
Interactive Coding Over the Noisy Broadcast Channel

Klim Efremenko∗ Gillat Kol† Raghuvansh R. Saxena‡

Abstract

A set of n players, each holding a private input bit, communicate over a noisy

broadcast channel. Their mutual goal is for all players to learn all inputs. At each

round one of the players broadcasts a bit to all the other players, and the bit received

by each player is flipped with a fixed constant probability (independently for each

recipient). How many rounds are needed?

This problem was first suggested by El Gamal in 1984. In 1988, Gallager gave

an elegant noise-resistant protocol requiring only O(n log logn) rounds. The problem

got resolved in 2005 by a seminal paper of Goyal, Kindler, and Saks, proving that

Gallager’s protocol is essentially optimal.

We revisit the above noisy broadcast problem and show that O(n) rounds suffice.

This is possible due to a relaxation of the model assumed by the previous works. We

no longer demand that exactly one player broadcasts in every round, but rather allow

any number of players to broadcast. However, if it is not the case that exactly one

player chooses to broadcast, each of the other players gets an adversely chosen bit.

We generalized the above result and initiate the study of interactive coding over

the noisy broadcast channel. We show that any interactive protocol that works over

the noiseless broadcast channel can be simulated over our restrictive noisy broadcast

model with constant blowup of the communication.

∗Tel-Aviv University
†Princeton University
‡Princeton University

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 93 (2017)

1 Introduction

In this paper, we initiate the study of interactive coding over the wireless noisy broadcast

channel. In the interactive coding problem, one is given an interactive communication

protocol between several parties communicating over a (noiseless) channel. The goal is

to design a noise-resilient protocol that “simulates” the original protocol (e.g., computes the

same function) over a noisy channel, with as little communication overhead as possible. The

interactive coding problem attracted a lot of attention in recent years, and was studied for

varies two-party settings, as well as for the multi-party case where players communicate over

a point-to-point network (private channels). We study the interactive coding problem over

a new, restrictive, noisy broadcast model. We show that even in this model, every protocol

can be simulated with a constant multiplicative overhead.

The noisy broadcast model was proposed by El Gamal [Gam87] in 1984, as a simple

model allowing the study of the effect of noise in a highly distributed system. This model

considers n parties, each holding a private input bit xi, and the goal of the parties is to

compute a function f(x1, · · · , xn) of all n inputs, using as few communication rounds as

possible. Communication is carried out in a sequence of synchronous rounds. In every

round, one of the parties broadcasts a bit over the channel. Each of the other parties

independently receives the broadcast bit, with probability 1 − ε, or the complement of the

bit, with probability ε, where ε is some fixed noise parameter. At the end of the protocol,

all players need to know f(x1, · · · , xn).

In 1988, Gallager [Gal88] gave such a noise-resistant protocol for the identity function

(all players need to learn all input bits), that requires only O(n log log n) broadcast rounds

and errs with some small sub-constant probability. Gallager’s result was shown to be tight

in the beautiful 2005 paper by Goyal, Kindler and Saks [GKS08].

1.1 Our Results

We revisit the above mentioned works in the more general framework of interactive coding,

that not only considers n-bit functions, but attempts to simulate the execution of any

interactive communication protocol with any input size. Simulating a general n-round

interactive communication protocol with n-players over a noisy channel is more challenging

than simulating the (naive) protocol for identity on n-bits over the a noisy channel. The

reason is that every message broadcast by the communication protocol may depend on all

previous messages. There are no such dependencies between the messages sent by the identity

protocol, as it merely communicates the n input bits one-by-one.

Towards the goal of round-efficient interactive coding, we observe that the impossibility

result of [GKS08] crucially depends on the assumption that the model is non-adaptive, that

is, the player broadcasting in each of the rounds is known in advance and is only a function

of the round number (the player cannot depend on the inputs or the noise in the channel).

Non-adaptivity is assumed because it prevents multiple players from broadcasting in the

2

same round.

To bypass the Ω(n log log n) lower bound of [GKS08], we relax the demand that the order

in which the players broadcast is known in advance. We define an adaptive noisy broadcast

model, we call the (n, ε)-noisy broadcast model, where any number of players may broadcast

at the same round. If exactly one player broadcasts in a given round, then, as before, the

players each get an independent ε-noisy copy of the broadcast bit. We emphasize that the

identity of the broadcasting player is not revealed to the other players. However, if in a given

round it is not the case that exactly one player broadcasts, all players receive adversarially

chosen bits. That is, in case of collision (two or more parties broadcast in the same round)

and in the case of silence (no player is broadcasting), an adversary chooses the bits received by

the players, where each player may get a different bit. We assume that the adversary knows

all the information about the execution of the protocol, including the players’ inputs and

randomness, and all their received transcripts. Our model tries to mimic the phenomenon

that the “superposition” of two signals cannot be used to conclude anything about any one

of the two signals. Furthermore, it rules out communication by silence (“signaling”). We

require a simulation protocol to work against any strategy of the adversary.

Various adaptive (noiseless) broadcast models are extensively studied in the context of

wireless radio distributed communication, as these describe real-life scenarios (e.g., radio

transmitters, mobile distribution towers, etc.). However, these models usually either assume

that collision is detectable, or that collision is received by the players as silence, or that

in the case of collision, exactly one of the messages broadcast is received (see [Pel07] for a

survey). Our model is more restrictive than all of the above, as both collision and silence

are fully adversarial. In particular, any protocol that works in our model will also work in

the noisy versions of all of the above models.

Our main result is that even in our restrictive (n, ε)-noisy broadcast model, any protocol

can be simulated with a constant blow-up in the communication.

Theorem 1.1. Let ε ∈ (0, 1
10

). For any non-adaptive randomized n-party protocol Π that

takes T rounds assuming an n-party noiseless broadcast channel, there exists a randomized

adaptive coding scheme that simulates π over the (n, ε)-noisy broadcast channel, that

takes O(T) rounds, and errs with sub-constant probability in T .

Designing general simulation protocols over the (n, ε)-noisy broadcast channel poses new

challenges. To overcome these, we combine tools from interactive coding (e.g., tree codes),

wireless distributed computing (e.g., version of the celebrated Decay protocol [BGI92]), and

also develop new techniques.

1.2 Related Works

As mentioned above, Gallager was the first to design non-trivial noisy broadcast protocols.

He considered the identity and the parity functions and gave O(n log log n) protocols

for both [Gal88]. Noise-resilient protocols for varies other n-bit functions where studied

3

by [KM98, FK00, New04, GKS08], showing that, for some interesting functions, O(n) rounds

protocols are possible, even in the model where the noise rate is not fixed.

The field of interactive coding was introduced in a seminal paper of Schulman [Sch92].

Various aspects of two-party interactive coding (such as computational efficiency, interactive

channel capacity, noise tolerance, list decoding, different channel types, etc.) were considered

in recent years [Sch93, Sch96, GMS11, BR11, BKN14, Bra12, KR13, MS14, Hae14, BE14,

GMS14, GH15, GHK+16, EGH15, BGMO16], to cite a few. In certain two-party settings, it is

known that adaptive models may allow for better interactive coding schemes [Hae14, GHS14]

(note, however, that the improvement in these cases is only by a constant).

Multi-party interactive coding over a point-to-point network was first studied by [RS94],

and more recently by [ABE+16, BEGH16]. We mention that the noisy-broadcast setting is

very different from the point-to-point case, as in the broadcast setting a player can only send

the same bit to all other players.

2 Proof Sketch

2.1 High Level Overview

The main property of the adaptive model that we are exploiting in our simulation protocol,

is that if a player detects an error, he can let the rest of players know immediately, and the

corresponding bits can be retransmitted. In our protocol, we designate one of the players to

be the leader, and essentially all communication will be routed through this leader. This is

done by having the leader repeat every message that he receives in an “error-robust” way.

More formally, the leader encodes every received bit using a tree code (see subsection 3.4),

and broadcasts the encoded message. The tree code property ensures that if the leader

receives an “incorrect” bit from some player, this player will detect the error within a constant

number of rounds (in expectation) and will be able to signal this to the leader. We note

that the leader may receive an incorrect bit, either due to an error in the transmission of

this bit from the player to the leader, or since the player received previous bits incorrectly,

thus computed an incorrect value.

We show that this mechanism can be implemented such that the probability that after t

rounds, a player still did not realize that the bit the leader received from him was incorrect,

is exponentially small in t. Therefore, we do not need to check with all the players whether

the leader received their bit correctly, but it suffices to check this with the few last players

to broadcast. More precisely, our protocol runs a consistency check every 2j rounds (for

every j ∈ N). This check involves the last 2j players to broadcast. We will show that the

consistency check requires poly(j) rounds, therefore it decreases the rate of our protocol by

only a constant.

4

2.2 From Non-Adaptive Protocols to Correlated Pointer Jumping

We introduce the n-player correlated pointer jumping (CPJ) problem, and claim that it is

“complete” for interactive coding over the noisy broadcast channel. A similar claim is known

to hold for the two party case [BR11].

Consider a non-adaptive communication protocol Π between n players connected via a

noiseless broadcast network. Since Π is non-adaptive, it specifies the player pi that broadcasts

in round i. Along with pi, Π also specifies a function gi : {0, 1}i−1×X → {0, 1} that takes a

transcript πi−1 of length i− 1 and a private input x ∈ X to a single output bit. At round i,

player pi broadcasts the output bit bi = gi(πi−1, x) over the network. To simplify notation,

we used the same input set X for all the n players. Since the channel is noise-free, all the n

players receive a copy of bi and use it extend their transcript πi = πi−1‖bi. Player pi+1 can

then broadcast and the protocol goes on.

Consider now an instance of the n-player CPJ problem. This instance is defined by a

complete binary tree of depth d. The edges of this tree are labelled by elements in {0, 1}.
Every layer in this tree belongs to one of n players. We use qi to denote the player that

owns the nodes in layer i ∈ [d]. Every player gets as an input one bit bv for every node v

he owns. Since there are 2i−1 nodes in layer i, the bits bv for v in layer i can be specified

by a function fi : {0, 1}i−1 → {0, 1} known only to player qi. The bit bv determines one of

the two children of the node v. We call this child the ‘correct’ child. The root of the tree is

assumed to be correct by default. The goal of the n players is to compute the (unique) path

that has only correct nodes. This will be referred to as the correct path.

We claim that a communication protocol Π is equivalent to a CPJ instance of depth T ,

where T is the number of bits communicated in an execution of Π. The equivalence

maps player pi broadcasting in round i in Π to the player qi who owns all the nodes at

depth i in the CPJ tree. The functions fi for the CPJ instance are created so as to satisfy

fi(πi−1) = gi(πi−1, x),∀πi−1, where x is the input for Π. It can be proved that the correct

path will be the transcript of the protocol Π.

We restrict our attention to CPJ instances of depth n where each layer belongs to a

different player. We number the players from 1 to n so that layer i belongs to player i

for all i ∈ [n]. We describe a protocol that finds the correct path for the CPJ instance

over the (n, ε)-noisy broadcast model. Our protocol would require a number of broadcasts

that is linear in n, the depth of the CPJ instance. Since CPJ instances are equivalent to

noise-free broadcast protocols, this is actually a constant rate interactive coding result. Our

assumption about the depth n of the CPJ tree being equal to the number of players is for

simplicity. Indeed, the same ideas would extend to arbitrary depth trees where each layer is

owned by an arbitrary player i ∈ [n].

5

2.3 A Protocol for CPJ Over the Noisy Broadcast Model

We build our noise-tolerant CPJ protocol based on a protocol in the noise-free environment.

In the absence of noise, the simplest protocol would start from the root v1 of the tree.

Since the root (layer 1) belongs to player 1, player 1 will broadcast bv1 . This bit would be

heard correctly by all the players. bv1 identifies a correct node v2 in layer 2. Player 2 then

broadcasts bv2 which is, again, heard correctly by all the players. The protocol proceeds until

a length n path has been identified. Since the players only broadcast correct bits, the path

is, by definition, correct.

As is evident, this protocol relies on the correct reception of each and every bit by all

the n players. This can be achieved by broadcasting just once in the noise-free setting. In

the noisy environment however, ensuring correct reception with a constant probability by all

the players requires Ω(log n) broadcasts. The naive interactive coding protocol, thus, incurs

an overhead of Ω(log n).

To avoid this Ω(log n) slowdown, we use the observation that not all players need to

know every bit immediately after it was broadcast. Consider the first bit that is broadcast.

For large i, since player i only broadcasts in round i, he wouldn’t need to know the first bit

until i− 1 addition rounds have passed. Thus, trying to convince player i of the value of the

first bit immediately after its broadcast is not necessary or optimal.

We develop this idea further. Consider a player i such that i ∈ [2j, 2j+1). Player i will

definitely not broadcast in the first 2j − 1 rounds and hence, they do not need to know

anything until then. We design our protocol in a way such that for all j, the first 2j rounds

only convince the first 2j+1 players. As the protocol proceeds, j starts taking higher and

higher values and eventually, we will be able to convince every player about every bit.

More formally, we define a sequence of protocols {Aj}j≥0. The protocol A0 only involves

player 1 and the leader. In this protocol, player 1 broadcasts bv1 and then they check if the

leader received bv1 correctly. For j > 0, the protocol Aj first runs Aj−1. Let s1 be the path

that was successfully transmitted by this execution Aj−1. We ensure that |s1| = Ω(2j−1)

and the probability that a given player i ∈ [2j] doesn’t have the correct value of s1 is 2−Ω(j).

After this, the players run Aj−1 again. This second invocation starts at the point where the

previous invocation ended, i.e., after the first |s1| edges. The output s2 of this protocol will

again be correct for players in [2j] with probability at least 1− 2−Ω(j).

After the two executions of Aj−1, the protocol Aj runs a check phase. This check phase

is longer than the check phase in Aj−1 and is designed to convince 2j+1 players. The check

phase decides which prefix of the path s1‖s2 was communicated correctly. The expected

length of this prefix is roughly double the expected length of s1 (and also s2). This length is

the ‘progress measure’ of our protocol. Since it doubles each time j increases by 1, it stays

within a constant factor of the number of bits transmitted. The induction continues and j

grows to convince all the players about all the bits.

6

2.4 The Check Phase

The protocol Aj is designed to convince twice as many players as the protocol Aj−1. Also,

the probability that Aj fails is half the probability that Aj−1 fails. The protocol Aj gives

these improved guarantees because it uses longer check steps. A check step in Aj involves 2j

players, each of which has an input string vi, i ∈ [2j], corresponding to his belief of the

position in the CPJ tree that the simulation protocol has reached.

In a check round, the players compare their bit strings with each other. In order to do

this, one of the players (the leader) broadcasts a hash of length O(j) of their string. This

hash is repeated enough times (O(j) times) to ensure correct reception by all the 2j players

with probability at least 1−O(2−j). All the players i ∈ [2j] then compare the hashes received

from the leader with their hashes of the string vi. If the hashes match, then the strings are

the same with high probability. Otherwise, the strings are most probably different.

Player i computes the bit bi that is 1 if and only if the hashes of vi are the different from

the hashes he received from the leader. If there exists a player i such that bi is 1, then the

input vi of player i is different from the leader’s string. Thus, by computing the OR of the

bits bi, the players can detect if their strings are consistent. We describe the protocol OR for

computing the OR function in subsection 2.5.

Due to the noise present in the channel, the strings vi will not be identical for all players i

almost always. The check round will, thus, almost always fail and the players will not make

progress. To avoid this, we compute the longest prefix that is common to all the strings vi.

We show that the length of this prefix will typically be a constant fraction of the length of vi.

Thus, in 2j rounds, the players would agree on Ω(2j) bits. The longest common prefix (LCP)

is computed by a binary search on the length of the strings. Since the check procedure is

efficient (polynomial in j broadcasts) and the prefix output is always a constant fraction

of |vi|, our protocol requires O(n) broadcasts to compute the length n output of CPJ.

The longest common prefix is an indicator of the part of the CPJ tree that was simulated

correctly. After the check step, the players go back to the location in the CPJ tree indicated

by the result of the LCP and start simulating from there on. Thus, all the players that may

need to broadcast their bits in the near future, need to know the result of the LCP. For

this reason, we ensure that the check rounds convince not only the (at most) 2j players that

broadcast their inputs in the two executions of Aj−1, but all the first 2j+1 players.

Another issue is that each of the other players (player i ∈ [n] \ [2j+1]) will eventually

need to know the correct location in the CPJ tree to be able to broadcast his relevant input

bit, thus will need to know the result of the LCP and all the input bits that were broadcast

during the two executions of Aj−1. We do not have the budget to allow all the players to

participate in the check step, nor can we afford to repeat all the broadcast inputs many

times. What we do instead is have the leader repeat all the information he receives (his

perception of the input bits sent by the different players, as well as the LCP result) over a

tree code (see subsection 3.4 and subsection 2.1). The usage of a tree code ensures that with

time, each of the players will be able to retrieve the correct transcript of the protocol.

7

2.5 The OR protocol

We now describe our protocol for the OR function. In this setting, each player i ∈ [2j] has

a private input bit bi. The players work to compute or = ∨2j

i=1bi. Since or = 1 if and only if

there exists i such that bi = 1, we partition the set of 2j players into two classes based on bi.

If bi = 1, player i is called a 1-player. Otherwise, he is called a 0-player. The 1-players and

the 0-players play complementary roles in the OR protocol.

A 1-player i knows his input bi = 1, and thus can compute or = 1. His job is to convince

every other player about his presence. If one of the 1-players is able to tell all the other

players that their bit is 1, the other players will be able to compute or = 1. On the other

hand, the 0-players know that their bit will not affect the final outcome and try to listen to

the 1-players broadcasting, if any.

Since we assume the broadcast channel to be adversarial when more than one player

(or no player) is broadcasting, if the 1-players keep broadcasting together, the bits received

by all the players would be adversarial. To avoid this, the 1-players follow a random-back-

off strategy, as in the Decay protocol [BGI92]. The players broadcast independently with

probability α. They start with α = 1, and decrease α by 1/2 at each step. When α is

roughly, the inverse of the number of 1-players, then in expectation, only one 1-player will

broadcast and convince all the 0-players. The expectation argument can be converted to a

high probability one by repeating enough times.

The random-back-off strategy described above is implemented in the protocol

Advertising (see Algorithm 1) that requires O(j3) broadcasts. It ensures that if a 1-

player exists, they are able to communicate their presence to all the other players with high

probability. However, if all players are 0-players, all the players will stay silent throughout

these rounds and all the bits received would be adversarial. To deal with this case, we require

every player broadcasting during Advertising to broadcast their identity. The identity of

player i is just the binary representation of i, and can be communicated using at most O(j)

bits. During the execution of Advertising, the leader will collect O(j2) id’s.

The players will then run the protocol Inquiry (see Algorithm 2). In this protocol, the

leader will ask each of the O(j2) identities he collected for their private input bit1. The

players will respond with their private input bit. If there exist 1-players, one of them, say

player i, would have successfully broadcast the identity i during Advertising. When the

leader queries i, he will respond with 1. If all the players were 0-players, all the responses

to the leader’s queries will be 0. The players can, thus, output the OR of all the responses

to compute or.

It is crucial in this protocol that Inquiry is “adversary free”. The leader’s queries

are adversary free because he broadcasts in pre-determined rounds. This means that all

players receive a noisy version of the query. Correct reception except with probability at

most O(2−j) can be ensured by using error correcting codes. If all players receive the query

correctly, exactly one player (the player whose identity was queried) would respond making

1These identities might be adversarial. This doesn’t matter as long as they are in [2j].

8

the response adversary free. This response is again encoded to ensure correct reception.

Since all the queries and their responses are received correctly by all players in [2j], we are

able to prove that the output of this protocol is correct.

3 Preliminaries

3.1 Notation

Throughout this paper, we use Ak to denote the k-fold cartesian product of a set A with

itself, i.e. Ak = A× A× · · · × A︸ ︷︷ ︸
k times

. We define A≤n =
⋃n
i=1A

i. The set of all natural numbers

less than or equal to n is denoted by [n].

We denote by ε the empty string (the string of length zero). For a string s and i, j ∈ N,

we denote by |s| the length of s, and by s[i : j] the substring from position i to position j

(both inclusive). If i > j, then s[i : j] = ε. If |s| < j, then we first pad s with zeros to be of

length i, and then take the slice. We sometimes abbreviate s[i : j − 1] as s[i : j); s[i+ 1 : j]

as s(i : j] and so on.

Let S be a set of bit strings. We denote by l(S) the longest prefix that is common to

all strings in the set S. That is, l(S) is a prefix of all the strings in S, and no string of

length greater than |l(S)| is a prefix of all strings in S. If S = {s1, . . . , sm}, we sometimes

write l(s1, . . . , sm) to denote l(S). Given a vertex v in a binary tree, we often view v as the

bit-string that corresponds to the path from the root to v. Hence, for two vertices v and

u, l(v, u) is the lowest common ancestor of v and u. For two bit strings s and t, we denote

by s‖t the concatenation of s and t.

3.2 Probability

We use the following formulation of Chernoff bound.

Lemma 3.1 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random

variables taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the sum’s

expected value. Then,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 , ∀0 < δ < 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3 , ∀1 ≤ δ,

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 , ∀0 < δ < 1.

The following simple lemma considers error reduction by repetition.

Lemma 3.2 (Majority lemma). Let ε < 1/2, f > 1 and b ∈ {0, 1}. There exists a constant c

depending on ε, such that the majority of cf independent ε-noisy copies of b is b, except with

probability at most exp(−f).

9

Proof. For i ∈ [cf], let Xi be a random variable that is 0 if the ith noisy copy of b is indeed b,

and 1 otherwise. For i ∈ [cf], we have Pr[Xi = 1] = ε . Let X =
∑

i∈[cf] Xi. The majority

is incorrect only if X ≥ cf/2. By the Chernoff bound (Lemma 3.1),

Pr[X ≥ cf/2] ≤ exp(− δ2εcf
3

),

where δ = min{ 1
2ε
− 1, 1}. Setting c = 3

δ2ε
gives the result.

3.3 Error Correcting Codes

We will use the existence of the following error correcting codes. The following version is

derived from [GKS08].

Theorem 3.3. For γ ∈ (0, 1/2), there is an integer K1 = K1(γ) such that for all positive

integers t and each K ≥ K1, there exists a code Ct ⊂ {0, 1}Kt of size 2t, such that for all

v, w ∈ Ct with v 6= w, d(v, w) ≥ γKt, where d(v, u) denotes the Hamming distance between v

and w.

Let γ ∈ (0, 1/2). In what follows, we let Et,γ : {0, 1}t → {0, 1}Kγt stand for the

encoding function of the error correcting code promised by the above theorem for γ, and

let Dt,γ : {0, 1}Kγt → {0, 1}t be the corresponding decoding function. Our protocols use the

following lemma.

Lemma 3.4. Let ε ∈ (0, 1/8), γ = 4ε, and x ∈ {0, 1}logn. Suppose that Ẽ is a noisy

copy of Elogn,γ(x) obtained by flipping each of the Kγt bits of Elogn,γ(x) independently with

probability ε. Then, the probability that Dlogn,γ(Ẽ) = x is at least 1− n−30.

Proof. Let K = Kγ, and assume without loss of generality that K > 1000
ε

. It holds

that Dlogn,γ(Ẽ) = x unless d(Ẽ, Elogn,γ(x)) > 2γKt. For i ∈ [K log n], define a random

variable Xi to be 1 if Ẽ and Elogn,γ(x) differ on the ith bit, and 0 otherwise. Let

X =
∑K logn

i=1 Xi. Since the noise in each coordinate is independent, by the Chernoff bound

(Lemma 3.1),

Pr[X ≥ 2εK log n] ≤ e−
εK logn

3 ≤ n−30.

3.4 Tree Codes

Tree codes were introduced by Schulman [Sch93]. These are powerful “online” error

correcting codes that work in an environment where the input is streaming. Thus, can be

used towards the goal of reliable communication over noisy channels. We use the following

version defined in [BR11].

10

Definition 3.5 ((d, α,Σ)-tree code). A d-ary tree code of depth n and distance α > 0 over

alphabet Σ is defined using an encoding function C : [d]≤n → Σ that satisfies the following

property:

Define C(v1, v2, · · · , vk) as C(v1)‖C(v1, v2)‖ · · · ‖C(v1, v2, · · · , vk). Let u and v be any two

strings of length k ≤ n. Let k0 = k − |l(u, v)|. Then, C(u) and C(v) differ in at least αk0

coordinates.

Note that the way C is defined implies that C(u) and C(v) are of length k and share a

prefix of length at least k − k0. Thus, the definition implies that at least a α fraction of the

remaining coordinates are different in both strings. Tree codes with larger values of α are

more powerful.

Encoders C that satisfy this property in Definition 3.5 are called tree codes because

they can be viewed as a d-ary tree of depth n, where each edge is labelled with an element

from Σ. In this setting, each element s in [d]≤n can be seen as defining a path from the root

to some node in the tree, and C(s) is just the symbol on the last edge in this path. The tree

code condition implies that for any two leaves u and v at the same depth and w = l(u, v),

at least α fraction of the symbols on the path from w to u differ from the corresponding

symbols on the path from w to v. The following theorem was first proved by [Sch96]:

Theorem 3.6. For every n, d ∈ N, and 0 < α < 1, there exists a (d, α, [dOα(1)])-tree code of

depth n.

We now introduce the decoder for tree codes that we will use. The decoding function

D : Σ≤n → [d]≤n takes the closest string σ in Σ≤n (in terms of Hamming distance) that lies

in the range of C and returns C
−1

(σ). If two strings differ in their length, then we consider

their Hamming distance to be ∞. The following theorem formalizes the property that we

want a tree code to satisfy.

Theorem 3.7. Fix α > 2ε > 0. Let C and C define a (d, α,Σ)-tree code of depth n. Let

k ≤ n and consider any string s ∈ [d]k. Let C̃(s) be C(s) where each symbol is replaced with

a random symbol from Σ independently with probability ε. Let t = D(C̃(s)) where D is the

decoding function. Then, for any k0 ∈ N,

Pr
(
|l(s, t)| ≤ k − k0

)
≤ K1 exp(−K2k0),

for some constants K1 and K2 depending on ε and α.

Proof. Define the random variable l = l(s, t) and consider the event l = l0. Since C defines

a tree code, C(s) and C(t) differ in at least α(k − l0) places. Furthermore, all of these

differences are in the last k − l0 coordinates. A Hamming distance based decoder would

decode C̃(s) to t only if at least α(k − l0)/2 indices were affected by noise. Define indicator

random variables {Xi}ki=1 such that Xi is 1 if and only if index i is corrupted by noise. Let

11

X>j =
∑k

i=j+1 Xi. An application of Lemma 3.1 gives:

Pr[l = l0] ≤ Pr[X>l0 ≥ α(k − l0)/2]

= Pr
[
X>l0 ≥ (1 + δ)E[Xl0]

]
≤ exp

(
−δ2E[Xl0]

3

)
= exp

(
−δ2ε(k−l0)

3

)
,

where δ = min
(
α
2ε
− 1, 1

)
is a constant. This directly gives,

Pr
[
l(s, t) ≤ k − k0

]
=

k−1∑
i=k0

Pr
[
l(s, t) = k − i

]
≤

k−1∑
i=k0

exp
(
−δ2εi

3

)
≤

∞∑
i=k0

exp
(
−δ2εi

3

)
=

exp
(−δ2εk0

3

)
1− exp

(
− δ2ε

3

) .

4 Our Framework

Each subsection here discusses an important feature in our protocol. We refer to this section

extensively throughout the paper.

4.1 The Leader

A major difficulty in designing adaptive protocols in our (n, ε)-noisy broadcast model is to

co-ordinate the broadcasts by all the players. This is difficult because the noise injected

in the transcript received by the players is independent of each other. Thus, two different

players might have entirely different views of the protocol. However, it is crucial to ensure

that most rounds have only one player broadcasting. If this is not the case in some round,

the bits received by all the players in that round are adversarial.

This important task is designated to a special player, called the “leader” in our protocols.

Almost all the communication in all our protocols will be routed through the leader. For the

rest of the text, we assume that the leader is an extra player (player n + 1), but the same

arguments hold if the leader is one of the original players.

We will make sure that the leader is broadcasting in pre-determined rounds, that is, in

rounds whose number is fixed in advance, and does not depend on the player’s inputs and

randomness and on the noise in the channel. Since all the other players in [n] know these

rounds (they are specified by the protocol), they would never broadcast in these rounds. We

sometimes call such pre-determined rounds “adversary free”. The name reflects the fact that

12

the bit received by all the players in these rounds in noisy, but not adversarial (as only the

leader was broadcasting).

Since the leader’s broadcasts are adversary free and the players only take instructions

from the leader, important parts of our protocol are adversary free. Almost throughout, the

players only broadcast after the leader asks them to, to ensure synchronization. The leader

will only ask one player at any given time, making that player the only person broadcasting.

4.2 Global Tree Code

We solve the CPJ problem via a sequence of protocols {Aj}j≥0 where each protocol Aj
invokes the protocol Aj−1 twice. Throughout the execution of the different sub-protocols

that compose our main protocol, we assume that the leader is maintaining a single tree

code. The tree code is a “global variable” that retains its value between the calls to different

sub-protocols. It records all the information that any protocol needs from any other protocol

executed before it. Further, the leader is the only player that encodes messages using this

tree code and broadcasts their encodings.

We refer to such broadcasts as ‘broadcasts over the tree code’. Since only the leader

makes these broadcasts, the tree code is adversary free. Suppose that at some stage in the

protocol, the leader has already broadcast the encoding of the bits b1, · · · , bm over the tree

code and wants to send the next bit bm+1. To broadcast bm+1 over the tree code, the leader

broadcasts the message C(b1‖ . . . ‖bm‖bm+1), bit by bit (see subsection 3.4). We denote this

message by simply C(bm+1). The previous bits b1, · · · , bm will be clear from the context

(these are all the bits communicated over the tree code so far).

4.3 Active and Passive Players

All the protocols we describe are multi-party protocols executed over a noisy broadcast

network. However, we partition the players into two sets: active players and passive

players. Active players are assumed to have an input and may broadcast messages during the

execution of the protocol. Passive players do not have inputs and will not be broadcasting

(only listening-in). Since both the types listen to the bits broadcast, they are able to compute

functions of the transcripts they witnessed, and thus compute the outputs promised by the

protocols. We mention that the leader will participate in any execution of any protocol as

an active player.

4.4 Harmonious Executions and Fixed Length Protocols

The protocol we employ to solve the CPJ problem involves many sub-protocols that are

invoked multiple times. Some of the sub-protocols that are invoked many times may involve a

different set of players in each invocation. The subset of players participating in an invocation

13

of a sub-protocol is determined adaptively, i.e., according to the players’ inputs, randomness

and the randomness in the channel.

Consider a sub-protocol A that involves k active players in any given execution, but this

subset of k players might vary between two different invocations. To simplify the description

and the analysis, we will describe and analyze every such protocol A as if players in the

set [k] were participating in it.

We now define a notion of a ‘harmonious invocation’ that would allow us to lift our

results from players in the set [k] to an arbitrary subset S of participating players. Since

we want the result(s) proved for the case where the players in the set [k] are active (and

the rest are passive) to hold in general, intuitively, we want the invocation to look similar.

We require three things from a harmonious invocation. Firstly, every player in [n] should

know the number k of active players. Secondly, there should be a set S of size k such that

a player i participates as an active player if and only if i ∈ S. Thirdly, since the k active

players in the description of A might play different roles, we assume that the players in S

know a common bijection f : S → [k] and player i ∈ S participates as f(i) in the execution

of A.

The definition above ensures the following. Firstly, every active player knows exactly who

participates in the execution of A and in what role. This means that they can determine

what parts of the transcript they receive during the execution are from which players. This

allows them to ‘parse’ the transcript the right way. Also, since the passive players know they

are passive, they stay silent throughout. This doesn’t cause undesirable collisions (rounds

where multiple people speak) due to players not in S interfering in the execution of the

protocol. Together, these things imply that the invocation proceeds as if the players in [k]

were participating.

One nuance in the above discussion is in the word ‘throughout’. How do the passive

players know that the invocation of A has ended and they may need to broadcast now? All

the sub-protocols we describe would require a fixed number of broadcasts. This number is

solely determined by k and is independent of the inputs, the players’ randomness or the noise

in the channel. Since all the players know k, the passive players can tell when the execution

ends. The fact that our protocols are of fixed length, also allows us to make sure that the

rounds in which the leader is broadcasting are adversary free.

5 The OR Protocol

In this section, we design an adaptive protocol called ORn for the problem of computing

the OR of n bits belonging to n different participants connected by an (n, ε)-noisy broadcast

network. The protocol is given in Algorithm 3. For the rest of the section we fix n and refer

to ORn as simply OR.

Theorem 5.1. There exists m ∈ N and parameters l1, l2, l3 = Oε(log n) such that the

following holds: Assume that n ≥ m active players with inputs x1, · · · , xn ∈ {0, 1}, and

14

any number of passive players, run the OR protocol. Then, the output or(i) of player i (active

or passive) satisfies or(i) = OR(x1, · · · , xn) = ∨i∈[n]xi with probability at least 1 − 1
n20 . The

probability is over the noise of the channel and the randomness of the players.

The protocol OR requires a fixed number of broadcast rounds, and this number is at most

O(log3 n).

We note that our protocol performs better than the Ω(n) lower bound that holds for

all non-adaptive protocols. The reason this is possible is because an adaptive environment

allows the players to broadcast based on their input.

An Informal Discussion of the OR Protocol. The OR of n bits has the property that

it is 1 if and only if one of the n bits is 1. If these bits belong to different participants, the

participant that has 1 doesn’t need to know anything about any other participant’s input.

All they have to do is to convince everyone that they are holding a 1. Participants holding

a 0 play the complementary role. They know that their input is not going to affect the

ultimate result. Hence, they might stay silent and try to hear the participants, if any, that

have a 1.

Consider the following simple protocol where those participants who have a 1 (called 1-

players) broadcast 1. The participants holding a 0 (called 0-players) stay silent throughout.

If there is exactly one 1-player, this is the best possible protocol. After Θ(log n) broadcasts,

each participant would know that a 1-player exists with probability 1− 1
poly(n)

. By a union

bound, all n players will know the correct answer with probability 1 − 1
poly(n)

. Observe,

however, that this simple algorithm fails to work if the number of 1-players is anything other

than one2.

Suppose now that the number of 1-players is at least one. In this case, if the 1-players keep

broadcasting throughout, every single round of the protocol would encounter a collision and

every single bit received by every participant would be adversarial. This shows that the 1-

players need to coordinate during the protocol (since the input is worst case, no coordination

is possible beforehand).

It is notable that similar situations arise in distributed networks during the so-called

‘rumor-spreading’ protocols. These protocols work in the environment where all participants

are connected by a network unknown to any of the participants. One of the participants, call

them the leader has a ‘rumor’3 that they want to spread to all other participants. However,

if more than two neighbors of any given participant speak at the same time, the bits sent

are lost. The crux of the problem is to adaptively ensure that all the participants don’t keep

stepping on each others’ toes.

The celebrated Decay protocol [BGI92] achieves this by discounting the probability with

which the players are broadcasting. In the first round of the protocol, all 1-players will

2It is worth mentioning that if the number of 1-players is assumed to be one always, the participants
don’t actually need to do anything to compute the result of the OR.

3This may consist of multiple bits.

15

broadcast 1. In each of the following O(log n) rounds, each participant that broadcasted

in the previous round will back-off (stay silent) randomly with probability 1/2 and with

probability 1/2, broadcast 1. Once a player decides to back-off, he will never broadcast again.

Thus, the number of broadcasting neighbors of any participant decreases by (roughly) 1/2

in each round. It can been proved that with constant probability, there would be a round

where exactly one neighbor broadcasts, thus the message will be conveyed. Of course, the

process can be repeated to boost the success rate. We follow a similar ‘random-back-off’

approach in our protocol.

In addition to handling the case where more than one 1-player is broadcasting, our OR

protocol needs to also handle the case where there are no 1-players. (The assumption that

there exists a 1-player is equivalent to assuming that the OR is always 1.) This introduces a

complication, as in our model, if no transmissions occur, then every participant would receive

an adversarial bit in every round. Since these bits might resemble legitimate broadcasts by

a 1-player if they existed, it is necessary to verify that this is not the case.

Our procedure for authenticating messages is first having all the players ‘sign’ their

messages with a unique identifier (their “name”). The length of each identifier is logarithmic

in n. One of the participants, whom we call the ‘leader’, then verifies each message they

received by broadcasting the signature. The player who signed the message can then tell the

leader their bit, and the leader can, thus, verify.

Finally, note that we focused entirely on the adversary and overlooked the noise injected

by the channel. We correct this by noting that if the adversary is not corrupting the

transmission, correct reception by all the participants can be ensured by using error

correcting codes.

5.1 The Protocol

Our description of the protocol closely follows the ideas in the foregoing section. We break

our protocol into two phases: the advertising phase and the inquiry phase. The final OR

protocol is obtained by running the advertising protocol with the given input bits, followed

by an execution of the inquiry protocol.

5.1.1 Phase 1: Advertising

Phase 1 is the ‘advertising’ phase where the 1-players try to convey their bit to other

participants. The protocol for this phase is given in Algorithm 1. Note that it is not

necessary for all 1-players to convince everyone else. Even if only one 1-player is able to

achieve this, the players can then convince themselves that the OR of all the bits is 1.

In our protocol, the 1-players advertise themselves by broadcasting their identity4. By

identity we mean the player’s number (that is, player i broadcasts the binary representation

4If convenient, it may be imagined that they also broadcast 1 multiple times and then sign it with their
identity. However, since we assume that only 1-players broadcast, this step is redundant.

16

of i)5. To cope with the noise in the channel, the participants encode their identities using

a constant rate error-correcting code. This guarantees that all the other participants will

correctly decode with high probability.

If multiple (or zero) participants broadcast at the same time, then the bits received are

adversarial. At the heart of our protocol is a method that ensures that at least one of the

identities is transmit on an otherwise silent channel. We do this by making the 1-players

broadcast with a probability α. If there are 1/α participants, the number of participants

that broadcast at any given time is 1 in expectation. We convert this to a high probability

argument by a standard repetition technique. Note that this is similar to the random-back-off

technique followed in the Decay algorithm [BGI92].

We describe our protocol using the parameters l1, l2, and l3. Asymptotically, all of these

parameters would grow as Oε(log n). The selection of parameters is made in subsection 5.2.

Algorithm 1 Advertising (the first stage of the ORn protocol)

Input: Player i ∈ [n] is active and his input is a bit xi ∈ {0, 1}. Any number of other
players may participate as passive players.

Output: The leader has l1l2 identities {id(ld)
j }

l1l2
j=1 where id

(ld)
j ∈ [n].

1: for j1 ← 1, 2, · · · , l1 do
2: α← 21−j1 .
3: for j2 ← 1, 2, · · · , l2 do
4: for all players i ∈ [n] do
5: With probability α,
6: if xi = 1 then
7: Broadcast Elog2 n,4ε(i). The leader receives a corrupted codeword and

decodes it to the nearest element id
(ld)
(j1−1)l2+j2

∈ [n].
8: end if
9: end for

10: end for
11: end for

5.1.2 Phase 2: Inquiry

All that the advertising phase guarantees is that if there were 1-players, then with high

probability, one of them will transmit their identity over an otherwise silent channel. It

makes no claims about any of the other identities transmitted. Indeed, many of them would

be adversarial. It also does not say anything about which identity was received correctly by

the leader. Furthermore, if there were no 1-players, all bets are off. In this case, anything

received by any participant in this phase is adversarial.

The next phase of the protocol is the inquiry phase. The protocol for this phase is given

in Algorithm 2. In the protocol, the leader decodes each of the l1l2 encodings they receive in

5We mention that we could have used any unique string as an ‘identity’. However, we must make sure
that the set of all identities is known to the leader.

17

the advertising phase to an identity in the set [n]. A fact that would turn out to be crucial

in the proof is that the rounds in which the leader broadcasts the value it decoded are fixed

in advance. No other participant is allowed to speak in these rounds. These ‘non-adaptive’

steps are also non-adversarial (see subsection 4.1). When the leader broadcasts their decoded

values6, every other participant receives only a noisy (and not adversarial) version of these

broadcasts. Since this identity was encoded using an error correcting code, it will be decoded

correctly by every player in the network with high probability.

Assume now that all the players decode the identity broadcast by the leader correctly.

This means that all the players would now agree on a value i ∈ [n] that was sent by the

leader. This value i uniquely defines one of n active players. This player would answer the

inquiry by sending their bit log n times. Moreover, no one else would be broadcasting when

they do this. This implies that all the players would receive noisy (but not adversarial)

copies of the bit. The players can then compute the majority bit which will be, with high

probability, correct.

If there was a 1-player, one of the identities broadcast by the leader was of a 1-player.

They would answer this inquiry with 1 and would be able to convince all the players that

the OR is 1. If there were no 1-players, all the inquiries would be answered with 0. The

players can use this information to say that the OR is 0.

For the case where all participants are 0-players, it is crucial that exactly one participant

responds to each of the leader’s inquiries. This is because in this case, the players say that

the OR is 0 only if all the bits received are 0. Even if one of the responses is adversarial,

the adversary can send a 1 as that response. The players would then compute value of

OR (incorrectly) as 1. This is where we need the leader to know n. If the leader inquires

about a string not in [n], no player would respond to that inquiry making the response

adversarial. Since the adversary can send a 1, in which case the output of the algorithms is

1, the algorithm will no longer be reliable.

Algorithm 2 Inquiry (the second stage of the ORn protocol)

Input: The leader has l1l2 identities {id(ld)
j }

l1l2
j=1, where id

(ld)
j ∈ [n]. Player i ∈ [n] is active

and his input is a bit xi ∈ {0, 1}. Any number of other players may participate as passive
players.

Output: The output of player i (active or passive) is a bit or(i).
1: for j ← 1, 2, · · · , l1l2 do
2: The leader broadcasts Elog2 n,4ε(id

(ld)
j).

3: Player i ∈ [n] (active) decodes the leader’s broadcast. If the value is i, then player i
broadcasts the bit xi l3 times.

4: Player i′ (active or passive) computes the majority value, b
(i′)
j , of the l3 ε-noisy copies

of xi he received.
5: end for
6: Player i computes and outputs ∨l1l2j=1b

(i)
j .

6after re-encoding them

18

Algorithm 3 ORn
Input: Player i ∈ [n] is active and his input is a bit xi ∈ {0, 1}. Any number of other

players may participate as passive players.
Output: The output of player i (active or passive) is a bit or(i).

1: Players execute Advertising. The output of the leader is {id(ld)
j }

l1l2
j=1, id

(ld)
j ∈ [n].

2: Players execute Inquiry, where the input to the leader is the list of l1l2 identities

{id(ld)
j }

l1l2
j=1.

3: Player i outputs the value or(i) returned by the Inquiry protocol.

5.2 Analysis

5.2.1 The Advertising Phase

In this section we analyze the advertising stage of the protocol. Define A ⊆ [n] as the set of

all 1-players. That is, A is the set of players with input 1. Let (j1, j2) ∈ [l1]× [l2]. Let Xj1j2

be the set of players broadcasting in iteration (j1, j2) of the protocol Advertising. We first

prove that at least one of the sets Xj1j2 is singleton. This formalizes the claim made in the

previous section that at least one 1-player is able to advertise non-adversarially. For this to

be true, there should exist one 1-player. Thus, throughout this section, we would assume

that k = |A| ≥ 1.

Lemma 5.2. Let k ≥ 1 and j1 = blog2 kc + 1 . With probability at least 1 − (15
16

)l2, there

exists a j2 ∈ [l2] for which |Xj1j2| = 1.

Proof. We consider two cases. We first analyze the case where k = 1 (and j1 = 1, α = 1).

This corresponds to the simple case where there is exactly one 1-player. As discussed before,

we can actually prove a stronger statement in this case. We prove that in fact for all j2 ∈ [l2],

|X1j2| = 1. This is indeed the case as for any j2, since α = 1, the only 1-player in A transmits

in every iteration (1, j2).

Now we deal with the case where k > 1. Since j1 = blog2 kc + 1, 2
k
> α ≥ 1

k
. In the

iteration (j1, j2) each of the k players in A broadcast with probability α, independently. The

probability of exactly one player broadcasting in iteration (j1, j2) is given by

Pr[|Xj1j2| = 1] =

(
k

1

)
α(1− α)k−1 ≥ (1− α)k ≥ (1− α)2/α.

Since we assumed that k ≥ 2, we have j1 ≥ 2 and α = 21−j1 ≤ 1/2. The function

(1− x)1/x is strictly decreasing in the range [0, 1]. Continuing the previous equation,

Pr[|Xj1j2| = 1] ≥ (1− α)2/α ≥
(

1− 1

2

)4

= 1/16.

Thus, for all j2, we have Pr[|Xj1j2| 6= 1] ≤ 15
16

. Since the randomness is chosen independently

19

for each iteration (j1, j2), we have

Pr[∃j2 : |Xj1j2| = 1] ≥ 1−
(15

16

)l2
.

Theorem 5.3. For l1, l2 = O(log n), if k ≥ 1, then with probability at least 1− n−100, there

exist j1 ∈ [l1], j2 ∈ [l2] such that |Xj1j2 | = 1.

Proof. We fix l1 = blog nc + 1 and l2 such that
(

15
16

)l2 ≤ n−100. Lemma 5.2 guarantees that

∃j2 ∈ [l2] such that |Xblog kc+1,j2 | = 1 with probability at least 1−
(

15
16

)l2 ≥ 1− 1
n100 . We just

set j1 = blog kc+ 1 ≤ blog nc+ 1 = l1.

5.2.2 The Inquiry Phase

At the beginning of this stage, the leader has a list of l1l2 identities {idj}l1l2j=1. This list was

formed by decoding the bits received in the (j1, j2)th iteration of the advertising stage to the

nearest element in [n], for every (j1, j2) ∈ [l1] × [l2]. The leader proceeds by broadcasting

each of these identities and listening to the response. If all the participants are 0-players

(have a 0 input), then all the responses should be 0. The leader hopes that if there exists a

1-player, one such participant would be inquired and a 1 would be received as a response.

We assume throughout that the noise in the channel is less than 1/8.

We first prove that a unique (active) player responds to each of the leader’s query.

Lemma 5.4. Fix any i ∈ [n]. With probability at least 1−n−29, all active participants decode

the leader’s ε-noisy broadcast of Elogn,4ε(i) correctly (see Line 3 of Algorithm 2).

Proof. Because the rounds in which the leader broadcasts are known in advance, the others

players never broadcast in these rounds, and all the players receive a noisy copy of Elogn,4ε(i).

Lemma 3.4 implies that any given player decodes the correct value except with probability

at most n−30. Taking a union bound over all the n players, we get that the probability that

there exists a player who decodes incorrectly is upper bounded by n−29.

Corollary 5.5. After the leader broadcasts Elogn,4ε(i) for some i ∈ [n], with probability at

least 1−n−29, exactly one player broadcasts in the next l3 rounds (see Line 3 of Algorithm 2).

Proof. Players only broadcast if the value they decode is their own identity. If all players

decode the same value, only one player can broadcast as identities are unique. Also, since

the identities are in [n], at least one player will broadcast. By Lemma 5.4, this is the case

with probability at least 1− n−29.

Having established that collisions are rare in the responses, we turn to prove that the

responses would allow any participant to compute the OR correctly. For this, it is essential

that the majority of l3 broadcasts is reliable with high probability. In other words,

20

Lemma 5.6. For some l3 = Oε(log n) the following holds: Suppose that each participant

has l3 (possible different) ε-noisy copies of a bit b (that is, each of the copies is b with

probability 1 − ε, independently). Then, with probability at least 1 − n−99, the majority of

the l3 copies of all players is b.

Proof. Let l3 = 100c log n where c is the constant given by Lemma 3.2. Lemma 3.2 says that

the probability that the majority of the l3 copies of a specific player is different than b is at

most n−100. A union bound over all n players shows that the assertion holds.

Together, the two foregoing results can be interpreted as follows. Each of the l1l2
iterations in Algorithm 2 is a query and a response. The query is the leader broadcasting

Elogn,4ε(i) for an i ∈ [n]. The response is when (hopefully) one of the participants broadcasts

their bit l3 times. Since the rounds when the leader broadcasts are fixed in advance, all

the players receive a noisy copy of Elogn,4ε(i). Lemma 5.4 guarantees that this is decoded

to i by all the players with high probability. Since there is a unique player with identity

i, exactly one player will be transmitting in the response step (Corollary 5.5). All players

would receive l3 noisy versions of this response and the majority of these l3 responses would

be correct with high probability.

We are now ready to prove the main theorem of this section:

Proof of Theorem 5.1. Let l1, l2, l3 = Oε(log n). The the number of broadcasts during the

OR protocol is l1l2(l3 +Oε(log n)) = Oε((log n)3).

We next prove the correctness of the protocol. Denote OR(x1, x2, · · · , xn) by or. Note

that or = 1 if and only if k = |A| ≥ 1 implying it is sufficient to show that or(i) = 1 if and

only if k = |A| ≥ 1. We break the proof into two cases.

• k = 0. In this case, we want to show that, for any i, is holds that or(i) = 0, with

high probability. Consider an iteration j of Inquiry (j ∈ [l1l2]). Observe that the

identity id
(ld)
j broadcast by the leader is decoded correctly by all the active players

except with probability n−29 (Lemma 5.4). Thus, the response would be collision free

(Corollary 5.5) and all players would receive l3 noisy copies of x
id

(ld)
j

. Lemma 5.6

guarantees that the majority of the l3 copies of any player i, b
(i)
j , would be x

id
(ld)
j

= 0,

except with probability at most n−99. Coupling the above statements, for any player

i, it holds that b
(i)
j = 0, with probability at least 1−2n−29. A union bound over all l1l2

possible values for j gives that or(i) = 0 for each i except with probability 2l1l2
n29 ≤ 1

n25

for large enough n.

• k ≥ 1. In this case, we want to show that or(i) = 1 for every i with high probability.

Since or(i) = ∨l1l2j=1b
(i)
j , it is sufficient to show that there exists a j such that b

(i)
j = 1

for all i with high probability. Since k ≥ 1, we can apply Theorem 5.3 to say the

∃j1, j2 : |Xj1j2 | = 1 with probability at least 1 − n−100. This means that in the

(j1, j2)th iteration of Algorithm 1, exactly one 1-player, say i′ ∈ A, broadcast their

21

identity. The leader thus receives a noisy version of Elogn,4ε(i
′) which was decoded

correctly with probability at least 1 − n−30 (Lemma 3.4). If this happens, the leader

will broadcast Elogn,4ε(i
′) in the jth iteration of Algorithm 2 where j = (j1 − 1)l2 + j2.

By Corollary 5.5, with probability at least 1− n−29, player i′ would broadcast xi′ = 1

in response, and will be the only player broadcasting. His broadcast will be repeated

l3 times ensuring that all other players hear a majority of the responses correctly with

probability at least 1− n−99 (Lemma 5.6). Thus, for every i it holds that b
(i)
j = 1 with

probability at least 1 − n−100 − n−30 − n−29 − n−99 ≥ 1 − n−20 for large n, and the

assertion follows.

6 The Longest Common Prefix Protocol

In the Longest Common Prefix (LCP) problem, n players are each holding a private input

vi ∈ {0, 1}≤n. The goal is computing the longest prefix l(v1, · · · , vn) common to all the

strings in v1, · · · , vn (see definition in section 3).

In this section, we design an adaptive protocol called LCPn, that computes the LCP

of n bit strings belonging to n different participants connected by an (n, ε)-noisy broadcast

network. Let m ∈ N be the constant from Theorem 5.1, and assume without loss of generality

that m ≥ 220. The protocol LCPn for n ≥ m is given in Algorithm 4. The protocol LCPn for

n < m is simple: Each player broadcasts each of his (at most m) input bits m1000 times.

Then, players compute the LCP of the majorities by themselves.

Theorem 6.1. There exists a constant c1 ∈ N such that the following holds: Assume that n

active players with inputs v1, · · · , vn ∈ {0, 1}≤n, a leader with input v ∈ {0, 1}≤n, and any

number of passive players, run the LCP protocol. Then, the output lcp(i) of player i (active

or passive) satisfies lcp(i) = |l(v1, · · · , vn, v)| with probability at least 1−min{n−9, 2−9}. The

probability is over the noise of the channel and the randomness of the players.

The protocol LCP requires a fixed number of broadcast rounds, and this number is at most

Oε(log4 n).

Theorem 6.1 clearly holds for n < m. For the rest of the section we will assume that

n ≥ m.

Applications of LCP. We first note that the OR function can be formulated as an LCP

problem. In the case of OR, each of n players has a private input bit xi that can be either 0

or 1 and the players want to know if there exists someone who has the bit 1. Each of these

bits can be viewed as a string vi of length 1. In this case, l(v1, · · · , vn) has three possible

values. It can either be the empty string ε, the string 1, or the string 0. If l(v1, · · · , vn) is

the empty string, it means that some of the vi are 1 and others are 0. The OR in this case

22

would be 1. If l(v1, · · · , vn) is 1, it means that all the vi are 1 and the OR is 1. Finally, if

the LCP is 0, all the strings are 0 and so is the OR.

The LCP framework can also be used as a general purpose ‘progress-check’ subroutine

in many scenarios. An example might be the identity problem. This problem considers n

players, each holding a private input bit xi. The players communicate towards the common

goal of each knowing all n input bits. Consider an adaptive protocol that runs in the

following way. All the players i maintain a belief xij about the private input bit of every

other player j. These beliefs are random at the beginning of the protocol. As the players

communicate, they transmit information about their input bits to the other participants

who can then update their beliefs. We show how LCP can be used to quantify the progress

made in such a scenario. Each participant i forms a string vi = xi1xi2 · · · xin. This string

represents their current belief about the bits of all the other players. The ‘diagonal’ entries

in the vi are the correct input bits, i.e. vii = xi. Suppose |l(v1, · · · , vn)| = l. This means

that v1j = v2j = · · · = vnj for all 1 ≤ j ≤ l. In particular, vij = vjj = xj for all i ∈ [n], j ∈ [l].

In words, the first l players have successfully conveyed their bits to the other players. The

output of the LCP protocol tells the players that they can now only focus on the rest of the

n− l bits7.

We are interested in solving the CPJ problem, which subsumes the identity problem (see

subsection 2.2). In this problem, each player i has a private function fi : {0, 1}i−1 → {0, 1}.
Let x1 = f1(ε), x2 = f2(x1), x3 = f3(x1x2) and so on. The players mutual goal is computing

the string X = x1x2 · · ·xn. Again, players i might have a belief vi = vi1vi2 · · · vin about

the entire string X. Since all the players know their private function, we can assume

fi(vi[1 : i − 1]) = vii,∀i. If l(V) has length l, the first l bits of the belief of all the n

players match. Since every player i sets vii to be correct given the prefix preceding it, this

also means that these l bits match the first l bits in X and the players only need to compute

the remaining bits.

An Informal Description of the LCP Protocol. Having highlighted the importance

of the LCP problem, we now describe an efficient broadcast protocol to compute the LCP.

The protocol finds the longest common prefix by performing a binary search over all possible

prefix lengths, i.e. 0 to n. In order to check whether a prefix of length l is common to all the

strings, player 1 (the leader) broadcasts O(log n) hashes of v1[1 : l]. This number is enough to

ensure that except with polynomially small probability, any player j with vj[1 : l] 6= v1[1 : l]

will have a different set of hashes. These hashes are broadcasted multiple times to ensure

correct reception (repetition code). A more efficient version of the protocol with constant

rate codes can be described. However, we persist with the less efficient version because of

its simplicity and the fact that broadcasting hashes is not the bottleneck in the broadcast

complexity of our protocol.

Once all the players know the hashes of the leader’s string, they can compute the

7This is possible only if the model is adaptive. Indeed, this is how we would use LCP in our protocols.

23

corresponding hashes of their own string and see if the two sets match. If the strings are

the same in the first l bits, then the hashes would match. For two strings that differ in their

first l bits, the hashes should be different. The players who find an inconsistency in any of

the hashes assume a bit 1 and those who have the same set of hashes assume the bit 0. Let

the bit assumed by player i be called bi. If any of the bi is 1, one of the players doesn’t agree

with the set of hashes broadcast and thus, on the prefix of length l. If all the bi are 0, all the

players (hopefully) agree on the prefix of length l. By running the OR protocol with inputs

b1, · · · , bn, all players will know if |l(V)| is at least l or not. In a binary search framework,

this is sufficient to nail down l(V).

6.1 The Protocol

We formalize the ideas described. Every player i has a string vi of length n. The set of all

the n strings is V . The players together implement a binary search framework to compute

|l(V)|. Once this length is known to all the players, the players can themselves compute

l(V) = vi[1 : |l(V)|]. Since l(V) is common to all strings, the expression on the right is

independent of i, as it should be.

All the n players operate the binary search framework in parallel. They execute the

same protocol with independent ‘private’ variables. We exercise care in our description of

the protocol and denote the private variable x of player i with the superscript x(i). In our

description below, we use n0 to denote the smallest integer such that 2n0 > n. We initialize

our range for |l(V)| to [0, 2n0−1] ⊇ [0, n]. This helps avoiding inconsistencies due to rounding

and in turn, keeping the number of broadcasts in our protocol independent of the output.

Protocols that are of a predetermined length are easier to handle as a subroutine because

one doesn’t have to worry about players not knowing if the subroutine has finished execution

(see subsection 4.4).

Let Hk : {0, 1}∗ → {0, 1}k be a (probabilistic) hash function satisfying ∀x 6= y ∈ {0, 1}∗
it holds that Hk(x) = Hk(y) with probability 2−k. The protocol will use H = H20 logn.

6.2 Analysis

We fix c1 to be 100 times the constant in Lemma 3.2. At a very high level, all the players

in the protocol described try to find out |l(V)|. This value is all they need in order to

compute l(V). They do so by maintaining a range [beg(i), end(i)] containing the value |l(V)|.
After every iteration of the while loop in line 3, the range [beg(i), end(i)] shrinks by 1/2.

Lemma 6.7 formalizes these invariants. Before we prove that, however, we wish to write a

few technical lemmas concerning our protocol.

Fact 6.2. The number of broadcast in any iteration of the while loop in LCP is fixed based

on n. It is independent of the players’ inputs, randomness, or the noise in the channel.

Lemma 6.3. All players (active and passive) run the same number of iteration of the while

loop and finish the execution of the protocol LCP after a fixed number of broadcast rounds.

24

Algorithm 4 The LCPn Protocol

Input: Player i ∈ [n] is active and his input is a string vi ∈ {0, 1}≤n. The leader has a
string v ∈ {0, 1}≤n. Any number of other players may participate as passive players.

Output: The output of player i (active or passive) is an integer lcp(i) ∈ N.
1: beg(i) ← 0.
2: end(i) ← 2n0 − 1.
3: while beg(i) < end(i) do

4: mid(i) ←
⌈
beg(i)+end(i)

2

⌉
.

5: H(i) ← H(vi(beg
(i) : mid(i)]).

6: The leader broadcasts H(ld), c1 log n times.
7: Each player i receives c1 log n noisy copies of H(ld) and computes their majority H

(i)
ld .

(The jth bit of H
(i)
ld is obtained by taking the majority of the jth bits of the c1 log n noisy

copies received by player i.)

8: b(i) ← (H
(i)
ld 6= H(i)).

9: Players execute ORn. Player i ∈ [n] are active and have inputs b(1), b(2), · · · , b(n). All
other players are passive. The output of player i (active or passive) is or(i).

10: if or(i) = 0 then
11: beg(i) ← mid(i)

12: else
13: end(i) ← mid(i) − 1
14: end if
15: end while
16: Player i outputs beg(i).

25

Proof. To show this, we show that the following holds before the jth iteration of the while

loop for all players i.

end(i) − beg(i) = 2n0+1−j − 1.

We prove this using induction on j. For j = 1, the invariant holds trivially. Suppose the

invariants hold till before iteration j. The jth iteration would only take place if n0 ≥ j.

In the jth iteration, player i computes mid(i) = d beg(i)+end(i)
2

e = dbeg(i) + 2n0+1−j−1
2

e =

beg(i)+2n0−j and either sets beg(i) to mid(i) or end(i) to mid(i)−1. We denote the values of beg

and end after this iteration using primes. In the first case, end′(i)−beg′(i) = end(i)−mid(i) =

2n0+1−j − 1− 2n0−j = 2n0−j − 1. In the second case, end′(i) − beg′(i) = mid(i) − 1− beg(i) =

2n0−j − 1.

Thus, all the players take exactly n0 iterations to finish execution. Since the number of

broadcasts in any iteration is fixed (Fact 6.2), all the players finish execution after the same

number of broadcasts.

Claim 6.4. All the invocations of OR are harmonious and all the leader’s broadcasts are

adversary-free.

Proof. The total number (Lemma 6.3) and the size (Fact 6.2) of the iterations are pre-

determined. In each iteration, the communication rounds in which the leader is broadcasting

during the execution of the protocol are pre-determined, and do not depend on players’

inputs, their randomness or the noise in the channel.

By Lemma 6.3, all players invoke OR the same number of times. Since all players

participate in each invocation of OR, all invocations are harmonious.

Lemma 6.5. For any player i ∈ [n] in any iteration of the while loop, H
(i)
ld = H(ld) except

with probability at most 20 logn
n100 .

Proof. Since the leader’s broadcasts are adversary-free (Claim 6.4), all players i receive

c1 log n noisy copies of each of the leaders hashes. Lemma 3.2, for a coordinate j ∈ [20 log n],

the probability that the jth coordinate of H
(i)
ld is different from the jth coordinate of H(ld), is

at most 1
n100 . Taking a union bound over the 20 log n coordinates, we get that H

(i)
ld = H(ld)

except with probability at most 20 logn
n100 .

Lemma 6.6. For any player i ∈ [n] and any iteration of the while loop, vi(beg
(i) : mid(i)] 6=

vld(beg
(ld) : mid(ld)] if and only if b(i) = 1, except with probability at most 1

n18 .

Proof. Note that b(i) = 1 if and only if H
(i)
ld 6= H(i) and break the proof into the following

two cases.

• vi(beg
(i) : mid(i)] = vld(beg

(ld) : mid(ld)]. In this case, we want to prove that

b(i) = 0 with high probability. Since vi(beg
(i) : mid(i)] = vld(beg

(ld) : mid(ld)], we have

H(i) = H(ld). Lemma 6.5 implies that H
(i)
ld = H(ld) = H(i) except with probability at

most 20 logn
n100 . Thus, b(i) = 0 with probability at least 1− 20 logn

n100 .

26

• vi(beg
(i) : mid(i)] 6= vld(beg

(ld) : mid(ld)]. In this case, we want to prove that

b(i) = 1 with high probability. H(i) and H(ld) consist of 20 log n independent hashes

of two different strings. Thus, the probability that H(i) 6= H(ld) is 1 − 1
n20 . Again,

Lemma 6.5 gives usH
(i)
ld = H(ld) 6= H(i) with probability at least 1− 1

n20−20 logn
n100 ≥ 1− 1

n18

(recall that we assume n ≥ m). Thus, b(i) = 1 with the same probability.

Combining the two cases above gives the result.

Let V = {v1, · · · , vn}. Lemma 6.6 says that the bits b(i) correctly capture whether or not

player i agrees with the leader on the coordinates in the range (beg(i) : mid(i)]. If any one

of the b(i) is 1, then not all the strings in V agree on these coordinates. In turn, this says

that |l(V)| has to be strictly less that mid(i). On the other hand, if all the b(i) are 0, all the

strings match on these coordinates and |l(V)| is at least mid(i). Thus, l(V) either contains

all the coordinates (beg(i) : mid(i)] or none of the coordinates (mid(i) : end(i)]. Our update

of the variables beg(i) and end(i) maintains the following invariant.

Lemma 6.7. With probability at least 1− 1
n15 over the noise in the channel and the players

randomness, the following invariant holds before every iteration of the while loop: For i ∈ [n],

all beg(i) have a common value beg and all end(i) have a common value end such that

beg ≤ |l(V)| ≤ end.

Furthermore, for any passive player i 6∈ [n], the value of (beg(i), end(i)) = (beg, end) in

all the iterations except with probability at most 1− 1
n15 .

Proof. We proceed via induction on the iteration number. The invariant trivially holds

before the first execution of the loop as 2n0 − 1 ≥ n, by definition. Suppose it holds before

the jth iteration.

Consider the jth iteration. Let Ei be the event that vi(beg
(i) : mid(i)] 6= vld(beg

(ld) :

mid(ld)]. Lemma 6.6 says that b(i) = 1 if and only if Ei occurs, except with probability at

most 1
n18 . Taking a union bound over all the n active players, we get that for all i ∈ [n],

b(i) = 1 if and only if Ei occurs, except with probability at most 1
n17 . Therefore, except

probability at most 1
n17 , it holds that ∨ni=1b

(i) = 1 if and only if ∃i ∈ [n] such that Ei occurs.

Since all the invocations of OR are harmonious (Claim 6.4), we can apply Theorem 5.1 to

conclude that for any i ∈ [n], or(i) = ∨ni=1b
(i) except with probability at most 1

n20 . We union

bound over all the n active players to get that, except with probability at most 1
n19 , it holds

that ∀i ∈ [n], or(i) = ∨ni=1b
(i)

Combining the two results, we get with probability at least 1 − 1
n17 − 1

n19 ≥ 1 − 1
n16 , all

the or(i) are the same value or′ and or′ is 1 if and only if ∃i ∈ [n] such that Ei occurs. Since

the values of or(i) are the same for all i, the players update beg(i) and end(i) identically and

the first part of the invariant is maintained.

For the second part of the invariant, note that if ∃i ∈ [n] such that Ei occurs, then |l(V)| <
mid, where mid is the common value of mid(i) (observe that since mid(i) =

⌈
beg(i)+end(i)

2

⌉
,

and since beg(i) and end(i) have common values, so do mid(i)). Thus, setting end to mid− 1

27

preserves the invariant (or′ = 1). Similarly, if vi(beg
(i) : mid(i)] is the same for all i and

|l(V)| ≥ beg, we have |l(V)| ≥ mid and setting beg to mid preserves the invariant (or′ = 0).

We observe that the while loop is executed at most 1 + log n times. Thus, the total error

probability is bounded by logn
n16 ≤ 1

n15 .

For the last part, we note that (Theorem 5.1) any passive player has the correct result

of any execution of the OR protocol except with probability 1 − 1
n20 . If a passive player i

has the correct result of all the log n+ 1 invocations of OR, their updates to beg(i) and end(i)

will match the updates made by the active players. Thus, their final values of beg(i) and

end(i) will also be the same. The probability that player i has the correct result for log n+ 1

executions is, by a union bound, at least 1− 1+logn
n20 ≥ 1− 1

n15 .

Lemma 6.8. When the loop defined at Line 3 ends for any player i (active or passive),

beg(i) = end(i).

Proof. In every execution of the loop, beg(i) < end(i) which implies mid(i) > beg(i) and

end(i) ≥ mid(i). Let beg′(i) and end′(i) be the values of beg(i) and end(i) after an iteration

ends. It is sufficient to prove that beg′(i) ≤ end′(i). This follows because either beg′(i) = beg(i)

and end′(i) = mid(i) − 1 or beg′(i) = mid(i) and end′(i) = end(i). In the first case,

beg′(i) = beg(i) < mid(i) = end′(i) + 1. In the second, beg′(i) = mid(i) ≤ end(i) = end′(i).

Proof of Theorem 6.1. The complexity of the LCP protocol is Oε(log4 n), as the while loop

is executed at most 1 + log n times, and in each iteration, the OR protocol is called (see

Theorem 5.1). The broadcasts in the OR protocol constitute the dominant term in the

number of broadcasts.

With probability at least 1− 1
n15 , the invariants in Lemma 6.7 hold before every iteration

of the while loop. This fact along with Lemma 6.8 implies that the output lcp(i) (which is

set to beg(i)) of player i (active or passive) satisfies lcp(i) = |l(v1, · · · , vn)| with probability

at least 1− 1
n15 .

For the passive players, Lemma 6.7 says that any such player i has the same (correct)

value of lcp(i) as the active players except with probability at most 1
n15 . This completes the

proof.

7 Protocol for Correlated Pointer Jumping

This section contains our main result - a linear adaptive broadcast protocol for solving

the correlated pointer jumping (CPJ) problem for n players. In the CPJ setting, every

player i ∈ [n] has a private function fi : {0, 1}i−1 → {0, 1}. For i = 1, this is just a constant

which we denote using f1(ε) (here, ε is the empty string). The functions can be ‘composed’

to define strings σi ∈ {0, 1}i as follows,

σ0 = ε

σi+1 = σi‖fi+1(σi),∀i ∈ [n].
(1)

28

(Recall that ‘‖’ denotes the string concatenation operator). We define CPJ(f1, · · · , fn) to

be the string σn defined above.

7.1 Informal Discussion

Consider the following (optimal) protocol for solving the CPJ problem when the network is

noise free: In round i, player i computes and broadcasts the value fi(σi−1), where σi−1 is

the transcript received so far. In other words, player 1 knows his function f1 and can thus

compute σ1 on its own. After computing, it broadcasts σ1 to all other players. This then

allows player 2 to compute σ2. Player 2 can then broadcast σ2. The process continues until

the last player computes and broadcasts σn. Since σi+1 is just σi plus an additional bit,

player 2 in the protocol above doesn’t need to transmit both the bits of σ2. Only the last

bit would suffice. The same argument can be applied to all the players implying that the

number of broadcasts in this protocol is exactly n.

If we want to simulate this protocol in a noisy environment, the first thing that comes to

mind is that each bit can be repeated enough times so that a majority of the copies received

by every player is correct with high probability. Since the total number of players is n, we

would need to repeat each bit roughly log n times. We are then guaranteed that the protocol

would compute σn correctly except with small (inverse polynomial in n) error probability.

At first, this appears to be the best one can hope for. Indeed, every player i has to know

the bit (the function output) of all the players j < i in order to compute their bit. Thus,

n − 1 players need to know σ1, n − 2 players need to know σ2 and so on. This implies the

first n/2 bits need to be known by at least n/2 players. The first n/2 players would thus

have to repeat their bit Θ(log n) times and the log n blowup cannot be avoided.

The chink in this armor is that all the players do not need to know the bits immediately

after they are broadcast. If i is large, player i has to listen to a lot of people before

getting a chance to speak. At first, this doesn’t seem to give any leverage. This is because

the i transmissions that happen before player i gets a chance to speak may be completely

unrelated. What we want is to somehow have each subsequent transmission reinforce the

confidence in all the previous transmissions.

This is exactly where tree codes come into the picture. The idea behind this construction

is to have an error-correcting code that can be computed online. Theorem 3.7 says that for

any string of length k broadcast on the tree code, the probability that a player with a noisy

version of the encoding of these k bits, decodes a suffix of length l incorrectly is exponentially

small in l.

With this new insight, one can consider the following protocol. Player 1 broadcasts

their bit σ1 once (or any constant number of times). However, this time they do this by

encoding their bit over a tree code and broadcasting the encoding. Theorem 3.6 promises that

there exist tree codes for which this encoding is constant-length. With constant probability,

player 2 would decode this correctly. After they do that, they can send the next bit in σ2 over

the tree code. Player 3 would then decode both these bits correctly with the same constant

29

probability. They can then send f3(σ2) over the tree code. This process can go on till all

the n players have broadcasted their inputs.

Note that each of the O(n) transmissions in this protocol can be wrong with constant

probability. The probability that this protocol goes through is thus exponentially small in n.

One way to avoid this is to periodically check whether the bits transmitted so far were correct.

If the transmissions are correct, we can carry on with the rest of the protocol. Otherwise,

the best thing to do is to repeat the part that hasn’t been received correctly. In other

words, such a protocol should have (at least) two types of broadcasts, regular broadcasts

(regular rounds) and check broadcasts (check rounds). The regular broadcasts would serve

to compute σi for higher and higher i’s while the check rounds would make sure that our

computation this far is reliable. Furthermore, we would want that the check rounds don’t

involve too many broadcasts. Our aim is to implement all the check rounds using O(n)

broadcasts.

We prove that such a protocol actually works. In what follows, we recursively define a

sequence {Aj}j≥0 of protocols. The protocol Aj would compute the string σ2j . At a very

high level, the protocol Aj+1 would first run Aj to compute σ2j . Assuming that this string

is known to 2j+1 players, it would then invoke Aj again to compute the last 2j bits in σ2j+1 .

These two executions are identical because assuming all players in [2j+1] know σ2j , player

2j + 1 can compute f2j+1(σ2j) without any extra information (just like player 1 in the first

execution). Similarly, player 2j + i only needs to know the bits output by the i− 1 players

[2j + 1, · · · , 2j + i− 1] to compute f2j+i(σ2j+i−1) (exactly like player i in the first execution).

Thus, this procedure is just Aj run with an offset (or better, a ‘history string’) of length 2j.

After these two executions, it would check which portions were received correctly. We defer

more details about Aj to the future sections.

7.2 The Protocol A0

In Algorithm 5, we describe A0, the first protocol in our recursive sequence. This protocol

serves to compute one step in the induction described in Equation 1.

To compute and broadcast the first string σ1, only player 1 interacts with the leader.

Player 1 broadcasts σ1 = f1(ε). Let b(ld) be the noisy copy of σ1 received the leader. The

leader broadcasts b(ld) over the tree code. Herein lies a very important feature of our protocol.

On the face of it, the idea of the leader repeating the first player’s transmission over the tree

code doesn’t seem very productive. Why not just have player 1 broadcast over the tree code

directly? The answer is that making the leader repeat the broadcast allows us to make the

tree-code adversary free. Throughout our CPJ protocol, it will only be the leader who would

broadcast on the tree code and furthermore, they would do so in predetermined rounds (see

subsection 4.1). All the other players would be silent in these rounds and receive a noisy

copy of the leaders broadcast. This would set the stage up for Theorem 3.7 which requires

players to receive a noisy version of the bits sent on the tree code.

There is a subtlety here. It is totally possible that the bit the leader sent on the tree

30

code was adversarial. This can happen, for instance, when the round before the leader

transmitted encountered a collision and the bit received by everyone (including the leader’s

bit b(ld)) in this round was adversarial. When we say that the tree code is adversary free, all

we mean is that this (possibly adversarial) bit was broadcast non-adversarially. This means

that (almost) all the other players would decode the tree code to the same adversarial bit.

This way of avoiding the situation where different players get different adversarial bits in

the same broadcast round, with only a constant factor slowdown, might be of independent

interest.

After the leader’s transmission, player 1 and the leader check, using the LCP = LCP1

protocol, whether the leader’s reception was correct. If so, the leader broadcasts the bit 1

over the tree code. In the other case, where the leader’s reception was flipped, the leader

broadcasts the bit 0. This bit broadcast, b2, tells the other players whether or not the first

bit broadcast was reliable8

We now describe the protocol (see Algorithm 5). There are two participants, player 1

and the leader. Player 1 has a bit (a constant function) that he communicates to the leader.

The leader then repeats this bit over the tree code. This is followed by a call to LCP where

player 1 and the leader check if the bit was sent by player 1 was received correctly. The

output of this call to LCP is broadcast by the leader over the tree code. The encoder for the

tree code used by the leader is denoted by C (see subsection 4.2), and the decoder used by

the players to decode the relevant information from the tree code is denoted by DECODE (see

subsection 7.4).

Algorithm 5 A0

Input: Player 1 is active and his input is a function f1 : {0, 1}0 → {0, 1}. Players i ∈ [n]\{1}
are passive.

Output: The output of player i ∈ [n] is a string s(i), where |s(i)| ≤ 1.
1: Player 1 broadcasts b = f(ε). The leader receives b(ld).
2: The leader broadcasts C(b(ld)).
3: Player 1 and the leader run LCP1 with inputs b and b(ld) (respectively). Denote the

leader’s output by lcp(ld).
4: The leader broadcasts a padded version of his output C(lcp(ld)‖0c0+1).
5: Each player i ∈ [n] computes and outputs DECODE(i)(0).

7.3 The Protocol Aj

The protocol Aj involves 2j players other than leader. It is designed to compute (up-to) 2j

steps of the induction described in Equation 1.

8The LCP in this case would only offer a constant probability of success which could have been achieved by
repeating the broadcasts a constant number of times. We, however, keep the LCP version because it mirrors
the subsequent protocols we will describe.

31

The protocol Aj does this using two successive invocations of Aj−1 followed by a check

round, implemented using LCP = LCP2j . The first invocation of Aj−1 would compute the

first 2j−1 steps of the induction. The output of this invocation would be a string s
(i)
1 for each

player i that records the steps that were computed correctly. Thus, |s(i)
1 | ≤ 2j−1.

All the players i ∈ [2j] believe that the bits in s
(i)
1 were computed correctly. Accordingly,

they proceed to compute the rest of the bits. This is done using a second invocation of Aj−1.

Because the ith player assumed that s
(i)
1 was correct, they would participate as player i−|s(i)

1 |
in this invocation. We denote player i’s view of the output of this invocation by s

(i)
2 . As for

the first invocation, |s(i)
2 | ≤ 2j−1.

Up until now, all the players assumed that the values of s
(i)
1 and s

(i)
2 they computed were

correct. Since the channel is noisy, this will not always hold. To ensure that the strings

they computed are indeed correct, players use the protocol LCP with the strings s
(i)
1 ‖s

(i)
2 as

input. The leader’s output for this invocation, lcp(ld), is broadcast over the tree code. lcp(ld)

gives the length of the prefix that was computed correctly in the two invocation of Aj−1.

Since lcp(ld) is broadcast over the tree code by the leader, the players run DECODE to compute

the final output.

Observe that the role of player i in the second execution depends on their output s
(i)
1 of

the first execution. Since s
(i)
1 is correct only with high probability (and not all the time),

the second invocation of Aj−1 may not be harmonious in every run of the protocol Aj. We

choose our parameter c0 to ensure that the second invocation of Aj−1 is harmonious a large

fraction of the times. For all other times, we rely on LCP to detect and correct the errors

introduced. The invocation of LCP is always harmonious.

The protocol Aj is described in Algorithm 6.

7.4 Parsing the Tree Code

We motivated why using tree codes in our protocol might be a good idea. In this section,

we focus on how participants parse the information broadcasted by the leader over the tree

code. This has two parts. Firstly, the participants are required to decode the path ∈ Σ∗

on the tree code to the nearest bit string ∈ {0, 1}∗. We empathies that the players decode

all the messages they received from the leader since the beginning of the execution of the

protocol. The decoding is done using the standard Hamming-distance based decoders. We

assume throughout this section that this preprocessing has already been performed, and that

the player have access to some underlying decoded string. The more important part is to

‘parse’ the decoder’s output to get ‘information’.

We now turn to the second part. Recall that during the execution of A0, the leader

first broadcasts b(ld), the value he received when player 1 broadcast b. He then broadcasts

lcp(ld)9, the result of the LCP execution on b and b(ld). This value is either 0 or 1, where 1

indicates that b(ld) = b with high probability, while a 0 values means that the reception was

9The leader also pads the LCP result with a constant number of bits. This is not relevant to the discussion
here.

32

Algorithm 6 Aj
Input: Player i ∈ [2j] is active and his input is a function fi : {0, 1}i−1 → {0, 1}. Player

i ∈ [n] \ [2j] are passive.
Output: The output of player i ∈ [n] is a string s(i) of length at most 2j.

1: Players execute Aj−1 for the first time: Player i ∈ [2j−1] participates as active player i
with input fi. All other players participate as a passive players. Denote the output of
the execution for player i ∈ [n] by s

(i)
1 .

2: Players execute Aj−1 for the second time: Player i ∈ [2j] checks if i ∈[
|s(i)

1 |+ 1, |s(i)
1 |+ 2j−1

]
. If so, he participates as the active player i with input function

gi : {0, 1}i−1−|s(i)1 | → {0, 1}, where gi(t) = fi(s
(i)
1 ‖t). Otherwise, participates as a passive

player. Denote the output of the execution for player i ∈ [n] by s
(i)
2 .

3: Player i ∈ [2j]∪ {ld} sets vi to s
(i)
1 ‖s

(i)
2 , but replaces coordinate i of s

(i)
1 ‖s

(i)
2 by the value

fi(vi[1 : i− 1]) if
∣∣∣s(i)

1 ‖s
(i)
2

∣∣∣ ≥ i.

4: Players execute LCP2j : Player i ∈ [2j] participates as active player i with input vi. The
leader is participating with the input v(ld). All other layers participate as a passive
players. Denote the output of the execution for player i ∈ [n] by lcp(i).

5: The leader broadcasts a padded version of their output C
(
lcp(ld)‖0(c0+1)(j+1)

)
.

6: Player i ∈ [n] computes and outputs DECODE(i)(j).

faulty. Both b(ld) and lcp(ld) are broadcast over the tree code. Let i ∈ [n]. Assume that the

decoded value of b(ld) by player i is b′, and that the decoded value of lcp(ld) by player i is lcp′.

The function DECODE(i)(0) is computed by player i (alone), as follows: If lcp′ = 1 output b′.

Otherwise output ε (the empty string).

Recall that during the execution of the protocol Aj, the protocol Aj−1 is called twice, and

in each of these executions, the leader is broadcasting messages over the tree code. Then,

the LCP protocol is executed to get the LCP of the strings s
(i)
1 ‖s

(i)
2 (i ∈ [2j]). The leader

broadcasts his result of the LCP execution, lcp(ld), over the tree code. Since lcp(ld) ∈ [2j], we

may assume that lcp(ld) is written over the tree code as a bit string of length exactly j.

Let i ∈ [n]. Since during the executions of Aj−1, a fixed number of bits are written

over the tree code, we may view the underlying transcript decoded from the tree code by

player i as composed of three parts: The first two, T1 and T2, consist of the values decoded

by player i of the messages that the leader broadcasts over the tree code during the first

and second execution of Aj−1 (respectively). The third part, lcp(i), is the decoded value of

lcp(ld) by player i. The function DECODE(i)(j) is computed by player i (alone), as suggested

by Algorithm 7. We also write this using the equation:

DECODE(i)(j) =
(
DECODE(i)(j − 1)1‖DECODE(i)(j − 1)2

)
[1 : lcp(i)] (2)

33

Algorithm 7 DECODE(i)(j)

1: Run DECODE(i)(j − 1) where the underlying string decoded from the tree code is T1 to
get the output string r1.

2: Run DECODE(i)(j − 1) where the underlying string decoded from the tree code is T2 to
get the output string r2.

3: Output (r1‖r2)[1 : lcp(i)].

8 Analysis of the CPJ Protocol

We first claim that the length of an execution of each of the protocols Aj is fixed.

Lemma 8.1. The protocol Aj (j ≥ 0) require a fixed number of broadcasts, regardless of

whether or not it is executed harmoniously.

Proof. First recall that an invocation of LCPm requires a fixed number of broadcasts for every

m ∈ N (Lemma 6.3). Observe that this holds even if the invocation is not harmonious. Thus,

if players start an invocation of LCPm at the same time, they will end their execution together.

The protocol A0 consists of constant number of broadcasts, as well as an execution of LCP1.

Thus, A0 is of fixed length. For j ≥ 1, the protocol Aj is two successive invocations to Aj−1

followed an execution of LCP2j and by the leader broadcasting the LCP output (requiring j+1

bits) and (c0 + 1)(j + 1) bits of padding over the tree code. Since these numbers are fixed,

if we assume that Aj−1 is fixed length, then so is the length of Aj. Thus, we can show by

induction on j that the executions of Aj are of a fixed number of rounds.

Using Lemma 8.1, it can be shown that during the execution of the protocol Aj
(j ≥ 0), the leader is broadcasting in pre-determined rounds. All players know these

rounds in advance and will not be broadcasting. Thus, these rounds are adversary free

(see subsection 4.1).

Corollary 8.2. During the execution of the protocol Aj (j ≥ 0), the rounds in which the

leader is broadcasting are adversary free.

Let Σ be the set of labels for the edges in our tree code. We assume, without loss of

generality, that Σ = {0, 1}ς for some ς ∈ N. At any stage of the execution of the protocol Aj
(j ≥ 0), the leader would have broadcast the encoding of a sequence of k bits over the tree

code, for some k (see subsection 4.2). Saying it differently, the leader broadcasts the labels

on k edges on some path in the tree code. Denote these list of edges broadcast by the leader

by π(ld) ∈ Σk = {0, 1}kς . Corollary 8.2 implies that each player receives a noisy copy of the

edges. Let π(i) ∈ {0, 1}kς = Σk be the copy of π(ld) received by player i ∈ [n]. Let D be the

Hamming distance based decoder for the tree code defined in subsection 3.4, so that D(π(i))

is a string in {0, 1}∗.

34

Lemma 8.3. At any point in the execution of the protocol Aj (j ≥ 0), for any player i ∈ [n],

if π(ld), π(i) ∈ Σk, then for any k0 ∈ N,

Pr
[∣∣l(D(π(ld)), D(π(i)))

∣∣ ≤ k − k0

]
≤ K1 exp(−K2k0),

for some constants K1 and K2.

Proof. We assume that the encoding function C used in our protocol defines a (2, α = 1
2
,Σ)-

tree code for a constant size Σ. Such a tree code exists by Theorem 3.6. Thus, each

transmission on the tree code is of a constant size. Denote this size by ς. Suppose the noise

in the channel is less than 1/4ς, so that the probability that one symbol on the tree code

is corrupted by noise is at most 1/4 = α/2. This is without loss of generality, as it can be

ensured by repeating every communicated bit constant number of times.

Since the leader knows their own broadcast, π(ld) is noise-free. This implies that

π(ld) = C(D(π(ld))) (recall Definition 3.5). By Corollary 8.2, we also know that π(i) is a

δ-noisy version of π(ld) with δ < α/2. The assertion follows for applying Theorem 3.7 with

s = D(π(ld)).

We analyze protocolsAj sequentially in the following subsections. The high level idea is to

use the analysis of Aj−1 twice to get bounds for Aj. We will prove that with high probability

both the calls to Aj−1 within Aj are harmonious, and that harmonious executions result in

large expected progress. Thus, the progress roughly doubles at every step to remain within

a constant factor of the number of transmissions.

8.1 Analyzing A0

In this section, we assume that the execution of A0 is harmonious. Since A0 involves only

one player other than the leader, the definition of harmonious reduces to exactly one player

broadcasting in line 1 of the description. Of course, this player will also participate in the

execution of LCP1 which will be harmonious.

Lemma 8.4 (Progress). With probability at least 1− ε− 1
29

, a harmonious execution of A0

will have b(ld) = b and lcp(ld) = 1, where the probability is over the noise of the channel and

the randomness of the players.

Proof. Since the execution is harmonious, there no collision in line 1 and the bit received

by the leader is just an ε-noisy copy of b. The leader’s noisy version b(ld) is the same as b

except with probability ε. If indeed b(ld) = b, then l(b, b(ld)) = b. Apply Theorem 6.1 to

conclude that Pr[lcp(ld) = 1] ≥ 1 − 1
29

when l(b, b(ld)) = b. However, l(b, b(ld)) = b happens

with probability at least 1− ε. Thus, Pr[lcp(ld) = 1] ≥ 1− 1
29
− ε

We measure the progress made by our algorithm using the variable lcp(ld). The foregoing

lemma shows that the expected progress made by a harmonious invocation of A0 is large.

We now prove that this progress is ‘correct’ with high probability. Our notion of correctness

is that strings s(i) output by player i when A0 ends, satisfies s(i) = σ|s(i)| (see Equation 1).

35

Lemma 8.5 (Correctness). There exists a constant c0 ∈ N such that the following holds: For

any player i ∈ [n], at the end of a harmonious execution of A0, it holds that |s(i)| = lcp(ld)

and s(i) = σ|s(i)|, with probability at least 1− 1
28

, where the probability is over the noise of the

channel and the randomness of the players.

Proof. Consider the messages C(b(ld)) and C(lcp(ld)) broadcast by the leader over the tree

code. The players decode after these messages are broadcast. The probability that all the bits

that are not a part of the padding are decoded correctly is at least 1−K1 exp(−K2(c0+1)) by

Lemma 8.3. We can set c0 to a constant value large enough so that K1 exp(−K2(c0 + 1)) ≤
1/210. For the rest of this proof, we condition on the event E that the decoding of non-

padding bits by player i is correct.

When E occurs, the output of the DECODE(i)(0) procedure is s(i) = b(ld)[1 : lcp(ld)] (here

we view b(ld) as a string of length 1). If lcp(ld) = 0, player i sets s(i) = ε. Recall that σ0 = ε,

thus s(i) = σ0. Now assume that lcp(ld) = 1. Since the LCP invocation was harmonious,

by Theorem 6.1, its output is incorrect with probability at most 1/29. Then, with probability

at least 1− 1
29
− Pr(Ē), we have σ1 = b = b(ld) = s(i), and the assertion follows.

8.2 Analyzing Aj

Our goal in this section is to prove analogues of Lemma 8.4 and Lemma 8.5 for Aj, j ≥ 1.

We would rely on the following reasoning. Consider a harmonious execution of A1. This

would involve two players, say player 1 and 2, as well as the leader. Player 1 (and the leader)

will first run A0 harmoniously. The output s
(i)
1 of this execution will be of length lcp

(ld)
1 and

be correct for both the players with high probability. We assume for now that this execution

is indeed correct for both players. If the outputs s
(i)
1 are of the same length for i ∈ [2], then

second execution would be harmonious and we can re-apply Lemma 8.5 to conclude that

the output of the second execution is also correct with high probability. If both the outputs

are correct, the subsequent LCP should output the concatenation of the two outputs. Thus,

the length of the (correct) output would double at every step to stay larger than a constant

fraction of the number of players. We extend this reasoning to general Aj in the following

lemmas.

Lemma 8.6 (Progress). There exists a constant c0 ∈ N such that the following holds: In a

harmonious execution of Aj, for j ≤ blog nc, we have

E
[
lcp(ld)

]
≥ 2j

(
1− 1

29
− ε− 6

j∑
i=1

2−7i

)
.

Lemma 8.7 (Correctness). There exists a constant c0 ∈ N such that the following holds:

For any player i ∈ [n], at the end of a harmonious execution of Aj, for j ≤ blog nc, it holds

that |s(i)| = lcp(ld) and s(i) = σ|s(i)|, with probability at least 1− 2−8j−8, where the probability

is over the noise of the channel and the randomness of the players.

36

We prove Lemma 8.6 and Lemma 8.7 in subsubsection 8.2.1. The proof of Theorem 1.1

follows from these lemmas, as well as from the fact that the protocol Aj requires at

most O(2j) broadcast rounds.

8.2.1 Proof of Lemma 8.6 and Lemma 8.7

In this section we next prove Lemma 8.6 and Lemma 8.7 together via induction on j. The

base case (j = 0) is given by Lemma 8.4 and Lemma 8.5 respectively. We assume both the

results for j − 1 and reason about Aj.
Aj begins with a call to Aj−1 on the first half of the players. Since these players are

pre-specified, this call is harmonious and, by the induction hypothesis (correctness), both of

the following holds for any i ∈ [n], except with probability 1− 2−8j,

|s(i)
1 | = lcp

(ld)
1 , (3)

s
(i)
1 = σ|s(i)1 |

. (4)

Here lcp
(ld)
1 denotes the value of lcp(ld) in this execution of Aj−1. Let E1 be the event that

s
(i)
1 = σ

lcp
(ld)
1

= σ′ for all i ∈ [2j]. By union bound over Equation 3 and Equation 4 for all

players in [2j], we get that Pr[E1] ≥ 1− 2−7j.

Claim 8.8. Assuming that E1 occurs, the second execution of Aj−1 is harmonious.

Proof. We will only use the fact that the strings s
(i)
1 are of the same length, for all i ∈ [2j].

In the second execution of Aj−1, if i ∈
[
|s(i)

1 |+ 1, |s(i)
1 |+ 2j−1

]
, then player i takes the role

of active player i − |s(i)
1 |. Since |s(i)

1 | ≤ 2j−1, it holds that
[
|s(i)

1 |+ 1, |s(i)
1 |+ 2j−1

]
⊆ [2j].

Since |s(i)
1 | = |σ′| for every i ∈ [2j], it holds that every player i ∈ [|σ′| + 1, |σ′| + 2j−1] takes

the role of player i − |σ′|. Since the function i → i − |σ′| is a bijection between the set of

active players participating and the set of roles, the second execution of Aj−1 is harmonious.

(Note that all players i ∈ [n] \ [2j] will always participate in this execution Aj−1 as passive

players.)

Assume that E1 occurs. The second execution of Aj−1 involves the functions gi. The

functions gi were defined in a way so that their domain is consistent with the role of player i.

Since this execution is also harmonious, we again apply the induction hypothesis (correctness)

to conclude that for any i ∈ [n], except with probability 2−8j,

|s(i)
2 | = lcp

(ld)
2 , (5)

s
(i)
2 = τ|s(i)2 |

. (6)

Here lcp
(ld)
2 denotes the value of lcp(ld) in this (second) execution of Aj−1, and τ|s(i)2 |

is

the string obtained by replacing all fi by gi in Equation 1. Let E2 be the event that

37

s
(i)
2 = τ

lcp
(ld)
2

= τ ′ for all i ∈ [2j]. By union bound over Equation 4 for all players in [2j], we

get that Pr[E2|E1] ≥ 1− 2−7j. If we denote σ′‖τ ′ by ν, we get

Claim 8.9. Assuming that E1 and E2 occur, it holds that ν = σ|ν|.

Proof. Since σ′ = σ|σ′| (definition of E1 and Equation 4), it is sufficient to show that the

ith bit of τ ′ is the same as the ith bit of σ|ν|[|σ′| + 1 : |ν|]. Or, in other words, the ith

bit of τ ′ is the (|σ′| + i)th bits of σ|ν|. We prove this by induction on i. The statement

holds for i = 0. Assume it holds for all values up to i − 1. The ith bit of τ ′ = τ
lcp

(ld)
2

is

g|σ′|+i(τ
′[1 : i − 1]) = f|σ′|+i (σ

′‖(τ ′[1 : i− 1])) by definition. By the induction hypothesis,

this is the same as f|σ′|+i
(
σ′‖(σ|ν|[|σ′|+ 1 : |σ′|+ i− 1])

)
= f|σ′|+i(σ|ν|[1 : |σ′|+ i− 1]) which

is the (|σ′|+ i)th bit of σ|ν|.

Assume that E1 and E2 occur. Then, s
(i)
1 ‖s

(i)
2 = σ|ν| for all the players i ∈ [2j], and

coordinate i of s
(i)
1 ‖s

(i)
2 is fi(vi[1 : i − 1]). Therefore, Line 3 sets vi to vi = s

(i)
1 ‖s

(i)
2 = σ|ν|

for all the players i ∈ [2j] (as the replacing part of Line 3 doesn’t have any effect). Since

l(v1, · · · , v2j) = |ν| = lcp
(ld)
1 + lcp

(ld)
2 , and since the LCP2j call is harmonious, Theorem 6.1

implies that lcp(ld) ≥ lcp
(ld)
1 + lcp

(ld)
2 except with probability at most 2−9j. Let E3 be the

event that lcp(ld) ≥ lcp
(ld)
1 + lcp

(ld)
2 . We have Pr(E3 | E1, E2) ≥ 1− 2−9j. The following claim

proves Lemma 8.6.

Claim 8.10.

E[lcp(ld)] ≥ 2j

(
1− 1

29
− ε− 6

j∑
i=1

2−7i

)
.

Proof. We first condition on the events E1, E2, E3 to use the bounds for lcp
(ld)
1 and lcp

(ld)
2

give by the induction hypothesis.

E[lcp(ld)] ≥ Pr[E1, E2, E3] · E[lcp(ld) | E1, E2, E3] + (1− Pr[E1, E2, E3]) · 0
≥ (1− 2 · 2−7j − 2−9j) · E[lcp(ld) | E1, E2, E3]

≥ (1− 3 · 2−7j) ·
(
E[lcp

(ld)
1 + lcp

(ld)
2 | E1, E2, E3]

)
.

Next we prove bounds on E[lcp
(ld)
1 | E1, E2, E3] and E[lcp

(ld)
2 | E1, E2, E3]:

E[lcp
(ld)
1 | E1, E2, E3] ≥ E[lcp

(ld)
1]− E[lcp

(ld)
1 | Ē1 ∨ Ē2 ∨ Ē3] Pr(Ē1 ∨ Ē2 ∨ Ē3)

≥ E[lcp
(ld)
1]− 2j−1 Pr(Ē1 ∨ Ē2 ∨ Ē3)

≥ E[lcp
(ld)
1]− 2j−1

(
Pr(Ē1) + Pr(Ē2 | E1) + Pr(Ē3 | E1, E2)

)
≥ E[lcp

(ld)
1]− 3 · 2−6j−1.

Also,

E[lcp
(ld)
2 | E1, E2, E3] ≥ E[lcp

(ld)
2 | E1]− E[lcp

(ld)
2 | E1, Ē2 ∨ Ē3] Pr(Ē2 ∨ Ē3 | E1)

38

≥ E[lcp
(ld)
2 | E1]− 2j−1 Pr(Ē2 ∨ Ē3 | E1)

≥ E[lcp
(ld)
2 | E1]− 2j−1

(
Pr(Ē2 | E1) + Pr(Ē3 | E1, E2)

)
≥ E[lcp

(ld)
2 | E1]− 2 · 2−6j−1.

Using these bounds and the induction hypothesis, we get

E[lcp(ld)] ≥ (1− 3 · 2−7j) ·
(
E[lcp

(ld)
1 + lcp

(ld)
2 | E1, E2, E3]

)
≥ (1− 3 · 2−7j) ·

(
E[lcp

(ld)
1] + E[lcp

(ld)
2 | E1]− 5 · 2−6j−1

)
≥ (1− 3 · 2−7j) ·

(
2j

(
1− 1

29
− ε− 6

j−1∑
i=1

2−7i

)
− 5 · 2−6j−1

)

≥ 2j

(
1− 1

29
− ε− 6

j∑
i=1

2−7i

)
.

For Lemma 8.7, note that the input to the LCP call in Algorithm 6 are the strings vi
calculated in Line 3. These strings satisfy the property that their ith bit is equal to fi
applied to their first i − 1 bits. The following claim proves that strings that satisfy this

property have a ‘correct’ LCP.

Claim 8.11. If V = {vi}i∈[m] is a set of strings that satisfies vi[i] = fi(vi[1 : i−1]) for every

i ∈ [|l(V)|], then l(V) = σ|l(V)|.

Proof. We prove by induction on i that the first i ≤ |l(V)| bits of l(V) and σ|l(V)| match.

The 0th bit matches trivially. Assume all bits up to i− 1 match and consider bit i ≤ |l(V)|.
Since l(V) is a prefix of vi, the ith bit of l(V) is the same as the ith bit of vi. But,

vi[i] = fi(vi[1 : i− 1]) = fi(σi−1) by the induction hypothesis. By definition, fi(σi−1) = σi[i],

and the assertion follows.

Recall that the leader’s input to the LCP2j execution is v(ld) = s
(ld)
1 ‖s

(ld)
2 . Let V =

{v1, · · · , vn, v}. By Theorem 6.1 and Claim 8.11, except with probability at most 2−9j, the

result of the LCP2j execution, lcp(ld), satisfies

v(ld)[1 : lcp(ld)] = l(V) = σ|l(V)| = σlcp(ld) .

Fix a player i ∈ [n]. We show that player i’s output is correct and of length lcp(ld), by

showing that it matches the output of the leader with high probability. First, note that the

39

leader’s output s(ld) satisfies

s(ld) = DECODE(ld)(j)

=
(
DECODE(ld)(j − 1)1‖DECODE(ld)(j − 1)2

)
[1 : lcp(ld)] (by Equation 2)

=
(
s

(ld)
1 ‖s

(ld)
2

)
[1 : lcp(ld)]

= v(ld)[1 : lcp(ld)]

= σlcp(ld) = σ|s(ld)|

(7)

We finish the proof of Lemma 8.7 by proving that the output s(i) of any player i, is the

same as s(ld) with high probability.

Claim 8.12. For any player i, the output s(i) = s(ld) except with probability at most 2−8j−9.

Proof. The leader broadcasts lcp(ld) on the tree code with (c0 +1)(j+1) bits of padding. For

any player i, the result of DECODE(i)(j) will differ from the result of the leader only if the size

of the incorrect suffix is more than the size of the padding. We upper bound this probability

using Lemma 8.3 by K1 exp(−K2(c0 + 1)(j + 1)) ≤ 2−8j−9 for a sufficiently large c0.

By a union bound, except with probability at most 2−9j + 2−8j−9 ≤ 2−8j−8, both

Equation 7 and Claim 8.12 hold. Note that the inequality holds for j > 9. For smaller j, we

just repeat LCP a constant number of times to force the result. This finishes the proof.

References

[ABE+16] Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard

Haeupler. Reliable communication over highly connected noisy networks. In

PODC, pages 165–173, 2016. 4

[BE14] Mark Braverman and Klim Efremenko. List and unique coding for interactive

communication in the presence of adversarial noise. In Proceedings of the IEEE

Symposium on Foundations of Computer Science, FOCS, pages 236–245, 2014.

4

[BEGH16] Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler.

Constant-rate coding for multiparty interactive communication is impossible.

In STOC, pages 999–1010, 2016. 4

[BGI92] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of

broadcast in multi-hop radio networks: An exponential gap between determinism

and randomization. J. Comput. Syst. Sci., 45(1):104–126, 1992. 3, 8, 15, 17

[BGMO16] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for

interactive communication correcting insertions and deletions. In ICALP, pages

61:1–61:14, 2016. 4

40

[BKN14] Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast interactive coding

against adversarial noise. J. ACM, 61(6):35:1–35:30, 2014. 4

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in

interactive communication. In STOC, pages 159–166, 2011. 4, 5, 10

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In ITCS, pages

161–167, 2012. 4

[EGH15] Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in

interactive communication over erasure channels and channels with feedback.

In ITCS, pages 11–20, 2015. 4

[FK00] Uriel Feige and Joe Kilian. Finding OR in a noisy broadcast network. Inf.

Process. Lett., 73(1-2):69–75, 2000. 4

[Gal88] Robert G. Gallager. Finding parity in a simple broadcast network. IEEE

Transactions on Information Theory, 34(2):176–180, 1988. 2, 3

[Gam87] Abbas El Gamal. Open problems presented at the 1984 workshop on specific

problems in communication and computation sponsored by bell communication

research. Appeared in “Open Problems in Communication and Computation”,

by Thomas M. Cover and B. Gopinath (editors). Springer-Verlag, 1987. 2

[GH15] Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over

erasure channels and channels with feedback. In SODA, pages 1296–1311, 2015.

4

[GHK+16] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.

Towards optimal deterministic coding for interactive communication. SODA,

2016. 4

[GHS14] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates

for interactive coding I: Adaptivity and other settings. In STOC, pages 794–803,

2014. 4

[GKS08] Navin Goyal, Guy Kindler, and Michael Saks. Lower bounds for the noisy

broadcast problem. SIAM Journal on Computing, 37(6):1806–1841, 2008. 2,

3, 4, 10

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for

interactive communication. In FOCS, pages 768–777, 2011. 4

[GMS14] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive

communication. IEEE Transactions on Information Theory, 60(3):1899–1913,

2014. 4

41

[Hae14] Bernhard Haeupler. Interactive channel capacity revisited. In FOCS, pages

226–235, 2014. 4

[KM98] Eyal Kushilevitz and Yishay Mansour. An ω(d log(n/d)) lower bound for

broadcast in radio networks. SIAM J. Comput., 27(3):702–712, 1998. 4

[KR13] Gillat Kol and Ran Raz. Interactive channel capacity. In STOC, pages 715–724,

2013. 4

[MS14] Cristopher Moore and Leonard J. Schulman. Tree codes and a conjecture on

exponential sums. In ITCS, pages 145–154, 2014. 4

[New04] Ilan Newman. Computing in fault tolerance broadcast networks. In CCC, pages

113–122, 2004. 4

[Pel07] David Peleg. Time-efficient broadcasting in radio networks: A review. In

Distributed Computing and Internet Technology ICDCIT, pages 1–18, 2007. 3

[RS94] Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed

computation. In STOC, pages 790–799, 1994. 4

[Sch92] Leonard J. Schulman. Communication on noisy channels: A coding theorem for

computation. In FOCS, pages 724–733, 1992. 4

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In

STOC, pages 747–756, 1993. 4, 10

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 4, 11

42
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

