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Abstract

A small-biased function is a randomized function whose distribution of truth-tables
is small-biased. We demonstrate that known explicit lower bounds on the size of (1)
general Boolean formulas, (2) Boolean formulas of fan-in two, (3) de Morgan formulas,
as well as (4) correlation lower bounds against small de Morgan formulas apply to
small-biased functions. As a consequence, any strongly explicit small-biased generator
is subject to the best known explicit formula lower bounds in all these models.

On the other hand, we give a construction of a small-biased function that is tight
with respect to lower bounds (1) and (2) for the relevant range of parameters. We
interpret this construction as a natural-type barrier against substantially stronger lower
bounds for general formulas.

1 Introduction

Formula size is one of the most thoroughly studied complexity measures of Boolean functions.
A formula is a circuit in which every internal gate has fan-out one. The power of formulas
depends on the types of gates allowed. In this work we consider two models: General
formulas in which any gate of some pre-specified fan-in c is allowed, and de Morgan formulas
that only use NOT gates and AND/OR gates of fan-in two.

Explicit size lower bounds for general formulas were first proved by Nečiporuk [Nec66],
who showed that the selector (addressing) function requires general constant fan-in formula
size Ω(n2/ log n log log n) over inputs of size n. In the same work, Nečiporuk gave an improved
lower bound of Ω(n2/ log n) for the element distinctness function by a related but different
method.

The case of de Morgan formulas had been studied even earlier. Subbotovskaya [Sub61]
proved that computing parity on n bits requires formula size Ω(n3/2). Andreev [And87] com-
bined the ideas of Nečiporuk and Subbotovskaya to obtain a n5/2−o(1) de Morgan formula
size lower bound for an explicit family of functions from {0, 1}n to {0, 1}. Following partial
improvements (Impagliazzo and Nisan [IN93], Paterson and Zwick [PZ93]), H̊astad [H̊as98]
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showed that Andreev’s function requires formula size n3−o(1), which is optimal in the ex-
ponent.1 The same lower bound was reproved by Dinur and Meir [DM16] using different
methods.

More recently, Tal gave two lower-order improvements to H̊astad’s result. First, in [Tal14]
he showed that Andreev’s function requires de Morgan formulas of size Ω(n3/(log n)2 log log n),
which is optimal for this function up to the doubly logarithmic term. Later, in [Tal16] he
showed that another function introduced by Komargodski and Raz [KR13] requires de Mor-
gan formula size Ω(n3/(log n)(log log n)2).

In a related line of works, Komargodski, Raz, and Tal [KR13,KRT13,Tal14] study corre-
lation lower bounds against small formulas. For every k ≤ n1/3, they construct two variants
of an explicit function that has correlation at most 2−k with any de Morgan formula of
size n3/(log n)O(1)k2. Their hard functions make use of error-correcting codes with good list-
decodable properties and extractors for bit-fixing sources. Weaker correlation bounds for the
parity function were proved by Santhanam [San10] and, as observed in [KRT13], also follow
implicitly from bounds on the approximate degree of de Morgan formulas [Rei11,BBC+01].

Razborov and Rudich [RR94] observed that all formula size lower bounds (known at the
time) are natural, meaning that the formulas to which the bounds apply cannot compute
cryptographically pseudorandom functions. On the other hand, the class NC1 of polynomial-
size logarithmic-depth bounded fan-in circuit families, which are equivalent in power to
polynomial-size formula families, is believed to contain pseudorandom functions. Naor and
Reingold [NR99] and Banerjee, Peikert, and Rosen [BPR12] proposed two such candidate
families based on the Decisional Diffie Hellman and Learning With Errors hardness as-
sumptions, respectively. These constructions suggest that explicit size nC lower bounds for
formulas is out of reach for current techniques for sufficiently large values of the exponent C.
The values of C in these constructions (for the requisite levels of hardness) are apparently
rather large, so they are unlikely to explain the perceived barriers of n2 and n3 for general
and de Morgan formula size, respectively.

Our results Our main conceptual contribution is the realization that all known formula
size lower bound techniques also apply to small-biased functions. A randomized function is
(K, ε)-biased if the induced distribution over truth-tables is a (K, ε)-biased distribution.

From the perspective of natural proofs, the known properties that distinguish small
formulas from random functions are local in the sense that they only make a bounded number
of non-adaptive queries to the function. It is therefore reasonable to expect that the largeness
condition of the relevant natural properties should continue to hold for random functions
that only exhibit bounded independence. We show that these properties, in fact, merely
require small bias [NN93], which is closely related to approximate bounded independence.
In certain instances (Propositions 3 and 6), this extension (for the appropriate range of
parameters) is more or less self-evident, while in others (Propositions 4, 7, and 11) it relies
on less obvious properties of small-biased distributions (Lemmas 5 and 8).

As a direct consequence, in Theorem 12 we show that the best known explicit formula

1Our discussion of formula lower bounds is based on Chapter 6 of Jukna’s book [Juk10].
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lower bounds apply to any strongly explicit small-biased generator. In this context, a strongly
explicit small-biased generator is a polynomial-time family SBn : {0, 1}O(n)×{0, 1}n → {0, 1}
of functions such that for a random s, the distribution over the 2n values SBn(s, x) as x
ranges over {0, 1}n is a (2n, 2−2n)-biased distribution. This allows us to reprove the best
known formula lower bounds in a unified manner and even obtain a very minor improvement
in one case.

On the other hand, in Theorem 13 we construct a (K, ε)-biased function F with fan-in
two formula size O(n(logK)2(log 1/ε)). For ε = 2−2K , this is a (K, 2−K)-wise independent
function of fan-in two formula size O(nK(logK)2), which matches our lower bounds for
general formulas in Propositions 3 and 4 up to terms polylogarithmic in K.

In the parameter regimes that yield the explicit formula size lower bounds 1, 2, and 3 in
Theorem 12, the function F has fan-in two formula size O((n log n)2) and de Morgan formula
size O(n4(log n)3). We view this as a barrier to proving super-quadratic lower bounds for
general formulas, and super-quartic ones for de Morgan formulas.

However, these barriers are not of the natural type since our function F is not cryp-
tographically pseudorandom: In addition to having small formula size, the function family
F is computable by polynomial-size, depth 3 circuit families with AND, OR, and PARITY
gates (the class AC0[⊕]), which is known not to contain cryptographic pseudorandom func-
tions [Raz87, Smo87, RR94]. It remains open whether our bounds can be matched (or even
improved in the case of de Morgan formulas) by a different construction that is plausibly
secure with respect to all polynomial-size circuits, of which linear tests are a very special
case.

We believe that Theorems 12 and Theorem 13 justify the study of small-biased functions
as suitable candidates for formula size lower bounds. In the extreme setting of parameters
K = 2n, ε = 2−Θ(n), known constructions of small-biased functions have seed lengths linear
in n and may be plausible candidates for improved formula size lower bounds. In this regime,
the general and de Morgan formula sizes of F in Theorem 13 are as large as Θ(n4) and Θ̃(n7),
respectively. Do there exist, say, (2n, 2−100n)-biased functions of smaller formula size?

Bounded independence and small bias We will call a randomized function F : {0, 1}n →
{0, 1} (k, ε)-wise independent (in qualitative terms, almost locally independent) if for any k
inputs x1, . . . , xk, the distribution (F (x1), . . . , F (xk)) is within statistical distance ε of the
uniform distribution over {0, 1}k. A random function F : {0, 1}n → {0, 1} is (K, ε)-biased
(locally small-biased) if for any nonempty set X of at most K distinct inputs,∣∣∣E[∏

x∈X
(−1)F (x)

]∣∣∣ ≤ ε.

When K = 2n the family is called ε-biased (small-biased). Small bias implies bounded
independence by the following claim [NN93, Corollary 2.1].

Claim 1. Every (K, ε)-biased function is (K, 2K/2ε)-wise independent.

A family of functions SBn,ε : {0, 1}s(n,ε) × {0, 1}n → {0, 1} is a strongly explicit small-
biased family if (1) s(n, ε) = O(n + log 1/ε), (2) SBn,ε is uniformly polynomial-time com-
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putable and (3) the random function F (x) = SBn,ε(s, x) over uniform s is ε-biased for all n
and ε.

Standard explicit constructions of small-biased sets [NN93, AGHP92, ABN+92, BT13,
TS17] are in fact strongly explicit small-biased families.

2 Small bias requires large formulas

We are aware of two methods for proving general formula size lower bounds. Both can be
traced to the work of Nečiporuk [Nec66] and are based on arguing about restrictions. We
show that both methods imply lower bounds on the formula size of almost locally independent
functions.

In the case of de Morgan formulas, we study three proof techniques. The first one, based
on average-case shrinkage, underlies the lower bound of Andreev including improvements by
Impagliazzo and Nisan, Paterson and Zwick, H̊astad, and Tal. We show that this method
also bounds the formula size of almost independent functions.

The second method for de Morgan formula lower bounds is due to Tal, who applies a
correlation-to-computation reduction in addition to bounds on average-case shrinkage. The
third method, due to Komargodski and Raz and improvements by these authors and Tal,
applies a high-probability shrinkage lemma to derive strong correlation lower bounds. We
show that these two methods give lower bounds on the size of small-biased functions.

Formulas with gates of arbitrary fan-in

A restriction f |ρ of a function f under a partial assignment ρ of its inputs is the function on
the unassigned inputs obtained by fixing all the assigned variables to their values. A random
k-restriction of f is the distribution of restrictions of f under a uniform random assignment
that leaves exactly k inputs unassigned.

The size of a formula is the number of leaves in the formula tree, namely the number
of variables occurring in the formula. The following shrinkage property of formulas follows
immediately from linearity of expectation:

Claim 2. Assume f : {0, 1}n → {0, 1} has formula size s. Then the expected formula size
of a random k-restriction of f is at most (k/n) · s.

We say F has formula size at most s if every function in the support of F can be computed
by a formula of size at most s.

Proposition 3. Assuming c ≤ log log k, any (2k, 1/4)-wise independent function F : {0, 1}n →
{0, 1} requires fan-in c formulas of size Ω(n · 2k/k log k).

Proof. Suppose F has formula size s. By Claim 2 and averaging, there exists a partial
assignment ρ with k unassigned variables under which the expected formula size of F |ρ is at
most ks/n. By Markov’s inequality,

PrF [size(F |ρ) ≤ 2ks/n] ≥ 1

2
(1)
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for any distribution of functions F , where size denotes formula size.
A formula of size s̃ can be specified by listing its at most 2s̃ gates in depth-first order. For

a formula of fan-in c on k inputs, there are 22c possible internal gates and k possible input
gates, so the number of such formulas is at most (22c + k)2s̃ ≤ (2k)2s̃. Therefore, setting
s̃ = 2ks/n, for a uniformly random function R it holds that

PrR[size(R|ρ) ≤ 2ks/n] ≤ (2k)4ks/n

22k
. (2)

The event “size(F |ρ) ≤ 2ks/n” depends on at most 2k values of F , so if F is (2k, 1/8)-wise
independent, then

PrF [size(F |ρ) ≤ 2ks/n] ≤ PrR[size(R|ρ) ≤ 2ks/n] +
1

4
. (3)

Combining (1), (2), and (3), we obtain that (2k)4ks/n/22k ≥ 1/4, from where the desired
lower bound on s follows.

Formulas with gates of fan-in two

We now discuss the other proof of Nečiporuk, which gives a slightly stronger lower bound
in the regime of k < log n and for exponentially small error. Unlike for Proposition 3, the
proof of this theorem is only valid for fan-in two formulas.

Proposition 4. For k ≤ log n−1, any (2 ·2k, 2−2k)-wise independent function F : {0, 1}n →
{0, 1} requires fan-in two formulas of size Ω(n · 2k/k).

The proposition is proved by showing that the number of possible restrictions of a small
formula that leave the least frequently occurring inputs unrestricted is small. On the other
hand, the following lemma shows that the number of distinct restrictions of an almost locally
independent function is large, even when the set of unrestricted variables is fixed. A U -
restriction is a restriction under any assignment in which U is the set of free variables.

Lemma 5. Assume F is (2 · 2k, 2−2k)-wise independent. For any set U of k variables, the
number of distinct U-restrictions of F is at least min{2n−k−2, 22k−3} with probability more
than half.

In particular, when k ≤ log n− 1, a (2 · 2k, 2−2k)-wise independent function family has at
least 1

8
· 22k distinct U -restrictions with probability more than half.

Proof. Let ρ, ρ′ be independent random partial assignments to the variables in U . Then

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ Pr[ρ = ρ′] + Pr[F |ρ = F |ρ′ | ρ 6= ρ′]. (4)

The first term equals 2−n+k. To bound the second term, fix an arbitrary pair of distinct ρ, ρ′.
The event that the restricted functions F |ρ and F |ρ′ are identical depends on at most 2 · 2k
values of F . By the almost local independence of F ,

PrF [F |ρ = F |ρ′ | ρ 6= ρ′] ≤ Pr[R = R′] + 2−2k ,
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where R,R′ : {0, 1}k → {0, 1} are independent uniformly random functions. Such functions
are equal with probability at most 2−2k , and so the second term in (4) at most 2−2k+1.
Therefore

PrF,ρ,ρ′ [F |ρ = F |ρ′ ] ≤ 2−n+k + 2−2k+1.

Now assume the support size of F |ρ over random ρ is less than S for at least half the
functions F . Then the collision probability Prρ,ρ′ [F |ρ = F |ρ′ ] is at most 1/S for at least half
the functions F and so

2−n+k + 2−2k+1 ≥ 1

2S
,

from where it follows that the larger of 2−n+k and 2−2k+1 is at least 1/4S. It follows that
S ≥ min{2n−k−2, 22k−3}.

Proof of Proposition 4. Let s be the size of F . By Claim 2 and averaging, there is a set U of
size s so that the average number of such occurrences in F is at most (k/n) · s. By Markov’s
inequality, at least half of the formulas in F have no more than s̃ = 2ks/n occurrences of
variables from U .

A counting argument of Nečiporuk shows that if a formula φ that has at most s̃ occur-
rences of variables from U then the number of U -restrictions of φ is at most 24s̃.

By Lemma 5, there must then exist a formula in the support of F whose number of
U -restrictions is at most 24s̃ = 28ks/n and at least 1

8
· 22k .

Computation by de Morgan formulas

In this section we show that known proofs for de Morgan formula size also apply to small-
biased functions. The following proof relies on expected shrinkage of de Morgan formulas
under random restrictions [And87, IN93,PZ93, H̊as98].

Proposition 6. Assuming k ≤ n/2, any (2k, 1/4)-wise independent function F : {0, 1}n →
{0, 1} requires de Morgan formula size Ω(n2 · 2k/k2 log k).

Proof. In a p-random restriction, the unrestricted variables are sampled from the binomial
distribution with parameter p. Tal [Tal14] showed that if f has a de Morgan formula of size
s then the expected formula size of a p-random restriction of f is s̃ = O(p2s +

√
p2s). Set

p = 2k/n. By deviation bounds, for every f in the support of F , the event that ρ has fewer
than k = 1

2
pn unassigned inputs or f |ρ has formula size more than 4s̃ has probability at

most 1
2
.

By averaging, there exists a partial assignment ρ with k unassigned inputs under which
F |ρ has formula size at most 4s̃ for at least half the functions F .

By the same argument as in the proof of Proposition 3, the (2k, 1/4)-wise independence
of F then implies that 8 · (9k)s̃ is at least 22k . It follows that s̃ = Ω(2k/ log k). As s̃ =
O(p2s +

√
p2s) it follows that p2s = Ω(2k/ log k). Using the constraint k ≥ 1

2
pn we obtain

the desired bound.
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Tal [Tal14] recently obtained a slight improvement to the aforementioned bounds. His
method also applies to small-biased functions as demonstrated in the following proposition:

Proposition 7. Assume that k ≤ n/2 and exp(−2k/3) · 23k ≤ ε ≤ 2−6k. Then every (2k, ε)-
biased F requires de Morgan formula size Ω(n2 log(1/ε)/k(log k)2).

The proof relies on the large deviation bound for small-bias distributions of Naor and
Naor [NN93, Section 5]. We rework it here in more convenient notation. We say a random
variable X over {−1, 1}K is ε-biased if |E[

∏
i∈S Xi]| ≤ ε for every subset S of indices.

Lemma 8. Let t be even and X be a (t, (t3/e2K)t/2)-biased random variable over {−1, 1}K.
The probability that |

∑
Xi| exceeds δK is at most 3(t/δ2K)t/2.

Proof. We apply a standard t-th moment calculation. By Markov’s inequality,

Pr
[∣∣∣∑K

i=1
Xi

∣∣∣ ≥ δK
]
≤ 1

(δK)t
E
[(∑K

i=1
Xi

)t]
=

1

(δK)t

(∑
S∈E

E
[∏

i∈S
Xi

]
+
∑

S∈E
E
[∏

i∈S
Xi

])
,

where E is the set of ordered terms of size t in which every index appears an even number
of times. The first expectation is upper bounded by the number of such terms, which is at
most Kt/2 · t!/(t/2)! ≤ 2 · (tK)t/2. The second expectation is upper bounded by the number
of terms times the maximum bias of each term, which is at most

(
K
t

)
· (t3/e2K)t/2 ≤ (tK)t/2.

The desired bound follows.

The following consequence of the lemma is far from tight but will be of use in the
proof of Proposition 7. The correlation of two functions f, φ : {0, 1}k → {0, 1} is 〈f, φ〉 =
Ex[(−1)f(x) · (−1)g(x)], where x is uniform in {0, 1}n.

Corollary 9. Assume exp(−2k/3) · 23k ≤ ε ≤ 2−6k and F : {0, 1}k → {0, 1} is (2k, ε)-biased.
Then for every φ : {0, 1}k → {0, 1}, the probability that |〈F, φ〉| is greater than (e2−k)1/3 is
at most 3ε1/6.

Proof. We first argue that ε ≤ (t3/e22k)t/2 ≤ ε · 23k (5) for some even t ≤ 2k/3. By our
assumption on ε, the first inequality is satisfied for t = 2 and the second one holds for
t = 2k/3. Therefore if inequality 5 fails for all t in the range, there must exist an even
t < 2k/3 for which

ε23k >
( t3

e22k

)t/2
and

((t+ 2)3

e22k

)(t+2)/2

> ε.

Combining these two inequalities it follows that (1 + 2/t)3t/2(t + 2)322k/e2 > 1, which is
impossible as t < 2k/3. Since ε ≤ 2−6k, it follows from (5) that ε ≤ (t3/e22k)t/2 ≤

√
ε.

We now apply Lemma 8 with parameters K = 2k, δ = (e/K)1/3 to the truth-table of the
function (−1)F (x)⊕φ(x), which is (K, ε)-biased.
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Proof of Proposition 7. Initially we proceed as in the proof of Proposition 6 to obtain a
partial assignment ρ with k unassigned inputs under which F |ρ has formula size s̃ =

O((k/n)2s +
√

(k/n)2s) for at least half the functions F . Let S (for shrinkage) denote
this event so that Pr[S] ≥ 1

2
.

Tal [Tal16] showed that every formula of size s̃ has correlation at least δ = 4(e2−k)1/3 (6)
with some formula of size s̃′ = O(

√
s̃+ s̃ log k/k). Let Φ be the set of all such formulas over

inputs in U . Then we have

E[|〈F |ρ,Φ〉|] ≥ E[|〈F |ρ,Φ〉| | S] · Pr[S] ≥ δ

2
,

where |〈f,Φ〉| denotes the maximum value of |〈f, φ〉| over all φ ∈ Φ. By Markov’s inequality,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≥ δ

4
.

On the other hand, by a union bound and Corollary 9,

Pr[|〈F |ρ,Φ〉| ≥ δ/4] ≤ 3|Φ|ε1/6.

From these two inequalities we obtain that

|Φ| ≥ 1

12
· ε−1/6 · δ ≥ ε−1/12

12

by (6) and the assumption ε ≤ 2−6k. Since |Φ| ≤ (9k)s̃
′
, it follows that s̃′ = Ω(log(1/ε)/ log k).

A calculation shows that s = Ω(n2 log(1/ε)/k(log k)2) as desired.

Correlation with de Morgan formulas

Komargodski, Raz, and Tal [KR13, KRT13, Tal14] proved a correlation lower bound for
small de Morgan formulas. Their main technical ingredient is the following high-probability
shrinkage lemma for de Morgan formulas [KRT13,Tal14].

Lemma 10 (High-probablity shrinkage). For every constant c > 0 there exists a constant
c′ > 0 such that for every c′ log n ≤ k ≤ n there exists a distribution over sets U ⊆ [n] of
size k such that for every formula f on n variables of size s ≤ nc, the probability that under
a U-random restriction ρ, f |ρ has formula size s̃ = (log n)O(1) · (k/n)2 · s is at least 1 − δ,
with δ = 2−Ω(k).

By averaging, the existence of a distribution of sets U that achieves the desired shrinkage
for every formula implies that for any given distribution on formulas of size at most s, there
exists of a single set U that yields the same conclusion. We will use the lemma in this form.

Proposition 11. Assuming exp(−2k/3) · 23k ≤ ε ≤ 2−6k and ω(log n) ≤ k ≤ n, for every
(2k, ε)-biased F , at most a 2−Ω(k)-fraction of F has correlation more than 2−Ω(k) with formulas
of size at most n2 log(1/ε)/(log n)O(1)k2.
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Proof of Proposition 11. Let C (for correlating) be the event that F has correlation at least
2δ in absolute value with some formula F̂ of size at most s (which may depend on F ) so
that

EF [|〈F, F̂ 〉| | C] ≥ 2δ.

We set δ = 2−Ω(k) and assume that δ ≥ 2(e2−k)1/6 (7). For every set U of free variables and
a uniformly random partial assignment ρ over the remaining variables,

EF,ρ[|〈F |ρ, F̂ |ρ〉| | C] ≥ EF
[
|Eρ[〈F |ρ, F̂ |ρ〉]|

∣∣ C] = EF [|〈F, F̂ 〉| | C] ≥ 2δ. (8)

By Lemma 10, there exists a set U of k variables such that

PrF,ρ[S | C] ≤ δ, (9)

where ρ is a uniformly random partial assignment with free variables U , and S is the event
that F̂ |ρ has formula size at most s̃ = (log n)C ·(k/n)2 ·s (10). By the formula for conditional
expectations,

E[|〈F |ρ, F̂ |ρ〉| | C] = E[|〈F |ρ, F̂ |ρ〉| | CS] · Pr[S | C] + E[|〈F |ρ, F̂ |ρ〉| | CS] · Pr[S | C]
≤ E[|〈F |ρ, F̂ |ρ〉| | CS] + Pr[S | C],

so (8) and (9) imply that
EF,ρ[|〈F |ρ, F̂ |ρ〉| | CS] ≥ δ.

Let Φ be the set of all size-s̃ formulas over the variables in U . Then |Φ| ≤ (9k)s̃ (11). Since
conditioned on S all formulas F̂ |ρ are in Φ, it must be the case that

EF,ρ[|〈F |ρ,Φ〉| | CS] ≥ δ,

where 〈f,Φ〉 denotes the maximum of 〈f, φ〉 over all φ ∈ Φ. By the formula for conditional
expectations, EF,ρ[|〈F |ρ,Φ〉|] must be at least δ · Pr[CS]. We can then bound Pr[CS] by

Pr[CS] ≤ 1

δ
· EF,ρ[|〈F |ρ,Φ〉|] ≤

1

δ

(δ2

4
+ PrF,ρ[|〈F |ρ,Φ〉| ≥ δ2/4]

)
. (12)

By a union bound, Corollary 9, and (7),

PrF,ρ[|〈F |ρ,Φ〉| ≥ δ2/4] ≤ 3|Φ| · ε1/6.

Using (7) and the assumption ε ≤ 2−6k, the right hand side is at most (δ2/4) · 12|Φ|ε1/12.
By (11) and (10), this quantity is at most δ2/4 as long as s ≤ n2 log(1/ε)/(log n)Ck2.
Plugging into (12), we conclude that Pr[CS] is at most δ2/2 for formulas of the desired size.

Finally, applying (9) again, we have

Pr[C] =
Pr[CS]

1− Pr[S | C]
≤ δ/2

1− δ
≤ δ.
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3 Main theorems

Small-biased functions require large formulas

Theorem 12. Any strongly explicit small-biased family SBn,2−2n : {0, 1}O(n) → {0, 1}:

1. requires fan-in log log log n formulas of size Ω(n2/ log n log log n),

2. requires fan-in two formulas of size Ω(n2/ log n),

3. requires de Morgan formulas of size Ω(n3/ log n (log log n)2),

4. has correlation at most 2−Ω(k) with de Morgan formulas of size at most n3/(log n)O(1)k2

for any k such that ω(log n) ≤ k ≤ n.

Items 1 and 2 match the explicit formula size lower bounds of Nečiporuk. Item 3 matches
the lower bound of Tal [Tal16]. Item 4 is a very minor improvement over the lower bound
of Tal [Tal14]: His proof requires the additional assumption k ≤ n1/3.

Proof. Let F be the random function F (x) = SBn,2−2n(s, x) for uniformly random s. To
obtain item 1, we apply Proposition 3 with k = log n and Claim 1. For item 2, we apply
Proposition 3 with k = log n− 1 and Claim 1.

For item 3, we apply Proposition 7 with k = 3 log n and ε = n9e−n. (Proposition 6 with
k = log n gives the weaker bound Ω(n3/(log n)2 log log n).)

For item 4, we apply Proposition 11 with ε = 2−2n, assuming without loss of generality
that k ≤ n/6. The conclusion is that at most a 2−Ω(k)-fraction of F can have correlation
more than 2−Ω(k) with formulas of size s. Therefore the correlation between SBn,2−2n and
size s formulas can be at most 2−Ω(k).

Moderate formulas for small bias

Theorem 13. For every n, k, and ε, there exists a (2k, ε)-biased F : {0, 1}n → {0, 1} of
fan-in two formula size O(nk2 · log 1/ε).

Applying Claim 1 and a suitable change of parameters we obtain the following corollary
to Theorem 13:

Corollary 14. For every n, K, and ε there exist (K, ε)-wise independent functions with
formula size O(n · (logK)2 · (K + log 1/ε)).

Proof of Theorem 13. Let Ht : {0, 1}n → {0, 1} be the random function

Ht(x) =

{
a random bit, if Ax = b,

0, if not,
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where A and b are a uniformly random t × n matrix and t-dimensional boolean vector,
respectively, and all algebra is over F2. We let

F = F1 ⊕ F2 ⊕ · · · ⊕ Fk+2,

where the Ft are independent XORs of 6 log 1/ε independent copies of Ht. The formula size
of F is O(nk2 · log 1/ε).

We now prove that F is (2k, ε)-biased. Let X be any nonempty set of at most 2k distinct
inputs. Set t = blog|X|c + 2 and let U (for unique) be the event that exactly one x in X
satisfies Ax = b for a random t × n matrix A and t-dimensional vector b. By the isolation
lemma of Valiant and Vazirani [VV86], U has probability at least 1/8 (see for example [AB09,
Lemma 17.19]). By the rule of conditional expectations,∣∣∣E[∏

x∈X
(−1)Ht(x)

]∣∣∣ ≤ ∣∣∣E[∏
x∈X

(−1)Ht(x)
∣∣∣U]∣∣∣ · Pr[U ] +

∣∣∣E[∏
x∈X

(−1)Ht(x)
∣∣∣U]∣∣∣ · Pr[U ]

≤ |E[(−1)Ht(u) | U ]| · Pr[U ] + 1 · Pr[U ]

= 0 · Pr[U ] + 1 · Pr[U ]

≤ 7/8.

By independence, it follows that∣∣∣E[∏
x∈X

(−1)Ft(x)
]∣∣∣ =

∣∣∣E[∏
x∈X

(−1)Ht(x)
]∣∣∣6 log 1/ε

≤
(

7

8

)6 log 1/ε

≤ ε,

so |E[
∏

x∈X(−1)F (x)]| =
∏k−2

t=1 |E[
∏

x∈X(−1)Ft(x)]| is also upper bounded by ε.

Our small-biased function can be viewed as a simplified variant of a construction of Naor
and Naor [NN93, Section 3.1.1]. The simplifications can be partly explained by a difference
in objectives: Naor and Naor (and other constructions) aim to optimize the seed length,
while we are interested in minimizing formula size.

By the standard simulation of fan-in two formulas by de Morgan formulas, F has de
Morgan formula size at most O((nk2 log 1/ε)2). The de Morgan formula size analysis can
be slightly improved to O(n2k3(log 1/ε)2) by observing that the middle layer of AND gates
does not suffer from the quadratic blow-up.

Specifically, in the parameter settings used in the proof of items 1 to 3 in Theorem 12, the
function F has fan-in two formula sizeO((n log n)2) and de Morgan formula sizeO(n4(log n)3).
We did not attempt to match the lower bound in item 4 by an explicit construction.
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