′ ⊂ U and V′ ⊂ V, denote f0 = P[U′] and
10 = P[V′],

|P
uv

[u ∈ U′ and v ∈ V′] − f010| 6 λ( f010(1 − f0)(1 − 10))1/2 6 λ
√

f010

Proof. Let f = 1U′ − f0 ∈ L2(U) and 1 = 1V′ − 10 ∈ L2(V). Clearly E[ f ] = 0 = E[1].

〈A1U′ , 1V′〉 = 〈A( f + f0), 1 + 10〉

= 〈A f0, 10〉 + 〈A f , 1〉 + 〈A f0, 1〉 + 〈A f , 10〉

= f010 + 〈A f , 1〉

Now since |〈A f , 1〉| 6 λ‖ f ‖·‖1‖, and since 〈A1U′ , 1V′〉 = Euv 1U′(u)1V′(v) = Puv[u ∈ U′ and v ∈ V′],
we get

|P
uv

[u ∈ U′ and v ∈ V′] − f010| 6 λ‖ f ‖ · ‖1‖

which is the desired conclusion since

‖ f ‖2 = E
u

(1U′(u) − f0)2 = f0(1 − f0) + (1 − f0) f 2
0 = f0(1 − f0)

and similarly ‖1‖2 = 10(1 − 10). �
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We will use a very similar version of this as follows,

Proposition 2.9. For every B ⊂ U be a “bad” set of vertices of measure P[B] = δ. Let T be the set of
“terrible” vertices v that see too many bad neighbors,

T =

{
v ∈ V

∣∣∣∣∣ Pu|v[u ∈ B] > 0.1 + P(B)
}
.

Then P[T] 6 100λ2δ.

Proof.
(P[B] + 0.1)P[T] 6 P

uv
[u ∈ B, v ∈ T] 6 P[B]P[T] + λ

√
P[B]P[T]

where the first inequality is by definition of T and the second inequality is using the expander
mixing lemma. Dividing both sides by

√
P[B]P[T] and rearranging, we get

P[T]
P[B]

6 λ2/0.01

�

2.2 Simplicial complexes and high dimensional expansion

A simplicial complex X = X(0) ∪ X(1) ∪ · · · ∪ X(d) of dimension d is a hypergraph on vertex set
X(0) such that for all 0 < i 6 d, X(i) is a collection of i-faces, which are subsets of X(0) of size i + 1.
The complex has the property that if s ∈ X then for every s′ ⊂ s, also s′ ∈ X. We also denote by
X(−1) the set containing the single empty set face.

We will consider a slight generalization where the complex comes with a distribution over
the top (i.e. d-dimensional) faces that is not necessarily uniform. This distribution naturally
extends to a distribution over X(i) by letting the probability of s ∈ X(i) be proportional to the
probability of the set {r ∈ X(d) | r ⊃ s}, see a more detailed description in Section 3.1.

For a face s ∈ X(i), the link Xs is a simplicial complex of dimension d − i − 1 defined by

Xs = {t \ s | s ⊂ t ∈ X} .

More accurately, we will give each top face in Xs a probability proportional to its probability in
X (but renormalized so that the probabilities sum to 1).

The one-dimensional skeleton of a complex X is the graph whose vertices are X(0) and whose
edges are X(1). The k-dimensional skeleton of a complex X is the k-dimensional complex whose
i-faces are X(i) for every 0 6 i 6 k.

High dimensional expanders.

Proposition 2.10 (Ramanujan complexes of [LSV05b, LSV05a]). For every d ∈N and every γ > 0
there is a number c = ( 1

γ )O(d2) and an infinite sequence of explicitly constructible d-dimensional simplicial
complexes X1,X2, . . . where Xt is on nt vertices and |Xt(d)| 6 c · nt, and for each t, X = Xt has the
following properties. For each i < d − 1 and each face v ∈ X(i), the vertices of the link Xv are colorable by
d − i colors such that:
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– Every d − i − 1-dimensional face in Xv has one vertex from each color.

– Consider the 1-skeleton of Xv, namely the graph whose vertices are Xv(0) and whose edges are
Xv(1). Then there are no edges inside a color class, and moreover, for every 1 6 i < j 6 d, the graph
induced on vertices colored i and j is a bipartite graph that is a γ-expander.

Proof. We choose a prime q whose size is at least 1/γ2. The work of [LSV05a] gives an infinite
sequence of explicitly constructible d-dimensional simplicial complexes based on finite quotients
of the Bruhat Tits building over a local field with characteristic q. These complexes have the
claimed number of vertices and faces and moreover, the link of every vertex looks exactly like
the link of the (infinite) affine building of dimension d. The link is a d − 1-dimensional simplicial
complex is known under the name “spherical building” or the “subspaces flag complex” and it is
possible to analyze it by elementary combinatorial considerations. The two itemized properties
are proven in [EK16, Section 5.2]. �

Definition 2.11 (λ-HD expander, restatement of Definition 1.4). A d-dimensional simplicial
complex is a λ-HD expander if for every i < d − 1 and every s ∈ X(i), the one dimensional
skeleton of Xs is a λ-expander graph.

The advantage of this definition is that it tells us that the links of a complex have the most
convenient expansion guarantee: their one-skeleton is a λ-expander (as per Definition 2.4).

A potential explanation to why this definition did not show up before is that it does not
hold for the LSV complexes. It turns out that sufficiently low-dimensional skeletons of an LSV
complex are indeed λ-HD expanders, as we show in Section 6.

2.3 Agreement expansion on the complete complex

Our proof of agreement expansion proceeds by reduction to the complete complex, where we
rely on the following result of [DS14],

Theorem 2.12 (The complete complex is an agreement expander [DS14]). Let X(k) be the complete
k dimensional complex on n vertices. Let f = { fs}s∈X(k) be a local function and letDt,k be the distribution
that chooses two random sets s1, s2 ∈ X(k) conditioned on |s1 ∩ s2| = t. If agree

Dt,k
> 1 − ε for t = θ(k)

then there is a function 1 : [n]→ {0, 1} such that Ps[ fs = 1|s] > 1 −O(ε).

3 Random walks on simplicial complexes

3.1 Random walks on simplicial complexes

Let X be a pure simplicial complex of dimension d, and let Dd be an arbitrary probability
distribution on X(d). We extendDd to a natural probability distributionD over sequences

sd ⊃ sd−1 ⊃ . . . ⊃ s1 ⊃ s0, si ∈ X(i)

Simply choose sd ∈ X(d) according to the distribution Dd, and then sd−1 ⊂ sd by removing a
random element from sd, and inductively we choose si−1 ⊂ si by removing a random element
from si. Since X is simplicial, si ∈ X(i) for every i.
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LetDi be the probability distribution induced in this way on X(i). It is easy to see that the
probability of a face r ∈ X(i) is directly proportional to the weight of top faces s ∈ X(d) that
contain it. Note that even ifDd happens to be uniform, for i < d,Di is not necessarily uniform,
because different r ∈ X(i) may be contained in a different proportion of top faces in X(d).

For each i we consider the space of functions f : X(i)→ R with inner product

〈 f , f ′〉 = E
s∼Di

[ f (s) f ′(s)]

and we denote this space by L2(X(i)). The norm on this space is ‖ f ‖2 = 〈 f , f 〉 = Es∼Di[ f (s)2].

Fix 0 6 t < k 6 d. Let Ptk be the distribution over pairs r ∈ X(t), s ∈ X(k) given by

P
Ptk

[(r, s)] := P
sd⊃...⊃s0∼D

[sk = s and st = r].

We view Ptk as a bipartite graph whose vertices are X(t) and X(k) and where we connect r and
s by an edge iff r ⊂ s. The weight on this edge is exactly PPtk[(r, s)]. Observe that the sum of
weights of edges adjacent to a vertex r ∈ X(t) is exactly the probability of r underDt. Similarly
the sum of weights of edges adjacent to a vertex s ∈ X(k) is exactly the probability of s underDk.

As discussed above for a general bipartite graph with non-negative weights, there are two
natural operators which we will denote Mt↗k : L2(X(t))→ L2(X(k)) defined by

∀r ∈ X(k), Mt↗k f (r) := E
s|r

f (s)

and Mk↘t : L2(X(k))→ L2(X(t)) defined by

∀s ∈ X(t), Mk↘t1(s) := E
r|s
1(r)

Easily check that
(Mt↗k)† = Mk↘t,

namely for every f : X(k)→ R and 1 : X(t)→ R

〈Mk↘t f , 1〉 = E
(r,s)∼Ptk

[1(r) f (s)] = 〈 f ,Mt↗k1〉.

3.2 Random walks on X(k)

Define random walk distributions on pairs (s1, s2) ∈ X(k) by defining their Markov operators:

Mk_k := Mk+1↘k Mk↗k+1 and Mk^k := Mk−1↗k Mk↘k−1

We observe that from the definition, and since (A†A)† = A†A both operators are self adjoint.
Morever, since λ(A†A) = λ(A)2 (see Claim 2.7)

λ(Mk_k) = λ(Mk↗k+1)2 and λ(Mk^k) = λ(Mk−1↗k)2

– The distributionDk^k corresponding to taking a random step according to the Markov
operator Mk^k can be described by choosing a random r ∈ X(k− 1) and then independently
two random k-faces s1, s2 ⊃ r and outputting s1, s2.
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– The distributionDk_k corresponding to taking a random step according to the Markov
operator Mk_k can be described by choosing a random w ∈ X(k+1) and then independently
two random k-faces s1, s2 ⊂ w and outputting s1, s2.

It is easy to check that in each of these distributions s1 is distributed according toDk. The same
holds for s2 since each distribution is symmetric with respect to s1 and s2.

In the next section we will prove,

Lemma 3.1. Assume that the complex X is a γ-HD expander. Then,

λ(Mk^k) 6 1 − 1/(k + 1) + O(kγ)

Let us first see how the lemma implies Theorem 1.7.

Proof of Theorem 1.7. Firstly, ignoring the O(γ) term, observe that it implies

λ(Mk↘k−1) 6
(
1 −

1
k + 1

+ O(kγ)
)1/2

. (3.1)

Plugging k← k + 1 into the above equation and moving to the adjoint we get

λ(Mk↗k+1) = λ(Mk+1↘k) 6
(
1 −

1
k + 2

+ O(kγ)
)1/2

(3.2)

which completes the proof. �

Next, we show how the lemma implies Theorem 1.8.

Proof of Theorem 1.8.
Mt↗k = Mk−1↗kMk−2↗k−1 · · ·Mt↗t+1,

so by relying on Lemma 2.5 and plugging in the bound from (3.2),

λ(Mt↗k) 6 λ(Mk−1↗k) · λ(Mk−2↗k−1) · · ·λ(Mt↗t+1) (3.3)

6
k∏

`=t+1

(
1 −

1
`

)1/2
+ O(tkγ)

=
( t
k

)1/2
+ O(tkγ)

where the last equality is because of a telescoping argument, and the previous inequality is true
as long assuming that γ < 1/k. �
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4 Decreasing differences and proof of Lemma 3.1

Let f : X(k)→ R be such that E[ f ] = 0 and E[ f 2] = 1. Let us define, for 0 6 i < k and a function
f : X(k)→ R, fi = Mk↘i f , and the correlation quantity

αi( f ) = ‖ fi‖2 = ‖Mk↘i f ‖2 = E
s′∼X(i),s1,s2∼Xs′ (k)

[ f (s1) f (s2)]. (4.1)

We also denote α−1( f ) = E[ f ] = 0 and αk( f ) = ‖ f ‖2 = 1. By definition, αk−1( f ) = ‖Mk↘k−1 f ‖2.
This value is related to the spectral gap since

‖Mk↘k−1 f ‖2

‖ f ‖2
6 λ(Mk↘k−1 f )2 = λ(Mk^k).

It is clear that for any i > j also αi > α j. We will be interested in the “second derivative” of this
sequence. For each −1 < i 6 k

∆i( f ) .
= αi( f ) − αi−1( f ) . (4.2)

In particular ∆k = 1 − αk−1( f ), and our goal is to prove that ∆k > 1/(k + 1) −O(kγ).

Lemma 4.1 (Decreasing Differences). Let f : X(k)→ R. If X is a γ-HD expander, then for each i > 0

∆i( f ) > ∆i−1( f ) · (1 − γ) > ∆i−1( f ) − γ .

The lemma directly implies that for each i < k, ∆i 6 ∆k + (k − i)γ. By assumption α−1( f ) =
E[ f ] = 0 and αk( f ) = 1, so

1 = αk( f ) − α−1( f ) = ∆k + ∆k−1 + ∆k−2 + · · · + ∆1 + ∆0 6 (k + 1)∆k + O(k2γ).

This implies that

1 − λ(Mk^k) > 1 − αk−1( f ) = ∆k >
1

k + 1
−O(kγ)

and completes the proof of Lemma 3.1. �

4.1 Decreasing differences - proof

In this section we prove Lemma 4.1. We will rely on the following lemma on graphs that will be
proven in the next section.

Lemma 4.2. Let G = (V,E) be a graph with non-negative weights on the edges. Suppose that G is a
γ-expander. Let h : E→ R be a function on the edges of G. Define h1 : V → R by setting for each vertex
i ∈ [n], h1(i) = E j|i h(i, j) and also let h0 = Ei[h1(i)]. Define

δ1 = E
i
[(h1(i) − h0)2] and δ2 = E

i j
[(h(i, j) − h1(i))2]

where all expectations above are with respect to the normalized edge and vertex distribution of G. Then
δ2 > δ1 · (1 − λ).
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Let fi = Md↘i f be as before and recall that αi( f ) = ‖ fi‖2.
For each s ∈ X(i) let

δ1(s) = E
s′Bs

( fi+1(s′) − fi(s))2 and δ2(s) = E
s′Bs
E

s′′Bs′
( fi+2(s′′) − fi+1(s′))2

where s1Bs denotes that s ⊂ s1 ∈ X(i + 1). For this section it is convenient to have X(−1) = {φ}
added to the complex. This allows to make sense of the definitions of δ1, δ2 also for i = −1.
Indeed, for the only member s = φ of X(−1) one can check that δ1(φ) and δ2(φ) coincide with
δ1, δ2 in Lemma 4.2 where h = f1. The lemma follows from the following two claims. It might be
useful to first think of the case i = −1.

Claim 4.3. For every −1 6 i < d − 2,

E
s∼X(i)

[δ1(s)] = αi+1( f ) − αi( f ) = ∆i+1 and E
s∼X(i)

[δ2(s)] = αi+2( f ) − αi+1( f ) = ∆i+2.

Proof.
E

s∼X(i)
E

s′Bs
[( fi+1(s′) − fi(s))2] = E

s
E

s′Bs
[ fi+1(s′)2

− 2 fi+1(s′) fi(s) + fi(s)2]

Since for each i > −1 and s ∈ X(i), Es′Bs[ fi+1(s′)] = fi(s), the middle term becomes −2 fi(s)2 and we
get

E
s
E

s′Bs
[ fi+1(s′)2

− fi(s)2] = αi+1( f ) − αi( f ).

Now,
E
s

[δ2(s)] = E
s′′Bs′

( fi+2(s′′) − fi+1(s′))2

and the equality follows from the previous equality, when we plug in i← i + 1. �

Claim 4.4. For every −1 6 i < d − 2 and every s ∈ X(i), δ2(s) > δ1(s) · (1 − γ).

Proof. Fix s ∈ X(i), and let us look at the link of s. Let V and E be the vertices and edges in the
link, explicitly

V =
{
s′ \ s

∣∣ s′Bs
}

and E =
{
s′′ \ s

∣∣ s′′ ⊃ s and s′′ ∈ X(i + 2)
}

Furthermore, we have an induced probability distribution on the edges given by the distribution
on X(i+2) conditioned on s. By the γ-HD expansion property, the graph G = (V,E) is a γ-expander.
Define a function h : E→ R by

h(u, v) = fi+2(s ∪ {uv}) .

It is easy to check that h(u) := Ev|u[h(u, v)] = fi+1(s ∪ {u}), so we can apply Lemma 4.2 to h and
deduce that δ2 > δ1 · (1 − γ). This completes the proof since δ1, δ2 in the lemma is exactly our
δ1(s), δ2(s). �

The proof is complete since

(1 − γ)∆i+1 = (1 − γ)E
s

[δ1(s)] 6 E
s

[δ2(s)] = ∆i+2. �
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4.2 Near-monotonicity of variance for expander graphs and proof of Lemma 4.2

In this section we study the relationship between local and global variances in a graph. First
some notation.

Notation. Let G = (V,E) be an undirected graph on n vertices, and let w be a probability
distribution on the edges. (It might be easier at first to think of G as d-regular and w as a uniform
distribution on the edges).

It is convenient to write w : V2
→ R>0 with w(i, j) = w( j, i) and the weight of an undirected

edge i j is w(i, j) + w( j, i). Let π be the distribution on the vertices obtained by selecting a random
directed edge according to w and then outputting the first vertex, so π(i) =

∑
j w(i, j). (When G

has a unique stationary distribution, it is π).
Note that choosing a random edge i j ∈ E is like choosing a random i according to π and

then a random neighbor j of i according to the conditional distribution that gives j probability
w(i, j)/π(i). We denote the conditional distribution by j|i. So Ei j h(i, j) = EiE j|i h(i, j).

Local vs Global variances. Let h : E→ R. For each vertex i we consider the “local distribution”
of values of h on the edges incident to i. The expectation, at i, of this distribution is h1(i) =
E j|i[h(i, j)], and the variance is E j|i[(h(i, j) − h1(i))2].

We are interested in the relation between the variance of the local distributions, per vertex i,
and how they relate to the global variance of the vertex-averages, i.e. of {h1(i) : i ∈ V}. If the
graph is disconnected then the global vertex variance can be unbounded and yet the local
variances can be zero. We show, however, that if the graph is a λ-expander then the global
variance is essentially upper-bounded by the average of the local variances.

Proof of Lemma 4.2. Subtracting h0 from every entry in h does not change the local variances
nor the global one (i.e. δ1, δ2 remain the same), so we can assume wlog that h0 = Ei[h1(i)] =
Ei j[h(i, j)] = 0.

We replace each edge in E by two directed edges and let Ē be the set of directed edges. We
extend h : Ē→ R by h(i, j) = h( j, i) = h(i j). We will consider the linear operators H,T : RĒ

→ RĒ

that average incoming and outgoing edges. Explicitly,

(Th)(i, j) = E
k|i

h(i, k) and (Hh)(i, j) = E
k| j

h(k, j)

where we recall the distribution k|i is the conditional marginal distribution defined as w(k, i)/π(i).
The notation is intended to suggest that we average over all edges with the same Head, or with
the same Tail. Observe that

– For all i, j, (Th)(i, j) = h1(i) and (Hh)(i, j) = h1( j).

– ‖Hh‖2 = Ei j(Hh(i, j))2 = E jEi| j h1( j)2 = E j[h1( j)2] = δ1.

–
HTh(i, j) = E

k| j
Th(k, j) = E

k| j
h1(k)
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This doesn’t depend on i at all. Symmetrically,

THh(i, j) = E
k|i

Hh(i, k) = E
k|i

h1(k)

In other words, THh(i, j) = Ah1(i) where A is the random walk operator of the graph
G (defined precisely by A f1(i) = Ek|i h(k)). Since G is a λ-expander and E[h1] = 0,
‖A f1‖2 6 λ‖h1‖

2. So

‖THh‖2 = E
i j

[THh(i, j)2] = E
i j

[A f1(i)2] = ‖A f1‖2 6 λ‖h1‖
2 = λδ1.

An identical argument shows that ‖HTh‖2 6 λδ1 and by the triangle inequality ‖THh −
HTh‖2 6 2λδ1.

– ‖(Id − T)h‖2 = Ei j(Idh(i, j) − Th(i, j))2 = Ei j(h(i, j) − h1(i))2 = δ2.

δ1 − λδ1 = ‖Hh‖2 − λδ1 6 ‖Hh −HTh‖2 = ‖H(Id − T)h‖2 6 ‖(Id − T)h‖2 = δ2

where the first inequality is due to the triangle inequality and the bound on ‖HTh‖2 and the
second inequality is because H is an averaging operator that cannot increase the norm of any
function, and in particular of h′ = (Id − T)h. �

5 Proof of Theorem 1.6

Let X be a d-dimensional λ-HD expander such that λ < 1/d, and let k be such that d > k2. We
will prove that X(k), the k-skeleton of X(d) is an agreement expander with the distributionDk,2k
over k-faces described by the following process:

– Choose r ∈ X(2k)

– Choose independently s1, s2 ⊂ r, s1, s2 ∈ X(k) and output (s1, s2).

The following theorem directly implies our main theorem Theorem 1.3.

Theorem 5.1. Let X be a d-dimensional λ-HD expander, and let k2 < d and λ < 1/d. Let { fs}s∈X(k)
be a local function on X(k), i.e. fs ∈ {0, 1}s for each s ∈ X(k). If agree

Dk,2k
( f ) > 1 − ε then there is

1 : X(0)→ {0, 1} such that
P
s

[ fs ≡ 1|s] > 1 −O(ε).

Moreover, 1 is defined according to majority, namely

∀x ∈ X(0), 1(x) = majoritys3x fs(x).

Our proof capitalizes on the fact that X(k) is more than just a λ-HD expander, it is the k 6
√

d
skeleton of a higher-dimensional λ-HD expander. The distributionDk,2k can be described by
first choosing a random a ∈ X(d), then a 2k-dimensional r ⊂ a, and then two k-faces s1, s2 ⊂ r
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independently. Let us restrict our attention to the sub complex of X(k) whose faces are contained
in a,

X⊂a(k) = {s ∈ X(k) | s ⊂ a}

This is no other than the complete complex on the vertices of a. If conditioned on r ⊂ a the
agreement test passes with probability 1 − εa, then we are in a position to apply an agreement
theorem for the complete complex. We deduce existence of a global-to-a function 1a : a→ {0, 1}
that agrees with 1 −O(εa) of the subsets s ∈ X⊂a(k). In fact, we also know who 1a is, it is just the
majority function within X⊂a(k), specified by

∀x ∈ a, 1a(x) = majoritys: x∈s⊂a fs(x).

By the sampling property of our complex 1a(x) mostly agrees with 1(x) for x ∈ a; Thus, we get
that for most s’s and every x ∈ s: 1(x) = fs(x). It is important to highlight the difference between
the statement “1a(x) mostly agrees with 1(x)” and the statement “ fs totally agrees with 1|s”. A
priori Theorem 2.12 only implies that dist(1a, 1|a) 6 O(εa) but due to the sampling property
of the complex a distance of ε on the k-sets shrinks to a distance of ε/k on the vertices. The
double sampling from d-sets to k-sets and from k-sets to 1-sets is crucial for the proof to go through.

For proving the theorem we need several definitions: For each x ∈ X(0), let

Bx =
{
s ∈ Xx(k)

∣∣∣ fs(x) , 1(x)
}

Bx,a =
{
s ∈ Xx(k)

∣∣∣ s ⊂ a, fs(x) , 1a(x)
}

Bx is the bad k-sets for x and Bx,a is the bad sets for x in the sub-complex induced on a.
We say that x is confused if Ps∼Xx(k)[s ∈ Bx] > 0.3.
Finally we consider the x’s in a that do not agree with the majority

Tx =
{
a 3 x

∣∣∣ 1a(x) , 1(x)
}

and observe that Ps: x∈s⊂a[s ∈ Bx] > 1/2 implies that a ∈ Tx.
For each a ∈ X(d) let

εa := 1 − a1reeD|a( f )

be the probability that the test rejects, conditioned on choosing a in the first step. Clearly
Ea[εa] = ε.

The theorem will follow from the following two claims:

Claim 5.2. Ex[µ(Bx)] 6 O(ε).

Claim 5.3. Px[x is confused ] 6 ε
k .

Proof. (Proof of Theorem 5.1)
Choose s ∈ X(k) and a ∈ X(d) that contains s at random. We define three events

– E1 no x in s is confused.

– E2 For every x ∈ s, 1a(x) = 1(x).

23



– E3 For every x ∈ s, 1a(x) = fs(x).

P
s

[ fs = 1|s] > P[E1 ∧ E2 ∧ E3] > 1 −
3∑

i=1

P[¬Ei]

so it is enough to show that for every i, P[Ei] 6 ε.
Consider E1

P[¬E1] 6 E
s

[number of x’s confused in s] = kP[x is confused] 6 k ·
ε
k

where the last inequality follows by Claim 5.3.
Let Zx,a be the indicator value of the event a ∈ Tx
For E2, clearly

P[¬E2] 6 E
s⊂a

∑
x∈s

Zx,a = k · E
x
µ(Tx)

so it remains to show
E
x
µ(Tx) 6 O(ε/k) (5.1)

First note that for x which is not confusedµ(Tx) 6 100λ2µ(Bx). Indeed we apply Proposition 2.9
where the bipartite graph is between Xx(k) and Xx(d) and observing that Tx is contained in the
set T of the proposition so its measure is upper-bounded as claimed.

E
x

[µ(Tx)] 6 P
x

[x confused] + 100λ2E
x

[µ(Bx)] 6
ε
k

+ 100λ2E
x

[µ(Bx)] 6 ε/k

where we have used Claim 5.2 that asserts Ex µBx 6 O(ε) and the fact that λ2 < 1/k. This proves
(5.1).

As for E3, by Theorem 2.12 we know that for each a, Ps⊂a[(1a)|s , fs] 6 O(εa), so by averaging
we get

P
a⊃s

[¬E3] = E
a

[P
s⊂a

[(1a)|s , fs]] 6 Ea [O(εa)] = O(ε).

�

For the proof of Claim 5.3 we will use the following two claims.

Claim 5.4. Assuming ε < ε0/2, then at most O(λ2ε) of the a’s have εa > ε0.

We say that x is confused in a if Px∈s⊂a[Bx,a] > 0.2

Claim 5.5. For every a; if εa 6 ε0 then Px∈a[x confused in a] 6 O( εa
k )

Proof of Claim 5.3. Let δ = Px[x is confused]. For every x, if x is confused then
Px∈a[x is confused in a] > 1 − o(1). The reason is that a typical a 3 x sees Bx in the appro-
priate proportion Formally, if x is confused then then there are between 0.3 to 0.5 s’s in Bx, so in
the sample based on a by Proposition 2.9 we should see 0.2 to 0.6 s′ contained in a which are in
Bx,a and hence by definition x is confused in a. Since

P
x∈a

[x is confused in a] = P
x

[x is confused] · P
a3x

[x is confused in a | x is confused] > δ(1 − o(1)),
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we get

(1 − o(1))δ 6 P
x∈a

[x is confused in a]

6 P
a

[εa > ε0] + P
x∈a

[εa 6 ε0 and x is confused in a]

6 O(λ2ε) + E
a

O(εa/k) = O(ε/k).

where the last inequality used Claim 5.4 and Claim 5.5.
�

Proof of Claim 5.2. For every x we define εx = Px⊂s1,s2[ fs1(x) , fs2(x)].
Consider the d(k)-regular graph G = (V,E) whose vertices are all s ∈ Xx(k) and s1, s2 ∈ X(k)

are connected in the graph iff s1 ∪ s2 ∈ Xx(2k). By Theorem 1.8 this graph is an expander with
second largest normalized eigenvalue at most λ = 1

2 .
By definition,

εx =
|E(Bx,Xx(k) − Bx)|

|E|
,

Thus, by Cheeger inequality,

|E(Bx,Xx(k) − Bx)|
|E|

·
|V|

min (|Bx|, |Xx(k) − Bx|)
=
|E(Bx,Xx(k) − Bx)|

|E|
·

1
µ(Bx)

> λ

so we get that

εx > λµ(Bx)

and since λ = 1
2 we can conclude that

ε = E
x
εx >

1
2
E
x
µ(Bx)

�

Proof of Claim 5.4. For r ∈ X(2k) let f (r) : X(2k)→ {0, 1} be assigned according to the agreement
of the test on r. E f (r) = ε. Let M2k−d be matrix of incidences between level 2k and level d, then
by definition M2k−d f (a) = Er⊂a f (r) = εa. Let A = {a|εa > ε0}.

Then by Proposition 2.9,

P[A]ε0 6 〈M2k−d f , 1A〉 6 E f (r)P[A] + λ
√
E f (r)P[A]

Now if ε < ε0/2

P[A] 6 (2/ε0)2λ2ε = O(λ2ε)

�
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Proof of Claim 5.5. For this claim we only consider subsets of a, so effectively we are working
in the complete k-dimensional complex Y(k) = {s ⊂ a}. Let a′ = {x ∈ a | x is confused in a}, and
denote δ = |a′|/|a|. Assuming εa < ε0, we know by Theorem 2.12 that

P
s⊂a

[1a|s = fs] > 1 −O(εa).

Let B = {s ⊂ a}1a|s , fs, i.e. restating the above, P[B] 6 O(εa). Consider the bipartite graph
between Y(0) and Y(k), let us denote by M its transition matrix, and recall that λ = λ(M) = 1/

√
k

by Theorem 1.8. We have
0.2 · δ 6 〈M1a′ , 1B〉 6 δεa + λ

√
δεa

which, since εa < 0.1, implies δ < λ2εa/0.04 = O(εa/k) as required. �

6 Proof of Lemma 1.5

In this section we prove that bounded degree λ-HD expanders exist for every d and λ.

Lemma 6.1. Let G = (V,E) be a k-partite graph on vertices V = V1 t V2 t · · · t Vk, such that

– The edge distribution of G is given by: choose uniformly 1 6 i < j 6 k and then choose a random
edge between Vi and V j

– For each 1 6 i < j 6 k, the induced graph on Vi,V j is a bipartite γ-expanding graph.

Then the graph G is an (γ + 1
k−1 )-expander.

Proof of Lemma 1.5 from Lemma 6.1. We start from the complexes given by Proposition 2.10. We
choose the parameters with which to apply Proposition 2.10 to be the dimension D > d + 2/λ and
the spectral gap γ = λ/2. We obtain an infinite sequence of D-dimensional complexes X1,X2, . . .,
and we construct a new sequence Y1,Y2, . . . simply by letting Yt be the d-dimensional skeleton
of Xt. This means that in Yt we keep only the faces of Xt of dimensions 0, 1, . . . , d and “forget”
the rest. It is important though that we keep the distribution on Y(i) = X(i), so in particular for
Y(i) the top faces (i.e. faces of dimension d) do not all have the same weight.

It remains to show that for each t, Yt is a λ-HD expander. Fix Y = Yt and look at any link Yv
of Y for an i < d− 1 dimensional face v. We need to show that the 1-skeleton of Yv is a λ expander.
Of course assuming that d > 2 this is also the 1-skeleton of Xv, which indeed satisfies exactly the
conditions of Lemma 6.1 with k = D − i and γ 6 λ/2, so it is a λ/2 + 1/(D − d) 6 λ-expander as
required. �

Proof of Lemma 6.1: We start by considering functions on V that are constant on each Vi,

X′ =
{
h′ : V → R

∣∣∣ E[h′] = 0 and for every i ∈ [k] for every a, b ∈ Vi h′(a) = h′(b)
}
.

and functions whose expectation is zero on each Vi,

X′′ = {h′′ : V → R| for every i ∈ [k] E
v∈Vi

[h′′(v)] = 0}.
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It is clear that every f ∈ L2(V) can be written as f = E[ f ] + f ′ + f ′′ where f ′ ∈ X′ and f ′′ ∈ X′′.
Moreover, one can check that for every f ∈ X′ and 1 ∈ X′′, f ⊥ 1.

Let A be the Markov operator associated with G. For every 1 6 i , j 6 k let Ai, j : L2(Vi)→
L2(V j) be the Markov operator associated with the bipartite subgraph of G between Vi and V j.

For any f it holds that

A f =
1

k − 1

∑
i, j∈[k]

Ai, j f .

On the right hand side we understand Ai, j as acting on all of L2(V) but giving non zero values
only to points in V j. The only subtle point to check is the normalizing factor 1

k−1 which appears
because we are doing conditional expectations.

We next claim that for any h ∈ X′′

|〈h,Ah〉| 6 γ||h||2 (6.1)

Let h ∈ X′′ and let hi : V → R be defined as follows: for v ∈ Vi, hi(v) = h(v); for v < Vi, hi(v) = 0.
Then,

h =

k∑
i=1

hi.

Ai, jh = Ai, jhi.

By our assumption on G, λ(Ai, j) 6 γ. Since h ∈ X′′ we have E[hi] = 0 so |〈hi,Ai, jhi
〉| 6 γ‖hi

‖
2. This

can be seen due to the following sequence of inequalities,

|〈h,Ah〉| = |
1

k − 1

∑
i, j

〈h,Ai, jh〉|

6
1

k − 1

∑
i, j

|〈hi,Ai, jhi
〉|

6
1

k − 1

∑
i, j

γ||hi
||

2 = γ||h||2.

Next, we claim that for every h ∈ X′,

|〈h,Ah〉| 6
1

k − 1
‖h‖2 (6.2)

Since h ∈ X′ it can be written as h =
∑

i hi where hi = αi1Vi such that
∑

i αi = 0. Plugging in
A = 1

k−1
∑

i, j Ai, j, and observing that Ai, j1Vi = 1V j we get,

〈h,Ah〉 =
∑

i

〈αi1Vi ,
1

k − 1

∑
j, j′

A j, j′α j1V j〉

=
1

k − 1

∑
i

〈αi1Vi ,
∑
j: j,i

A j,iα j1V j〉
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=
1

k − 1

∑
i

〈αi1Vi ,
∑
j: j,i

α j1Vi〉

=
1

k − 1

∑
i

〈αi1Vi , (−αi)1Vi〉 =
−1

k − 1
‖h‖2

where in the second equality we have used the fact that A j, j′1V j = 1V j′ is orthogonal to 1Vi unless
j′ = i, and in the last equality we have used that

∑
j: j,i α j = −αi.

By (6.2) and (6.1), given h : V → R, such that E[h] = 0 we write h = h′ + h′′ and

|〈h,Ah〉| 6 |〈h′,Ah′〉| + |〈h′′,Ah′′〉| 6
1

k − 1
||h′||2 + γ||h′′||2 6 (

1
k − 1

+ γ)‖h‖2

This implies that λ(A) 6 1
k−1 + γ. �

7 Derandomized direct product and direct sum encodings

The direct product and direct sum encodings are studied in various complexity settings espectially
since they are very useful for hardness amplification. In the direct sum encoding, we map a
string w ∈ {0, 1}n to the string DS(w) ∈ {0, 1}Y(k−1) where Y(k − 1) =

([n]
k
)

is the set of all possible
k-element subsets of [n], namely, Y is the complete (k − 1)-dimensional complex on n vertices.
The encoding is defined by

∀s ∈
(
[n]
k

)
, DS(w)(s) =

∑
x∈s

w(x) mod 2.

In the direct product encoding, we map a string w ∈ {0, 1}n to a table DP(w) ∈ {0, 1}k×Y(k−1) whose
rows correspond to subsets s ∈ Y(k− 1). Every row in this table is a k bit string that is equal to w|s,

∀s ∈
(
[n]
k

)
, DP(w)(s) = w|s.

These encodings are often very useful for hardness amplification, essentially because they are
locally computable and provide good distance amplification. Two strings w,w′ ∈ {0, 1}n that
differ on δ fraction of their coordinates, have encodings that are kδ apart (see Lemma 7.5).

One serious drawback of these encodings is that their length is
(n

k
)

which grows exponentially
with k. This leads us to consider a so-called “derandomized” version of these encodings,
that has shorter length while hopefully retaining the all of the good properties. The term
“derandomized” comes from trying to minimize the amount of randomness needed to choose
a single symbol in the encoding. Such ideas have been explored in the past and [IKW09]
have showed how to obtain a derandomized encoding that maps n bit strings to poly(n) bit strings.

We suggest to use simplicial complexes for obtaining such derandomization. Given any k − 1
dimensional complex X(k − 1), we now define the appropriate direct sum and direct product
encodings with respect to X.
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Definition 7.1 (Direct sum encoding with respect to a simplicial complex). A simplicial complex
X(k − 1) gives rise to the following encoding, called the direct sum encoding, that maps strings
w ∈ {0, 1}X(0) to strings DS(w) ∈ {0, 1}X(k−1) via

∀s ∈ X(k − 1), DSX(w)(s) =
∑
x∈s

w(x) mod 2.

Definition 7.2 (Direct product encoding with respect to a simplicial complex). A simplicial
complex X(k − 1) on n vertices gives rise to the following encoding, called the direct product
encoding, that maps strings w ∈ {0, 1}X(0) to strings DS(w) ∈ {0, 1}k×X(k−1) via

∀s ∈ X(k − 1), DPX(w)(s) = w|s.

where we view w|s as a k-bit string using some fixed ordering on the vertex set X(0).

The crucial point is that if X is a bounded degree complex, namely |X(k − 1)| = O(|X(0)|),
then the encoding length is linear in the message length, quite a big savings compared to
the non-derandomized situation. Agreement expansion of X impies quite directly that these
encodings can be locally tested with 2 or 3 queries.

Lemma 7.3 (Derandomized Direct Product - two query test). Let X(k − 1) be a k − 1 dimensional
simplicial complex on n vertices that is an agreement expander. Let D be a distribution for which
γ(X,D) > Ω(1). ThenD gives rise to a natural two-query agreement test :

– Choose (s1, s2) ∼ D

– Read the rows of f corresponding to s1, s2

– Accept iff for every x ∈ s1 ∩ s2 the corresponding values agree: f [s1](x) = f [s2](x).

Namely, if f = DS(w) for some w then the test succeeds with probability 1; and if the test succeeds on f
with probability 1− ε then there is some w ∈ {0, 1}n such that for at least 1−O(ε) of the sets s ∈ X(k− 1),
f [s] = DPX(w)(s).

The proof of this lemma is immediate from Theorem 1.3.
Using a reduction from [DDG+15] from direct sum to direct product, and relying on the fact

that inside an r-set we are exactly in the setting of the complete complex as studied in [DDG+15],
we can prove

Lemma 7.4 (Derandomized Direct Sum - three query test). Let X(d) be a d dimensional simplicial
complex on n vertices that is an agreement expander and such that γ(X,D) > Ω(1) forD the distribution
d − 2d − d. Let k = 2dd/10e be an even integer, then DSX(k) is locally testable with three queries with the
following test

– Choose r ∼ X(k)

– Choose s1, s2, s3 ⊂ r such that every element in r is covered by an even number sets out of s1, s2, s3
and such that s1, s2, s3 ∈ X(k/2).

– Accept iff f (s1) + f (s2) + f (s3) = 0 mod 2.
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Namely, if f = DS(w) for some w then the test succeeds with probability 1; and if the test succeeds on f
with probability 1− ε then there is some w ∈ {0, 1}n such that for at least 1−O(ε) of the sets s ∈ X(k− 1),
f [s] = DSX(d/2)(w)(s).

We omit the proof of this lemma, but let us explain the main idea. The idea is to rely on the
testing result from [DDG+15] to show that for typical r ∈ X(k), there is one function hr ∈ {0, 1}r

whose DS encoding agrees with 1 − ε fraction the sets s ⊂ r, |s| = k. This is enough to prove that
the local function {hr}r∈X(d) has agreement at least a1reeD(h) > 1 −O(ε). We apply Theorem 1.3 to
deduce a global function 1 that agrees with most of hr and therefore with most of fs.

7.1 Distance amplification code

Note that the direct sum (and the direct product encoding) is far from an error correcting code
because of its poor relative distance, which is about k

n , but nevertheless it has the interesting
distance amplification property: the distance between every two message strings w,w′ grows
roughly k-fold. This gives the first construction, to the best of our knowledge, of a distance
amplification code with constant rate that is locally testable with a constant number of queries
that is independent of k.

One can view the set {0, 1}n of possible functions on the vertices as a code of distance 1/n
that is transformed, through the direct sum encoding, to a new code whose distance is Ω(k/n). If
we begin with a restricted set of functions, say a code C ⊂ {0, 1}n whose distance is δ, then this
transformation results in a new code whose distance is Ω(kδ) (as long as δ < 1/k), see Lemma 7.5.
However, even if C is locally testable to begin with, it is not clear how to retain the local testability
of the amplified code.

We next prove a lemma showing distance amplification of the direct product encoding. This
easily implies a similar result for the direct sum encoding as well, but we omit the details.

Lemma 7.5 (Distance Amplification). Let X(d) be a β-HD expander d-dimensional simplicial complex
on n vertices, and assume β < 1/d. Then for every 1 < k 6 d and every pair of strings w,w′ ∈ {0, 1}n

whose Hamming distance is δ < 1/k,

P
s∼X(k−1)

[w|s , w′|s] > k · δ/4.

Proof. Let B =
{
x ∈ [n]

∣∣∣ wx , w′x
}
. By assumption µ(B) = δ < 1/k. Consider the bipartite graph

G between X(0) and X(k − 1). Let T =
{
s ∈ X(k)

∣∣∣ s has an edge to B
}
. Our goal is to show that

P[T] > kδ/4. If P[T] > 1/2 then we are done, so assume P[T] 6 1/2. By Proposition 2.9,

P
u

[u ∈ B] = P
uv

[u ∈ B, v ∈ T] 6 P[B]P[T] + λ
√
P[B]P[T](1 − P[B])(1 − P[T])

where the probability over uv is over a random edge uv according to the complex distribution.
Rearranging and dividing both sides by

√
P[B](1 − P[T]), we get

P[B](1 − P[T]) 6 λ2P[T]

Since we assumed P[T] 6 1/2, and since Theorem 1.8 implies that λ(G)2 6 1/k + β 6 2/k, we get

P[T] > k · P[B]/4

as needed. �
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Ãd. Israel J. Math, 149:267–299, 2005. 4, 5, 15

[RS92a] R. Rubinfeld and M. Sudan. Testing polynomial functions efficiently and over rational
domains. In Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pages 23–32,
1992. 9

[RS92b] Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently
and over rational domains. In Proceedings of the Third Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida., pages 23–32,
1992. 9

[RS97] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on
Theory of Computing, pages 475–484, 1997. 1, 9

32
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


