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Abstract

We establish an explicit link between depth-3 formulas and one-sided-error approximation by
depth-2 formulas, which were previously studied independently. Specifically, we show that the
minimum size of depth-3 formulas is (up to a factor of n) equal to the inverse of the maximum,
over all depth-2 formulas, of one-sided-error correlation bound divided by the size of the depth-2
formula, on a certain hard distribution. We apply this duality to obtain several consequences:

1. Any function f can be approximated by a CNF formula of size O(ε2n/n) with one-sided
error and advantage ε for some ε, which is tight up to a constant factor.

2. There exists a monotone function f such that f can be approximated by some polynomial-
size CNF formula, whereas any monotone CNF formula approximating f requires expo-
nential size.

3. Any depth-3 formula computing the parity function requires Ω(22
√
n) gates, which is tight

up to a factor of
√
n. This establishes a quadratic separation between depth-3 circuit size

and depth-3 formula size.

4. We give a characterization of the depth-3 monotone circuit complexity of the majority
function, in terms of a natural extremal problem on hypergraphs. In particular, we show
that a known extension of Turán’s theorem gives a tight (up to a polynomial factor) circuit
size for computing the majority function by a monotone depth-3 circuit with bottom fan-in
2.

5. AC0[p] has exponentially small one-sided correlation with the parity function for odd prime
p.

1 Introduction

The main theme of this paper is a new connection between approximation by depth-2 formulas and
exact computation of depth-3 formulas. We first review these two (previously independent) lines
of research.

1.1 Approximation by Depth-2 Formulas

A depth-2 formula is a CNF formula or a DNF formula. By De Morgan’s law, we can often assume
without loss of generality that a depth-2 formula is a CNF formula; hence, in this paper, we will
focus on CNF formulas. The size |ϕ| of a CNF formula ϕ is the number of clauses in the formula.
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A CNF formula is one of the simplest computational models in complexity theory, and its
computational power is well understood; for example, the parity function requires CNF formulas
of size 2n−1, which is exactly tight; any function can be computed by a CNF formula of size 2n−1,
and hence the parity function is the hardest problem against a CNF formula.

Nonetheless, the situation becomes quite different when, instead of exact computation, approx-
imation by CNF formulas is concerned. Namely, we allow a CNF formula to err on some fraction
of inputs. We say that a CNF formula ϕ ε-approximates a function f if Pr[f(x) 6= ϕ(x)] < ε.
Initiated by O’Donnell and Wimmer [OW07], a line of research [OW07, BT15, BHST14] has high-
lighted surprising differences between exact computation of depth-2 formulas and approximation
by depth-2 formulas. Two of them are reviewed below.

Quine’s Theorem for Approximation. Blais, H̊astad, Servedio, and Tan [BHST14] studied
whether an analog of Quine’s theorem holds. Quine’s theorem states that the minimum CNF
formula computing a monotone function is achieved by monotone CNF formulas (i.e., CNF formulas
without any negated literal).

Theorem (Quine [Qui54]). A smallest CNF formula computing a monotone function exactly is
monotone as well.

Given this fact, it is tempting to guess that a smallest CNF formula approximating a monotone
function is monotone. However, in [BHST14], it was shown that there is at least a quadratic gap be-
tween the size of the smallest CNF formula and the smallest monotone CNF formula approximating
a monotone function f .

Theorem ([BHST14]). There are a parameter ε(n) and a monotone function on n variables that
can be ε(n)-approximated by some nonmonotone CNF formula of size O(n), but cannot be ε(n)-
approximated by any monotone CNF formula of size less than n2.

In this paper, we will significantly improve this bound and exhibit an exponential separation.
Universal Bounds. Blais and Tan [BT15] studied the universal bound on the size of CNF

formulas approximating a function: they showed that any function f can be ε-approximated by any
CNF formula of size Oε(2

n/ log n) for any constant ε (where a constant Oε depends on ε). They
also gave a lower bound of Ωε(2

n/n) for a CNF formula ε-approximating a random function, and
thus leaving a gap. Namely, the maximum complexity of CNF formulas approximating functions
was not well understood.

1.2 Depth-3 Circuits

As with approximation by depth-2, another simple computational model whose power is still “mys-
tery” in complexity theory is depth-3 circuits (or formulas). A depth-3 (AC0) circuit here is a
directed acyclic graph consisting of alternating 3 layers of AND and OR gates and an input layer
whose gates are labelled by literals (i.e., an input xi or its negation ¬xi). A depth-3 formula is a
depth-3 circuit whose gates have fan-out 1 (i.e., a computational model in which the intermediate
computation cannot be reused). For simplicity, we assume that the top gate of depth-3 circuits and
formulas is an OR gate (i.e., OR ◦AND ◦OR circuits).

A counting argument [RS42] shows that most functions f requires Ω(2n/ log n) literals for a
formula to compute f . And this is tight for depth-3 formulas, as a classical theorem by Lupanov
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[Lup65] shows that any function can be computed by a depth-3 formula with O(2n/ log n) lit-
erals. Therefore, the complexity of depth-3 formulas computing random functions is fairly well
understood.

In sharp contrast, it is wide open to prove a lower bound 2ω(
√
n) of a depth-3 circuit (or formula)

computing some explicit function (e.g., a function in P, or even ENP). In 1980s, there has been
significant progress in the understanding of the computational power of unbounded fan-in constant
depth circuits (e.g., [Ajt83, FSS84, Yao85, H̊as89, Raz87, Smo87]). These results give a depth-d

circuit lower bound of the form 2Ω(n1/(d−1)) for explicit functions, such as the parity and majority
functions. After 30 years, this remains asymptotically the current best circuit lower bounds against
constant depth circuits.

There are several reasons why depth-3 circuits are interesting. One notable reason was given by
Valiant [Val77], who showed that any linear-size log-depth circuit can be transformed into a depth-3
circuit of size 2O(n/ log logn). Hence, a strongly exponential depth-3 circuit lower bound will yield a
super-linear log-depth circuit lower bound simultaneously, the former of which appears to be easier
to deal with. Considerable efforts (e.g., [HJP95, PPZ99, PSZ00, PPSZ05, IPZ01, GW13, GT16])
have been thus made to obtain strongly exponential depth-3 circuit lower bounds.

Another reason is that depth-3 circuits are closely related to CNF-SAT algorithms. For example,
Paturi, Pudlák and Zane [PPSZ05] proved that the minimum size of a depth-3 circuit computing the
parity function is Θ(n1/42

√
n), and simultaneously developed a simple and fast CNF-SAT algorithm;

Paturi, Pudlák, Saks and Zane [PPSZ05] improved the CNF-SAT algorithm and simultaneously
gave a depth-3 circuit lower bound 21.282...

√
n for some explicit function, which is the current best

depth-3 circuit lower bound. (A relationship between a fast CNF-SAT algorithm and a circuit lower
bound was made formal by Williams [Wil13].)

1.3 Duality Theorem

The main theme of this paper is to weave these two lines of research together; thereby we advance
the two lines simultaneously. To this end, we will exploit a general result below, which establishes
an equivalence between exact computation of OR ◦ C and one-sided-error approximation by C for
any circuit class C. (Here, OR ◦ C denotes the class of circuits that consist of a top OR gate fed by
disjoint C circuits. In most of our applications, we take C = {CNF formulas } and hence OR ◦ C is
the class of depth-3 formulas.)

First, we need to introduce one new notion. For any circuit class C and a Boolean function f
and a distribution µ on f−1(1), define maximum (one-sided-error) correlation1 per size of f as

DCµ(f) := max
ϕ∈C
ϕ≤f

Pr
x∼µ

[ϕ(x) = f(x)]/|ϕ|

= max
ϕ∈C
ϕ≤f

Pr
x∼µ

[ϕ(x) = 1]/|ϕ|

 ,

and define DC(f) := minµD
C
µ(f). Intuitively, (one-sided-error) correlation per size measures a

trade-off between the size of a circuit ϕ ∈ C and how well f can be approximated by a circuit ϕ ∈ C
with one-sided error in the sense that ϕ−1(1) ⊆ f−1(1). Our general result relates the complexity
of exact computation of OR ◦ C and the complexity of one-sided-error approximation by C:

1In a usual context of circuit lower bounds, a correlation between functions f and g is defined as 2 Pr[f(x) =
g(x)] − 1. While the definition here is slightly different, we borrow the terminology.
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Theorem 1 (Duality (informal)). For any circuit class C and a Boolean function f : {0, 1}n →
{0, 1}, let LC(f) denote the minimum size of an OR ◦ C circuit computing f . Then,

LC(f) ≈ (DC(f))−1,

up to a factor of n.

Here, the size of an OR ◦ C circuit C1 ∨ · · · ∨ Cm is defined as the sum
∑m

i=1 |Ci|.
In fact, its proof is quite simple: Regard a computation by an OR ◦ C circuit as a set cover

instance, consider the linear programming relaxation, and then take its dual, whose optimal value
corresponds to (DC(f))−1.

Related Work on Duality. It should be noted that a similar result was known before in the
context of threshold circuits. Indeed, the discriminator lemma by Hajnal, Maass, Pudlák, Szegedy
and Turán [HMP+93] states that a circuit with top threshold gate that computes a function f must
have a subcircuit which has a high correlation with f . A converse direction of the discriminator
lemma was proved by Goldmann, H̊astad, and Razborov [GHR92] in the context of threshold
circuits, and by Freund [Fre95] in the context of boosting. Our duality can be regarded as a version
of the discriminator lemma and its converse specialized to the case of circuits with top AND or OR
gate (instead of threshold gate), with a tighter quantitative trade-off between correlation and size.
To the best of our knowledge, the notion of correlation per size was neither defined nor recognized
as important quantity before; and the direction LC(f) . (DC(f))−1 was not known before.

In what follows, we explain how our duality theorem advances the lines of research on depth-3
formulas and approximation by depth-2 formulas.

1.4 Universal Bounds on Depth-2 Approximator

We first apply the duality in order to obtain a tight universal bound on a depth-2 approximator.
As mentioned before, Blais and Tan [BT15] left a gap between an upper bound O(2n/ log n) of a
CNF formula approximating any function and a lower bound Ω(2n/n) for a random function.

In contrast, the depth-3 formula complexity of random functions is well understood [RS42,
Lup65], at least when the size of depth-3 formulas is defined as the number of literals (and the
bound is Θ(2n/ log n)). For our purpose, we need to redefine the size of a depth-3 formula as
the number of AND gates at the middle layer, so that it is consistent with the fact that the size
of a CNF formula is measured as the number of clauses. In fact, it turns out that Lupanov’s
construction [Lup65] can be adapted to this size measure, and we obtain an improved upper bound
O(2n/n) of depth-3 formulas computing any function. Our duality theorem transfers this result
into approximation by depth-2, and we obtain the following tight bound:

Theorem 2 (informal). • For any function f , there exists some CNF formula ϕ of size O(ε ·
2n/n) approximating f with one-sided error and advantage ε for some ε.

• There exists a function f such that any CNF formula approximating f with one-sided error
and advantage ε must have size Ω(ε · 2n/n).

Here, the constants hidden in O and Ω are universal (and, in particular, do not depend on ε
nor f).
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1.5 Approximating Monotone Functions

Next, we apply the duality theorem in order to obtain an exponential separation between non-
monotone CNF formulas and monotone CNF formulas computing a monotone function, which
significantly improves [BHST14]:

Theorem 3 (informal). There exists a monotone function f such that

1. there is some polynomial-size CNF formula that approximates f with one-sided error, whereas

2. any monotone CNF formulas approximating f with one-sided error requires exponential size.

That is, Quine’s theorem fails badly for approximation by depth-2 formulas.
Our proof is in fact an immediate consequence of a recent result by Chen, Oliveira and Servedio

[COS15]: they showed that there is a monotone function f such that f can be computed by some
depth-3 formula of polynomial size, whereas any monotone depth-3 formula computing f requires
exponential size. Our duality theorem transfers their result to Theorem 3.

1.6 Depth-3 Formula Lower Bound for Parity

In the second half of this paper, we regard the duality theorem as a general approach for un-
derstanding the depth-3 formula complexity. That is, we aim at proving an upper bound on the
correlation per size D(f) of a CNF formula, and use it to obtain a depth-3 formula lower bound.
We prove that any depth-3 formula computing the parity function requires Ω(22

√
n) gates,2 which

is tight up to a factor of
√
n.

Our proof follows from an almost tight one-sided-error correlation bound, and our correlation
bound improves another result of Blais and Tan [BT15]: They studied the minimum size of CNF
formulas that compute Parityn all but an ε fraction of inputs. They showed an upper bound
of 2(1−2−dlog 1/2εen) ≈ 2(1−2ε)n (moreover, with one-sided error in our sense) and an lower bound

of (1
2 − ε)2

1−2ε
1+2ε

n. In this paper, we focus on approximation with one-sided error and high error

regimes (e.g., ε = 1
2−2−

√
n). By using the satisfiability coding lemma [PPZ99] and width reduction

techniques [Sch05, CIP06], we obtain an lower bound of 2n/(k+1)−3 for k := log 2
1−2ε and an upper

bound of k′2dn/k
′e−1 for k′ := bkc, which significantly improves the results of [BT15] when the error

fraction ε is close to 1
2 .

In terms of correlation bounds, our result shows that any CNF formula ϕ that computes
Parityn and does not err on inputs in Parity−1

n (0) has the correlation with Parityn at most

2−n/(log |ϕ|+3)+2. This improves the previous bounds 2−n/O(log s)d−1
on the correlation between the

parity function and depth-d circuits of size s in the case of d = 2 (Beame, Impagliazzo and Srini-
vasan [BIS12], H̊astad [H̊as14] and Impagliazzo, Matthews, and Paturi [IMP12]).

Given the almost optimal one-sided-error correlation bound, our duality theorem immediately
implies a depth-3 formula lower bound as follows: The one-sided-error correlation per size of a
CNF formula ϕ with Parityn is at most 2−n/(log |ϕ|+3)+2/|ϕ| = 25−n/(log |ϕ|+3)−(log |ϕ|+3), which is
bounded above by 25−2

√
n from the inequality of the arithmetic and geometric means. Hence, any

depth-3 formula computing the parity function requires 22
√
n−5 gates.

2Independently of our work, Rahul Santhanam and Srikanth Srinivasan (personal communication) obtained the
same lower bound.
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1.7 Depth-3 Circuits vs. Formulas

Our formula lower bound on the parity function is of interest from yet another literature: Questions
whether circuits are strictly more powerful than formulas are one of central questions in complexity
theory. It is straightforward to see that any unbounded fan-in depth-d circuit of size s has an
equivalent representation as a depth-d formula of sd−1, by simply replicating overlapping subcir-
cuits. (Thus, depth-3 formula size and depth-3 circuit size are at most quadratically different.) The
converse direction, namely, whether this näıve simulation is optimal, is closely related to the NC1

vs. AC1 problem. Indeed, if one could show that there exists a language that can be computed by
log-depth unbounded fan-in polynomial-size circuits (i.e., AC1 circuits) but requires a formula3 of
size nΩ(logn), then NC1 6= AC1. Although we thus cannot hope that the circuit vs. formula question
can be solved for d = O(log n) anytime soon (due to the natural proof barrier [RR97]), the question
was solved affirmatively in some restricted cases.

The monotone circuit vs. monotone formula question was solved by Karchmer and Wigderson
[KW90]. They showed that monotone formulas computing st-connectivity require nΩ(logn) gates,
whereas there is a polynomial-size monotone circuit computing st-connectivity. Their communi-
cation complexity theoretic approach (Karchmer-Wigderson games) has been quite successful in
monotone settings. However, little was known in nonmonotone settings until recent results by
Rossman [Ros14, Ros15] (see [Ros14] for further background). He showed that the simulation of
depth-d circuits of size s by depth-d formulas requires sΩ(d) (> s ) gates for a sufficiently large
d (say, d ≥ 108) up to d = o( logn

log logn). More specifically, he [Ros15] showed that any depth-d

formula computing Parityn requires 2Ω(d(n1/(d−1)−1)) gates, whereas it is known that Parityn can
be computed by a depth-d circuit of size n2n

1/(d−1)
.

Motivated by Rossman’s results, we may ask whether depth-d circuits are more powerful than
depth-d formulas for a small constant d. And we may ask whether depth-d circuits of size s
cannot be simulated by depth-d formulas of size even slightly better than the näıve simulation, say,
sd−1.01. We answer these questions affirmatively for d = 3: Our formula lower bound immediately
implies that simulating depth-3 circuits by depth-3 formulas requires a quadratic slowdown, thereby
separating depth-3 circuit and formula size almost optimally.

Corollary. Let s(= Θ(n1/42
√
n)) be the minimum depth-3 circuit size for computing Parityn. Any

depth-3 formula computing Parityn requires Ω(s2/ log s) gates.

We note that this does not seem to follow from Rossman’s techniques as he used the switching
lemma [H̊as89], which may lose some constant factor in the exponent.

1.8 Computing Majority by Depth-3 Circuits

We also make a step towards better understanding of depth-3 formulas computing the majority
function. We characterize the monotone complexity of the majority function in terms of a natural
extremal problem on hypergraphs: For a hypergraph F , let |F| denote the number of edges in F ,
τ(F) denote the minimum size of hitting sets of F (i.e., sets that intersect with every edge in F), and
t(F) denote the number of minimum hitting sets of F . Let T (n, τ) := maxF : τ(F)=τ t(F)/|F|, where
the maximum is taken over all hypergraphs of n vertices. In Section 3, we show that 2n/T (n, n/2)
is asymptotically equal to the minimum size of monotone depth-3 formulas computing the majority

3Note that, by Spira’s theorem [Spi71], NC1 can be characterized as languages computable by polynomial-size
formulas.
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function. The main idea of the proof is that one of the hardest distributions against monotone
CNF formulas can be exactly determined.

It is known that any depth-3 formula (or circuit) computing the majority function requires
2Ω(
√
n) gates (e.g., [H̊as89, HJP95]), whereas the current best upper bound on the size of a depth-3

formula computing the majority function is 2O(
√
n logn) (which can be constructed by partitioning

variables into blocks of equal size; see [KPPY84]), and the depth-3 formula is monotone. Thus,
it follows that 2n−O(

√
n logn) ≤ T (n, n/2) ≤ 2n−O(

√
n). To the best of our knowledge, there has

been essentially no improvement on the minimum depth-3 circuit computing the majority function
over 20 years since H̊astad et al. [HJP95] posed the question explicitly, even when restricted to the
case of monotone circuits. We propose an open problem of determining the asymptotic behavior
of T (n, n/2) as the first step towards determining the minimum depth-3 nonmonotone circuits
computing the majority function.

We note that, in the case of graphs (instead of hypergraphs), T (n, τ) and its extremal structure
are well understood in the context of extensions of Turán’s theorem [Tur41]. We show that a known
extension of Turán’s theorem implies the optimal circuit lower bound for computing the majority
function by monotone depth-3 circuits with bottom fan-in 2.

1.9 Worst-case to Average-case Connection

Our duality theorem can be viewed as a generic equivalence between worst-case complexity and
one-sided-error average-case complexity: It applies to any computational model that is capable of
simulating an unbounded fan-in OR or AND gate.

As a concrete application, we apply it to the case of AC0[p]. Here, AC0[p] denotes the class
of constant-depth circuits consisting of NOT gates and unbounded fan-in AND, OR, and MODp

gates. Razborov [Raz87] and Smolensky [Smo87] established celebrated exponential lower bounds
of AC0[p] circuits computing Parityn for odd prime p. Their techniques also give an average-case

lower bound such that any AC0[p] circuit of size at most 2−n
o(1)

has correlation with Parityn at
most n−1/2+o(1) (Smolensky [Smo93]; see also [Fil10]). This correlation bound remains the strongest
known, and it is a long-standing open problem whether the correlation bound can be improved.
See [FSUV13] for more detailed backgrounds.

While we were not able to obtain (two-sided-error) correlation bounds, we do obtain a one-sided-
error correlation bound. Our duality theorem transfers the worst-case lower bound of Razborov and
Smolensky [Raz87, Smo87] against OR ◦AC0[p] circuits to the following one-sided-error correlation
bound:

Theorem 4. Let C be any AC0[p] circuit of depth d for some odd prime p such that C−1(1) ⊆
Parity−1

n (1). Then we have Prx∼{0,1}n [C(x) = Parityn(x)] ≤ 1
2 +|C|·2−nΩ(1/d)

, where |C| denotes
the number of gates of C.

In particular, any AC0[p] circuit of depth d and size at most 2n
O(1/d)

that does not err on Parity−1
n (0)

has correlation with Parityn at most 2−n
Ω(1/d)

.

1.10 Preliminaries and Notations

Throughout this paper, we assume that the top gate of a depth-3 circuit or formula is an OR
gate. Note that this assumption does not lose any generality for computing the parity or majority
function, due to De Morgan’s laws. A depth-3 formula is thus an OR of CNF formulas, and its
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size is the sum of the size of CNF formulas in the depth-3 formula. A CNF formula is an AND of
clauses, and its size is the number of clauses in the CNF formula. A clause is an OR of literals.
(Alternatively, the size of depth-3 formulas is defined to be the number of OR gates at the bottom
layer when represented as a rooted tree. Note that our measure is the same with the number of
gates up to a factor of 2 and is the same with the number of literals up to a factor of 2n.) For a
function f : {0, 1}n → {0, 1}, we write L3(f) for the minimum size of depth-3 formulas computing
f . We often identify a formula with the function computed by the formula.

Parityn : {0, 1}n → {0, 1} is the function such that Parityn(x) = 1 if and only if the number of
ones in x ∈ {0, 1}n is odd. Similarly, Majn : {0, 1}n → {0, 1} is the function such that Majn(x) = 1
if and only if the number of ones in x is at least n/2.

A distribution µ on a finite set X is a function µ : X → [0, 1] such that
∑

x∈X µ(x) = 1. We write
x ∼ µ to indicate that x is a random variable sampled from a distribution µ. Abusing notation, we
identify a finite set X with the uniform distribution on X. For example, x ∼ X means that x is a
uniform sample from X.

1.11 Organization

The rest of this paper is organized as follows: In Section 2, we prove our duality theorem which links
depth-3 formulas with one-sided approximation by depth-2 formulas. In Section 3, we compute one
of hardest distributions in some cases, and prove Theorem 4. In Sections 4 and 5, Theorems 3
and 2 are proved, respectively. In Section 6, we study the one-sided-error correlation bound of the
parity function. We conclude with some open problems in Section 7.

2 Proof of Duality

In this section, we prove that the complexity of depth-3 formulas is closely related to correlation
bounds of CNF formulas with one-sided error. As mentioned, our results hold for general settings
(e.g., worst-case complexity of depth-(d+1) formulas is almost equivalent to one-sided-error average-
case complexity of depth-d formulas); however, for simplicity, we focus on the case of CNF formulas.
We first define correlation bounds of CNF formulas.

Definition 5. Let f : {0, 1}n → {0, 1} be a function.

• Let CNFf be the set of all CNF formulas ϕ such that ϕ−1(1) ⊆ f−1(1) (i.e., ϕ does not err
on inputs x such that f(x) = 0).

• Let µ be a distribution on f−1(1). The maximum one-sided correlation per size4 Dµ(f) with
f with respect to µ is

Dµ(f) := max
ϕ∈CNFf

Pr
x∼µ

[ϕ(x) = 1] / |ϕ|.

• The maximum one-sided correlation per size D(f) with f is D(f) := minµDµ(f), where the
minimum is taken over all distribution µ on f−1(1).

• We denote by D+(f) the maximum one-sided correlation per size with f for monotone CNF
formulas (i.e., formulas without negated literals).

4In order to make this definition well-defined, we regard 0/0 as 0.
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The following duality is the main principle that we will exploit.

Theorem 6. Let f : {0, 1}n → {0, 1} be a function such that L3(f) > 0. The following holds:

(D(f))−1 ≤ L3(f) ≤ (1 + n · ln 2) · (D(f))−1 .

Proof. The idea is to regard the depth-3 formulas as a set cover instance, apply a linear program-
ming relaxation and take the dual of the LP relaxation.

Specifically, if f is computed by a depth-3 formula, f can be written as a disjunction of CNF
formulas ϕ1, . . . , ϕm (i.e., f =

∨m
i=1 ϕi, or equivalently, f−1(1) =

⋃m
i=1 ϕ

−1
i (1)) such that ϕ−1

i (1) ⊆
f−1(1). Moreover, the size of the depth-3 formula is

∑m
i=1 |ϕi|. Therefore, the problem of finding

the minimum depth-3 formula computing f is equivalent to the following set cover instance: We
want to cover a universe U := f−1(1) by using a collection of sets ϕ−1(1) such that ϕ is a CNF
formula and ϕ−1(1) ⊆ f−1(1) (i.e., ϕ ∈ CNFf ), where the cost of ϕ−1(1) is defined to be |ϕ|. The
minimum cost of this set cover instance is exactly equal to the minimum size of depth-3 formulas
computing f .

Now we consider a linear programming relaxation of the set cover instance on variables xϕ for
each ϕ ∈ CNFf :

minimize
∑

ϕ∈CNFf

|ϕ| · xϕ

subject to
∑

ϕ∈CNFf : ϕ(e)=1

xϕ ≥ 1 for all e ∈ f−1(1),

xϕ ≥ 0 for all ϕ ∈ CNFf .

Let s∗ denote the optimal value of this linear programming. Since it is a linear programming
relaxation of the set cover problem, it holds that s∗ ≤ L3(f). Moreover, it is well known that the
integrality gap of the set cover problem is at most 1 + ln |U | ≤ 1 + n · ln 2 (Lovász [Lov75] and
Chvatal [Chv79]; see also Vazirani [Vaz01]). Thus, we have s∗ ≤ L3(f) ≤ (1 + n · ln 2) · s∗.

It remains to claim that s∗ = (D(f))−1. By the strong duality of linear programming, s∗ is
equal to the optimal value of the following dual problem on variables ye for each e ∈ f−1(1):

maximize
∑

e∈f−1(1)

ye

subject to
∑

e∈ϕ−1(1)

ye ≤ |ϕ| for all ϕ ∈ CNFf ,

ye ≥ 0 for all e ∈ f−1(1).

Let v :=
∑

e∈f−1(1) ye. Define5 µ to be the distribution on f−1(1) such that µ(e) := ye/v for each

e ∈ f−1(1). Since
∑

e∈ϕ−1(1) ye = v · Pre∼µ [ϕ(e) = 1], we can rewrite the dual problem as the

following optimization problem over all distributions µ on f−1(1):

maximize v

subject to v ≤
(

Pr
e∼µ

[ϕ(e) = 1] /|ϕ|
)−1

for all ϕ ∈ CNFf ,

5Since 0 < L3(f) ≤ (1 +n · ln 2) · s∗, we have s∗ > 0. Thus, we may assume, without loss of generality, that v > 0.
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whose optimal value is clearly equal to (D(f))−1. Hence, the optimal value s∗ of the dual problem
is equal to (D(f))−1. �

3 Computing Hard Distributions

In this section, we give some examples for which one of hard distributions can be determined. If a
function f is “symmetric” in a certain sense, one can reduce the number of variables, as in Yao’s
minimax principle [Yao77]. The following lemma gives such a general method.

Lemma 7. Let f : {0, 1}n → {0, 1}. Let Π be a subgroup of the symmetric group on {0, 1}n such
that, for each π ∈ Π and each ϕ ∈ CNFf , there exists a formula ϕπ ∈ CNFf such that ϕ = ϕπ ◦ π,
f = f ◦ π, and |ϕπ| = |ϕ|. Then, there exists a distribution µ on f−1(1) such that µ ◦ π = µ for
any π ∈ Π and D(f) = Dµ(f).

Proof. Let µ∗ be a “hard” distribution µ such that Dµ∗(f) = D(f). Define a distribution µ on
f−1(1) as µ(x) = Eπ∼Π[µ∗(π(x))] for each x ∈ f−1(1), where the probability is taken over the
uniform distribution over Π. Since Π is a subgroup of the symmetric group on {0, 1}n, for any
π ∈ Π and x ∈ f−1(1), we have µ(π(x)) = Eπ′∼Π[µ∗(π′(π(x)))] = Eσ∼Π[µ∗(σ(x))] = µ(x), where,
in the second equality, we replaced π′ ◦ π by σ and used the fact that Π is a group.

By the definition of µ∗, we have Dµ∗(f) ≤ Dµ(f). Hence, it suffices to claim that Dµ(f) ≤
Dµ∗(f). Indeed, for any ϕ ∈ CNFf ,

Pr
x∼µ

[ϕ(x) = 1] =
∑

x∈f−1(1)

µ(x)ϕ(x)

=
∑

x∈f−1(1)

E
π∼Π

[µ∗(π(x))]ϕ(x) (by the definition of µ)

=
∑

y : π−1(y)∈f−1(1)

E
π∼Π

[µ∗(y)]ϕ(π−1(y)) (by defining y := π(x))

=
∑

y∈f−1(1)

E
π∼Π

[µ∗(y)]ϕπ(y) (by f ◦ π = f and ϕ = ϕπ ◦ π)

= E
π∼Π

 ∑
y∈f−1(1)

µ∗(y)ϕπ(y)


≤ E

π∼Π
[Dµ∗(f) · |ϕπ|] = Dµ∗(f) · |ϕ| (by |ϕ| = |ϕπ|)

It follows that Dµ(f) = maxϕ∈CNFf Prx∼µ [ϕ(x) = 1] /|ϕ| ≤ Dµ∗(f). �

In particular, if a function f : {0, 1}n → {0, 1} is symmetric in the sense that the value of f(x)
depends only on the number of ones in x, then one of the hardest distributions µ is also symmetric.

Corollary 8. If a function f : {0, 1}n → {0, 1} is symmetric, then there exists a symmetric distri-
bution µ such that D(f) = Dµ(f).

Proof. Let Π be the set of all permutations that are induced by the n! permutations on (x1, · · · , xn),
and apply Lemma 7. �
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In the case of Parityn, we can completely determine one of the hardest distributions.

Corollary 9. Let µ be the uniform distribution on Parity−1
n (1). Then we have D(Parityn) =

Dµ(Parityn).

Proof. Let Π be the set of all permutations π : {0, 1}n → {0, 1}n that negates an even number of
coordinates (e.g., π(x) = ¬x1 · ¬x2 · x3 · · ·xn). Note that any permutation π ∈ Π does not change
the parity. By Lemma 7, there exists a distribution on f−1(1) such that µ ◦ π = µ for any π ∈ Π
and D(f) = Dµ(f). We claim that µ(x) = µ(10n−1) for any x ∈ Parity−1

n (1). Indeed, it is easy
to see that, for any input x whose parity is 1, there exists a permutation πx ∈ Π that maps x to
10n−1. Since µ◦πx = µ, we have µ(x) = µ(πx(x)) = µ(10n−1). Hence, µ is the uniform distribution
on Parity−1

n (1). �

More generally, Corollary 9 establishes an equivalence between depth-(d + 1) formula lower
bounds and one-sided-error correlation bounds of depth-d formulas with Parityn on the uniform
distribution. In particular, we obtain one-sided-error correlation bounds for AC0[p] as stated in
Theorem 4.

Proof of Theorem 4. We apply the duality theorem (Theorem 6) to OR ◦AC0[p] (namely, the class

of circuits that consist of a top OR gate fed by disjoint AC0[p] circuits). Recall that DAC0[p](f)
denotes the one-sided-error correlation per size of AC0[p] circuits with the function f . Theorem

6 shows that DAC0[p](f) is at most O(n) times the inverse of the size of OR ◦ AC0[p] circuits for
computing f . Now we apply Smolensky’s lower bound [Smo87] on the parity function to OR◦AC0[p]

circuits, and obtain Pr[C(x) = 1]/|C| = DAC0[p](Parityn) ≤ (1 + n · ln 2) · 2−nΩ(1/(d+1))
= 2−n

Ω(1/d)

for any AC0[p] circuit C of depth d. Here, by Corollary 9, we may assume that the probability is
taken over the uniform distribution µ on Parity−1

n (1). Therefore,

Pr
x∼{0,1}n

[C(x) = Parityn(x)]

=
1

2
+

1

2
Pr
x∼µ

[C(x) = 1] (since C(x) = 0 if Parityn(x) = 0)

≤ 1

2
+

1

2
· |C| · 2−nΩ(1/d)

.

�

We can also compute one of the hardest distributions for computing the majority function by
monotone formulas. We write Snk for the set of all inputs x ∈ {0, 1}n such that the number of ones
in x is k.

Proposition 10. Let µ be the uniform distribution on Sndn/2e. Then, D+(Majn) = D+
µ (Majn).

Proof. As observed in [BHST14], for any monotone function f , it holds that Prx∼Snk [f(x) = 1] ≤
Prx∼Snk+1

[f(x) = 1] for any k < n. Indeed, by double counting,

#{x ∈ Snk | f(x) = 1 } · (n− k) = #{ (x, y) ∈ Snk × Snk+1 | f(x) = 1, x ≤ y }
≤ #{ (x, y) ∈ Snk × Snk+1 | f(y) = 1, x ≤ y }
= #{ y ∈ Snk+1 | f(y) = 1 } · (k + 1),

11



and hence Prx∼Snk [f(x) = 1] ≤ Prx∼Snk+1
[f(x) = 1] (by noting that n−k

k+1

(
n
k

)
=
(
n
k+1

)
). Therefore,

the uniform distribution on Snk is “harder” than Snk+1 for monotone formulas. Details follow.
Since Majn is a symmetric function, by Corollary 8 there exists a symmetric distribution µ∗

such that D+(Majn) = D+
µ∗(Majn). (Note that, while Corollary 8 is stated for nonmonotone

formulas, the same proof can be applied to the case of monotone formulas.) Let ϕ be a monotone
CNF formula that achieves the maximum one-sided correlation per size D+

µ∗(Majn). Then,

D+
µ∗(Majn) · |ϕ| = Pr

x∼µ∗
[ϕ(x) = 1]

=

n∑
k=dn/2e

Pr
x∼µ∗

[x ∈ Snk ] · Pr
x∼Snk

[ϕ(x) = 1] (since µ∗ is symmetric)

≥
n∑

k=dn/2e

Pr
x∼µ∗

[x ∈ Snk ] · Pr
x∼Sndn/2e

[ϕ(x) = 1] (since ϕ is monotone)

= Pr
x∼µ

[ϕ(x) = 1].

Hence, we have D+(Majn) ≤ D+
µ (Majn) ≤ D+

µ∗(Majn) = D+(Majn). �

We can state the one-sided correlation per size D+(Majn) in terms of hypergraphs. Specifically,
the following holds.

Corollary 11. For a hypergraph F , let |F| denote the number of edges in F , τ(F) denote the
minimum size of hitting sets of F , and t(F) denote the number of minimum hitting sets of F . Let
T (n, τ) := maxF : τ(F)=τ t(F)/|F|, where the maximum is taken over all hypergraphs of n vertices.

Let L+
3 (Majn) be the minimum depth-3 monotone formula size for computing Majn. Then, the

following holds:
1

T (n, dn/2e)
≤ L+

3 (Majn)(
n
dn/2e

) ≤ 1 + ln 2 · n
T (n, dn/2e)

.

Proof. Given a monotone CNF formula ϕ, we define a hypergraph F so that each edge of F is the
set of literals in a clause of ϕ. (Note that, since ϕ is a monotone CNF, every literal is a positive.)
We can naturally identify x ∈ {0, 1}n with x ⊆ [n]. It is easy to see that ϕ accepts x ∈ {0, 1}n
if and only if x ⊆ [n] is a hitting set of F . Therefore, the constraint that ϕ−1(1) ⊆ Maj−1

n (1)
corresponds to the constraint that τ(F) = dn/2e. The number |F| of edges in F is equal to |ϕ|.
Moreover, t(F) =

(
n
dn/2e

)
· Prx∼Sndn/2e [ϕ(x) = 1]. Therefore, T (n, dn/2e) =

(
n
dn/2e

)
D+(Majn) and

the result follows from Theorem 6. �

In the case of graphs (instead of hypergraphs), the extremal structure that maximizes the
number of hitting sets under the constraint that the minimum size of hitting sets is bounded from
below is well understood. Thus, in the case of graphs, or equivalently, in the case of bottom fan-in
2, we are able to determine the minimum depth-3 circuit size for computing the majority function.

Proposition 12. The minimum size of depth-3 monotone circuits with bottom fan-in 2 for com-
puting Majn is Θ̃(2n/2).
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Proof. It is well known that the extremal structure that maximizes the number of hitting sets (of
each cardinality) given the constraint that τ(F) = τ is the complement of Turán’s graph [Tur41]
(i.e., a disjoint union of cliques of almost equal size; hence, in our case, it is a disjoint union of
n/2 edges). (This fact was independently proved by many people, such as Zykov [Zyk49], Erdős
[Erd62], Sauer [Sau71], Hadžiivanov [Had76], and Roman [Rom76]. For a recent simple proof, see
Cutler and Radcliffe [CR11].)

The number of minimum hitting sets is O(2n/2). Since the number of edges in a graph of n
vertices is at most n2/2, the maximum correlation per size is Θ̃(2−n/2). Moreover, depth-3 circuit
size and depth-3 formula with bottom fan-in 2 are the same up to a factor of O(n2) (e.g., see
[PSZ00, Proposition 2.2]). Thus, the minimum circuit size is equal to 2n/2 up to a polynomial
factor. �

We remark that the same quantitative bound can be obtained by using the techniques of
[HJP95]. Proposition 12 merely gives its alternative proof from the techniques of the different
literature.

4 Approximating Monotone Functions by Depth-2 Formulas

It is reasonable to conjecture that an analog of Proposition 10 holds for nonmonotone CNF formulas:
that is, we conjecture that the uniform distribution on Sndn/2e is close to the hardest distribution of
CNF formulas approximating Majn. And it is tempting to guess that, since Majn is a monotone
function, an optimal CNF formula approximating Majn should be a monotone CNF formula. This
is true when exact complexity of computing monotone function is concerned, by Quine’s theorem
[Qui54]. It is, however, not true when approximation is concerned: Blais, H̊astad, Servedio and
Tan [BHST14] showed that there is a monotone function on n variables that can be approximated
by some CNF formula of size O(n), but cannot be approximated by any monotone CNF formula
of size less than n2.

Here we significantly improve their bounds:

Theorem 13 (Theorem 3, restated formally). There exists a function ε : N→ (0, 1) and a family of
monotone Boolean functions f = {fn : {0, 1}n → {0, 1}}n∈N and a family of distributions {µn}n∈N
on f−1

n (1) such that

• there is some CNF formula {ϕn}n∈N of size at most nO(1) satisfying ϕ−1
n (1) ⊆ f−1

n (1) and
Prx∼µn [ϕn(x) = 1] ≤ ε(n), whereas

• any monotone CNF formula {ϕ+
n }n∈N satisfying (ϕ+

n )−1(1) ⊆ f−1
n (1) and Prx∼µn [ϕ+

n (x) =

1] ≤ ε(n) requires size 2n
Ω(1)

.

In fact, this theorem is an immediate consequence of our duality theorem together with recently
improved Ajtai-Gurevich’s theorem [AG87].

Theorem 14 (Chen, Oliveira and Servedio [COS15]). There exists a family of monotone functions
f = {fn : {0, 1}n → {0, 1}}n∈N such that

1. L3(fn) = nO(1), and
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2. any monotone depth-d circuit6 computing f requires size 2n
Ω(1/d)

.

Using our duality theorem, we now transfer Theorem 14 about depth-3 circuits to Theorem 13
about approximation by depth-2 formulas.

Proof of Theorem 13. By the second item of Theorem 14, L+
3 (fn) ≥ 2n

Ω(1)
. By Theorem 6,

D+(fn) ≤ O(n)/L+
3 (fn) = 2−n

Ω(1)
. That is, there exists a distribution µn on f−1

n (1) such that

Pr
x∼µn

[ϕ+(x) = 1] ≤ |ϕ+| · 2−nΩ(1)

for any monotone CNF formula ϕ+. In particular, for any monotone CNF formula ϕ+ of size less

than 2
1
2
·nΩ(1)

, we have Prx∼µn [ϕ+(x) = 1] ≤ 2−
1
2
nΩ(1)

= 2−n
Ω(1)

.
On the other hand, by Theorem 6 and the first item of Theorem 14, we obtain D(f) ≥ 1/L3(f) ≥

n−O(1). Hence, for the distribution µn defined above, there exists a CNF formula ϕn such that

Pr
x∼µn

[ϕn(x) = 1] ≥ |ϕn| · n−O(1) ≥ n−O(1) (1)

since |ϕn| ≥ 1. Define ε(n) = n−O(1) to be the rightmost lower bound in (1). �

5 Universal Bounds on Approximation by CNFs

In this section, we prove a tight bound on the maximum size of CNF formulas approximating a
function with one-sided error. We say that a CNF formula ϕ approximates a function f with
(one-sided error and) advantage ε if Prx∼f−1(1)[ϕ(x) = 1] ≥ ε and ϕ−1(1) ⊆ f−1(1).

Theorem 15 (Theorem 2, restated formally). For all large n ∈ N, the following holds.

• For any function f : {0, 1}n → {0, 1}, there exists some ε ∈ (0, 1] and some CNF formula of
size at most ε2n+3/n approximating f with one-sided error and advantage ε.

• There exists a function f : {0, 1}n → {0, 1} such that, for any ε ∈ (0, 1], any CNF formula
approximating f with one-sided error and advantage ε must have size at least ε2n−7/n.

In order to obtain the upper bound, we prove the following lemma.

Lemma 16. L3(f) ≤ 2n+3/n for any function f .

A classical theorem by Lupanov [Lup65] states that, for any function f , the number of liter-
als in the smallest depth-3 formula computing f is at most O(2n/ log n) (and this is tight). In
contrast, Lemma 16 deals with the number of AND gates at the middle layer. To the best of
our knowledge, for this size measure, the universal upper bound was not studied before; however,
Lupanov’s construction can be adapted to our size measure as well, by changing some parameters
in the construction.

6In fact, their result gives a lower bound for monotone majority circuits. For our purpose, it is sufficient to use a
lower bound for monotone OR ◦ AND ◦ OR circuits.
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Proof of Lemma 16. The main idea is to cover the whole space by a sphere of diameter 1, and then
to describe the function inside each sphere by a relatively small CNF formula. Take a parameter
D = 2d (< n ) (which is fixed later) for some d ∈ N. A sphere of diameter 1 with center a is
denoted by Sa ⊆ {0, 1}D. That is, Sa consists of all the strings y ∈ {0, 1}D such that y and a differ
in exactly one coordinate. We use several simple facts from [Lup65].

Fact 17. There is some subset AD ⊆ {0, 1}D such that {Sa | a ∈ AD } partitions {0, 1}n (i.e.,∐
a∈AD Sa = {0, 1}n).

Proof Sketch. Let H ∈ GF(2)d×2d be a d×2d matrix whose ith column is the d-bit binary represen-

tation of i ∈ [2d]. Define AD to be the kernel of a linear map H regarded as H : GF(2)2d → GF(2)d.
The fact follows from the properties of the Hamming code [Ham50]. �

Fact 18. For any a ∈ {0, 1}D, the characteristic function of Sa can be computed by a CNF formula
ϕa of size at most D2.

Proof Sketch. x ∈ Sa if and only if (1) there is some i ∈ [D] such that xi 6= ai and (2) for any pair
of i < j, xi = ai or xj = aj . �

The next fact states that, if restricted to a sphere Sa, any function g can be described by a
single clause Cga .

Fact 19. For any function g : {0, 1}D → {0, 1} and a ∈ {0, 1}D, there exists a clause Cga such that
g(y) = Cga(y) for any y ∈ Sa.

Proof Sketch. For b ∈ {0, 1}, let ybi denote a positive literal yi if b = 1 and a negative literal ¬yi
otherwise. Define Cga(y) :=

∨
i y

1−ai
i where the disjunction is taken over all i ∈ [D] such that g

evaluates to 1 if the ith coordinate of a is flipped (i.e., (a1, . . . , 1− ai, . . . aD) ∈ g−1(1)). �

Using these facts, we can now describe any function f : {0, 1}n → {0, 1} by a small depth-3
formula. Regard {0, 1}n = {0, 1}D × {0, 1}n−D. For y ∈ {0, 1}D and z ∈ {0, 1}n−D,

f(y, z) = f(y, z) ∧

 ∨
a∈AD

ϕa(y)

 (by Fact 17)

=
∨
a∈AD

ϕa(y) ∧ f(y, z)

=
∨
a∈AD

ϕa(y) ∧
∧

w∈{0,1}n−D

f(y, w) ∨
∨

j∈[n−D]

z
1−wj
j


=
∨
a∈AD

ϕa(y) ∧
∧

w∈{0,1}n−D

Cf(-,w)
a (y) ∨

∨
j∈[n−D]

z
1−wj
j

 . (by Fact 19)

This is a depth-3 formula of size at most |AD|·(|ϕa|+2n−D) ≤ 2DD+2n/D. Define d := blog(n/2)c.
Then, n/4 ≤ D = 2d ≤ n/2 and hence the size is at most 2n/2 · n/2 + 4 · 2n/n ≤ 2n+3/n. This
completes the proof of Lemma 16. �
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Remark. Lemma 16 is tight up to a constant factor. Indeed, a simple counting shows that the
number of depth-3 formulas of size s is at most 2O(s log s+sn), which is much less than 22n for
s� 2n/n.

Proof of Theorem 15. 1. By Lemma 16 and Theorem 6, we obtain (D(f))−1 ≤ L3(f) ≤ 2n+3/n.
Hence, for any distribution µ on f−1(1) (and in particular the uniform distribution on f−1(1)),
there exists some CNF formula ϕ such that

|ϕ| ≤ 2n+3/n · Pr
x∼µ

[ϕ(x) = 1].

Therefore, ϕ approximates f with advantage ε for ε := Prx∼µ[ϕ(x) = 1], and |ϕ| ≤ ε · 2n+3/n.

2. Let f : {0, 1}n → {0, 1} be a random function. That is, for each input x ∈ {0, 1}n, pick
f(x) ∼ {0, 1} uniformly at random and independently. Fix any CNF formula ϕ and advantage
ε. We will bound the probability that ϕ approximates f with one-sided error and advantage
ε.

Claim 20. Prf
[
ϕ−1(1) ⊆ f−1(1) and Prx∼f−1(1)[ϕ(x) = 1] ≥ ε

]
≤ 2−ε2

n−4

By definition, Prf [ϕ−1(1) ⊆ f−1(1)] = 2−|ϕ
−1(1)|. This probability is bounded above by

2−ε2
n−2

if |ϕ−1(1)| > ε2n−2, in which case the claim holds.

It remains to consider the case when |ϕ−1(1)| ≤ ε2n−2. First, note that Prx∼f−1(1)[ϕ(x) =
1] ≥ ε is equivalent to |ϕ−1(1)| ≥ ε|f−1(1)| under the assumption that ϕ−1(1) ⊆ f−1(1).
Therefore, the probability in the claim can be bounded above by

Pr
[
ε|f−1(1)| ≤ |ϕ−1(1)|

]
≤ Pr

[
|f−1(1)| ≤ 2n−2

]
≤ 2−2n−4 ≤ 2−ε2

n−4
,

where the second last inequality follows from the Chernoff bound. This completes the proof
of the claim.

Fix any size s ∈ N. Since there are at most 3ns CNF formulas of size s,

Pr
f

[
∃ϕ of size s such that ϕ−1(1) ⊆ f−1(1) and Pr

x∼f−1(1)
[ϕ(x) = 1] ≥ ε

]
≤ 3ns · 2−ε2n−4

.

by the union bound. Define sε := ε2n−6/n. Then, for any fixed ε, the probability that there
exists a CNF formula ϕ of size sε approximating f with advantage ε is at most 3nsε ·2−ε2n−4 ≤
2ε2

n−5−ε2n−4
= 2−ε2

n−5
.

Let E := { 2−n+5, 2−n+6, · · · , 20 }. By the union bound over all ε ∈ E ,

Pr
f

[ ∃ ε ∈ E , ∃ϕ of size sε such that ϕ approximates f with advantage ε ]

≤
n−5∑
i=0

2−2i <
∞∑
i=1

2−i = 1.

Hence, there exists a function f such that f cannot be approximated by any CNF formula
of size sε with any advantage ε ∈ E . While this gives us inapproximability for discrete values
of ε ∈ E , we can extend it to an arbitrary advantage ε ∈ (0, 1] as follows: Given an arbitrary
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ε ≥ 2−n+5, we take ε′ ∈ E such that ε/2 ≤ ε′ ≤ ε. Then, f cannot be approximated by
any CNF formula of size sε/2 (≤ sε′ ) with any advantage ε (≥ ε′ ). On the other hand, if
ε < 2−n+5 then sε < 1 and hence f cannot be approximated by any CNF formula of size
at most sε (i.e., a constant formula) with positive advantage, as we may assume that f is
not constant. Therefore, in any case, f cannot be approximated by any CNF formula of size
sε/2 = ε2n−7/n with any advantage ε ∈ (0, 1].

�

6 Satisfiability Coding Lemma With Width Reduction

In this section, we modify the satisfiability coding lemma [PPZ99] and obtain an upper bound on
the number of isolated solutions of a CNF formula. Here, we say that an assignment x ∈ {0, 1}n
is an isolated solution of a function ϕ if ϕ(x) = 1 and ϕ(y) = 0 for any adjacent assignment y of
x (i.e., x and y differ on exactly one coordinate). We note that an upper bound on the number of
isolated solutions immediately implies a one-sided correlation bound of Parityn.

Paturi, Pudlák, and Zane [PPZ99] developed the satisfiability coding lemma, which states that
an isolated solution has a short description (and thus the number of isolated solutions is small). We
say that a randomized algorithm E is a randomized prefix-free encoding if, for any fixed randomness
r of E, the image of the algorithm Er that uses r as randomness is prefix-free (i.e., no two strings
in the image of Er contain the other as a prefix).

Lemma 21 (Satisfiability Coding Lemma [PPZ99]). Let ϕ be any k-CNF formula on n variables,
and let T ⊆ {0, 1}n be the set of isolated solutions of ϕ. Then, there exists a randomized prefix-free
encoding E(-;ϕ) : T → {0, 1}∗ such that E[E(x;ϕ)] ≤ n−n/k for any x ∈ T , where the expectation
is taken over the coin flips of E. In particular, |T | ≤ 2n−n/k.

In order to derive a depth-3 formula lower bound of Parityn, we need an upper bound in
terms of the formula size |ϕ| instead of the width k. In the context of satisfiability algorithms (i.e.,
decoding algorithms of satisfying assignments), Schuler [Sch05] gave a variant of the PPZ algorithm
[PPZ99] that runs in time 2n−n/(log |ϕ|+1)poly(n) for a CNF formula ϕ (instead of the running time
2n−n/kpoly(n) of the PPZ algorithm where k is the width of ϕ). We note that Calabro, Impagliazzo
and Paturi [CIP06] gave another analysis of Schuler’s width reduction technique. Their analysis
gives a satisfiability algorithm that runs in time 2n−n/O(log(|ϕ|/n))poly(n) (see [DH09]). However,
it seems that their analysis does not improve our depth-3 formula lower bound on the parity
function because the “O” notation hides some factor. We thus incorporate Schuler’s width reduction
technique into the satisfiability coding lemma, and obtain the following:

Theorem 22. Let ϕ be a CNF formula of size at most 2s on n variables. Then the number of
isolated solutions of ϕ is at most 2n−n/(s+2)+1.

Proof. We will construct a randomized prefix-free encoding of the isolated solution of ϕ. Let T be
the set of isolated solutions of ϕ. Let k := s+ 2.

The idea is to cut off long clauses of length greater than k in ϕ and then apply the satisfiability
coding lemma. We will define ϕ̃ to be a formula produced by cutting off long clauses in ϕ so that
the width of ϕ̃ is at most k. The satisfiability coding lemma yields a short encoding whose average
length is n − n/k. However, since we cut off long clauses in ϕ, it is possible that a satisfying
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assignment x of ϕ is not necessarily a satisfying assignment of ϕ̃. In this case, we specify the index
of the clause in ϕ̃ that is not satisfied by x. While it costs us additional s bits on the code length,
we can obtain the k bits of information about x from the fact that x does not satisfy the clause.

To be more precise, the definition of ϕ̃ is as follows: For each clause C = l1∨ l2∨ · · ·∨ lm, define
C̃ as C̃ := l1 ∨ l2 ∨ · · · ∨ lk if m > k, and C̃ := C otherwise. (We fix an arbitrary ordering of literals

so that C̃ is uniquely determined.) Then, for a CNF formula ϕ =
∧|ϕ|
i=1Ci, let us define a k-CNF

formula ϕ̃ as ϕ̃ :=
∧|ϕ|
i=1 C̃i.

Now we describe the prefix-free encoding algorithm Ẽ(x;ϕ) for encoding an isolated solution x
of ϕ. If ϕ̃(x) = 1, then apply the satisfiability coding lemma, that is, output 0 · E(x;ϕ) (“0” is a
marker indicating the first case). Otherwise, there exists a clause C̃ in ϕ̃ such that C̃(x) = 0. Let
C̃ =

∨k
i=1 li be the lexicographically first clause in ϕ̃ such that C̃(x) = 0. (Note that the width of C̃

is exactly equal to k because C̃ 6= C.) Let i ∈ {0, 1}s be the binary encoding of the index of C̃ in ϕ̃.
Let ϕ′ := ϕ|l1=0,...,lk=0 (i.e., assign the variables in C̃ so that C̃ is falsified), and let x′ ∈ {0, 1}n−k

be the part of the assignment x other than variables in l1, . . . , lk. Output 1 · i · Ẽ(x′;ϕ′). (That is,
recursively call this procedure on input x′ and ϕ′.)

We claim that Ẽ(-;ϕ) : T → {0, 1}∗ is a (randomized) prefix-free encoding. To this end, we
describe a decoding algorithm D̃(z;ϕ): Given an input z = Ẽ(x;ϕ), read the first bit b ∈ {0, 1} of
z. If b = 0, then use the decoding algorithm for E(-, ϕ). Otherwise, read the next s bits i ∈ {0, 1}s
of z so that z = 1 · i · z′, let C̃ denote the ith clause in ϕ̃, define ϕ′ := ϕ|

C̃=0
as in the encoding

algorithm of Ẽ, and recursively call D̃(z′;ϕ′). It is easy to see that D̃(Ẽ(x;ϕ);ϕ) = x for any
x ∈ T , and thus Ẽ is a prefix-free encoding.

Finally, we analyze the average code length of the prefix-free encoding Ẽ. We claim, by induction

on the number of recursive calls of Ẽ, that E
[
Ẽ(x;ϕ)

]
≤ n−n/k+ 1 for any isolated solution x of

ϕ. Here, the expectation is taken over the randomness of Ẽ (i.e., the randomness of E). If ϕ̃(x) = 1

(i.e., there is no recursive call), then |Ẽ(x;ϕ)| = 1 + |E(x;ϕ)|, and thus E
[
|Ẽ(x;ϕ)|

]
≤ 1 +n−n/k

by Lemma 21. Otherwise, we have |Ẽ(x;ϕ)| = 1 + s + |Ẽ(x′;ϕ′)|, where x′ and ϕ′ are defined
as in the encoding algorithm. Since x′ is an isolated solution of ϕ′, we can apply the induction
hypothesis for x′ ∈ {0, 1}n−k and ϕ′. Hence,

E[|Ẽ(x;ϕ)|] ≤ 1 + s+ (n− k)− (n− k)/k + 1

= 1 + n− n/k,

which completes the induction.

We have proved that Er
[
Ẽr(x;ϕ)

]
≤ n− n/k + 1 for any x ∈ T , where r denotes the internal

randomness of Ẽ. In particular, the same holds even if the expectation is taken over x ∈ T as well
as internal randomness of E. By averaging, there exists some internal randomness r′ of E such

that Ex∼T
[
Ẽr′(x;ϕ)

]
≤ n − n/k + 1. Thus, Ẽr′(-;ϕ) : T → {0, 1}∗ is a deterministic prefix-free

encoding whose average code length is at most n − n/k + 1. By Kraft’s inequality and Jensen’s
inequality, we have

1 ≥
∑
x∼T

2−|Ẽr′ (x;ϕ)| = |T | · E
x∼T

[
2−|Ẽr′ (x;ϕ)|

]
≥ |T | · 2Ex∼T [−|Ẽr′ (x;ϕ)|] ≥ |T | · 2−(n−n/k+1)

Hence, |T | ≤ 2n−n/k+1. �
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Corollary 23. Let n ∈ N and 0 ≤ ε < 1
2 . Let s be the minimum size of a CNF formula ϕ that

computes Parityn all but an ε fraction of inputs with one-sided error in the sense that ϕ−1(1) ⊆
Parity−1

n (1). Then, for k := log 2
1−2ε and k′ = bkc,

2
n
k+1
−3 ≤ s ≤ k′2d

n
k′ e−1.

Proof. We first prove the lower bound. Since ϕ−1(1) ⊆ Parity−1
n (1), any satisfying assignment of ϕ

is an isolated solution. Thus, by Lemma 21, Prx∼Parity−1
n (1)[ϕ(x) = 1] ≤ 2n−n/(dlog se+2)+1/2n−1 ≤

2−n/(log s+3)+2. By the assumption,

ε ≥ Pr
x∼{0,1}n

[ϕ(x) 6= Parityn(x)] =
1

2
Pr

x∼Parity−1
n (1)

[ϕ(x) = 0] ≥ 1

2
(1− 2−n/(log s+3)+2),

and thus s ≥ 2
n
k+1
−3.

For the upper bound, we divide an n-bit input into k′ blocks the ith block of which contains
ni bits so that

∑k′

i=1 ni = n and ni ≤ dn/k′e. For the ith block, we add 2ni−1 clauses that check
whether the parity of the block is 0 if i 6= 1 and 1 if i = 1. The constructed CNF formula ϕ is
of size

∑k′

i=1 2ni−1 ≤ k′2d
n
k′ e−1 and does not accept any input whose parity is even. The number

of the satisfying assignments of ϕ is exactly equal to 2n−k
′
, and hence Prx[ϕ(x) 6= Parityn(x)] =

1
2(1− 2−k

′+1) ≤ ε. �

Now we can determine the depth-3 formula size for computing Parityn.

Theorem 24. L3(Parityn) = Θ̃(22
√
n). More precisely, 22

√
n−5 ≤ L3(Parityn) ≤ O(22

√
n√n).

Proof. Let ϕ denote any CNF formula such that ϕ−1(1) ⊆ Parity−1
n (1). Let T denote the set of

satisfying assignments of ϕ. Since T corresponds to the set of isolated solutions of ϕ, by Theorem 22,
it follows that |T | ≤ 2n−n/(dlog |ϕ|e+2)+1 ≤ 2n−n/(log |ϕ|+3)+1. Therefore, for the uniform distribution
µ on Parity−1

n (1), the one-sided correlation per size is

Pr
x∼µ

[ϕ(x) = 1] /|ϕ| = |T | / (2n−1 · |ϕ|)

≤ 25−n/(log |ϕ|+3)−(log |ϕ|+3) ≤ 25−2
√
n,

where the last inequality follows from the arithmetic and geometric means. That is, D(Parityn) ≤
Dµ(Parityn) ≤ 25−2

√
n and thus 22

√
n−5 ≤ (D(Parityn))−1 ≤ L3(Parityn) by Theorem 6.

A depth-3 formula for computing Parityn can be constructed as follows: Divide n variables
into n/k blocks each of which contains k variables. For each string z ∈ {0, 1}n/k such that
Parityn/k(z) = 1, we construct a CNF formula ϕz that checks whether, for each i ∈ [n/k], the

parity of the ith block is zi. Then it is easy to see that Parityn =
∨
z ϕz. Since |ϕz| ≤ n/k · 2k−1,

we have L3(Parityn) ≤ n/k · 2k+n/k−1. Choosing k :=
√
n, we obtain L3(Parityn) ≤ 22

√
n−1√n.

�

7 Concluding Remarks

In this paper, we proved that depth-3 circuit size and depth-3 formula size are quadratically dif-
ferent. Rossman [Ros15] separated the depth-d circuits from the depth-d formulas for a sufficiently
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large d (say, d ≥ 108). These results leave a mysterious regime 3 < d� 108 as an interesting open
problem. Can one prove that depth-d circuits are more powerful than depth-d formulas for such a
regime, and in particular, for d = 4?

Can one prove a depth-3 formula lower bound of Parityn that is tight up to a constant factor?
Can one extend our lower bound of approximating Parityn by CNF formulas with one-sided error
to the case of two-sided error? What is the asymptotic behavior of T (n, n/2)? The techniques from
the literature of Turán’s theorem might be helpful here.

Similarly, the techniques of O’Donnell and Wimmer [OW07] who studied approximation of the
majority function by DNF formulas (under the uniform distribution) might be helpful for studying
T (n, n/2) and the depth-3 circuit size of majority. We believe that the explicit link established
between depth-3 formula size and the complexity of approximation by depth-2 is useful to advance
both of these lines of research further. Can one find another application of the duality?
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