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Abstract

The paper investigates expansion properties of the Grassmann graph, motivated by recent results
of [KMS16, DKK+16] concerning hardness of the Vertex-Cover and of the 2-to-1 Games problems.
Proving the hypotheses put forward by these papers seems to first require a better understanding of these
expansion properties.

We consider the edge expansion of small sets, which is the probability of choosing a random vertex
in the set and traversing a random edge touching it, and landing outside the set.

A random small set of vertices has edge expansion nearly 1 with high probability. However, some
sets in the Grassmann graph have strictly smaller edge expansion. We present a hypothesis that proposes
a characterization of such sets: any such set must be denser inside subgraphs that are by themselves
(isomorphic to) smaller Grassmann graphs. We say that such a set is non-pseudorandom. We achieve
partial progress towards this hypothesis, proving that sets whose expansion is strictly smaller than 7/8
are non-pseudorandom.

This is achieved through a spectral approach, showing that Boolean valued functions over the Grass-
mann graph that have significant correlation with eigenspaces corresponding to the top two non-trivial
eigenvalues (that are approximately 1/2 and 1/4) must be non-pseudorandom.
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1 Introduction

The PCP Theorem [AS98, ALM+98] is a widely applicable, fundamental result in theoretical computer
science. One area in particular in which it is vital, is hardness of approximation of optimization prob-
lems [FGL+96]. Several useful parameters in PCP constructions were highlighted by the work of Dinur
and Safra [DS05], however, the existence of optimal PCPs with respect to these parameters is not known.
The Unique-Games Conjecture of Khot [Kho02], which asserts the existence of such PCPs, is a promi-
nent open question in theoretical computer science and in PCP theory in particular. This conjecture has
far-reaching consequences — it was shown to imply optimal hardness results for almost all optimization
problems [KKMO07, KR08, Rag08]. Research aimed at the design of algorithms for Unique-Games has
led to some interesting algorithmic ideas [CMM06, Kol11, ABS15, Tre08]. In contrast, progress towards a
proof has been slow – a first candidate for hard instance of Unique-Games has only recently been suggested
[KM16].

An independent line of research towards Khot’s 2-to-1 Conjecture, a weaker variant of the Unique-
Games Conjecture (also from [Kho02]), was initiated recently: First in [KMS16], which focused on the NP-
hardness of approximating Vertex-Cover, and then in [DKK+16], where it was extended to 2-to-1 games.
A key mathematical object in both constructions is the Grassmann Graph, and an associated agreement
test for linear functions. The results in [KMS16, DKK+16] relied on conjectured properties of this Grass-
mann agreement test, specifically they conjectured that when a certain assignment passes the test with non-
negligible probability, that assignment must have a large-scale structure consistent with some global linear
function.

The motivation of this work is to better understand the structure of the Grassmann graph, with the hope
of approaching a proof for the conjectured properties of the associated consistency test. Towards this end, we
study properties of sets that do not expand well; such sets play crucial role in all currently known challenging
examples for the Grassmann consistency test and their understanding seems to be a prerequisite for proper
understanding of the test.

1.1 The Grassmann Graph and the linearity agreement test

Let V be a k dimensional linear space over F2. The `-dimensional Grassmann encoding of a linear function
H : V → F2 is a table F of values, assigning to each `-dimensional subspace L ⊆ V the restriction ofH to
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it, namely F(L) = H|L. For any `-dimensional subspace L,L′ ⊆ V , F(L) and F(L′) obviously agree on
L ∩ L′, as they are both consistent with the globalH.

Suppose, on the other hand, that we are given a tableF specifying a linear function to every `-dimensional
subspace of V and we would like to test whether the table is consistent with some global linear function
over V . The Grassmann consistency test, used in [KMS16, DKK+16], is as follows: Pick two random
`-dimensional subspace L,L′ ⊆ V under the constraint that dim(L∩L′) = `− 1, and verify that F(L) and
F(L′) agree on L∩L′ (the Grassmann graph G(V, `) is obtained by connecting such L and L′ by an edge).
The consistency of an assignment F is the probability it passes the Grassmann test.

As noted above, a Grassmann encoding of a linear function has consistency 1. What can we say if a
table F passes the test with probability δ? It is easy to show that when δ = 1 the table must be an encoding
of a global linear function over V . But the case δ < 1 is not nearly as trivial, and when δ is a small positive
constant this becomes quite subtle.

Before we continue the discussion about the relation between δ and a global structure, we remark about
the relation between the Grassmann test and the 2-to-1 conjecture.

From 2-to-2 to 2-to-1. Note that the Grassmann test is 2-to-2 in the following sense: for every pair L,L′

of subspaces that are considered by the test, every linear function on their intersection L ∩ L′ has exactly
two extensions to L that are consistent with it, and also two consistent extensions to L′. One can therefore
partition the possible labels of both L and L′ into pairs, so the test on L,L′ defines a matching between
these sets of pairs. A simple technique can transform this 2-to-2 test into a 2-to-1 test as required so as to
prove the 2-to-1 conjecture – this is done in [DKK+16].

From passing the test to global structure. Let F be a table assigning a linear function F [L] to every `
dimensional subspace L ⊆ V , and suppose that F has non-negligible consistency δ, namely it passes the
Grassmann test with probability δ. Must F be consistent with a global linear function H : V → F2? At
least when interpreted in the most straightforward sense, the answer to the above question is negative: there
exists a table F that has constant consistency δ > 0, such that for every linear function H : V → F2 the
probability F [L],H|L agree on a randomly chosen `-dimension space L is negligible: O(2`−k).

Nevertheless, by considering the structure of known examples of the type mentioned above, one can
come up with some weaker form of large-scale consistency that might be implied by the fact that a table
passes the Grassmann test with non-negligible probability. Indeed, the following hypothesis was proposed
in [DKK+16]:

Hypothesis 1.1. For every δ > 0, there exists ε > 0, and r > 0 integer such that the following holds
for sufficiently large k � `. Let V be a k dimensional subspaces over F2, and suppose F is a labeling
of G(V, `) by linear functions that has δ consistency with respect to the Grassmann test. Then there exist
subspaces Q,W ⊆ V , dim(Q) = r, dim(W ) = k − r and a linear functionH : W → F2, such that

Pr
Q⊆L⊆W

[F [L] ≡ H|L] > ε.

In words, ifF has non-negligible consistency, then there existsQ of small dimension andW of small co-
dimension, so thatF has non-negligible agreement with a legitimate linear function on subspaces containing
Q and contained inW . Considering spaces containingQ is referred to as “zoom-in”, and restricting to spaces
contained in W is referred to as “zoom-out”.

Hypothesis 1.1 was left as an open question in [DKK+16]. A variant of the above hypothesis was made
earlier by [KMS16], where it was suggested that studying vertex expansion properties of G(V, `) may be a
good starting point for studying the Grassmann test.
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1.2 The Grassmann test and Edge expansion

In order to prove Hypothesis 1.1 wrong, one needs to construct a labeling of G(V, `) that has non-negligible
consistency yet does not posses global structure. One possible approach for doing this is by covering the
vertices of G(V, `) by a large number of less-than-optimally expanding sets.

Definition 1.2. Let G = (U,E) be a d-regular graph, and S ⊆ U a set of vertices. The edge expansion of
S is the fraction of edges in S that go outside of it, namely

ΦG(S) =
|E(S,U \ S)|

d |S|
,

where E(S,U \ S) denotes the set of edges between S and U \ S.

Equivalently, the expansion of a set in a regular graph is equal to the probability of picking a uniformly
chosen vertex from it, taking a random edge from it and reaching a vertex outside the set.

Take A1, ..., Ar to be disjoint subsets of vertices of roughly equal sizes that cover a non-negligible
fraction G(V, `), and suppose that these sets have small expansion. Choosing Hi : V → F2 to be random
global linear functions, one can construct a tableF by assigning the elements ofAi according toHi (vertices
which are not in any Ai can be assigned randomly). We now have an assignment where no global linear
function agrees with it on significantly more that 1

r of the vertices. However, since the set Ai are non-
expanding (we leave exact parameters for later), the Grassmann test still has a good chance of picking an
edge that lies within one the Ai’s, and thus to accept.

If, moreover, one could avoid any zoom-in/zoom-out structure while constructing these sets A1, ..., Ar,
then one would effectively refute Hypothesis 1.1. It thus seems that determining if such small non-expanding
structure-less sets Ai exist is a prerequisite for resolving Hypothesis 1.1. This paper tries to make a first step
to answer this question.

While we do not know a formal way to obtain Hypothesis 1.1 from expansion properties of the Grass-
mann Graph, there seems to be a strong connection between the two. For example, using the fact that a small
set of vertices S in the Grassmann Graph has expansion at least nearly half 1, one can prove the following
theorem, proved in Section D.

Theorem 1.3. For every δ > 1
2 there exists ε > 0 such that the following holds for sufficiently large k, `. If

F is a labeling of G(V, `) by linear functions that has δ-consistency in the Grassmann test, then there exists
a linear functionH : V → F2 such that

Pr
L

[F [L] ≡ H|L] > ε.

Note that Theorem 1.3 implies that Hypothesis 1.1 holds for δ > 1
2 .This may interpreted as a further

suggestion that understanding the structure of non-expanding sets in the Grassmann graph may contribute
to resolving Hypothesis 1.1.

1.3 Non-Expanding sets in the Grassmann Graph

Theorem 1.3 relies on the fact that a set whose expansion is very small must be relatively large. But this
does not necessarily hold for sets whose expansion is just slightly smaller than optimal, which seems to be
the relevant case for Hypothesis 1.1.

1This fact is proved later in the paper in Section D.
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We would therefore like to understand what we can say about the structure of non-optimally expanding,
small subsets of vertices in G(V, `). Some natural examples are sets of vertices that induce a subgraph that
is by itself (isomorphic to) a Grassmann graph of smaller dimension.

Zoom-out. One type of such sets results from taking the set of subspaces of a hyperplane (or more gen-
erally, a small co-dimension subspace), namely taking G(W, `) for a hyperplane W ⊆ V : Given a vertex
in it L ⊆ W and a random edge (L,L′), the probability that this edge stays inside G(W, `) is 1/2. This
is seen by observing that L′ is obtained from L ∩ L′ by “adding a random vector”, which belongs to W
with probability 1/2 since it contains half of the points in V . Below we refer to these type of examples as
zoom-outs.

Zoom-in. A different set of examples result from induced subgraphs isomorphic to G(W, ` − 1) for hy-
perplane W . For examples consider the graph induced by all vertices that correspond to subspaces that
include a particular vector x 6= 0. One can observe that the degree of each vertex in this induced subgraph
is roughly half of its degree on G(V, `): for any L in this subgraph, the probability a random neighbour L′

also contains x is roughly half, since L,L′ share nearly half of their non-zero vectors.
More generally, the set of vertices that correspond to subspaces that contain some particular r vectors,

result in poorly-expanding induced subgraph, which by itself is isomorphic to G(W ′, k − r), for W ′ of
co-dimension r. Below we refer to these type of examples as zoom-in.

1.3.1 Pseudo-random sets

What can we say about the structure of general sets that are non-optimally expanding? The above examples
are obviously not general, as once can obtain such sets using a combination of zoom-ins and zoom-outs:
Namely take the set of subspaces that are contained in some hyperplane as well as contain few specific
vectors. Are there any inherently different non-optimally expanding sets of vertices? The main question
of this paper is whether these are, in a sense, the only non-optimally expanding sets (see Hypothesis 1.7
below).

To formulate this question more precisely we need to define the density of sets relative to zoom-ins and
zoom-outs.

Definition 1.4. Let G = (U,E) be a graph. The density of a set of vertices S ⊆ U , denoted µ(S), is the
fractional size of S in U .

Definition 1.5. Let V be a k-dimensional space over F2, consider the Grassmann Graph G(V, `) and let S
be a set of vertices in it. For Q,W ⊆ V of dimensions dim(Q) < ` < dim(W ), the density of S among
spaces containing Q contained in W is denoted by µ(Q,in),(W,out)(S) and equals

|S ∩ {L ∈ G(V, `) |Q ⊆ L ⊆W}|
|{L ∈ G(V, `) |Q ⊆ L ⊆W}|

.

Note that setting r = dim(Q), the induced subgraph on the set of `-dimensional spaces containing Q
and contained in W , is isomorphic to G(W, ` − r). Thus µ(Q,in),(W,out)(S) is nothing but the density of S
in that subgraph.

We have seen examples of sets that are non-optimally expanding that are small. However, one may
theorise that such a set must be significantly denser inside a zoom-in/zoot-out combination: this would mean
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that such a set is, in a sense, close to the examples discussed above. The following definition encapsulates
this idea.

Definition 1.6 (Pseudo-randomness). Let V be a vector space of dimension k over F2, and consider the
Grassmann Graph G(V, `). We say a set of vertices S is (m, ε) pseudo-random if for every integers q, r
such that q+ r = m, Q a q-dimensional subspace and W of co-dimension r, µ(Q,in),(W,out)(S) 6 µ(S) + ε.

We are now ready to formulate a precise version of the question leading this paper. It asks whether a
small set of vertices that have that have less than optimal expansion, must be correlated with a combination
of the above examples.

Hypothesis 1.7. For every η > 0 there exist δ, r, ε > 0, such that for large enough k � ` � 1 the
following holds. Let S is a set of vertices in G(V, `) of density at most δ. If S is (r, ε)-pseudo random, then
Φ(S) > 1− η.

Equivalently, the above questions asks whether a small set with expansion bounded away from 1 is
necessarily not pseudo-random.

1.4 Main Results

Our main results can be seen as partial answer to Hypothesis 1.7. Below we state slightly informal (and
quantitatively weaker) versions of them. Our first result states that a (1, ε) pseudo-random set has expansion
at least close to 3/4:

Theorem 1.8 (Informal version of Theorems 3.3,3.5). For sufficiently small δ, η > 0, there exists ε > 0
such that the following holds for large enough k, `. If S is a (1, ε) pseudo random set of vertices in G(V, `)
of density δ, then Φ(S) > 3

4 − η.

Our second result states that a (2, ε) pseudo-random set has expansion at least close to 7/8:

Theorem 1.9 (Informal version of Theorem 3.7). For sufficiently small δ, η > 0, there exists ε > 0 such
that the following holds for large enough k, `. If S is a (2, ε) pseudo random set of vertices in G(V, `) of
density δ, then Φ(S) > 7

8 − η.

In light of the above theorems, one would expect that a (r, ε) pseudo-random set must have expansion
close to 1 − 2−r. While this seems plausible, at this point we are unable to apply our techniques to this
general case.

Pushing to the limit. Note that a set S of density δ can potentially have expansion 1− δ. This follows by
observing that it must contain at least δ2 − o(1) fraction of the edges, since this fraction equals

E
A⊆V,dim(A)=`−1

[
Pr

L,L′⊇A

[
L,L′ ∈ S

]]
− o(1) = E

A⊆V,dim(A)=`−1

[
Pr
L⊇A

[L ∈ S]2
]
− o(1)

> E
A⊆V,dim(A)=`−1

[
Pr
L⊇A

[L ∈ S]

]2

− o(1)

= δ2 − o(1).

In this light, the most ambitious form of Hypothesis 1.7 asserts that if Φ(S) 6 1 − δ − ε, then S is not
pseudo-random.
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1.5 Techniques

1.5.1 A spectral approach for expansion

We study the structure of non-expanding sets in G(V, `) via spectral analysis: Identifying sets of vertices
with their indicator functions, we study representations of functions over G(V, `) as sums of eigenvectors.

Since G(V, `) is undirected regular graph, we know that the space of real-valued functions over it can
be written as a direct sum of orthogonal eigenspaces. Finding such a decomposition is often straightforward
for Cayley graphs of nicely structured groups, however this is not the case with G(V, `). In Section 2 we
show that when `� k, the normalized adjacency operator of G(V, `), AG(V,`), has eigenspaces J=0, ..., J=`

with eigenvalues λ0, ..., λ`, where λi ≈ 2−i. The first eigenspace consists of the constant functions, and the
corresponding eigenvalue is λ0 = 1.

Let S be a set of density δ, and assume Φ(S) 6 1− δ− ε for ε > 0. Denote by F the indicator function
of S. It is easy to see that the quantity 〈F,AG(V,`)F 〉 counts the fraction of edges of the graph with both
endpoints in S. Therefore, the expansion of the set S equals 1− 1

δ 〈F,AG(V,`)F 〉, and the assumption on the
expansion of S can be rewritten as

〈F,AG(V,`)F 〉 > (δ + ε)δ.

Writing F = F=0 + ...+ F=` where F=i ∈ J=i, the above inequality can be rewritten as:

∑̀
i=0

λi〈F=i, F=i〉 > (δ + ε)δ.

Noting that the summand corresponding to i = 0 equals δ2, we thus have

∑̀
i=1

λi〈F=i, F=i〉 > δε. (1)

Recalling that λi ≈ 2−i, we see that for (1) to hold the weight of F on low-index eigenspaces must
be significant. In conclusion, F must have non-negligible correlation with an eigenspace J=i for relatively
small i. If we could show that having significant weight on low-index eigenspaces implies not being pseudo-
random, we would be done.

We do not prove such a general statement for any low-index eigenspace – the bulk of this paper is
focused on partial results, namely proving such a statement specifically for the cases i = 1 and i = 2.
Theorem 1.8 and Theorem 1.9 are relatively direct corollaries of these cases.

1.5.2 Correlation with small order eigenspace implies non pseudo-randomness

We would like to describe the main ideas utilized in the proof that if F has significant weight on one of the
levels 1 or 2, it must not be pseudo-random. We need some observations about these eigenspaces first.

Structure of eigenspaces We have already seen that J=0 consists of constant functions. We can also give
a simple characterization of functions in J=1 — these are the functions of the form

G[L] =
∑

x∈L\{0}

g=1(x),

where g=1 : V \ {0} → R has average 0. Similar characterizations in fact hold for all eigenspaces, as
discussed in Section 2.
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Idea of the proof Let us focus on the case i = 1, and for simplicity let us further assume that F is
entirely supported on J=0 and J=1 (as opposed to only having non-negligible correlation with J=1) – that is,
F = F=0 + F=1. Note that F=0 ≡ δ is constant, and since F is Boolean valued, we have that F=1 receives
only two distinct, far apart values: −δ and 1− δ. As previously noted, we can write F=1 ∈ J=1 as

F=1[L] =
∑

x∈L\{0}

f=1(x) =
∑

x∈V \{0}

1x∈Lf=1(x),

for some f=1 : V \ {0} → R with average 0.
Consider this sum from a probabilistic perspective: think of L as being uniformly chosen among the

vertices of G(V, `), and of the summands 1x∈Lf=1(x) as random variables. Note that since `-dimensional
subspaces are almost pairwise independent (namely the probability that a random L contains two distinct
points is roughly the square of the probability of containing one point), we have that F=1[L] is a sum of
almost pairwise independent random variables. In fact, since ` > 4 the summands which correspond to
linearly independent points are even nearly 4-wise independent.

We would thus expect F=1[L] to have a fourth moment which roughly equals the square of its second
moment, unless one of the following cases occur: either there is a large contribution to F=1[L] from sum-
mands 1x∈Lf=1(x) that correspond to x’s that are *not* linearly independent; or else there are some x’s
such that the contribution of 1x∈Lf=1(x) is significantly higher than that of typical summands.

Roughly speaking, we show that in the first case the values of f=1 must be non-negligibly correlated
with a hyperplane W ⊆ V . In turn, we show that this implies that zooming out on W increases the density
of S significantly. This last step is done by viewing f=1 as a function over a hypercube and analyzing its
fourier coefficients.

The second case turns out to be rather straightforward: in that case f=1 must have high magnitude on at
least one x ∈ V . We show that in this case zooming-in to x increases the density of S significantly.

2 Preliminaries

In this section we present the necessary background on the Grassmann Graph.

Definition 2.1. Let V be a vector space of dimension k over F2, and let 0 6 ` 6 k be an integer. The
Grassmann Graph G(V, `) is defined as follows: its vertex set is the set of all ` dimensional subspaces of V ,
and two vertices L,L′ are connected by an edge if dim(L ∩ L′) = `− 1.

This paper largely deals with real-valued functions on the vertices of the Grassmann Graph, F : G(V, `)→
R. We often consider normalized adjacency operator of G(V, `), AG(V,`)

2 and consider its action on real-
valued functions F on G(V, `) 3:

(AG(V,`)F )[L] = E
L′:dim(L∩L′)=`−1

[
F [L′]

]
.

2That is, an n by n matrix (n is the number of vertices in G(V, `)) where AG(V,`)(u, v) = 1
d

when u, v are connected by an
edge and otherwise 0, when d is the degree of G(V, `).

3 Which can be viewed as vectors in RG(V,`).
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2.1 Spectral analysis on the Grassmann Graph

The Grassmann Graph has been considered in the context of spectral theory [Sri12, Sri14, FW86], however
its analysis is more complex than the spectral analysis done on the hypercube 4. One key difference is
that there is no “canonical orthonormal spectral basis” for the transition operator AG(V,`) ; thus one has to
settle for a less explicit “block decomposition”. It is folklore fact that such decomposition exists and can be
obtained; for the sake of completeness, we develop such a block decomposition in this section.

We endow the space of real-valued functions over G(V, `) with the inner product

〈F,G〉 = E
L∈G(V,`)

[F [L]G[L]].

Definition 2.2. Let i > 0. We say a function F : G(V, `) → R is spanned by the first i levels, if there is
f :
[
V
i

]
→ R such that

F [L] =
∑
Li⊆L

dim(Li)=i

f(Li).

We denote the set of functions spanned by the first i levels by J6i.

Note that J6` is the set of all real-valued functions on G(V, `).
Let us look at the first few levels. The 0-level space, namely J60, contains only constant functions. How

do functions from J61 look like? First, observe there exists a natural identification of V \ {0} with
[
V
1

]
by

the mapping x → Span({x}), thus functions spanned by level 0, 1 are determined by functions assigning
values to V \ {0}.

One natural example for a function in J61, is the indicator function of the set {L ∈ G(V, `) |x ∈ L} for
any non-zero x ∈ V . Another important example is the following: Consider W ⊆ V a hyperplane (i.e. sub-
space of dimension (dim(V )−1)), and consider F the indicator function of the set {L ∈ G(V, `) |L ⊆W}.
Intuitively, this function is of level one, sinceL ⊆W depends solely onL being perpendicular toW⊥, which
is a subspace of dimension 1. More precisely, define f1 : V \ {0} → R by

f1(x) =

{
2−` x ∈W,
−2−` x 6∈W.

Then if L ⊆W , ∑
x∈L\{0}

f1(x) = (2` − 1)2−` = 1− 2−`.

If L 6⊆W , then it contains 2`−1 − 1 non-zero points from W and 2`−1 non-zero points outside W , thus∑
x∈L\{0}

f1(x) = (2`−1 − 1)2−` − 2`−12−` = −2−`.

In conclusion,

2−` +
∑

x∈L\{0}

f1(x) =

{
1 L ⊆W,
0 L 6⊆W.

The left hand side can be rewritten as
∑

x∈L\{0}

1
(2`−1)2`

+ f1(x), and F ∈ J61.

4 And more in the flavor of the spectral analysis done on the slice of the hypercube [Fil16b, Fil16a, FKMW16, FM16] with key
distinctions.
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Fact 2.3. Let k > ` > 0 be integers. Then for every 0 6 i 6 `− 1, J6i ⊆ J6i+1.

Proof. Let F ∈ J6i be given by F [L] =
∑
Li⊆L

f(Li) for f :
[
V
i

]
→ R. Note that each i-dimensional space

Li and `-dimensional space L, there are precisely 2`−i+1 − 1 (i+ 1) dimensional subspaces Li+1 such that
Li ⊆ Li+1 ⊆ L. Define g : G(V, i+ 1)→ R by

g(Li+1) =
1

2`−i+1 − 1

∑
Li⊆Li+1

f(Li).

Then for any L ∈ G(V, `),∑
Li+1⊆L

g(Li+1) =
1

2`−i+1 − 1

∑
Li+1⊆L

∑
Li⊆Li+1

f(Li) =
∑
Li⊆L

f(Li) = F [L],

the second equality holds since Li is counted 2`−i+1 − 1 times. Therefore by definition F ∈ J6i+1.

We will be interested in functions strictly on the i-th level, namely functions in J6i that are perpendicular
to J6i−1.

Definition 2.4. The set of level i functions is

J=i = J6i ∩ (J6i−1)⊥ .

It is a well known fact that the sets J=i’s are eigenspaces of AG(V,`). For the sake of completeness we
provide a proof later in this section.

Unraveling the definitions,

J6` = J=` ⊕ J6`−1 = · · · = J=` ⊕ J=`−1 ⊕ · · · ⊕ J=0,

and thus we can decompose each function over G(V, `) according to its projection to those subspaces.

Definition 2.5. Let V be a vector space over F2 of dimension k, and 0 < ` < k an integer. For a function
F : G(V, `)→ R and i ∈ {0, 1, . . . , `} we define F=i to be the projection of F onto J=i. For i 6 `− 1, we
define f=i :

[
V
i

]
→ R to be the function such that

F=i[L] =
∑
Li⊆L

f=i(Li).

Using the notation in the above definition, the block decomposition we are interested in is F = F=0 +
... + F=`. For our purposes we require more information about this decomposition. Coming up with exact
formulas for the projections F=i turns out to be tricky; instead we work out simple approximations for each
F=i.

In the remainder of this section we show that each J=i is an eigenspace of AG(V,`), present exact for-
mulas for the projection onto J=0, J=1, and develop the approximations for all levels. Towards this end, we
first define the notions of zoom-ins and zoom-outs that play an important role in the projections.
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2.2 Zoom ins and zoom outs

We will often be interested in the effect of events of the form L 3 x or L ⊆ W on the average of F . For
that, we introduce the notion of zoom-ins and zoom-outs.

Definition 2.6 (Zoom-in). Let F : G(V, `) → R be a function, and Q ⊆ V be a q-dimensional subspace,
where q 6 `. Define

µQ,in(F ) = E
L∈G(V,`)
Q⊆L

[F [L]].

In words, it is the average of the function F on all subspaces that contain Q.

The following claim is easy to verify and will be used throughout this section. We omit the proof.

Claim 2.7. Let Q be a q-dimensional subspace, and q′ > q be an integer. Then

E
Q′∈G(V,q′)
Q⊆Q′

[
µQ′,in(F )

]
= µQ,in(F ).

Definition 2.8 (Zoom-Out). Let F : G(V, `)→ R be a function, and a W ⊆ V a subspace of dimension at
least `. Define

µW,out(F ) = E
L⊆W

[F [L]].

In words, it is the average of the function F on all subspaces that are contained in W - namely on the
subgraph G(W, `).

Definition 2.9. Let F : G(V, `)→ R. For subspaces Q,W ⊆ V where dim(Q) 6 ` 6 dim(W ), define

µ(Q,in),(W,out)(F ) = E
Q⊆L⊆W

[F [L]].

In words, it is the average of F on subspaces contained in W and containing Q.

Gaussian Coefficients

The Gaussian Binomial Coefficients
[
k
i

]
p

count the number of i-dimensional subspaces of Fkp . As we are
only interested in p = 2 throughout this paper, we omit the p subscript.

Definition 2.10. Let k > i > 0 be integers. The Gaussian Binomial Coefficient is[
k

i

]
=

(2k − 20) · · · (2k − 2i−1)

(2i − 20) · · · (2i − 2i−1)
.

We will often abuse notation, and denote the set of i-dimensional linear subspaces of V by
[
V
i

]
.

Observe that the Gaussian coefficients have the same symmetry as the binomial coefficients, namely[
k
i

]
=
[
k
k−i
]

for every i, k. This follows by the natural bijection A 7→ A⊥ of i dimensional subspaces
with k − i dimensional subspaces. They posses additional properties of the binomial coefficients, such as
unimodality with mode at k/2, and the following Pascal-type identity.

Fact 2.11. [
k

i

]
=

[
k − 1

i

]
+ 2k−i

[
k − 1

i− 1

]
= 2i

[
k − 1

i

]
+

[
k − 1

i− 1

]
.
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Proof. Both equalities are easy to prove algebraically, however for clarity we provide combinatorial proofs.
Let V be a k-dimensional space over F2 and let W ⊆ V be of co-dimension 1. We count the number of i
dimensional subspaces of V in two ways. Clearly, by definition it is

[
k
i

]
. On the other hand those spaces can

be partitioned to two: there are
[
k−1
i

]
subspaces contained in W , and

[
k−1
i−1

]
(
[
k−i+1

1

]
−
[
k−i

1

]
) not contained

in W (the first factor chooses the intersection with W - which is i− 1 dimensional, and the second chooses
the last basis vector without over-counting). This shows[

k

i

]
=

[
k − 1

i

]
+ 2k−i

[
k − 1

i− 1

]
.

The second equality follows by plugging in i = k − j, yielding[
k

j

]
=

[
k

i

]
=

[
k − 1

i

]
+ 2k−i

[
k − 1

i− 1

]
=

[
k − 1

j − 1

]
+ 2j

[
k − 1

j

]
.

The following fact can be verified by an easy calculation.

Fact 2.12. [
`−1
i

][
`
i

] = 2−i
2` − 2i

2` − 1
= 2−i +O(2−`).

Instead of calculating, it is often useful to consider such terms probabilistically. Fix L to be an `-
dimensional space, L′ ⊆ L to be an `− 1 dimensional subspace, and let us pick an i-dimensional subspace
of L uniformly at random. What is the probability it is contained in L′? Clearly, it is the expression on the
left hand side of the above Fact. On the other hand, picking an i dimensional subspace of L amounts to
picking v1, ..., vi linearly independent. If we ignore the dependency in choice of the v’s, the probability they
all fall in L′ is ≈ 2−i, since it has roughly half the number of non-zero points of L.

2.3 Eigenspaces of the Grassmann Graph

In this subsection we characterize the eigenvalues and eigenspaces of AG(V,`). We show below that the
eigenvalues of this operator can be expressed as follows.

Definition 2.13. For integers 0 6 i 6 `− 1,` 6 k, denote

λi(k, `)
def
=

[
`−1
i

][
`
i

] − (
[
`
1

]
−
[
i−1

1

]
)(
[
`
i

]
−
[
`−1
i

]
)[

`
i

]
(
[
k
1

]
−
[
`
1

]
)

,

For i = `, denote

λ`(k, `)
def
= − 1[

k−`+1
1

]
− 1

.

We often write just λi when k, ` are clear from context. Morally speaking, we encourage the reader
should think of λi as 2−i for i 6 `− 1 and as 0 for i = `. More precisely, a basic calculation can show that
the following holds:
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Fact 2.14. For i 6 `− 1, k > 2`, ` > 2,

λi =

[
`−1
i

][
`
i

] − (2`−i+1 − 1)(2i − 1)

(2` − 1)(2k−`+1 − 2)
,

and in particular
2−i − 22−` 6 λi 6 2−i.

Fact 2.15. Suppose k > 2`. Then λ0 > λ1 > .... > λ`.

Proof. We first prove that λi > λi+1 for all 0 6 i 6 `−2. By the expression for λi in Fact 2.14, we get that

λi =
2k−i+1 + 2i − 2k−`+1 − 2`+1 + 1

(2` − 1)(2k−`+1 − 2)
.

A close inspection reveals that this formula is correct for i = ` as well. Since only the numerator depends
on i and is decreasing as long as k− i+ 1 > i, i.e. as long as i 6 k/2 (which holds since i 6 ` 6 k/2), we
have that λi is decreasing in 0, ..., `.

The main objective of this section is to prove the following theorem:

Theorem 2.16. Let k, ` > 0 and 0 6 i 6 ` be integers. If k > 7`2 + 1 5, then J=i is an eigenspace of
AG(V,`) with eigenvalue λi(k, `) and dimension

[
k
i

]
−
[
k
i−1

]
.

The following claim identifies a (rather straightforward) spanning set of J6i.

Claim 2.17. Let k > 2` > 0 be integers. Then {GLi}Li∈[Vi ]
spans J6i, where

GLi [L] =

{
1 Li ⊆ L,
0 else.

Proof. Let F ∈ J6i. Then there is f :
[
V
i

]
→ R such that

F [L] =
∑
Li∈L

f(Li) =
∑
Li

f(Li)GLi(L) ∈ Span({GLi}Li∈[Vi ]
).

Let Li ∈
[
V
i

]
and define f :

[
V
i

]
→ R by f(Ri) = 1 i Ri = Li, and otherwise 0. Then

GLi [L] =
∑
Ri∈L

f(Ri) ∈ J6i.

The following technical claim asserts that the average of a function F ∈ J6i over spaces containing
Li−1 can be expressed in terms of averages of f over spaces containing subspaces of Li−1. The important
point (and the way it is applied later on) is that any information about near-orthogonality of F to J6i−1 can
be expressed in terms of properties of f , and vice versa.

5This condition is not needed and is artifact of the proof presented herein. We present this proof since some of the elements in
it are needed in later proofs.
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Claim 2.18. Suppose 0 6 j < i 6 `, k > 7`2 + 1. There exists β0, ..., βj ∈ R such that the following holds.
For every F ∈ J6i given by F [L] =

∑
Ri⊆L

f(Ri) and Lj ∈
[
V
j

]
,

E
L⊇Lj

[F [L]] =

([
`− j
i− j

]
+ βj

)
· µLj ,in(f) +

j−1∑
r=0

βr
∑
Rr⊆Lj

µRr,in(f).

Additionally, the β’s have the following properties:

• for r = 0, ..., j − 1, |βr| 6 26`2 .

• |βj | 6 27`2−k.

In particular, the coefficient of µLj ,in(f) is not 0.

We defer the proof of this claim to Section B.

Lemma 2.19. Suppose i 6 `, k > 7`2 + 1. Let F ∈ J6i be given by F [L] =
∑
Ri⊆L

f(Ri).

Then F ∈ J=i if and only if for every j 6 i− 1 and Lj ∈
[
V
j

]
, µLj ,in(f) = 0.

Proof. Suppose that for every j 6 i− 1 and Lj ∈
[
V
j

]
we have µLj ,in(f) = 0. Then by Claim 2.18 we have

that for every Li−1 ∈
[
V
i−1

]
,

E
L⊇Li−1

[F [L]] = βi−1 · µLi−1,in(f) +
i−2∑
r=0

βr
∑

Rr⊆Li−1

µRr,in(f) = 0.

Hence F is perpendicular to GLi−1 from Claim 2.17, and so F ∈ (J6i−1)⊥. It follows that F ∈ J=i.
Suppose that F ∈ J=i. We prove by induction on j that µLj ,in(f) = 0 for all j 6 i − 1 and Lj ∈

[
V
j

]
.

We may assume that i > 1, otherwise the claim holds trivially. For j = 0, we get that from Claim 2.18
(applied to j = 0 and Lj = {0}) that

E
L

[F [L]] = β0 · µ(f).

Since F ∈ J=i, it is perpendicular to constant functions, that is EL [F [L]] = 0. Since β0 6= 0 we conclude
that µ(f) = 0. Assume the claim is true for all j 6 n where n < i − 1, and prove for j 6 n + 1. Fix
Ln+1 ∈

[
V
n+1

]
, then by Claim 2.18,

E
L⊇Ln+1

[F [L]] = βn+1 · µLn+1,in(f) +
n∑
r=0

βr
∑

Rr⊆Li−1

µRr,in(f),

where βn+1 6= 0. The left hand side is, up to normalization, the inner product of F with GLn+1 , which is
0 since F ∈ J=i. By the induction hypothesis, µRr,in(f) = 0 for every Rr such that dim(Rr) 6 n. We
conclude that the last equation implies

βn+1 · µLn+1,in(f) = 0,

since βn+1 6= 0, we conclude that µLn+1,in(f) = 0.
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We next show that J=i is an eigenspace for all i = 0, ...., `. The proof considers the cases i 6 `− 1 and
i = ` separately.

Lemma 2.20. Suppose k > 7`2 + 1, and let Fi ∈ J=i. Then for every 0 6 i 6 `− 1, L ∈
[
V
`

]
,

(AG(V,`)Fi)[L] = λi(k, `)Fi[L].

Proof. Denote Fi[L] =
∑
Li⊆L

fi(Li) for some fi :
[
V
i

]
→ R.

(AG(V,`)Fi)[L] = E
L′, dim(L∩L′)=`−1

[
Fi[L

′]
]

= E
L′, dim(L∩L′)=`−1

 ∑
Li⊆L′

fi(Li)

.
In the last sum, consider Li contained in L ∩ L′ and those that are not separately; let us denote their
contributions by A,B respectively.

A = E
L′, dim(L∩L′)=`−1

 ∑
Li⊆L′∩L

fi(Li)

 =

[
`− 1

i

]
E

L′, dim(L∩L′)=`−1

[
E

Li⊆L′∩L
[fi(Li)]

]
Note that Li is distributed uniformly over all i-dimensional subspaces of L. Therefore,

A =

[
`− 1

i

]
E

Li⊆L
[fi(Li)] =

[
`−1
i

][
`
i

] Fi[L].

As to the contribution of B, write

B = E
L′, dim(L∩L′)=`−1

 ∑
Li⊆L′,Li 6⊆L

fi(Li)

 =

([
`

i

]
−
[
`− 1

i

])
E

L′, dim(L∩L′)=`−1

[
E

Li⊆L′,Li 6⊆L
[fi(Li)]

]
.

Each contributing Li intersects L ∩ L′ in subspace of dimension i − 1; we partition B according to this
intersection Ri−1 = L ∩ L′ ∩ Li. We have that

B =

([
`

i

]
−
[
`− 1

i

])
E

Ri−1⊆L

[
E
x 6∈L

[fi(Ri−1 ⊕ Span(x))]

]
(2)

Denote the last expectation by E. By Lemma 2.19, since Fi ∈ J=i for every Ri−1 ∈
[
V
i−1

]
we have

ELi⊇Ri−1 [fi(Li)] = 0. Therefore using conditional expectation:

0 = E
Ri−1⊆L

[
E

Li⊇Ri−1

[fi(Li)]

]
= E

Ri−1⊆L

[
E

x 6∈Ri−1

[fi(Ri−1 ⊕ Span(x))]

]
= Pr

Ri−1⊆L
x 6∈Ri−1

[x ∈ L] E
Ri−1⊆L
x∈L\Ri−1

[fi(Ri−1 ⊕ Span(x))] + Pr
Ri−1⊆L
x 6∈Ri−1

[x 6∈ L] · E
Ri−1⊆L
x6∈L

[fi(Ri−1 ⊕ Span(x))]

=

[
`
1

]
−
[
i−1

1

][
k
1

]
−
[
i−1

1

] · 1[
`
i

] ∑
Li⊆L

fi(Li) +

[
k
1

]
−
[
`
1

][
k
1

]
−
[
i−1

1

]E
=

[
`
1

]
−
[
i−1

1

][
k
1

]
−
[
i−1

1

] · 1[
`
i

]Fi[L] +

[
k
1

]
−
[
`
1

][
k
1

]
−
[
i−1

1

]E
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Rearranging yields

E = −
[
`
1

]
−
[
i−1

1

][
k
1

]
−
[
i−1

1

] 1[
`
i

]Fi[L].

Plugging this into equation (2) yields

B = −
(
[
`
1

]
−
[
i−1

1

]
)(
[
`
i

]
−
[
`−1
i

]
)

(
[
k
1

]
−
[
i−1

1

]
)
[
`
i

] Fi[L]

and overall

A+B =

([
`−1
i

][
`
i

] − (
[
`
1

]
−
[
i−1

1

]
)(
[
`
i

]
−
[
`−1
i

]
)

(
[
k
1

]
−
[
i−1

1

]
)
[
`
i

] )
Fi[L] = λi(k, `)Fi[L].

Lemma 2.21. Let F` ∈ J=`. For every L ∈
[
V
`

]
,

(AG(V,`)F`)[L] = λ`(k, `)F`[L].

Proof. Fix L. By definition,

(AG(V,`)F`)[L] = E
R`−1⊆L

[
E
x6∈L

[F [R`−1 ⊕ Span(x)]]

]
,

denote the expression on the right hand side by E.
The rest of the proof examines the following quantity, and computes it in two ways. On the one hand,

using conditional expectation,

E
R`−1⊆L

[
µR`−1,in(F`)

]
= E

R`−1⊆L

[
Pr

x6∈R`−1

[x 6∈ L] · E
x 6∈L

[F`[R`−1 ⊕ Span(x)]] + Pr
x 6∈R`−1

[x ∈ L] E
x∈L\R`−1

[F`[R`−1 ⊕ Span(x)]]

]
.

Computing the above probabilities and using linearity of expectation one sees that the above equals

E
R`−1⊆L

[
µR`−1,in[F`]

]
=

[
k
1

]
−
[
`
1

][
k
1

]
−
[
`−1

1

]E +

[
`
1

]
−
[
`−1

1

][
k
1

]
−
[
`−1

1

] E
R`−1⊆L
x∈L\R`−1

[F`[R`−1 ⊕ Span(x)]]

=

[
k
1

]
−
[
`
1

][
k
1

]
−
[
`−1

1

]E +

[
`
1

]
−
[
`−1

1

][
k
1

]
−
[
`−1

1

]F`[L].

On the other hand, since F`⊥J6`−1,

E
R`−1⊆L

[
µR`−1,in[F ]

]
= 0.

Combining the last two equations, we get that[
k
1

]
−
[
`
1

][
k
1

]
−
[
`−1

1

]E +

[
`
1

]
−
[
`−1

1

][
k
1

]
−
[
`−1

1

]F [L] = 0,
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which by rearranging implies that

E = −
[
`
1

]
−
[
`−1

1

][
k
1

]
−
[
`
1

] F [L].

Note that the coefficient of F [L] in the previous equation is precisely

− 2`−1

2k − 2`
= − 1

2k−`+1 − 2
= λ`(k, `),

and we are done.

We are now ready to prove Theorem 2.16:

Theorem 2.16 (Restated) . Let k, ` and 0 6 i 6 ` be integers. If k > 7`2 + 1 6, then J=i is an eigenspace
of AG(V,`) with eigenvalue λi(k, `) and dimension

[
k
i

]
−
[
k
i−1

]
.

Proof of Theorem 2.16. By Lemmas 2.20, 2.21 we have that J=i are eigenspaces, and their direct sum is the
entire space of functions over G(V, `). Let Ai be the eigenspaces of λi. By [BCN12, Theorem 9.3.3] we
have that dim(Ai) =

[
k
i

]
−
[
k
i−1

]
. Since by Fact 2.15 all λi are different, we conclude that J=i ⊆ Ai. If we

have equalities for all i, we are done. Otherwise, we have strict containment for at least one i and so

∑̀
i=0

dim(J=i) <
∑̀
i=0

dim(Ai) =

[
k

`

]
.

On the other hand, since all spaces J=i are mutually orthogonal, the left hand side equals dim(J=0 ⊕ ... ⊕
J=`) = dim(J6`) =

[
k
`

]
, the last equality holds since the space of all functions on G(V, `), J6`, is of

dimension
[
k
`

]
. Contradiction.

2.4 Explicit projections

In this section we derive some expressions related to the projections of a function F :
[
V
`

]
→ R to J=0 ⊕

J=1 ⊕ ... ⊕ J=`, as in Definition 2.5. We give exact expressions for F=0, F=1, and approximated versions
F≈i for all i. While this may already be known, we include the proofs as we are unaware of a published
source.

2.4.1 Exact projections

Let F :
[
V
`

]
→ R, and denote µ(F )

def
= EL∈[V` ] [F [L]]. Let us find F=0. Clearly, F0 is a constant function

such that F − F=0 is perpendicular to J=0. Therefore, we need EL∈[V` ] [F [L]− F=0[L]] = 0 and thus we

get that F=0 ≡ µ(F ).
More generally, assuming we have computed F=0, ..., F=i−1, F=i is the only function from J6i such

that F − F=i − F=i−1 − ....− F=0 is perpendicular to J6i. I.e., for every Li ∈
[
V
i

]
,

E
L⊇Li

[(F − F=i − F=i−1 − ....− F=0)[L]] = 0.

Thus, in theory, deriving a formula for F=i is possible, albeit involves unpleasant computations. We
shall demonstrate it in the simplest case i = 1.

6This condition is an artifact of the proof presented herein, and can probably be relaxed.

18



Level 1 projection

Define f1(x) = 2k−2
2k−2`

(
µSpan(x),in(F )− µ(F )

)
.

Lemma 2.22. Let k > ` > 1 be integers, and F :
[
V
`

]
→ R. Then

F=1[L] =
∑

x∈L\{0}

f1(x),

in other words f=1 = f1.

Proof. It suffices to show that G[L]
def
= F [L] −

∑
x∈L\{0}

f1(x) − F0[L] is perpendicular to J61. By Claim

2.17, it suffices to show that for every x 6= 0,

E
L3x

[G[L]] = 0.

Using linearity of expectation,

E
L3x

[G[L]] = E
L3x

F [L]−
∑

y∈L\{0}

f1(y)− F0[L]


= E

L3x
[F [L]]− E

L3x

 ∑
y∈L\{0}

f1(y)

− µ(F )

= µSpan(x),in(F )− µ(F )− f1(x)− E
L3x

 ∑
y∈L\{0,x}

f1(y)


= µSpan(x),in(F )− µ(F )− f1(x)− (2` − 2) E

L3x

[
E

y∈L\{0,x}
[f1(y)]

]
.

Let us evaluate the last expectation. Note that y is distributed uniformly from V \ {0, x}. It holds that

0 = E
y∈V \{0}

[f1(y)] =
2k − 2

2k − 1
E

y∈V \{0,x}
[f1(y)] +

1

2k − 1
f1(x),

and therefore Ey∈V \{0,x} [f1(y)] = − 1
2k−2

f1(x). Plugging it into the previous yields

E
L3x

[G[L]] = µSpan(x),in(F )− µ(F )− f1(x) +
2` − 2

2k − 2
f1(x).

Plugging in the definition of f1 and simplifying shows that the above expectation equals 0, as desired.

Formulas for higher levels

The above described method can be used to obtain explicit formula for higher levels as well, however as
explained, it requires tiresome calculations. Instead, we choose to work with approximated forms of the
higher level components, presented in the next section.
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2.4.2 Approximate Projections

Let F :
[
V
`

]
→ R be a function. After computing the projection of F to the eigenspaces J=0 and J=1, we

would like to continue with the projections to J=i for larger i’s. But the exact projections for higher levels
turn out to be difficult to work with, and thus we turn to computing approximate projections instead.

So as to get an initial intuition, assume we already subtracted from F its projections on J=j for j <
i, namely we are left with F>i = F=i + F=i+1 + . . .. Suppose we would now like to find, or at least
approximate, F=i. A natural approach would be to start by averaging F>i down on i-dimensional subspaces,
namely taking f(Li) = EL⊇Li [F>i[L]]. By Lemma 2.19, the components of F>i of higher levels than i are
zeroed out by this averaging, hence we are left only with EL⊇Li [F=i[L]]. One might have hoped that this
function equals f=i(Li); this is false, nonetheless we prove that they are close.

There are sources of errors other than the above: we defined F>i above using the exact versions of
F=j , which we do not have access to. Instead we have access to approximations f≈j of f=j and instead of
working with F>i we work with F −F≈0− ...−F≈i−1 where F≈j [L] =

∑
Lj⊆L

f≈j(Lj) are the approximated

projections previously calculated. In turn, approximating EL⊇Li [(F − F≈i−1 − ...− F≈0)[L]] boils down
to the fact that

E
Lj⊆Li

[F≈j [Lj ]] ≈
∑
Lj⊆Li

f≈j(Lj).

Definition 2.23. Let F :
[
V
`

]
→ R be a function. Define f≈0 :

[
V
0

]
→ R by f≈0(∅) def= µ and f≈1 :

[
V
1

]
→ R

by

f≈1(L1)
def
= µL1,in(F )− µ(F ).

Inductively, once f≈i :
[
V
i

]
→ R has been defined, define f≈i+1 :

[
V
i+1

]
→ R by

f≈i+1(Li+1)
def
= µLi+1,in(F )−

i∑
j=0

∑
Lj⊆Li+1

dim(Lj)=j

f≈j(Lj).

Comparing f≈1 and f=1, one can already observe that while the two functions are different, they are
very close to each other. Hence F≈1 given below is a good approximation for F1.

Definition 2.24. Let F :
[
V
`

]
→ R be a function. Define

F≈0[L] = µ(F ).

For 0 < i 6 `− 1, define

F≈i[L]
def
=

∑
Li⊆L

dim(Li)=i

f≈i(Li),

and for i = `, define

F≈`[L] = F [L]−
`−1∑
i=0

F≈i[L].

The following theorem, which is the main purpose of this section, asserts that the F≈i’s are close to the
F=i’s in `2-norm, given that the function F is bounded.
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Theorem 2.25. Assume k > 13`2 + 1, let V be a k-dimensional vector space over F2. Then for every
F :
[
V
`

]
→ R, 0 6 i 6 `

‖F=i − F≈i‖22 6 226`4−k‖F‖2∞.

Roughly speaking, the way this theorem is proved is by showing that F − F̃i − .... − F̃0 is nearly
perpendicular to J6i for all i. Morally speaking, this implies the projection of F onto J6i is nearly F≈0 +
...+ F≈i. Given this holds for every i, one can prove by induction that F≈i is close to F=i.

The actual proof is more involved, and is deferred to Section A. We remark that we did not attempt to
optimize the upper bound in terms of the dependence on `; in fact it is clear they are not tight:

Claim 2.26. For all 0 < ` < k, F :
[
V
`

]
→ R it holds that

‖f=1 − f≈1‖∞ 6 2`+2−k‖F‖∞,

2.23. In particular,
‖F=1 − F≈1‖∞ 6 22`+2−k‖F‖∞.

Proof. The first is straightforward by definitions, and the second follows from the first by the triangle in-
equality.

3 Expansion on the Grassmann Graph

In this section we describe our main results.

We begin with a function-version definition of pseudo-randomness.

Definition 3.1. Let V be a vector space of dimension k over F2, `� k. Let m be an integer and ε > 0. We
say a function F :

[
V
`

]
→ R is (m, ε) pseudo-random if:

• For every integers q, r such that q + r = m and q-dimensional subspace Q and W of co-dimension
r,
∣∣µ(Q,in),(W,out)(F )− µ(F )

∣∣ 6 ε.

Identifying sets and their indicator functions, we see that the above definition is a generalization of
Definition 1.5, with the exception that we require a pseudo-random function to not deviate from its mean
to any direction. In Definition 1.5 we only required that a set is not significantly denser on zooms for it to
be pseudo-random. Note that whenever ε > µ(F ) the definitions are equivalent for non-negative functions,
and in particular for indicators of sets.

We have already seen several examples of non pseudo-random functions, namely the indicator function
of {L |x ∈ L} for a fixed x ∈ V \ {0} and {L |L ⊆W} for a hyperplane W ⊆ V . The main goal of
this paper is to show that the indicator function of a non-optimally expanding set cannot be pseudo-random.
As discussed in the introduction, we approach this question via the spectral decomposition of the indicator
function.

3.1 Spectral approach for expansion

Recall that by inequality (1), if F is the indicator of a set with expansion bounded by 1− δ − ε,

∑̀
i=1

λi〈F=i, F=i〉 > εδ.
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We will now use the fact that the eigenvalues of G(V, `) are exponentially decaying to conclude there is a
low-level i on which F has large mass. First, we define the weight of a function on a single level.

Definition 3.2. The weight of F on level i is denoted by W=i[F ], and defined by

W=i[F ] = 〈F=i, F=i〉.

By orthogonality, the weight of F on level i equals 〈F, F=i〉.

To make the above discussion quantitative, let us estimate the tail of the sum on the left hand side. By
Fact 2.12 λi 6 2−i, and so

∑̀
i=dlog 2

ε
e

λi〈F=i, F=i〉 6 2− log 2
ε

∑̀
i=dlog 2

ε
e

〈F=i, F=i〉 6
1

2
ε
∑̀
i=0

〈F=i, F=i〉 =
1

2
ε · ‖F‖22 6

1

2
εδ.

We used Parseval in the last equality. Therefore we conclude that

dlog 2
ε
e−1∑

i=1

λi〈F=i, F=i〉 > εδ −
dlog 2

ε
e∑

i=1

λi〈F=i, F=i〉 >
1

2
εδ,

and in particular there is i∗ ∈
{

1, 2, ..., dlog 2
εe − 1

}
such that the weight of F on the i∗ level is large:

〈F=i∗ , F=i∗〉 >
1

λi∗

ε

2dlog 2
εe
δ.

It follows that in order to characterize sets with non-perfect expansion, it suffices to prove a good enough
structural result for Boolean functions with large weight on their low-level spectrum. In this paper we make
some progress in this direction, giving some structural results for functions with large weight on their first
or second levels. We hope our techniques might be relevant to the general case.

We begin with our results for the first level. The first one asserts that a function that has at least Ω(δ4/3)
weight on its first level is not pseudo-random:

Theorem 3.3. There exists c0 > 0, such that the following holds. Let V be a k-dimensional vector space,
10 < ` < k be an integer, and δ, η > 0 such that k > 6`+ 2 log 1

η + c0. Let F :
[
V
`

]
→ {0, 1}, and assume

W=1[F ] = η, µ(F ) = δ.
If η > 30δ4/3, then F is not (1, η2

200δ2
) pseudo-random.

The above theorem asserts that any Boolean-valued function that has significant weight on its first level
must have noticeable correlation with the indicator function of {L |x ∈ L} or {L |L ⊆W} for some x ∈
V or W ⊆ V hyperplane. The above theorem is proved in Section 5.

It will be useful for us to phrase the above theorem in a counter-positive form, which reads:

Corollary 3.4. There exists c0 > 0, such that the following holds. Let V be a k-dimensional vector space,
10 < ` < k an integer and ε, δ > 0 such that k > 6` + 3 log 1

δ + c0. Let F :
[
V
`

]
→ {0, 1}, and assume

µ(F ) = δ, ε > 9
2δ

2/3 .
If F is (1, ε) pseudo-random, then W=1[F ] 6

√
200εδ.
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Our next main result is concerned with a quantitative improvement of Theorem 3.3 with regards to the
weight needed on level 1 so as to deduce non-pseudorandomness.

Theorem 3.5. There exists `0 > 0, such that for all ` > `0 the following holds. Let V be a k-dimensional
vector space, and ε, δ, η > 0 such that k > 30`4 + 100

ε3
,
√

40
log(1/δ) < ε < 1. Let F :

[
V
`

]
→ {0, 1}, and

assume W=1[F ] = η, µ(F ) = δ.

If η > δ2−ε, then F is not (1, 2−
20
ε2
η1+

ε
4

δ ) pseudo-random.

Counter positively, a small pseudo-random set cannot have significantly higher weight than δ2 on its
first level, where δ is the density of the set. The above theorem is proved in Section 6

We complement this last result with a matching example, showing that δ2 weight on the first level is
necessary to conclude non pseudo-randomness. More precisely

Theorem 3.6. There exists constants c1, c2, c3 > 0 such that the following holds. Let δ > 0 and k � `
sufficiently large, and let V be a k-dimensional subspace over F2. Then there exists a set of vertices S in
G(V, `) such that

• S has density Θ(δ): µ(S) = c1δ.

• S has weight Ω(δ2) on the first level: W=1[S] > c2δ
2.

• S is (1, c32−`/2) pseudo-random.

The above theorem is proved in Section C.

Our final result is analogous to theorem 3.3 on the second level. It asserts that a pseudo-random function
cannot have large weight on the second level. More precisely:

Theorem 3.7. There exists `0 > 0, such that for all integer ` > `0 the following holds. Let k be an integer,
V be a k-dimensional vector space, an integer and ε, δ > 0 such that k > 27`4 + 10 log 1

δ .
If η > 217 · δ4/3, then F is not (2, 2−52

(η
δ

)3
) pseudo-random.

The above theorem is proved in Section 7 (note that we have made no significant effort optimizing the
various constants and dependencies between k, `, δ in our main results).

4 Analysis on The Boolean Hypercube

In this section we show each f≈i can be viewed as a function over the Boolean hypercube, and and develop a
connection between its hypercube fourier transform and zoom outs. This connection exhibits strong duality
between zoom ins, that in a sense define the values of f≈i, and zoom outs, that in a sense define its fourier
coefficients f̂≈i.

Let V be a vector space over F2 of dimension k. We can naturally identify V with Fk2: let e1, ..., ek be a
basis of V , and consider the transformation

x =
k∑
i=1

xiei −→ (x1, x2, ..., xk).
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Thus we may think of x as having coordinates (x1, ..., xk). This view gives rise to the decomposition of
each f : V → R according multiplicative functions:

f(x) =
∑
S⊆[k]

f̂(S)χS(x),

where χS(x) = (−1)

∑
i∈S

xi
, and

f̂(S) = E
x∈V

[f(x)χS(x)].

It turns out that when f is a level function of F , there is a tight relation between its fourier coefficients
and the notion of zoom-outs from Definition 2.8.

Definition 4.1. The associated hyperplane WS of S 6= ∅ is defined by

WS
def
= {x |χS(x) = 1} .

Lemma 4.2. Let F :
[
V
`

]
→ R, and consider f≈1 : V → R (We extend f̃1(0) = 0). Then

f̂≈1(S) = c1(k, `)(µWS ,out(F )− µ(F )),

where c1(k, `) =
[k−1

` ]
[k`]−[k−1

` ]
6 1

[`1]
= 2−` +O(2−2`).

Proof. By definition,

f̂≈1(S) = E
x∈V

[f≈1(x)χS(x)] =
1

2
E

x∈WS

[f≈1(x)]− 1

2
E

x6∈WS

[f≈1(x)].

Note that the above two expectations sum up to Ex∈V [f≈1(x)] = 0 and hence are equal in absolute values
but negated in signs, and it holds that

f̂≈1(S) = − E
x 6∈WS

[f≈1(x)].

Let us expand out the previous.

f̂≈1(S) = − E
x 6∈WS

[f≈1(x)] = − E
x 6∈WS

[
µSpan(x),in − δ

]
= − E

x 6∈WS

[
E
L3x

[F [L]− δ]
]

= − E
L6⊆WS

[F [L]− δ].

(3)
The first equality is by definition of f≈1, the second by Definition 2.6, and the third follows since each L
that is not contained in WS , contains precisely 2`−1 points outside it.

Using conditional expectations,

0 = E
L

[F [L]− δ] = Pr
L

[L ⊆WS ] E
L⊆WS

[F [L]− δ] + Pr
L

[L 6⊆WS ] E
L6⊆WS

[F [L]− δ]

=

[
k−1
`

][
k
`

] (µWS ,out − δ) +

[
k
`

]
−
[
k−1
`

][
k
`

] E
L6⊆WS

[F [L]− δ].

Rearranging yields

− E
L6⊆WS

[F [L]− δ] =

[
k−1
`

][
k
`

]
−
[
k−1
`

](µWS ,out − δ)

Plugging the above equation into Equation 3 finishes the proof.

Asymptotically, the coefficient in the last Lemma can be shown to be 2−` +O(2−2`), which is the main
point here.
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Fourier analysis for higher levels. One can derive similar expressions for the fourier coefficients of f̃r,
for r > 1. Indeed we develop the case r = 2 in Section 7.1 for the analysis of the second level.

5 Results for The First Level

In this section we prove Theorem 3.3, slightly restated as follows:

Theorem 3.3 (Restated) . There exists c0 > 0, such that the following holds. Let V be a k-dimensional
vector space, 10 < ` < k be an integer, and δ, η > 0 such that k > 6`+ 2 log 1

η + c0. Let F :
[
V
`

]
→ {0, 1},

and assume W=1[F ] = η, µ(F ) = δ.
If η > 30δ4/3, then at least one of the two must happen:

1.

Pr
x

[
µSpan(x),in(F ) > δ +

η2

100δ2

]
> c(η, δ)2−`,

where c(η, δ) > 0 depends only on η, δ.

2. There exists W of co-dimension 1, such that µW,out(F ) > δ + η2

100δ2
.

Throughout this section, whenever F is clear from the context, we also denote δ = µ(F ), η = W=1[F ].
First, we establish a relation between the second moment of F=1 and the second moment of f=1. As we

need this relation later for higher levels than 1, and since this relation is implied for higher levels with the
same proof, we give it in full generality.

Lemma 5.1. Let k > ` and 1 6 r 6 ` be integers, and ε > 0, and let Gr[L] =
∑
Lr⊆L

gr(Lr) where

gr :
[
V
r

]
→ R.

Suppose that for all Lr−1 ∈
[
V
r−1

]
,
∣∣ELr⊇Lr−1 [gr(Lr)]

∣∣ 6 ε. Then

‖Gr‖22 =

[
`

r

]
E
Lr

[
g2
r (Lr)

]
+O(24r`(ε+ 2−k‖gr‖2∞)).

Proof.

E
L

[
G2
r [L]

]
= E

L

∑
Lr⊆L

gr(Lr)

2 = E
L

 ∑
Lr,L′r⊆L

gr(Lr)gr(L
′
r)

.
We divide the last sum according to the dimension of Lr ∩ L′r, which is between 0 and r:

= E
L

 r∑
i=0

[
`

i

][
`− i
r − i

][
`− r
r − i

]
E

Lr,L′r⊆L
dim(Lr∩L′r)=i

[
gr(Lr)gr(L

′
r)
],

the first term is the choice of Lr∩L′r, and the other two correspond to the choice of the rest of the vectors
in Lr such that the intersection remains of dimension i. Interchange the sum and the outer expectation, and
note that the distribution over Lr, L′r is uniform over those that intersect on dimension i to get
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=
r∑
i=0

[
`

i

][
`− i
r − i

][
`− r
r − i

]
E

Lr,L′r∈[
V
r ]

dim(Lr∩L′r)=i

[
gr(Lr)gr(L

′
r)
]
.

Divide the last sum into i = r - for which we get
[
`
r

]
ELr

[
g2
r (Lr)

]
, and the rest. Notice that for a fixed

i, the distribution over Lr, L′r is O(2(r−i)r−k) close to picking A ∈
[
V
i

]
and then picking Lr, L′r ⊇ A

independently. Therefore,

E
L

[
G2
r [L]

]
=

[
`

r

]
E
Lr

[
g2
r (Lr)

]
+

r−1∑
i=0

[
`

i

][
`− i
r − i

][
`− r
r − i

] E
A∈[Vi ]

Lr,L′r⊇A

[
gr(Lr)gr(L

′
r)
]

+O(2(r−i)r−k‖gr‖2∞)


=

[
`

r

]
E
Lr

[
g2
r (Lr)

]
+

r−1∑
i=0

[
`

i

][
`− i
r − i

][
`− r
r − i

]
E

A∈[Vi ]

[(
E

Lr⊇A
[gr(Lr)]

)2
]

+O(24r`−k‖gr‖2∞).

We used the fact that each one of the Gaussian coefficients above is at most 2r`. Note that for every A, since
dim(A) 6 r − 1, we have that |ELr⊇A [gr(Lr)]| 6 ε. Therefore we get that

E
L

[
G2
r [L]

]
=

[
`

r

]
E
Lr

[
g2
r (Lr)

]
+

r−1∑
i=0

[
`

i

][
`− i
r − i

][
`− r
r − i

]
E

A∈[Vi ]

[
O(ε2)

]
+O(24r`−k‖gr‖2∞)

=

[
`

r

]
E
Lr

[
g2
r (Lr)

]
+O(r · 23r`ε2) +O(24r`−k‖gr‖2∞).

We remark that in this section, the above lemma will always be used with ε = 0.

5.1 Deviation properties of F=1[L]

We capture the idea that F=1 has to oscillate between two far values using its various moments. The obser-
vations below are not specific for F=1.

Claim 5.2.
E
L

[
F=1[L]2

]
= W=1[F ] = η.

Proof. By definition.

Lemma 5.3.
Pr
L

[
F=1[L] >

η

4δ

]
>
η

2

Proof. Observe that EL
[
(F [L]− F=1[L])2

]
is the weight of F outside the first level. Since by Parseval the

weight of F sum up to ‖F‖22 = δ and the weights of F on the first level is η, we conclude that

E
L

[
(F [L]− F=1[L])2

]
= δ − η.
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Hence, by Markov’s inequality,

Pr
L

[
(F [L]− F=1[L])2 > 1− η

2δ

]
6

δ − η
1− η

2δ

6 δ
(

1− η

2δ

)
= δ − 1

2
η.

Note that F [L] = 1 with probability δ, and therefore (1 − F=1[L])2 6 1 − η
2δ with probability at least 1

2η.
Thus with probability at least 1

2η,

|1− F=1[L]| 6
√

1− η

2δ
6 1− η

4δ
,

(in the last inequality we used
√

1− ε 6 1− 1
2ε), implying that η

4δ 6 F=1[L] 6 2− η
4δ with probability at

least 1
2η.

Claim 5.4.

E
L

[
F=1[L]4

]
>

η5

512δ4
.

Proof. Using Lemma 5.3

E
L

[
F=1[L]4

]
> Pr

L

[
F=1[L] >

η

4δ

] ( η
4δ

)4
>

η5

512δ4
.

Claim 5.5.
Ex
[
f2

=1(x)
]

=
W=1[F ][

`
1

] +O(24`−k) =
η[
`
1

] +O(24`−k).

Proof. By Lemma 5.1 with ε = 0 (since F=1 ∈ J=1, Claim 2.19 and the fact that ‖f=1‖∞ = O(1) for a
Boolean F , which is clear by the exact formula from Section 2.4.1), we get that

EL
[
F=1[L]2

]
=

[
`

1

]
E
x

[
f2

=1(x)
]

+O(24`−k).

The left hand side is W=1[F ] = η by Claim 5.2. Rearranging finishes the proof.

5.2 Proof of Theorem 3.3 – the main argument

The next step of the proof is to obtain information about f=1 from the information we know about the fourth
moment of F=1. We write F=1 as a sum of values of f=1, and hence its fourth power can be written as a
sum of products of values of f=1 at four points. The heart of the proof of Theorem 3.3 goes by partitioning
these products according to the linear dependencies of the participating points.

Lemma 5.6. There is c0 > 0, such that the following holds.
Let F :

[
V
`

]
→ {0, 1} and denote η = W=1[F ], δ = µ(F ). Assume η > 15δ4/3 and k > 6`+ 2 log 1

η +
c0. Then at least one of the two holds:

1.

Ex
[
f4

=1(x)
]
>

1

2048
[
`
1

] η5

δ4
.
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2.

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] >
1

2048
[
`
1

]3 η5

δ4
.

Proof. By Claim 5.4, EL[F=1[L]4] is at least η5

512δ4
.

Let us now, using the definition of F=1, open the parenthesis in the computation of EL[F=1[L]4]. We
partition the resulting summands according to their linear dependencies: in the sums below we only sum
over vectors that are linearly independent, unless explicitly stated otherwise (e.g. we sum over x, y, z, w, u
where x 6= y, z 6∈ Span({x, y}), w 6∈ Span({x, y, z})).

EL
[
F1[L]4

]
= EL

 ∑
x∈L\{0}

f=1(x)

4
= E

L

 ∑
x∈L\{0}

f=1(x)4

+ E
L

 ∑
x,y∈L\{0}

f2
=1(x)f2

=1(y)



+ E
L

 ∑
x,y∈L\{0}

f=1(x)f=1(y)f2
=1(x+ y)

+ E
L

 ∑
x,y,z∈L\{0}

u∈Span({x,y,z})\{0,x,y,z}

f=1(x)f=1(y)f=1(z)f=1(u)


+ E

L

 ∑
x,y,z,w∈L\{0}

f=1(x)f=1(y)f=1(z)f=1(w)

+ E
L

 ∑
x,y∈L\{0}

f3
=1(x)f=1(y)

.
(4)

Denote the above expectations A1, ..., A6. Clearly by linearity of expectation A1 =
[
`
1

]
Ex
[
f4(x)

]
. Below

we bound A2, A3 by O(η2).

|A2| =
[
`

1

]([
`

1

]
− 1

)
E
L

[
E

x,y∈L\{0}

[
f2

=1(x)f2
=1(y)

]]
6

[
`

1

]([
`

1

]
− 1

)(
E

x,y∈V

[
f2

=1(x)f2
=1(y)

]
+O(2−k)

)

=

[
`

1

]([
`

1

]
− 1

)(
E
x∈V

[
f2

=1(x)
]2

+O(2−k)

)
6

[
`

1

]([
`

1

]
− 1

)(
η2[
`
1

]2 +O(24`−k)

)
6 η2 +O(26`−k).

The second inequality is by Claim 5.5.

|A3| =
[
`

1

]([
`

1

]
− 1

) ∣∣∣∣ E
x,y∈V

[(f=1(x)f=1(x+ y))(f=1(y)f=1(x+ y))]

∣∣∣∣+

[
`

1

]2

O(2−k).

Apply Cauchy-Schwartz inequality on the first expectation to get

|A3| =
[
`

1

]([
`

1

]
− 1

)√
E

x,y∈V
[(f=1(x)f=1(x+ y))2]

√
E

x,y∈V
[(f=1(y)f=1(x+ y))2] +

[
`

1

]2

O(2−k)

=

[
`

1

]([
`

1

]
− 1

)
E

x,y∈V

[
f2

=1(x)
]2

+

[
`

1

]2

O(2−k),

28



which is 6 η2 +O(26`−k) as before.
For A4, the distribution of x, y, z is O(2−k)-close to uniform over V . Therefore

A4 =3

[
`

1

]3

E
x,y,z∈V

u∈R{x+y,x+z,y+z}

[f=1(x)f=1(y)f=1(z)f=1(u)]

+

[
`

1

]3

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] +O

([
`

1

]3

2−k

)
.

The first term is 0 by independence: fix one of the choices foru, say u = x + y. Then z is independent of
x, y, u, and hence

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(u)] = E
x,y∈V

[f=1(x)f=1(y)f=1(u)] E
z∈V

[f=1(z)].

The last expression equals 0, since the average of f=1(z) is 0 by Lemma 2.19. Therefore,

A4 =

[
`

1

]3

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] +O

([
`

1

]3

2−k

)
.

For A5 note that the distribution of x, y, z, w is O(2−k)-close to uniform over V , and therefore |A5| =
O(24`−k). Similarly it is easy to see that A6 is O(22`−k).

Plug everything into equation (4) to get[
`

1

]
E
x

[
f4

=1(x)
]

+

[
`

1

]3

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] > EL
[
Z[L]4

]
− |A2| − |A3| − |A5| − |A6|

>
η5

512δ4
− 2η2 −O

(
26`−k

)
>

η5

1024δ4
,

the last inequality is since η > 15δ4/3 and k is large enough in comparison to `. Therefore are least one of
the two is larger than η5

2048δ4
, and we are done.

5.3 Linearity testing and zoom-outs

Lemma 5.6 in the previous section showed that a Boolean function on G(V, `) having high level-1 mass
must satisfy one of two conditions. Here we show that if the second case holds, then there exists a zoom-out
increasing the average of F . More precisely:

Lemma 5.7. Assume ε > 4δ2η, k > 2`+ log 1
δ + c0, and[

`

1

]3

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] > ε.

Then there exists a hyperplane W such that µW,out[F ] > δ +
√

ε
2η .
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Proof. A standard calculation shows that

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] =
∑
S

f̂4
=1(S) 6 max

S
f̂2

=1(S)
∑
S

f̂2
=1(S) =

1.5η[
`
1

] max
S 6=φ

f2
=1(S).

(5)
The last equality is by Parseval and the fact that by Claim 5.5 Ex

[
f2

=1(x)
]
6 1.5η

[`1]
. Therefore there is S∗ 6= ∅

(since f̂=1(∅) = 0) such that

f̂2
=1(S∗) >

[
`
1

]
2η

E
x,y,z∈V

[f=1(x)f=1(y)f=1(z)f=1(x+ y + z)] >
ε

1.5η
[
`
1

]2 ,
and so

∣∣∣f̂=1(S∗)
∣∣∣ >√ ε

1.5η

[
`
1

]−1
. Since by Claim 2.26, ‖f≈1 − f=1‖∞ 6 2`+2−k, we conclude that

∣∣∣f̂≈1(S∗)
∣∣∣ > ∣∣∣f̂=1(S∗)

∣∣∣− ‖f≈1 − f=1‖1 >
√

ε

2η

[
`

1

]−1

Apply Lemma 4.2 to conclude that[
k−1
`

][
k
`

]
−
[
k−1
`

] ∣∣∣µWS∗,out − δ
∣∣∣ >√ ε

2η

[
`

1

]−1

.

Multiplying by
[
`
1

]
and using 7 [

k−1
`

][
`
1

][
k
`

]
−
[
k−1
`

] 6 1,

we conclude that
∣∣∣µWS∗,out − δ

∣∣∣ > √ ε
2η . Finally, recall that by the hypothesis

√
ε

2η > δ, and so it must be

the case that
∣∣∣µWS∗,out − δ

∣∣∣ = µWS∗,out − δ (otherwise it is at most δ), and we are done.

5.4 Putting it all together

Proof of Theorem 3.3. Let F :
[
V
`

]
→ {0, 1} be a function as given in Theorem 3.3, and apply Lemma 5.6

to it. If the first item holds, we have that Ex
[
f2

=1(x)
]
6 2η

[`1]
(by Claim 5.5), and Ex

[
f4

=1(x)
]
> 1

2048[`1]
η5

δ4
.

Therefore

E
x

[
f4

=1(x)− η4

8192δ4
f2

=1(x)

]
>

η5

4096δ4
[
`
1

] ,
and by an averaging argument (Clearly the function inside the expectation is upper bounded by f4

=1(x) 6 2),
with probability at least η5

8192δ4[`1]
over random choice of x from V , we have that

f4
=1(x)− η4

8192δ4
f2

=1(x) > 0,

7Easy to conclude from Fact 2.11.
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implying that |f=1(x)| > η2

91·δ2 . Thus, by Claim 2.26 |f≈1(x)| > |f=1(x)|−‖f=1−f≈1‖∞ > η2

100δ2
. Recall

that f≈1(x) = µSpan(x),in[F ] − δ > −δ, and since η2

100δ2
> δ, it must be the case that f≈1(x) > η2

100δ2
,

implying µSpan(x),in[F ] > δ + η2

100δ2
.

If the second item holds, apply Lemma 5.7 with ε = 1

2048[`1]
η5

δ4
to conclude there is a hyperplane W with

µW,out[F ] > δ +

√
ε

2η
> δ +

η2

100δ2
.

6 Improved Results for the First Level

In this we prove Theorem 3.5, restated below:

Theorem 3.5 (Restated) . There exists `0 > 0, such that for all ` > `0 the following holds.
Let V be a k-dimensional vector space, ε, δ, η > 0 such that k > 30`4 + 100

ε3
,
√

40
log(1/δ) < ε 6 1.

Let F :
[
V
`

]
→ {0, 1}, and assume W=1[F ] = η, µ(F ) = δ. If η > δ2−ε, then at least one of the two

must happen:

1. There is x such that µSpan(x),in > δ + 2−
20
ε2
η1+

ε
4

δ .

2. There exists W of co-dimension 1, such that µW,out[F ] > µ(F ) + 2−
20
ε2
η1+

ε
4

δ .

The proof follows the same lines of the proof of Theorem 3.3, however since a smaller weight on the first
level is assumed, it requires studying higher moments of the first level component. Technically speaking,
more types of sums appear in such moments and one needs to be able to control all of them. Fortunately
there is a simple trick, namely Lemma 6.5, that allows handling all types of sums single-handedly.

6.1 Deviation of F≈r
The first part of the proof estimates higher moments of the first level component. For technical reason, we
show this for the approximated first level component. Since this argument is applicable to component parts
on all levels, we present it in a more general form.

Let 2m be an even integer, and let F be as in Theorem 3.5. Let f≈r,F≈r be the functions from Definitions
2.23, 2.24, and denote η = W=r[F ], δ = µ(F ) throughout this section.

Claim 6.1.
E
L

[
F≈r[L]2

]
= η +O(213`4− 1

2
k).

Proof. By the triangle inequality

‖F=r‖2 − ‖F=r − F≈r‖2 6 ‖F≈r‖2 6 ‖F=r‖2 + ‖F=r − F≈r‖2.

Using Theorem 2.25, the fact that ‖F=r‖22 = η, and squaring finishes the proof.
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Claim 6.2. Suppose k > 27`4, ` > `0. Then

E
x

[
f2
≈r(x)

]
=

η[
`
1

] +O(213`4− 1
2
k).

Proof. By Claim A.1 since F is Boolean, we have that ‖f≈r‖∞ = O(2`
3
). By Lemma A.2, for every Lr−1,

the average of f≈r on r-dimensional subspaces containing Lr−1 is at most ε = O(210`4−k). Therefore,
using Lemma 5.1 we get that

E
L

[
F≈r[L]2

]
=

[
`

1

]
E
x

[
f2
≈r(x)

]
+O(213`4− 1

2
k).

By Claim 6.1, the left hand side is η +O(213`4− 1
2
k). Rearranging finishes the proof.

Lemma 6.3. Suppose k > 27`4 + 2 log 1
η , ` > `0. Then

Pr
L

[
F≈r[L] >

η

4δ

]
>

1

4
η.

Proof. By the triangle inequality,

‖F − F≈r‖2 6 ‖F − F=r‖2 + ‖F=r − F≈r‖2 6
√
δ − η +O(213`4− 1

2
k),

The last inequality is by Claim 5.2 and the fact that

‖F − F=r‖22 = ‖F‖22 − ‖F=r‖22 = δ − η.

Therefore

E
L

[
(F − F≈r)2[L]

]
6 δ − η +O(213`4− 1

2
k) 6 δ − 3

4
η.

From this point on, the proof follows a similar argument to the one in Lemma 5.3. Using Markov’s
inequality,

Pr
L

[
(F − F≈r)2[L] > 1− η

2δ

]
6
δ − 3

4η

1− η
2δ

6 δ − 1

4
η,

and so with probability at least 1 − δ + 1
4η over the choice of L, (F − F≈r)2[L] 6 1 − η

2δ . Since with
probability at least δ we have that F [L] = 1, we get that with probability at least 1

4η over the choice of L,

(1− F≈r[L])2 6 1− η

2δ
,

which, by
√

1− ε 6 1 − 1
2ε, implies that |1− F≈r[L]| 6 1 − η

4δ . Opening the absolute value finishes the
proof.

The following lemma obtains a lower bound on high moments of the approximated first component:

Lemma 6.4. Suppose k > 27`4 + 2 log 1
η , ` > `0. Then

E
L

[
F≈r[L]2m

]
>

η2m+1

24m+2δ2m
.

Proof. By Lemma 6.3,

E
L

[
F≈r[L]2m

]
> Pr

L

[
F≈r[L] >

η

4δ

] ( η
4δ

)2m
>

η2m+1

24m+2δ2m
.
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6.2 A Fourier-Analytic lemma

A classical fourier-analytic computation shows that for any function f : V → R,∣∣∣∣ E
x,y∈V

[f(x)f(y)f(x+ y)]

∣∣∣∣ 6 ‖f̂‖∞‖f‖22. (6)

Estimates of the above type, namely expected values of product of f on linear combinations of randomly
chosen points, have proven very useful (see for example [Rot53, Tre98, ST00, Hås01, HW03, HK05,
KS13]). The following lemma is another generalization of (6).

Let s 6 m be an integer, and let M be a binary (2m− s)× s matrix of rank r 6 s. For x1, ..., xs ∈ V ,
we denote (y1, .., y2m−s) = M · (x1, x2, ..., xs)

T - in words, yi is the linear combination of x’s, when the
coefficient of xj is M [i, j]. We write ~y = M · ~x in short.

Lemma 6.5. Let s 6 m be an integer, and M a binary (2m− s)× s matrix of rank r 6 s. Let f : V → R
be a function. Then∣∣∣∣∣∣∣ E

x1,...,xs∈V
~y=M ·~x

[f(x1) · · · f(xs)f(y1) · · · f(y2m−s)]

∣∣∣∣∣∣∣ 6 ‖f‖2m−s−r∞ ‖f̂‖s−r∞ ‖f‖2r2 .

We defer the proof to the end of this section.

6.3 Proof of Theorem 3.5

Choose with foresight m = d2
εe , and consider EL

[
F≈1[L]2m

]
. Our main task is to show an upper bound

on the following quantity by expanding it out:

E
[
F1[L]2m

]
= E

L

 ∑
x∈L\{0}

f≈1(x)

2m.
Note that picking 2m terms from the sum can be equivalently done by first choosing s from 1 to 2m to be
the number of linearly independent vectors, then choosing s linearly independent vectors from L and the
rest 2m− s vectors are chosen from the span of the first. In other words, we can write

E
[
F̃1[L]2m

]
= E

L

 2m∑
s=1

∑
x1,...,xs∈L\{0}

linearly independent

f≈1(x1) · · · f≈1(xs)
∑

y1,...,y2m−s∈Span(x1,...,xs)\{0}

f≈1(y1) · · · f≈1(y2m−s)



= E
L


2m∑
s=1

α(s,m, `) E
x1,...,xs∈L\{0}

linearly independent
y1,...,y2m−s∈Span(x1,...,xs)\{0}

[
f≈1(x1) · · · f≈1(xs)

∑
f≈1(y1) · · · f≈1(y2m−s)

],
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where α(s,m, `) = (2` − 1) · · · (2` − 2s−1)(2m − 1)2m−s . Next, note that the distribution on x1, ..., xs is
O(s2−k)-close to uniform, and the last expression is at most

6
2m∑
s=1

2s`22ms

∣∣∣∣∣∣∣∣∣ E
x1,...,xs∈V

M(2m−s)×s binary matrix
~y=M~x

[f≈1(x1) · · · f≈1(xs) · f≈1(y1) · · · f≈1(y2m−s)]

∣∣∣∣∣∣∣∣∣+O(22m`2−k) (7)

where we have used α(s,m, `) 6 2s`22ms and ‖f≈1‖∞ 6 1.
Fix s and a matrix M , and let r = rank(M). We consider the case where s 6 m and s > m separately.

Denote

R
def
= max

{∣∣µSpan(x),in − δ
∣∣ , |µW,out − δ| ∣∣ x ∈ V,W ⊆ V hyperplane

}
. (8)

For s 6 m, apply Lemma 6.5 to obtain∣∣∣∣∣∣∣∣∣ E
x1,...,xs∈V

M(2m−s)×s binary matrix
~y=M~x

[f≈1(x1) · · · f≈1(xs) · f≈1(y1) · · · f≈1(y2m−s)]

∣∣∣∣∣∣∣∣∣
6 ‖f≈1‖2m−s−r∞ ‖f̂≈1‖s−r∞ ‖f≈1‖2r2

6 R2m−s−r

([
`

1

]−1

R

)s−r(
η[
`
1

])r +O
(

216`4−k
)

6 2 · 2−`sR2m−2rηr +O
(

213`4− 1
2
k
)
,

where the first inequality is by Lemma 6.5, the second inequality is by the definition of f≈1, Lemma 4.2,
and Claim 6.2.

For s > m we apply the previous argument dually. More formally, we use the following lemma (the
proof is deferred to the next section):

Lemma 6.6. Let M be an (2m− s)× s matrix of rank r, f : V → R, and define Ai = {j |M [j, i] = 1} .
Then

E
x1,...,xs∈V
~y=M~x

[f(x1) · · · f(xs) · f(y1) · · · f(y2m−s)] =
∑

T1,...,T2m−s

Si=
⊕

j∈Ai
Tj

f̂(S1) · · · f̂(Ss) · f̂(T1) · · · f̂(T2m−s).

Using Lemma 6.6 we see that

E
x1,...,xs∈V
~y=M~x

[f≈1(x1) · · · f≈1(xs) · f≈1(y1) · · · f≈1(y2m−s)]

=
∑

T1,...,T2m−s

Si=
⊕

j∈Ai
Tj

f̂≈1(S1) · · · f̂≈1(Ss) · f̂≈1(T1) · · · f̂≈1(T2m−s)

= 2(2m−s)k E
T1,...,T2m−s

Si=
⊕

j∈Ai
Tj

[
f̂≈1(S1) · · · f̂≈1(Ss) · f̂≈1(T1) · · · f̂≈1(T2m−s)

]
,
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where Ai = {j |M [j, i] = 1}. Now we have 2m − s < m, and we can use Lemma 6.5 (with f̂≈1 instead
of f and renaming of the parameters, the new “s” is 2m − s) to get that the previous expression is upper-
bounded by

2(2m−s)k‖f̂≈1‖2m−(2m−s)−r
∞ ‖̂̂f≈1‖(2m−s)−r∞ ‖f̂≈1‖2r2 . (9)

Note that ̂̂f≈1 = 2−kf≈1, and therefore

‖f̂≈1‖2r2 = 2−kr

(∑
S

f̂≈
2

1(S)

)r
= 2−kr‖f≈1‖2r2 , (10)

where the last equality is by Parseval. We use (10) to get

(9) 6 2(2m−s)k‖f̂≈1‖s−r∞ 2−(2m−s−r)k‖f≈1‖2m−s−r∞ 2−kr‖f≈1‖2r2
= ‖f̂≈1‖s−r∞ ‖f≈1‖2m−s−r∞ ‖f≈1‖2r2

6

([
`

1

]−1

R

)s−r
R2m−s−r

(
η[
`
1

])r +O
(

216`4−k
)

6 2 · 2−s`R2m−2rηr +O
(

213`4− 1
2
k
)
,

where in the third inequality we bounded ‖f̂≈1‖∞ by Lemma 4.2, ‖f≈1‖∞ by definitions, and ‖f≈1‖2 by
Claim 6.2.

We plug in both estimates (of s 6 m and s > m) to (7) to get that

E
L

[
F≈1[L]2m

]
6

2m∑
s=1

2s`22ms

min {s,2m−s}∑
r=1

(
2 · 2−s`R2m−2rηr +O

(
213`4− 1

2
k
))

+O(22m`2−k)

6
2m∑
s=1

s∑
r=1

24m2+1R2m−2rηr +O
(

214`4− 1
2
k
)
.

Therefore, there are s, r such that

24m2+1R2m−2rηr >
1

4m2

[
E
L

[
F≈1[L]2m

]
−O

(
214`4−k

)]
>

η2m+1

24m+5m2δ2m
,

where the last inequality is by Lemma 6.4, and the fact that the error term is at most half the main term for
sufficiently large `. Rearranging and using m2 6 2m yields

R2m
( η

R2

)r
>

η2m+1

24m2+5m+6δ2m
. (11)

Next, we claim that the parameter r in equation 11 is strictly smaller than m:

Proposition 6.7. r < m.

Proof. Assume toward contradiction r = m. We get ηm > η2m+1

24m2+5m+6δ2m
, concluding that

δ2−ε 6 η 6 24m+6δ2 m
m+1 6 24m+6δ2− 1

m+1 .
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Rearranging and using δ−1/(m+1) 6 δ−
1
2
ε yields

δ−
1
2
ε 6 24m+6,

taking logarithm, using the definition of m and rearranging implies

ε2 6
16 + 20ε

log 1/δ
<

40

log 1/δ
,

contradicting the condition on ε.

If η 6 R2 then the left hand side in (11) is at most R2m and we conclude that

R2m >
η2m+1

24m2+5m+6δ2m
,

implying

R > 2−2m−6 η
1+1/2m

δ
> 2−

8
ε
−3 η

1+ε/4

δ
.

Else, since r 6 m− 1 we get that

R2 > 2−16m2 ηm+2

δ2m
,

implying

R > 2−8m2 η
1
2
m+1

δm
> 2−

80
ε2
η

δ
.

the last inequality follows from the definition of m. Either way, we have

R > 2−
80
ε2
η1+ε/4

δ
.

Using the lower bound we know on ε, η, it is easy to see that the last expression is greater than δ. Recalling
the definition of R from (8) finishes the proof.

Auxiliary lemmas

Proof of Lemma 6.6. Expand out each f(xi), f(yi) to its fourier representation to get

E
x1,...,xs∈V
~y=M~x

[f(x1) · · · f(xs) · f(y1) · · · f(y2m−s)]

= E
x1,...,xs∈V
~y=M~x

 ∑
T1,...,T2m−s
S1,...,Ss

f̂(S1)χS1(x1) · · · f̂(Ss)χSs(xs) · f̂(T1)χT1(y1) · · · f̂(T2m−s)χT2m−s(y2m−s)

.
Note that

χS1(x1) · · ·χSs(xs) · χT1(y1) · · ·χT2m−s(y2m−s) = χS1⊕
⊕

j∈A1
Tj (x1) · · ·χSs⊕

⊕
j∈As

Tj (xs).

Thus for a summand not to be 0, it must be the case that Si =
⊕

j∈Ai
Tj , and the proof is concluded.
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Lemma 6.5 (Restated) . Let s 6 m be an integer, and M a binary (2m− s)× s matrix of rank r 6 s. Let
f : V → R be a function. Then∣∣∣∣∣∣∣ E

x1,...,xs∈V
~y=M ·~x

[f(x1) · · · f(xs)f(y1) · · · f(y2m−s)]

∣∣∣∣∣∣∣ 6 ‖f‖2m−s−r∞ ‖f̂‖s−r∞ ‖f‖2r2 .

Proof. Since the matrix M has rank r, there is a subset of r of the rows such that each other row is a
linear combination of them. Such subset of the rows corresponds to a subset of the y’s that form a basis for
Span(y1, ..., y2m−r) - without loss of generality assume y1, .., yr is a basis. Then each yi for i > r can be
expressed as a linear combination of y1, ..., yr. In particular, the function f(y1) · · · f(y2m−s) is a function
of y1, ..., yr, which we denote by:

h(y1, ..., yr) = f(y1) · · · f(y2m−s).

Therefore the expectation we want to evaluate is

E
x1,...,xs∈V
~y=M ·~x

[f(x1) · · · f(xs)h(y1, ..., yr)]

= E
x1,...,xs∈V
~y=M ·~x

∑
S1

f̂(S1)χS1(x1) · · ·
∑
Ss

f̂(Ss)χSs(xs)
∑

T1,...,Ts

ĥ(T1, ..., Tr)χT1(y1) · · ·χTr(yr)


∑

S1,...,Ss
T1,...,Tr

f̂(S1) · · · f̂(Ss)ĥ(T1, ..., Tr) E
x1,...,xs∈V
~y=M ·~x

[χS1(x1) · · ·χSs(xs) · χT1(y1) · · ·χTs(yr)]

For every i = 1, ..., s consider
Ai = {j |M [j, i] = 1} ,

in words, the set of j such that xi appears in the representation of yj according to the x’s. Then

χS1(x1) · · ·χSs(xs) · χT1(y1) · · ·χTr(yr) =
s∏
i=1

χSi⊕
⊕

j∈Ai
Tj (xi).

Thus our original expression equals

∑
S1,...,Ss
T1,...,Tr

f̂(S1) · · · f̂(Ss)ĥ(T1, ..., Tr) E
x1,...,xs∈V

[
s∏
i=1

χSi⊕
⊕

j∈Ai
Tj (xi)

]

=
∑

S1,...,Ss
T1,...,Tr

f̂(S1) · · · f̂(Ss)ĥ(T1, ..., Tr)
s∏
i=1

E
xi

[
χSi⊕

⊕
j∈Ai

Tj (xi)
]

=
∑

T1,...,Tr
Si=

⊕
j∈Ai

Tj

f̂(S1) · · · f̂(Ss)ĥ(T1, ..., Tr).
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Applying Cauchy-Schwartz on the last sum implies it is upper bounded by:

6

√√√√√
∑

T1,...,Tr
Si=

⊕
j∈Ai

Tj

f̂2(S1) · · · f̂2(Ss)

√√√√√
∑

T1,...,Tr
Si=

⊕
j∈Ai

Tj

ĥ2(T1, ..., Tr) (12)

To estimate the first expectation, let us abuse notation and look at characters as {0, 1}-valued vectors. This
way, we can succinctly write that (S1, ..., Ss) = MT

s (T1, ..., Tr)
T, where Ms is the s× r matrix whose rows

are the first r rows of M . In particular, since MT
s has rank r, we can choose a subset of r of its rows that are

linearly independent - without loss of generality we assume the first r rows are such. Then∑
T1,...,Tr

Si=
⊕

j∈Ai
Tj

f̂2(S1) · · · f̂2(Ss) 6 ‖f̂2‖s−r∞
∑

T1,...,Tr
Si=

⊕
j∈Ai

Tj

f̂2(S1) · · · f̂2(Sr)

= ‖f̂2‖s−r∞
∑

S1,...,Sr

f̂2(S1) · · · f̂2(Sr)

= ‖f̂2‖s−r∞

∑
S1

f̂2(S1)

r

= ‖f̂2‖s−r∞ E
x

[
f2(x)

]r
= ‖f̂2‖s−r∞ ‖f‖2r2 .

The first inequality is by taking out the maximal fourier coefficient, the first equality holds since the first r
rows of MT

S are linearly independent, the third equality is by Parseval.
To evaluate the second term in Equation (12) we use Parseval:∑

T1,...,Tr
Si=

⊕
j∈Ai

Tj

ĥ2(T1, ..., Tr) = E
y1,...,yr

[
h2(y1, ..., yr)

]
= E

y1,...,yr

[
f2(y1) · · · f2(yr) · · · f2(y2m−s)

]
6 ‖f2‖2m−s−r∞ E

y1,...,yr

[
f2(y1) · · · f2(yr)

]
= ‖f2‖2m−s−r∞ E

y1,...,yr

[
f2(y1)

]r
= ‖f2‖2m−s−r∞ ‖f‖2r2 .

Plugging the last two estimate into Equation (12), we get that our original expression is upper bounded
by √

‖f̂2‖s−r∞ ‖f‖2r2 ‖f2‖2m−s−r∞ ‖f‖2r2 = ‖f‖2m−s−r∞ ‖f̂‖s−r∞ ‖f‖2r2

7 Results for the Second Level

In this section we prove Theorem 3.7. The proof follows a similar strategy as in the proof of Theorem 3.3
– upper-bounding the fourth moment of the level 2 component of F – but it is technically more involved:
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recall that the value of the level 2 function at L is a sum of values of a function defined over 2 dimensional
spaces. Hence when computing the fourth moment one obtains various products of terms that behave differ-
ently, depending on the intersection pattern of the corresponding spaces. Since there are many intersection
patterns between four 2-dimensional subspaces, simply enumerating over all of them, analyzing each pattern
separately may be infeasible.

We currently do not have a fully systematic way of dealing with all types of summands at once – this
issue seems to be the bottleneck in extending our results to all levels. For level 2 however we still manage
to partition the terms into a relatively small number of classes, and then to bound each class separately.

Structure of Section 7. We begin in Section 7.1 by associating f≈2 with a function over the hypercube,
and establishing a connection between its fourier coefficients and zoom-outs – this is the level 2 analogue
of Section 4. In Section 7.3 we define the key definitions that allow us to partition the terms into relatively
small number of classes, present a set of example-terms that arise in the proof, and analyze them. Finally,
in Section 7.4 we argue that those examples cover all types of terms (up to symmetries), and in Section 7.5
we conclude the proof of Theorem 3.7.

7.1 Fourier coefficients and zoom-outs on the second level

Let F :
[
V
`

]
→ R and consider f≈2 :

[
V
2

]
→ R. Formally f≈2 is a function on 2 dimensional subspaces, thus

to discuss its fourier expansion we first have to extends its range to V 2.

Definition 7.1. We identify f≈2 from Definition 2.23 with f≈2 : V 2 → R by

f≈2(x, y) =


f≈2(Span(x, y)) x, y linearly independent,
µ− µSpan(x),in x = y 6= 0 or x 6= 0, y = 0

µ− µSpan(y),in x = 0, y 6= 0,

0 x = y = 0.

Note that the two definitions agree whenever x, y span a 2-dimensional subspace.

This extension can be viewed to be natural by expanding out f̃2 in terms on µ◦,in. We begin by noting
few basic properties of f̃2. We omit the self-evident proof.

Claim 7.2. Let F :
[
V
`

]
→ R, and f≈2 : V 2 → R be from Definition 7.1.

1. For every x, Ey [f≈2(x, y)] = 0.

2. f≈2(x, y) = f≈2(x, x⊕ y) for every x, y.

3. f≈2(x, y) = f≈2(y, x) for every x, y.

A few basic properties of f̂≈2 that can be derived from the properties of f≈2.

Claim 7.3. Let F :
[
V
`

]
→ R, and f≈2 : V 2 → R be from Definition 7.1.

1. f̂≈2(S, ∅) = 0 for every S.

2. For every S1, S2, f̂≈2(S1, S2) = f̂≈2(S1, S1 ⊕ S2).

3. For every S1, S2, f̂≈2(S1, S2) = f̂≈2(S2, S1).
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Proof. For the first item,

f̂≈2(S, ∅) = E
x,y

[f≈2(x, y)χS(x)] = E
x

[
χS(x)E

y
[f≈2(x, y)]

]
= E

x
[χS(x) · 0] = 0.

For the second item,

f̂≈2(S1, S2) = E
x,y

[f≈2(x, y)χS1(x)χS2(y)]

= E
x,y

[f≈2(x⊕ y, y)χS1(x)χS2(y)]

= E
x,y

[f≈2(x⊕ y, y)χS1(x⊕ y)χS1⊕S2(y)]

= E
z,y

[f≈2(z, y)χS1(z)χS1⊕S2(y)]

= f̂≈2(S1, S1 ⊕ S2),

we used f≈2(x, y) = f≈2(x⊕ y, y).
The third item similarly follows from f≈2(x, y) = f≈2(y, x).

The previous claim implies that f≈2 is essentially a function on two-dimensional subspaces.
The following lemma establishes a connection between the fourier coefficients of f̃2 and zoom-outs.

The proof goes along similar lines the proof of Lemma 4.2, however, includes more tedious calculations.

Lemma 7.4. Let F :
[
V
`

]
→ R, f≈2 : V 2 → R from Definition 2.23, and let S1, S2 ⊆ [k] be distinct and

non-empty. Then

f̂≈2(S1, S2) =c2(k, `)
[
µWS1

∩WS2
,out(F )− µ(F )− (µWS1⊕S2

,out(F ) + µWS1
,out(F ) + µWS2

,out(F )− 3µ(F ))
]

+O(2`−k‖F‖∞),

where

c2(k, `) =

[
k−2
`

][
k
`

]
− 3
[
k−1
`

]
+ 2
[
k−1
`−1

] = 2−2` +O(2−3`).

We defer the proof to Section E.1.

Remark 7.5. With a little more effort it is possible to prove the following: there are constants c1(k, `), c2(k, `)
such that

f̂≈2(S1, S2) = c1

[
µWS1

∩WS2
,out − µ(F )

]
− c2

[
µWS1

,out + µWS2
,out + µWS1⊕S2

,out − 3µ
]
,

and c1 = 2−2` +O(2−3`), c2 = 2−2` +O(2−3`).

7.2 Basic claims and notations

Notations. Let F≈2, f≈2 be from Definition 2.24, 7.1. We will use the usual notations of δ = µ(F ), η =
W=2[F ], and we assume F is (2, ε) pseudo-random where ε > δ. It will be convenient for us to prove 3.7
counter positively: assuming F is (2, ε) pseudo-random, we derive an upper-bound on the weight of F on
the second level.

For each x ∈ V , we choose an arbitrary complementing spaceMx, namely a k−1 dimensional subspace
of V such that Span(x)⊕Mx = V .
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Definition 7.6. For F :
[
V
`

]
→ R and x ∈ V , we define Fx :

[
Mx

`−1

]
→ R by

Fx[L′] = F [L′ ⊕ Span(x)].

Definition 7.7. For W ⊆ V , define FW :
[
W
`

]
→ R by

FW [L] = F [L].

The following claim asserts that (2, ε) pseudo-randomness of F implies (1, O(ε)) pseudo-randomness
of F, Fx, FW for any x ∈ V and hyperplane W ⊆ V .

Claim 7.8. IfF is (2, ε) pseudo-random, thenF is (1, ε) pseudo-random, and for any x ∈ V and hyperplane
W ⊆ V , Fx, FW are (1, ε+ δ) pseudo-random.

Proof. Let x ∈ V , and assume Fx is not (1, ε + δ) pseudo-random. Then there is x2 or W2 such that the
density of Fx,x2 or Fx,W2 is at least the density of Fx plus δ + ε - assume for example that the first case
holds (the other case is handled similarly). Then

µ(Fx,x2) > µ(Fx) + δ + ε > δ + ε,

contradiction to the fact F is (2, ε) pseudo-random. The proof for FW is similar.
For F , assume it is not (1, ε) pseudo-random. Then there is x ∈ V (W ⊆ hyperplane) such that the

density of Fx (FW ) is at least δ + ε - assume for example that the first case holds (the other case is handled
similarly). Clearly,

E
y∈Mx

[µ(Fx,y)] = µ(Fx),

thus there is y such that µ(Fx,y) > µ(Fx) > δ + ε, and contradiction to the fact F is (2, ε) pseudo-
random.

We will often be interested about the implications of (2, ε) pseudo-randomness of F on several measures
that seem to be related to zoom-in/zoom-out of dimension one of F . This is the content of the following
claim which will be repeatedly used later this section.

Claim 7.9. Suppose F is (2, ε) pseudo-random where ε > δ, and define hx : V → R by hx(y) = f≈2(x, y).
Then

1. ‖f≈2‖∞ 6 4ε.

2. ‖f̂≈2‖∞ 6 4 · 2−2`(1 + o(1))ε+O(2`−k).

3. ‖hx‖∞ 6 8ε.

4. For any S1,
∑
S2

f̂≈2(S1, S2)2 6 900(1 + o(1)) · 2−3`ε4/3 +O(216`4−k).

5. For any x, ‖ĥx‖∞ 6 4 · 2−`(1 + o(1))ε.
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Proof. Note that

f≈2(x, y) = µSpan(x,y),in(F )− δ + δ − µSpan(x),in(F ) + δ − µSpan(y),in(F ) + δ − µSpan(x+y),in(F )

Each one of the four differences above is at most ε in absolute value by the (2, ε) pseudo-randomness of F
and the (1, ε) pseudo-randomness of F (Claim 7.8).

For the second item, note that f̂≈2(S1, S2) is 0 if S1, S2 are linearly dependent (Claim 7.3); otherwise
apply Lemma 7.4 to get

f̂≈2(S1, S2) =c2(k, `)
[
µWS1

∩WS2
,out(F )− δ − (µWS1⊕S2

,out(F ) + µWS1
,out(F ) + µWS2

,out(F )− 3δ)
]

+O(2`−k‖F‖∞),

where c2(k, `)2−2` +O(2−3`). Using the (2, ε) pseudo-randomness of F and the (1, ε) pseudo-randomness
of F (Claim 7.8) we see that the densities of FWS1

, FWS2
, FWS1⊕S2

, FWS1
∩WS2

is ε-close to δ, and so we
get that. ∣∣∣f̂≈2(S1, S2)

∣∣∣ 6 4c2(k, `)ε+O(2`−k) = 4 · 2−2`(1 + o(1))ε+O(2`−k).

The third item is immediate from the first.
For the fourth item, by Lemma 7.4 we have that∑

S2

f̂≈2
2
(S1, S2)

= c2
2(k, `)

∑
S2

[
µWS1

∩WS2
,out(F )− µWS1

,out(F ) + (2µ(F )− µWS1⊕S2
,out(F )− µWS2

,out(F )) +O(23`−k)
]2

Use (a1 + ...+ a5)2 6 5(a2
1 + ...+ a2

5) to get that the above is upper-bounded by

5 · c2(k, `)2
[∑
S2

(µWS1
∩WS2

,out(F )− µWS1
,out(F ))2 +

∑
S2

(µWS1⊕S2
,out(F )− µ(F ))2 (13)

+
∑
S2

(µWS2
,out(F )− µ(F ))2 +

∑
S2

O(26`−2k)
]

We next estimate each sum separately. For the first sum, consider the function G = FWS1
, and let g≈1 be its

level 1 approximated point function 8.
By Lemma 4.2, ĝ≈1(S2) = c1(k− 1, `)(µWS1

∩WS2
,out(F )− µWS1

,out). Since the first sum counts each
subspace twice (WS1 ∩WS2 is counted for S2, S1 ⊕ S2), we have that it equals∑

S2

(µWS1
∩WS2

,out(F )− µWS1
,out)

2 =
2

c1(k − 1, `)2

∑
S2

ĝ2(S2)

=
2

c1(k − 1, `)2
‖g≈1‖22

6
2

c1(k − 1, `)2

(
W=1[G][

`
1

] +O(216`4−k)

)
.

8I.e. the function for which G≈1[L] =
∑

x∈L\{0}
g≈1(x) for all L ⊆WS1 .

42



The second equality is by Parseval, the third transition is by Claim 6.2. By Claim 7.8, G has density at most
δ+ε 6 2ε and is (1, ε+δ) pseudo-random, and in particular (1, 9ε2/3) pseudo-random. Hence by Corollary
3.4,

W=1[G] 6
√

200 · 9ε2/3µ(G) 6 60ε4/3.

Plugging this into the previous inequality, we get that the first sum in Expression (13) is at most

120[
`
1

]
c1(k − 1, `)2

ε4/3 +O(22`+16`4−k).

The second and the third sum are equal and are estimated similarly; By Lemma 4.2 each one of them
equals

1

c1(k, `)2

∑
S2

f̂2
≈1(S2) =

1

c1(k, `)2
‖f≈1‖22 6

(
W=1[F ][

`
1

] +O(216`4−k)

)
,

in the first transition we used Parseval and in the second transition we used Claim 6.2. By Corollary 3.4,
since F is (1, ε) pseudo-random (Claim 7.8), it is in particular (1, 9

2δ
2/3) pseudo-random and we have that

W=1[F ] 6

√
200 · 9

2
δ2/3δ 6 30ε4/3,

(we used δ 6 ε) thus the second and third sum are bounded by

30[
`
1

]
c1(k − 1, `)2

ε4/3 +O(22`+16`4−k).

The fourth sum is O(26`−k).
Combining all of the above, we get that the Expression in (13) is at most

5c2(k, `)2 · 180[
`
1

]
c1(k − 1, `)2

ε4/3 +O(216`4−k).

Since c2 = 2−2` + O(2−3`), c1 = 2−` + 2−2` and
[
`
1

]
= 2`(1 + o(1)), we have that the coefficient of ε4/3

is 900(1 + o(1)) · 2−3`, and we are done.
Finally, for the fifth item, denote G = Fx. Then for any y ∈Mx,

hx(y) = µSpan(x,y),in(F )− µSpan(x),in(F ) + δ − µSpan(y),in(F ) + δ − µSpan(x+y),in(F ))

= g≈1(y)− f≈1(y)− f≈1(x+ y).

Therefore for any S1 character on Mx,

ĥx(S1) = ĝ≈1(S1) +− E
y∈WS1

[f≈1(y)χS1(y)]− E
y∈WS1

[f≈1(x+ y)χS1(y)]. (14)

We extend S1 to S̃1 on V so that χS̃1
(x) = 1. Then

E
y∈WS1

[f≈1(y)χS1(y)] + E
y∈WS1

[f≈1(x+ y)χS1(y)] = 2 E
y∈V

[
f≈1(y)χS̃1

(y)
]

= 2f̂≈1(S̃1).
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Taking absolute value and using triangle inequality on equation (14), we get that∣∣∣ĥx(S1)
∣∣∣ 6 |ĝ≈1(S1)|+ 2

∣∣∣f̂≈1(S̃1)
∣∣∣ .

Finally we bound the first fourier coefficient on the right hand side by 2−`(2 + o(1))ε using the (1, δ + ε)
pseudo-randomness of G and the second by 2−`(1 + o(1))ε using the (1, ε)-pseudo randomness of F (Both
by Claim 7.8).We demonstrate for the first (the second is done similarly). By Lemma 4.2

|ĝ≈1(S1)| = 2−`(1 + o(1))
∣∣∣µWS1

,out(G)− µ(G)
∣∣∣ 6 2−`(1 + o(1))2ε.

Claim 7.10.
‖f≈2‖22 =

η[
`
2

] +O(216`4−k) 6
10η

22`
+O(216`4−k).

Proof. Immediate by Lemma 5.1.

7.3 Analysis of representative cases

In this section we unravel the fourth moment ofF≈2, and show how to group the different sums into relatively
small number of classes. We then analyze some representatives of these sums in order to demonstrate the
different arguments that are needed.

We begin with two important definitions that will be helpful throughout the rest of the section.

Definition 7.11. Let K,M,P,Q ⊆ V be subspaces. The total dimension of a term of the form
f2(K)f2(M)f2(P )f2(Q) is defined to be

dim(K ⊕M ⊕ P ⊕Q).

Sometimes the spaces will be given in formal form with parameters; for this purpose we define the
formal total dimension:

Definition 7.12. Let x1, ..., x8 be formal variables, and letK,M,P,Q be subspaces of the formal subspace
Span{x1, ..., x8}. The formal total dimension of a term of the form f2(K)f2(M)f2(P )f2(Q) is defined to
be

dim(K ⊕M ⊕ P ⊕Q),

when K ⊕M ⊕ P ⊕Q is treated as formal subspace of Span(x1, . . . , x8).

The following lemma asserts that the fourth moment of F≈2 can be written as linear combination of
expectations of formal total dimension d = 2, ..., 8, where the coefficient for d is Θd(2

d`).

Lemma 7.13. There are ad(`) for d = 0, ..., 8 such that

E
L∈[V` ]

[
F≈2[L]4

]
=

8∑
d=0

ad(`) E
K,M,P,Q∈[V2 ]

dim(K⊕M⊕P⊕Q)=d

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)].

Moreover, ad(`) = 0 for d = 0, 1 and |ad(`)| 6 24d+d` for any d.
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Proof. By definition,

E
L∈[V` ]

[
F≈2[L]4

]
= E

L∈[V` ]


 ∑
K⊆[L2]

f≈2(K)


4

= E
L∈[V` ]

 ∑
K,M,P,Q⊆[L2]

f≈2(K)f≈2(M)f≈2(P )f≈2(Q)


We partition the last sum according to A = K ⊕M ⊕ P ⊕Q, which has dimension at least 2, to get

= E
L∈[V` ]


8∑
d=2

∑
A⊆L

dim(A)=d

∑
K,M,P,Q∈[A2 ]
K⊕M⊕P⊕Q=A

f≈2(K)f≈2(M)f≈2(P )f≈2(Q)


Note that by symmetry, the size of the set

{(K,M,P,Q) | all are subspaces, K ⊕M ⊕ P ⊕Q = A}

depends only on d = dim(A); denote it by βd. Then the last expectation is

= E
L∈[V` ]

 8∑
d=2

[
`

d

]
E

A⊆L
dim(A)=d

βd E
K,M,P,Q∈[A2 ]
K⊕M⊕P⊕Q=A

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)]




=
8∑
d=2

[
`

d

]
βd E
L∈[V` ]

 E
A⊆L

dim(A)=d

 E
K,M,P,Q∈[A2 ]
K⊕M⊕P⊕Q=A

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)]


,

where the last equality is by linearity of expectation. Note that for a fixed d, the 4-tuple K,M,P,Q is
distributed uniformly over all 4-tuples of 2-dimensional subspaces of V such that their direct sum is of
dimension d. Thus the last sum equals

8∑
d=2

[
`

d

]
βd E

K,M,P,Q∈[V2 ]
dim(K⊕M⊕P⊕Q)=d

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)].

Denoting ad(`) =
[
`
d

]
βd for d > 2 and 0 otherwise we conclude the lemma. The bound on ad(`) follows

from the crude bounds
[
`
d

]
6 2d` and βd 6 24d which is easy to verify.

Below we consider different types of sums and show how to obtain sufficient upper bounds on them. We
write them in expectation notations since it is easier to work with.
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7.3.1 Expectations that are essentially 0

The first type of expectations are those that can be argued to be essentially 0. The following observation is
sufficient for us to identify such expectations. Roughly speaking, it asserts that if one of the spaces depends
on a random vector y such that the direct sum of all 3 other spaces does not contain it, then the expectation
is close to 0.

Lemma 7.14. Let x1, ..., xd be formal random vectors from V , and K,M,P,Q be formal vector spaces
spanned by them. Define an event

E = {(K,M,P,Q) | dim(K ⊕M ⊕ P ) 6 d− 1, dim(K ⊕M ⊕ P ⊕Q) = d} .

Then
2d` E

x1,...,xd∈V
(K,M,P,Q)∈E

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)] = O(2d`−k‖f≈2‖4∞).

Proof.

2d` E
x1,...,xd∈V

(K,M,P,Q)∈E

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)]

= 2d` E
x1,...,xd∈V

(K,M,P,Q)∈E

[
f≈2(K)f≈2(M)f≈2(P )E

Q

[
f≈2(Q)

∣∣K,M,P
]]

For any value of K,M,P , the induced distribution on Q = Span{x, y} is such that x has some distribution
Λ: either x ∈ K ⊕M ⊕ P if dim(K ⊕M ⊕ P ) = d− 1, else uniform outside K ⊕M ⊕ P . In both cases,
y is uniform outside K ⊕M ⊕ P . Thus

E
Q

[
f≈2(Q)

∣∣K,M,P
]

= E
x∼Λ

[
E

y 6∈K⊕M⊕P
[f≈2(Span{x, y})]

]
.

For any fixed x the resulting distribution on y is O(2−k) close to uniform over y 6= x, 0. Thus

E
y 6∈K⊕M⊕P

[f≈2(Span{x, y})] = E
K3x

[f≈2(Span{x, y})] +O(2−k‖f≈2‖∞) = O(2−k‖f≈2‖∞).

7.3.2 Error terms

The second type of expectations are those that we bound by O(η2) using Cauchy-Schwartz inequality. An
example is[

`

1

]4

E
x1,x2,x3,x4,x5,x6

[
f≈2(Span{x1, x4})f≈2(Span{x2, x5})f≈2(Span{x1 + x2, x4 + x5})2

]
.

More generally,
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Lemma 7.15. Let x1, ..., x4 be formal random vectors from V , and K,M,P,Q be formal vector spaces
spanned by them. Define an event

E = {(K,M,P,Q) |K ∩M = P ∩Q = {0}, dim(K ⊕M ⊕ P ⊕Q) = 4}

Then

24`

∣∣∣∣∣∣ E
x1,...,x4∈V
K,M,P,Q∈E

[f≈2(K), f≈2(M), f≈2(P ), f≈2(Q)]

∣∣∣∣∣∣ 6 100η2 +O(216`4−k).

Proof. Applying Cauchy-Schwartz∣∣∣∣∣∣ E
x1,...,x4∈V
K,M,P,Q∈E

[f≈2(K), f≈2(M), f≈2(P ), f≈2(Q)]

∣∣∣∣∣∣
6
√

E
x1,...,x4∈V
K,M,P,Q∈E

[
f≈2

2(K)f≈2
2(M)

]√
E

x1,...,x4∈V
K,M,P,Q∈E

[
f≈2

2(P )f≈2
2(Q)

]
= E

x1,...,x4∈V
K,M,P,Q∈E

[
f≈2

2(K)f≈2
2(M)

]
, (15)

the last equality is because the distributions of (K,M), (P,Q) are identical. Note that since K ∩M = {0},
the distribution of K,M is O(2−k) close to choosing two independent 2-dimensional subspaces of V . Thus
the last expression in 15 is

= E
K,M∈[V2 ]

[
f≈2

2(K)f≈2
2(M)

]
+O(2−k‖f≈2‖∞) = ‖f≈2‖42 + +O(2−k‖f≈2‖∞).

Finally, ‖f≈2‖42 6 100η2

24`
+O(216`4−k) by Claim 7.10.

7.3.3 Zoom-in 2 dimensions.

The only expression of this type is

22`E
K

[
f≈2

4(K)
]
6 22`‖f≈2‖22‖f≈2‖2∞ 6 (10η) · (4ε)2 +O(22`+16`4−k) = 160ηε2 +O(22`+16`4−k).

the last equality is by Claim 7.10 and Claim 7.9.

7.3.4 Reducing to first level via zoom in

There are some that can be handled by reducing to the first level. That is, to analyze it one has to rely on
the fact that after zooming-in (or out) on one dimension, the resulting function is pseudo-random against
zoom-in (or out) to dimension one. This, combined with Corollary 3.4 provides us an upper-bound on the
level-1 mass of the zoomed-in function. To demonstrate the idea more concretely, consider the expression

23`E
x

[
E

x∈K,M

[
f≈2

2(K)f≈2
2(M)

]]
. (16)
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Define g(x) = EK3x
[
f≈2

2(K)
]
. Then Ex [g(x)] = EK

[
f≈2

2(K)
]

= ‖f≈2‖22. Therefore

E
x

[
E

x∈K,M

[
f≈2

2(K)f≈2
2(M)

]]
= E

x

[
g2(x)

]
6 ‖g‖∞E

x
[g(x)] = ‖g‖∞‖f≈2‖22. (17)

Let x∗ be such |g(x∗)| = ‖g‖∞. We have

|g(x∗)| = E
y 6=x∗,0

[
f≈2

2(Span{x∗, y})
]

= E
y 6=x∗,0

[(
µSpan{x∗,y},in(F )− µSpan{x∗},in(F ) + µ(F )− µSpan{y},in(F ) + µ(F )− µSpan{x∗+y},in(F )

)2]
6 3 E

y 6=x∗,0

[
(µSpan{x∗,y},in(F )− µSpan{x∗},in(F ))2 + (µSpan{y},in(F )− µ(F ))2 + (µSpan{x∗+y},in(F )− µ(F ))2,

]
in the last inequality we used (a+ b+ c)2 6 3(a2 + b2 + c2). Note that r(y)

def
= µSpan{x∗,y},in−µSpan{x∗},in

is the approximated point function of Fx∗ . By Claim 6.2,

E
y 6=x∗,0

[
r2(y)

]
6

1[
`
1

]W=1[Fx∗ ] +O(216`4−k‖F‖∞).

Similarly, µSpan{y},in − µ(F ) is the approximated point function of F ; since the distribution of y is
O(2−k) close to uniform, we have that:

E
y 6=x,0

[
(µSpan{y},in − µ(F ))2

]
6

1[
`
1

]W=1[F ] +O(2−k‖F‖∞).

Therefore

‖g‖∞ = |g(x∗)| 6 1[
`
1

](W=1[Fx∗ ] + 2 ·W=1[F ]) +O(216`4−k).

We next upper bound the weight of F, Fx∗ on their first level. By Claim 7.8, F is (1, ε) pseudo-random and

thus (1, 9
2δ

2/3) pseudo-random, and hence by Corollary 3.4 W=1[F ]
√

200 · 9
2δ

2/3δ 6 30ε4/3. Similarly,

Fx∗ has density at most 2ε and is (1, ε+ δ) pseudo-random and in particular (1, 9ε2/3) pseudo-random and
therefore by Corollary 3.4 W=1[Fx∗ ] 6

√
200 · 9ε2/3µ(Fx∗) 6 60ε4/3.

We thus obtain

‖g‖∞ 6
9[
`
1

]ε4/3 +O(2−k) = 90(1 + o(1))2−`ε4/3 +O(216`4−k).

Plugging this in Equation (17) and using Claim7.10 to estimate ‖f≈2‖22, we get the expression in (16) is
bounded above by

23`
(

90(1 + o(1))2−`ε4/3 +O(216`4−k)
)(10η

22`
+O(216`4−k)

)
= 900(1 + o(1))ε4/3η +O(23`+16`4−k).
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7.3.5 Ones requiring zoom-outs

An example is

26` E
x1,x2,x3,x4,x5,x6

[f≈2(Span{x1, x4})f≈2(Span{x2, x5})f≈2(Span{x3, x6})f≈2(Span{x1 + x2 + x3, x4 + x5 + x6})].

A classical fourier-analytic computation shows that the above equals

26`
∑
S1,S2

f̂≈2
4
(S1, S2).

Clearly by Parseval∑
S1,S2

f̂≈2
4
(S1, S2) 6 ‖f̂≈2‖2∞

∑
S1,S2

f̂≈2
2
(S1, S2) = ‖f̂≈2‖2∞E

[
f≈2

2
]
.

Use Claims 7.9, 6.2 to get that the above is at most

26`
(

16(1 + o(1))2−4`ε2 +O(2`−k)
)(10η

22`
+O(216`4−k)

)
= 160(1 + o(1))ε2η +O(26`+16`4−k).

7.3.6 Reduce to first level via zoom-out

An example is

25` E
x1,x2,x4,x5,x6

[f≈2(Span{x1, x4})f≈2(Span{x1, x5})f≈2(Span{x2, x6})f≈2(Span{x2, x4 + x5 + x6})].

A standard fourier-analytic computation shows the above is

25`
∑
S1

∑
S2

f̂≈2
2
(S1, S2)

2

.

Clearly,

∑
S1

∑
S2

f̂≈2
2
(S1, S2)

2

6 max
S2

∑
S2

f̂≈2
2
(S1, S2)

∑
S1

∑
S2

f̂≈2
2
(S1, S2)

= max
S2

∑
S2

f̂≈2
2
(S1, S2)

‖f≈2‖22,

the last equality is by Parseval. Use Claims 7.9, 6.2 to get that the above is at most

25`
(

900(1 + o(1))2−3`ε4/3 +O(216`4−k)
)(10η

22`
+O(216`4−k)

)
= 9, 000(1+o(1))ε4/3η+O(25`+16`4−k).

Expressions requiring combination of methods

Unfortunately there are two more arguments that we must present for the proof of Theorem 3.7 that require
thinking about zooming in and zooming out simultaneously.
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7.3.7 Zoom-in, Zoom-out Combination - Part 1

Consider the expectation

24` E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{w, z})f≈2(Span{w, x+ y + z})]. (18)

Denote gw : V → R, gw(x) = f(Span{w, x}). Then the above expression is

24` E
x,y,z,w

[gw(x)gw(y)gw(z)gw(x+ y + z)] = 24`E
w

[∑
S

ĝw
4(S)

]
.

Note that Ew
[∑
S

ĝw
2(S)

]
= Ew

[
‖gw‖22

]
= ‖f≈2‖22, and therefore the last term is at most

6 24`E
w

[∑
S

ĝw
2(S)

]
‖ĝw‖2∞ = 24`‖f≈2‖22‖ĝw‖2∞

Use Claims 7.9, 6.2 to get that the expression in (19) is at most

24`

(
10η

22`
+O(216`4−k)

)(
(4 + o(1))2−2`ε2 +O(216`4−k)

)
= 40(1 + o(1))ε2η +O(24`+16`4−k).

7.3.8 Zoom-in, Zoom-out Combination - Part 2

The last type of expectation we shall examine is the following. In the previous term (Section 7.3.7), it was
quite apparent that some combination of fourier argument along with “zoom-in” argument is needed (since
one point - namely w, appeared in all spaces (suggesting zooming-in ideas), and on the rest corresponded to
linearity testing - x, y, z, x+ y + z). While in the below expectation it is much less apparent, we show that
this combination can still be used to estimate it. We are currently unaware of a different analysis.

24` E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{w, z})f≈2(Span{x, y + z})]. (19)

Define gw(x) = f≈2(w, x). Then the expression in (19) equals

24` E
x,y,z,w

[gw(x)gw(y)gw(z)f≈2(x, y + z)]

= 24` E
x,y,z,w

 ∑
S1,S2,S3,S4,S5

ĝw(S1)χS1(x)ĝw(S2)χS2(y)ĝw(S3)χS3(z)f̂≈2(S4, S5)χS4(x)χS5(y + z)


= 24`E

w

∑
S1,S2

ĝw(S1)ĝw
2(S2)f̂≈2(S1, S2)
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Apply Cauchy-Schwartz to upper bound the last expression by

6 24`E
w

√∑
S1,S2

ĝw
2(S1)ĝw

4(S2)

√∑
S1,S2

f̂≈2
2
(S1, S2)


6

[
`

1

]4

max
w,S
|ĝw(S)|E

w

√∑
S1,S2

ĝw
2(S1)ĝw

2(S2)‖f≈2‖2


= 24` max

w,S
|ĝw(S)|‖f‖2E

w

[
‖gw‖22

]
.

Note that the last expectation is the expectation of f≈2
2, namely ‖f≈2‖22. Overall we have that the expression

in (19) is at most
24`‖ĝw∗‖∞‖f≈2‖32.

Use Claims 7.9, 6.2 to upper bound the last expression by

24`
(

(4 + o(1))2−`ε+O(216`4−k)
)(10η

22`
+O(216`4−k)

)1.5

6 160(1 + o(1))εη1.5 +O(24`+16`4−k).

7.4 Summary - the above cover all arising terms

We shall now examine carefully all type of expressions that arise when evaluating

E
L

∑
K⊆L

f≈2(L2)

4
by opening the parenthesis. As stated earlier, each type of sum corresponds to the value of f≈2 on four
2-dimensional subspaces K,M,P,Q. We shall divide the expressions according to the total dimension
defined earlier, namely

dim(K ⊕M ⊕ P ⊕Q).

Throughout this section, we shall ignore terms of the order O(2O(`)−k) that arise as negligible error terms.

7.4.1 Total dimension 2

The only summand of this type is 22`EL2

[
f4(L2)

]
, which is bounded in Section 7.3.3 by 160ηε2.

7.4.2 Total dimension 3

We can think of summands with total dimension 3 in the following way. First, we pick L3 a 3-dimensional
subspace, and then we pick subspaces L2, L

′
2, L

′′
2, L

′′′
2 whose direct sum is L3. Note that not all subspaces

can be identical, as otherwise we would have total dimension 2 Therefore, such sums can be written as

23` E
x,y,z∈V

L2,L′2⊆Span{x,y,z}

[
f≈2(Span{x, y})f≈2(Span{x, z})f≈2(L2)f≈2(L′2)

]
.
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There are actually two subcases for this sum. Either one of the two dimensional subspaces repeats three
times, in which case the sum can be written in the form

23` E
x,y,z∈V

[
f≈2

3(Span{x, y})f≈2(Span{x, z})
]

= O(23`−k),

where the equality is by Lemma 7.14. Else, each subspaces repeats at most twice. In this case we can
partition the 4-spaces into 2 pairs such that of distinct subspaces. Notice that the spaces in each such pair
must have intersection of dimension exactly 1. Assume {L2, L

′
2}, {L′′2, L′′′2 } is such partition. Then we have

by Cauchy-Schwartz

23`E
[
f≈2(L2)f≈2(L′2)f≈2(L′′2)f≈2(L′′2)

]
6 23`

√
E
[
f≈2

2(L2)f≈2
2(L′2)

]√
E
[
f≈2

2(L′′2)f≈2
2(L′′′2 )

]
= 23` E

x∈V

[
E

x∈L2,L′2

[
f≈2

2(L2)f≈2
2(L′2)

]]
.

The last term was bounded in Section 7.3.4 by 900(1 + o(1))ε4/3η.

Total dimension higher than 4

For the rest of this section, we shall deal with expectations with total dimension at least 4. It turns out that
expectation with total dimensions higher than 4 can be treated quite easily once terms with total dimension
less than 4 have been treated by a duality trick which we present below. Suppose we have total dimension d.
Roughly speaking, the idea is to view such expectations in the fourier spectrum, where their total dimension
becomes 8 − d. In this case we simply adapt one of the previous arguments from the “less than 4 total
dimension” cases. Formally, this trick is encapsulated in Lemma 7.16, which is in the spirit of Lemma 6.6
with essentially identical proofs.

Finally in the end of this section, we deal with expectations with total dimension exactly 4. Those turn
out to require a more detailed case-analysis type examination.

Lemma 7.16. Let g : V r → R and let M be an (mr) × d matrix of rank d. For vectors x1, ..., xd ∈ V ,
consider the mr vectors y1, ..., ymr defined by ~y = M~x (i.e. yj = M [j, 1]x1 + ... + M [j, d]xd for all j).
Define Aj = { i |M [i, j] = 1} for j = 1, ..., d. Then

E
x1,...,xd∈RV

~y=M~x

[
m−1∏
i=0

g(yir+1, . . . , y(i+1)r)

]
=

∑
S1,...,Smr

∀j
⊕

i∈Aj
Si=∅

m−1∏
i=0

ĝ(Sir+1, . . . , s(i+1)r)

Proof. Expanding each term according to its fourier expansion, we get that the left hand side equals

E
x1,...,xd∈RV

~y=M~x

m−1∏
i=0

 ∑
Sir+1,...,S(i+1)r

ĝ(Sir+1, . . . , S(i+1)r)

r∏
j=1

χSir+j (yir+j)


= E

x1,...,xd∈RV
~y=M~x

 ∑
S1,...,Smr

m−1∏
i=0

ĝ(Sir+1, . . . , S(i+1)r)

r∏
j=1

χSir+j (yir+j)


=

∑
S1,...,Smr

m−1∏
i=0

ĝ(Sir+1, . . . , S(i+1)r) E
x1,...,xd∈RV

~y=M~x

mr∏
j=1

χSj (yj)

,
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the last equality is by linearity of expectation. Consider the product of characters inside the expectation
in the expression above. Recalling that ~y = M~x, we have by multiplicativity of the characters and the
definition of A that

mr∏
j=1

χSj (yj) =
d∏
j=1

χ⊕
i∈Aj

Si
(xj),

since the yi’s that contribute a factor of χSi(xj) are precisely i ∈ Aj . Thus, the expectation is non-zero if
and only if for all j,

⊕
i∈Aj

Si = ∅, in which case it is 1, finishing the proof.

The main point of the above lemma is that a product that has total dimension d out of potential mr
translates into a product with mr − d total dimension in the fourier domain, since there are d independent
linear equations in the right hand side of Lemma 7.16 9

7.4.3 Total dimension 5

We can expectations of this type by taking x1, ..., x5 ∈ V formally, considering y1, ..., y8 ∈ Span({x1, ..., x5})
that have formal total dimension 5 and looking at

25`E [f≈2(Span{y1, y2}) · · · f≈2(Span{y7, y8})].

As discussed earlier, we would like to view this expression in the fourier domain. To do that, consider M
the coefficient matrix of the y’s according to the basis x. Apply Lemma 7.16 (with m = 4, r = 2, d = 5) to
get a sum of fourier coefficients of total dimension 3 there:

25`
∑

S1,...,S8

dim({S1,...,S8}=3)

f̂≈2(S1, S2) · · · f̂≈2(S7, S8)

,we identified a set S1 with its indicator vector). Repeating the argument in Section 7.4.2 we either get that
the sum is an essentially 0 expression or

25`
∑
S1

∑
S2

f̂≈2
2
(S1, S2)

2

,

which we bounded in Section 7.3.6 by 9, 000ε4/3η.

7.4.4 Total dimension 6

Moving to the fourier domain like in the previous section, we see that the total dimension on the fourier
domain is 2. Therefore, it is either an essentially 0 expression (e.g. if something of the form f̂≈2(S1, S1))
or else it is [

`

1

]6 ∑
S1,S2

f̂≈2
4
(S1, S2),

which was upper bounded in Section 7.3.5 by 160ε2η.
9The equations are linearly independent since they are defined by the transpose of M , that has rank d.
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7.4.5 Total dimension 7, 8

Those are essentially 0 by Lemma 7.14.

7.4.6 Total dimension 4

This case has several type of sums, which we enumerate over using symmetries. Consider the general form

24`E [f≈2(K)f≈2(M)f≈2(P )f≈2(Q)].

If there is a space appearing 3 times, then the sum must be of the type

24` E
x,y,z,w

[
f≈2

3(Span{x, y})f≈2(Span{z, w})
]
,

which is essentially 0 by Lemma 7.14.
If there is a space appearing twice, say K = M , then either both P,Q intersect K on {0}, in which case

we have a bound of 100η2 from Lemma 7.15. Else at least one of them, say P , intersects K on dim > 1. In
this case dim(K ⊕ P ⊕ P ) 6 3 and the term is essentially 0 by Lemma 7.14.

Next consider the main case, in which each space appears at most once; we further divide by looking
at the point that appears in the maximal amount spaces denote this point by w, and branch according to the
number of spaces it appears in. If it appears in all 4 spaces, we have an expression of the form[

`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{w, z})f≈2(Span{w, ·})],

where · can be any linear combination of x, y, z. If it is not x+ y+ z, we have a bound of 100η2 by Lemma
7.15. If it is x+ y + z, we get a bound of 10ε2η by Section 7.3.7.

Let us now assume w appears in 3 spaces. Then the general form of our expression is[
`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{w, ∗})f≈2(Span{·, ·})],

If ∗ is x, y or x + y, we have essentially 0 by Lemma 7.14. Else it is an independent point, and our
general form is[

`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{w, z})f≈2(Span{∗, ·})].

There are several cases here, but they are all the same up to switching names 10 ; they are all equivalent to:[
`

1

]4

E
x,y,z,w

[f(Span{w, x})f(Span{w, y})f(Span{w, z})f(Span{x, y + z})].

which was bounded by 160εη1.5 in Section 7.3.8.
10The following pairs are name-interchangeable: (x,w + x), (y, w + y), (z, w + z).
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Finally we consider the case in which w appears in two spaces (this is the last case, since if every two
spaces intersect in {0} we have a bound of 100η2 by Lemma 7.15). Our general form is[

`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{∗, ∗})f≈2(Span{·, ·})].

Both of blank spaces need to depend on an independent point of w, x, y since otherwise the term is essen-
tially 0 by Lemma 7.14; the other point must be from Span{w, x, y}.[

`

1

]4

E
x,y,z,w

[f(Span{w, x})f(Span{w, y})f(Span{z, ∗})f(Span{·, ·})].

If ∗ is not y, x or w then the third space intersects both the first ones in {0}, and since the fourth depends
on z it must intersect one of the first spaces in {0}, and we have a bound of 100η2 by Lemma 7.15. Since ∗
cannot be w, it must be x or y - let us assume by symmetry it is x:[

`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{z, x})f≈2(Span{·, ·})].

If the last space intersects the first one on {0} we have a bound of 100η2 by Lemma 7.15. Thus we may
assume it contains w, x or w+ x. Note that this point cannot be w or x, as otherwise there would be a point
in three spaces:[

`

1

]4

E
x,y,z,w

[f≈2(Span{w, x})f≈2(Span{w, y})f≈2(Span{z, x})f≈2(Span{∗, w + x})].

∗ has to depend on z, so it can be z, z + y, z +w+ y, z +w. The cases ∗ = z, z +w the term is essentially
0 by Lemma 7.14 (isolating the second space). In the other two cases we have a bound of 100η2 by Lemma
7.15 (grouping the first with the fourth and the second with the third).

7.5 Proof of Theorem 3.7

In this section we prove a counter-positive version of Theorem 3.7, stated below. Theorem 3.7 can be derived
from it rather easily - the (rather self-evident) proof is deferred to Section E.2.

Theorem 7.17. Let V be a k-dimensional vector space, 10 < ` < k an integer and δ > 0 such that
k > 27`4 + 10 log 1

δ + 10. Let F :
[
V
`

]
→ {0, 1}, and assume µ(F ) = δ.

If ε > δ and F is (2, ε) pseudo-random, then

W=2[F ] 6 217δε
1/3.

Proof. Denote η = W=2[F ], δ = µ(F ). By Lemma 6.4 we have that

E
L

[
F≈2[L]4

]
>

η5

210δ4
. (20)

On the other hand, by Lemma 7.13,

E
L∈[V` ]

[
F≈2[L]4

]
=

8∑
d=2

ad(`)2
d` E

K,M,P,Q∈[V` ]
dim(K⊕M⊕P⊕Q)=d

[f≈2(K)f≈2(M)f≈2(P )f≈2(Q)].
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where |ad(`)| 6 24d for all d.
We apply the bounds we got from Section 7.4 11 to get

E
L∈[V` ]

[
F≈2[L]4

]
6 max

d=2,...,8
24d(160ηε2 + 900ηε4/3 + 1, 200ηε1.5 + 9, 000ηε4/3 + 160ηε2 + 100η2 + 10ηε2) + o(1)

6 240η2 + 250ε4/3η. (21)

Putting (20) and (21) together we have

η5

210δ4
6 240η2 + 250ε4/3η.

Hence one of the terms in the right hand side must be at least half of the left hand side. If the first one is
such term, rearranging yields

η 6 217δ
4/3.

Otherwise the second summand is at least half the left hand side, and rearranging implies

η 6 215δε
1/3.

Since ε > δ, we have η 6 217δε1/3 in either case and we are done.

References

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games
and related problems. J. ACM, 62(5):42, 2015.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998.

[BCN12] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Springer Berlin Heidelberg, 2012.

[CMM06] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
unique games. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
Seattle, WA, USA, May 21-23, 2006, pages 205–214, 2006.

[DKK+16] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of
the 2-to-1 games conjecture? Electronic Colloquium on Computational Complexity (ECCC),
23:198, 2016.

[DS05] Irit Dinur and Samuel Safra. On the Hardness of Approximating Minimum Vertex Cover.
Annals of Mathematics, 162(1):439–485, 2005.

11Strictly speaking, the expectation computed for each d is O(2−k)-close to matching expression we computed in Section 7.4
since with except probability O(2−k), the spaces there have total dimension d.

56



[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. Interactive
proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, March 1996.

[Fil16a] Yuval Filmus. Friedgut-Kalai-Naor theorem for slices of the boolean cube. Chicago J. Theor.
Comput. Sci., 2016, 2016.

[Fil16b] Yuval Filmus. An orthogonal basis for functions over a slice of the boolean hypercube. Electr.
J. Comb., 23(1):P1.23, 2016.

[FKMW16] Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. Invariance principle on the
slice. In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, pages 15:1–15:10, 2016.

[FM16] Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the boolean cube.
In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo,
Japan, pages 16:1–16:13, 2016.

[FW86] Peter Frankl and Richard M. Wilson. The erdös-ko-rado theorem for vector spaces. J. Comb.
Theory, Ser. A, 43(2):228–236, 1986.
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24, 2002, page 25, 2002.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for max-cut and other 2-variable csps? SIAM J. Comput., 37(1):319–357, April
2007.

[KM16] Subhash Khot and Dana Moshkovitz. Candidate hard unique game. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 63–76, 2016.

[KMS16] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games and grassmann
graphs. Electronic Colloquium on Computational Complexity (ECCC), 23:124, 2016.

[Kol11] Alexandra Kolla. Spectral algorithms for unique games. Computational Complexity,
20(2):177–206, 2011.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2− ε. J.
Comput. Syst. Sci., 74(3):335–349, May 2008.

[KS13] Subhash Khot and Muli Safra. A two-prover one-round game with strong soundness. Theory
of Computing, 9(28):863–887, 2013.

57



[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 245–254, New York, NY, USA, 2008. ACM.

[Rot53] Klaus Friedrich Roth. On certain sets of integers. J. London Math. Soc., 28:104–109, 1953.

[Sri12] Murali K. Srinivasan. A positive combinatorial formula for the complexity of the q-analog of
the n-cube. Electr. J. Comb., 19(2):34, 2012.

[Sri14] Murali K. Srinivasan. The goldman-rota identity and the grassmann scheme. Electr. J. Comb.,
21(1):37, 2014.

[ST00] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal amortized
query complexity. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, May 21-23, 2000, Portland, OR, USA, pages 191–199, 2000.

[Tre98] Luca Trevisan. Recycling queries in PCPs and in linearity tests (extended abstract). In Pro-
ceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, May 23-26, 1998, pages 299–308, 1998.

[Tre08] Luca Trevisan. Approximation algorithms for unique games. Theory of Computing, 4(1):111–
128, 2008.

58



Appendix

A Proof of Theorem 2.25

We begin with a crude upper bound on the functions f≈i from 2.24.

Claim A.1. For every i, ‖f≈i‖∞ 6 2i
3‖F‖∞.

Proof. Induction on i. For i = 0, 1 this is obvious. Let i > 2 and assume for j < i, then for every Li ∈
[
V
i

]
,

|f≈i(Li)| =

∣∣∣∣∣∣µLi,in(F )−
i−1∑
j=0

∑
Lj⊆Li

f≈j(Lj)

∣∣∣∣∣∣
6 ‖F‖∞ +

i−1∑
j=0

2i
2‖f≈j‖∞.

The last inequality is by the triangle inequality. Use the induction hypothesis to get

|f≈i(Li)| 6 ‖F‖∞ +

i−1∑
j=0

2i
2
2j

3‖F‖∞ 6 (1 + i2i
2+(i−1)3)‖F‖∞ 6 2i

3‖F‖∞,

the last inequality follows by 1 + i2i
2+(i−1)3 6 2i

3
for every i > 2.

Lemma A.2. For every Li−1 ∈
[
V
i−1

]
,∣∣∣∣ E

Li⊇Li−1

[f≈i(Li)]

∣∣∣∣ 6 210i4−k‖F‖∞.

Proof. For each i = 1, ..., `− 1, let ξi be the maximum over Li−1 ∈
[
V
i−1

]
of
∣∣ELi⊇Li−1 [f≈i(Li)]

∣∣. We will
upper bound ξi inductively.

For i = 1, Claim 2.7 yields that Ex∈V \{0}
[
f̃1(x)

]
= 0, i.e. ξ1 = 0. Let i > 1, assume the statement for

all j < i and prove for i. Let Li−1 be the one obtaining ξi.

ξi =

∣∣∣∣∣∣∣∣ E
Li∈[Vi ]
Li−1⊆Li

[f≈i(Li)]

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣ E
Li∈[Vi ]
Li−1⊆Li

µLi,in(F )−
i−1∑
j=0

∑
Lj⊆Li

f≈j(Lj)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣µLi−1,in(F )− E
Li∈[Vi ]
Li−1⊆Li

 i−1∑
j=0

∑
Lj⊆Li

f≈j(Lj)


∣∣∣∣∣∣∣∣

The second equality is by linearity of expectation and Claim 2.7. We divide the inner sum to Lj contained
in Li−1 and those that are not. Using linearity of expectation, the contribution from those contained in Li−1

is
i−1∑
j=0

∑
Lj⊆Li−1

f≈j(Lj) = f≈i−1(Li−1) +

i−2∑
j=0

∑
Lj⊆Li−1

f≈j(Lj) = µLi−1,in(F ),
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the last equality is by the definition of f≈i−1. Therefore

ξi =

∣∣∣∣∣∣∣∣ E
Li∈[Vi ]
Li−1⊆Li

 i−1∑
j=0

∑
Lj⊆Li

Lj 6⊆Li−1

f≈j(Lj)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ E
Li∈[Vi ]
Li−1⊆Li

 i−1∑
j=0

j−1∑
r=0

[
i− 1

r

][
i− r
j − r

]
E

Lj⊆Li

dim(Lj∩Li−1)=r

[f≈j(Lj)]


∣∣∣∣∣∣∣∣ .

We next interchange order of summations and note that for fixed j, r Lj is a random j-dimensional
subspace intersecting Li−1 in dimension r to get that

ξi =

∣∣∣∣∣∣∣∣
i−1∑
j=0

j−1∑
r=0

[
i− 1

r

][
i− r
j − r

]
E

Lj∈[Vj ]
dim(Lj∩Li−1)=r

[f≈j(Lj)]

∣∣∣∣∣∣∣∣ .
Fix j, r and consider the inner expectation.

E
Lj∈[Vj ]

dim(Lj∩Li−1)=r

[f≈j(Lj)] =
1[
i−1
r

] ∑
Rr⊆Li−1

E
Lj∈[Vj ]

Lj∩Li−1=Rr

[f≈j(Lj)]

for every Rr ⊆ Li−1, the distribution over Lj that intersect Li−1 on Rr is j2i−k-close to the distribution of
Lj such that Rr ⊆ Lj . Therefore∣∣∣∣∣∣∣∣ E

Lj∈[Vj ]
Lj∩Li−1=Rr

[f≈j(Lj)]

∣∣∣∣∣∣∣∣ 6 µ

∣∣∣∣∣∣∣∣ E
Lj∈[Vj ]
Lj⊇Rr

[f≈j(Lj)]

∣∣∣∣∣∣∣∣+ j2i−k‖f≈j‖∞ = |µRr,in(f≈j)|+ j2i−k‖f≈j‖∞

which by Claim A.1 and definition of ξj , is bounded by ξj + j2i−k2j
3‖F‖∞. Plugging it back in, we get

the same bound on ∣∣∣∣∣∣∣∣ E
Lj∈[Vj ]

dim(Lj∩Li−1)=r

[f≈j(Lj)]

∣∣∣∣∣∣∣∣ ,
and hence by the triangle inequality,

ξi 6
i−1∑
j=0

j−1∑
r=0

[
i− 1

r

][
i− r
j − r

]
(ξj + j2i−k2j

3‖F‖∞)

6 i222i2( max
j=1,...,i−1

ξj + 2i−k2i
3‖F‖∞).
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Applying the induction hypothesis, we get that the last expression is at most

6 i222i2(210(i−1)4−k‖F‖∞ + 2i
3+i−k‖F‖∞)

6 24i2(210(i−1)4+1−k‖F‖∞)

6 210i4−k‖F‖∞.

We use ξi defined in the proof of the previous lemma for the next lemma as well. First, note that for
every j 6 i− 1 and every Lj ∈

[
V
j

]
,∣∣∣∣ E

Li⊇Lj

[f=i(Li)]

∣∣∣∣ =

∣∣∣∣ E
Li−1⊇Lj

[
E

Li⊇Li−1

[f=i(Li)]

]∣∣∣∣ 6 E
Li−1⊇Lj

[∣∣∣∣ E
Li⊇Li−1

[f=i(Li)]

∣∣∣∣] 6 ξi.

Lemma A.3. Let Li−1 ∈
[
V
i−1

]
and let F≈i be from Definition 2.24. Then∣∣∣∣ E

L⊇Li−1

[F≈i[L]]

∣∣∣∣ 6 220`4−k‖F‖∞.

Proof. Let ξi be from Lemma A.2. Use Claim 2.18 to get that

E
L⊇Li−1

[F≈i[L]] = αi−1 · µLi−1,in(f≈i) +
i−2∑
r=0

αr
∑

Rr⊆Li−1

µRr,in(f≈i),

where all αr are upper bounded by 27`2 in absolute value. Then by the triangle inequality, the definition of
ξi and the estimate

[
i−1
r

]
6 2i

2
,∣∣∣∣ E
L⊇Li−1

[F≈i[L]]

∣∣∣∣ 6 |αi−1| ξi +

i−2∑
r=0

|αr| 2i
2
ξi

Next we use the bounds we have on the αr’s and ξi to get the last expression is at most

6 i2i
2
27`2ξi 6 29`2210i4−k‖F‖∞ 6 220`4−k‖F‖∞.

Define
G̃i[L]

def
= (F − F≈i − F≈i−1 − ...− F≈0)[L].

We show that G̃i is nearly perpendicular to J6i in the following sense:

Lemma A.4. Suppose k > 5`2 + 1, and let i 6 `, Li ∈
[
V
i

]
. Then∣∣∣∣ E

L⊇Li

[
G̃i[L]

]∣∣∣∣ 6 220`4−k‖F‖∞
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Proof. By definition,

E
L⊇Li

[
G̃i[L]

]
= E

L⊇Li

F [L]−
i∑

j=0

F≈j [L]

 = µLi,in(F )−
i∑

j=0

E
L⊇Li

∑
Lj⊆L

f≈j(Lj)

, (22)

the last equality is by linearity of expectation and the definition of F≈j . Consider the last sum, and for each
j divide the inner sum into Lj that are contained in Li and those that are not. The contribution from Lj ⊆ Li
is

i∑
j=0

E
L⊇Li

 ∑
Lj⊆L∩Li

f≈j(Lj)

 =

i∑
j=0

[
i

j

]
E

L⊇Li

[
E

Lj⊆L∩Li

[f≈j(Lj)]

]

=
i∑

j=0

[
i

j

]
E

Lj⊆Li

[f≈j(Lj)]

=
i∑

j=0

∑
Lj⊆Li

f≈j(Lj)

= f≈i(Li) +

i−1∑
j=0

∑
Lj⊆Li

f≈j(Lj)

= µLi,in(F ),

where we noted Lj is a randomly chosen j-dimensional subspace of Li in the second expression, and used
the definition of f≈i in the last equality.

Plugging this into Equation (22), we get that

E
L⊇Li

[
G̃i[L]

]
= −

i∑
j=0

E
L⊇Li

 ∑
Lj⊆L
Lj 6⊆Li

f≈j(Lj)

.
Using standard manipulations (as in the proof of Lemma A.2), the last sum equals

−
i∑

j=0

j−1∑
r=1

[
i

r

][
`− i
j − r

][
i

r

]
E

Rr⊆Li

 E
Lj∈[Vj ]

Lj∩Li=Rr

[f≈j(Lj)]


Fix j 6 i, r 6 j − 1 and Rr, and consider the inner expectation. Then the distribution induced on Lj is
r2i−k close to uniform over Lj ⊇ Rr. Thus the absolute value of this expectation is at most

6

∣∣∣∣ E
Lj⊇Rr

[f≈j(Lj)]

∣∣∣∣+ 2r2i−k‖f≈j‖∞ = |µRr,in(f≈j)|+ 2r2i−k‖f≈j‖∞

6 210j4−k‖F‖∞ + 2i2i−k2i
3‖F‖∞

6 214i4−k‖F‖∞,
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the second inequality is by Lemma A.2 and Claim A.1. Thus by the triangle inequality,∣∣∣∣ E
L⊇Li

[
G̃i[L]

]∣∣∣∣ 6 i∑
j=0

j−1∑
r=1

[
i

r

][
`− i
j − r

]
214i4−k‖F‖∞ 6 i22i

2+`2214i4−k‖F‖∞ 6 220`4−k‖F‖∞.

Before we show prove 2.25, we require rough bounds ‖f=i‖∞ in terms of ‖F‖∞, provided by the
following claim.

Claim A.5. For every i ∈ 0, 1, ..., `,

‖f=i‖∞ 6 22i+i`2‖F‖∞.

Proof. Induction on i. For i = 0, 1 this is clear by the exact formulas in Section 2.4.1. Let i > 2, assume
for all j < i and prove for i. Then for every j < i, since F=j [L] =

∑
Lj⊆L

f=j(Lj), we have that

‖F=j‖∞ 6

[
`

j

]
‖f=j‖∞ 6 22j+(j+1)`2‖F‖∞,

the last inequality is by the induction hypothesis.
Let Li ∈

[
V
i

]
be a space obtaining |f=i(Li)| = ‖f=i‖∞. Since F − F=i − ...− F=0 is perpendicular to

J6i,
E

L⊇Li

[(F − F=i − ...− F=0)[L]] = 0,

and therefore by triangle inequality∣∣∣∣ E
L⊇Li

[F=i[L]]

∣∣∣∣ 6 |µLi,in|+
i−1∑
j=0

∣∣∣∣ E
L⊇Li

[F=j [L]]

∣∣∣∣ 6 ‖F‖∞+

i−1∑
j=0

‖F=j‖∞ 6 ‖F‖∞+

i−1∑
j=0

22j+(j+1)`2‖F‖∞.

(23)
On the other hand,

E
L⊇Li

[F=i[L]] = E
L⊇Li

∑
L′i⊆L

f=i(L
′
i)

 = f=i(Li) + E
L⊇Li

 ∑
L′i⊆L,L′i 6=Li

f=i(L
′
i)


= f=i(Li) + E

L⊇Li

 i−1∑
r=0

[
i

r

][
`− r
i− r

]
E

Rr⊆Li

 E
L′i⊆L

L′i∩Li=Rr

[
f=i(L

′
i)
]
.

Rearranging and noting that for fixed r,Rr, L′i is distributed uniformly among the i-dimensional subspaces
intersecting Li in Rr, we get that

E
L⊇Li

[Fi[L]] = f=i(Li) +
i−1∑
r=0

[
i

r

][
`− r
i− r

]
E

Rr⊆Li

 E
L′i∈[

V
i ]

L′i∩Li=Rr

[
f=i(L

′
i)
].
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For a fixed r 6 i − 1, Rr, the distribution of L′i is i2r−k close to uniform over all i-dimensional subspaces
containing Rr, and hence∣∣∣∣∣∣∣∣ E

L′i∈[
V
i ]

L′i∩Li=Rr

[
f=i(L

′
i)
]∣∣∣∣∣∣∣∣ 6

∣∣∣∣∣ E
L′i⊇Rr

[
f=i(L

′
i)
]∣∣∣∣∣+ i2r−k‖f=i‖∞ = i2r−k‖f=i‖∞,

in the last equality we used the fact the inner expectation is 0 by Lemma 2.19 (F=i ∈ J=i). Therefore by
the triangle inequality,

∣∣∣∣ E
L⊇Li

[Fi[L]]

∣∣∣∣ > |f=i(Li)| − E
L⊇Li

 i−1∑
r=0

[
i

r

][
`− r
i− r

]
E

Rr⊆Li


∣∣∣∣∣∣∣ E

L′i⊆L
L′i∩Li=Rr

[
f=i(L

′
i)
]∣∣∣∣∣∣∣



> ‖f=i‖∞ − i · 2i
2
2`

2 · i · 2r−k‖f=i‖∞

>
1

2
‖f=i‖∞

Combining this with Equation (23) we conclude that

‖f=i‖∞ 6 2‖F‖∞ + 2
i−1∑
j=0

22j+(j+1)`2‖F‖∞ 6 2‖F‖∞ + ·2i`2‖F‖∞
i−1∑
j=0

22j

6 2‖F‖∞ + 2 · 2i`2‖F‖∞
22i

3

6 22i+i`2‖F‖∞.

Proposition A.6. Let i 6 ` be integers,H[L], F [L] =
∑
Li⊆L

fi(Li) be a functions, and assume |EL⊇Li [H[L]]| 6

ε for every Li ∈
[
V
i

]
. Then

|〈H,F 〉| 6 2i`‖fi‖∞ε.

Proof.

〈H,F 〉 = E
L

[H[L]F [L]] = E
L

∑
Li⊆L

H[L]fi(Li)


= E

L

[[
`

i

]
E

Li⊆L
[H[L]fi(Li)]

]
=

[
`

i

]
E

Li∈[Vi ]

[
fi(Li) E

L⊇Li

[H[L]]

]
.

The proof is concluded by using the triangle inequality and the crude estimate
[
`
i

]
6 2i`.
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A.1 Proof of Theorem 2.25

Theorem 2.25 (Restated) . Assume k > 5`2 + 1, let V be a k-dimensional vector space over F2. Let
F :
[
V
`

]
→ R, 0 6 i 6 `, let Fi be the projection of F onto J=i and let F≈i be from Definition 2.24. Then

‖F=i − F≈i‖22 6 226`4−k‖F‖2∞.

Proof. For i = 0, 1 the theorem is obvious by the exact formula we have seen for F=0, F=1.
Recall that we have defined

G̃i[L] = (F − F≈i − · · · − F≈0)[L],

and define
Gi[L] = (F − F=i − ...− F=0)[L].

Note that Gi is perpendicular to J6i. Apply Proposition A.6 to 〈G̃i, F≈i〉 ( H = G̃i, using Claims A.1,A.4),

and to 〈G̃i, F=i〉 (H = G̃i, using Claim A.5, A.4) to get that both terms are bounded by ε
def
= 225`4−k‖F‖2∞.

On the other hand, since Fi is perpendicular to J6i−1 and F≈0 + ...+ F≈i−1 ∈ J6i−1,

〈G̃i, F=i〉 = 〈F, F=i〉 − 〈F≈i, F=i〉 = 〈F=i, F=i〉 − 〈F≈i, F=i〉 = ‖F=i‖22 − 〈F≈i, F=i〉,

the second equality is by orthogonality. Thus∣∣‖F=i‖22 − 〈F≈i, F=i〉
∣∣ 6 ε (24)

Additionally,

〈G̃i, F≈i〉 = 〈F, F≈i〉 − 〈F≈i, F≈i〉 −
i−1∑
j=0

〈F≈j , F≈i〉,

thus ∣∣〈F, F≈i〉 − ‖F≈i‖22∣∣ 6 ∣∣∣〈G̃i, F≈i〉∣∣∣+
i−1∑
j=0

|〈F≈j , F≈i〉| 6 iε, (25)

We have used |〈F≈i, F≈j〉| 6 ε that follows by Proposition A.6 using Claims A.3 and A.1.
Since Gi is perpendicular to J6i and F≈i ∈ J6i we have

0 = 〈Gi, F≈i〉 = 〈F, F≈i〉 − 〈F=i, F≈i〉 −
i−1∑
j=0

〈F=j , F≈i〉,

Thus as before

|〈F, F≈i〉 − 〈F=i, F≈i〉| 6
i−1∑
j=0

|〈F=j , F≈i〉| 6 (i− 1)ε. (26)

We have used |〈F≈i, F=j〉| 6 ε that follows by Proposition A.6 using Claims A.3 and A.5.
Combining Equation (24),(25), (26) we finish the proof:

‖F=i − F≈i‖22 = ‖F=i‖22 − 2〈F=i, F≈i〉+ ‖F≈i‖22
= (‖F=i‖22 − 〈F≈i, F=i〉) + (〈F, F≈i〉 − 〈F=i, F≈i〉) + (‖F≈i‖22 − 〈F, F≈i〉)

6 2iε 6 226`4−k‖F‖2∞.
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B Proof of Claim 2.18

B.1 Auxiliary propositions

For an integer d > 0, define a sequence {ad(m)}m∈Z by ad(0) = 1, ad(1) = 1−
[
d+1
d

]
, and inductively

ad(m+ 1) = 1−
m∑
n=0

[
d+m+ 1

d+ n

]
ad(n)

We also define ad(−1) = ad(−2) = · · · = 0.
To prove Claim 2.18, we require two simple propositions. The first of them is an inclusion-exclusion

type statement.

Proposition B.1. Let 0 6 d 6 j < i be integers and f :
[
V
i

]
→ R be a function. Then for every Lj ∈

[
V
j

]
,

∑
Ri∈[Vi ]

dim(Ri∩Lj)>d

f(Ri) =

j∑
r=d

ad(r − d)
∑
Rr⊆Lj

∑
Ri⊇Rr

f(Ri).

Proof. Let us count the number of times an Ri appears in the sum in the right hand side. Fix Ri such that
dim(Ri∩Lj) = d+m, form > 0. Note thatRi appears in the inner sums corresponding to r = d, ..., d+m,
and is counted

[
d+m
r

]
times respectively in each sum (since this is the number of Rr from Lj that are

subspaces of Ri). Therefore the coefficient of f(Ri) on the right hand side is
d+m∑
r=d

[
d+m

r

]
ad(r − d) = ad(m) +

m−1∑
n=0

[
d+m

d+ n

]
ad(n) = 1,

the last equality is by the definition of the sequence ad(n).

Proposition B.2. Let 0 6 d 6 j < i be integers and f :
[
V
i

]
→ R be a function. Then∑

Ri∈[Vi ]
dim(Ri∩Lj)=d

f(Ri) =

j∑
r=d

(ad(r − d)− ad+1(r − d− 1))

[
k − r
i− r

] ∑
Rr⊆Lj

E
Ri⊇Rr

[f(Ri)].

Proof. It holds that ∑
Ri∈[Vi ]

dim(Ri∩Lj)=d

f(Ri) =
∑

Ri∈[Vi ]
dim(Ri∩Lj)>d

f(Ri)−
∑

Ri∈[Vi ]
dim(Ri∩Lj)>d+1

f(Ri).

Use Proposition B.1 on each one of the sums, we get that their difference equals
j∑

r=d

ad(r − d)
∑
Rr⊆Lj

∑
Ri⊇Rr

f(Ri)−
j∑

r=d+1

ad+1(r − d− 1)
∑
Rr⊆Lj

∑
Ri⊇Rr

f(Ri)

=

j∑
r=d

(ad(r − d)− ad+1(r − d− 1))
∑
Rr⊆Lj

∑
Ri⊇Rr

f(Ri)

=

j∑
r=d

(ad(r − d)− ad+1(r − d− 1))

[
k − r
i− r

] ∑
Rr⊆Lj

E
Ri⊇Rr

[f(Ri)].
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The third and final proposition is a crude upper-bound on the sequence ad(m).

Proposition B.3. For every d > 0 and m,

|ad(m)| 6 |m+ 1| 2m(d+m).

Proof. Fix d, the proof is by induction on m (clear for negative m’s). For n = 1, 2, the claim is obvious
by the definition of ad(m). Let m > 3, assume for all n 6 m and prove for m + 1. By definition and the
triangle inequality,

|ad(m+ 1)| =

∣∣∣∣∣1−
m∑
n=0

[
d+m+ 1

d+ n

]
ad(n)

∣∣∣∣∣
6 1 +

m∑
n=0

[
d+m+ 1

d+ n

]
|ad(n)|.

We apply the induction hypothesis and the crude estimate
[
t
p

]
6 2t·(t−p) to get

|ad(m+ 1)| 6 1 +

m∑
n=0

2(d+m+1)(m+1−n)(n+ 1)2n(d+n)

= 1 + 2(d+m+1)(m+1)
m∑
n=0

(n+ 1)2n(n−m−1)

6 1 + 2(d+m+1)(m+1)
m∑
n=0

(n+ 1)2−n

6 1 + 2(d+m+1)(m+1)(m+ 1)
m∑
n=0

2−n

6 1 + (m+ 1)2(d+m+1)(m+1)

6 (m+ 2)2(d+m+1)(m+1).

Claim 2.18 (Restated) . Suppose 0 6 j < i 6 `, k > 7`2 + 1. There exists β0, ..., βj ∈ R such that the
following holds. For every F ∈ J6i given by F [L] =

∑
Ri⊆L

f(Ri) and Lj ∈
[
V
j

]
,

E
L⊇Lj

[F [L]] =

([
`− j
i− j

]
+ βj

)
· µLj ,in(f) +

j−1∑
r=0

βr
∑
Rr⊆Lj

µRr,in(f).

Additionally, the β’s have the following properties:

• for r = 0, ..., j − 1, |βr| 6 26`2 .

• |βj | 6 27`2−k.
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In particular, the coefficient of µLj ,in(f) is not 0.

Proof. By definition

E
L⊇Lj

[F [L]] = E
L⊇Lj

∑
Ri⊆L

f(Ri)



= E
L⊇Lj

 j∑
d=0

∑
Ri⊆L

dim(Ri∩Lj)=d

f(Ri)


= E

L⊇Lj

 j∑
d=0

[
j

d

][
`− j
i− d

]
E

Ri⊆L
dim(Ri∩Lj)=d

[f(Ri)]

. (27)

We have used the fact that there are
[
j
d

][
`−j
i−d
]
i-dimensional subspaces of a given `-dimensional space L that

intersect Lj in dimension d. Using linearity of expectation, we interchange expectation and the sum to get
that the expression in (27) equals

j∑
d=0

[
j

d

][
`− j
i− d

]
E

Ri∈[Vi ]
dim(Ri∩Lj)=d

[f(Ri)]

=

[
`− j
i− j

]
E

Ri⊇Lj

[f(Ri)] +

j−1∑
d=0

[
j

d

][
`− j
i− d

]
E

Ri∈[Vi ]
dim(Ri∩Lj)=d

[f(Ri)].

Next we rework the expectation inside the sum. Fix d 6 j − 1, then

E
Ri∈[Vi ]

dim(Ri∩Lj)=d

[f(Ri)] =
1[

j
d

][
k−j
i−d
] ∑

Ri∈[Vi ]
dim(Ri∩Lj)=d

f(Ri)

=
1[

j
d

][
k−j
i−d
] j∑
r=d

(ad(r − d)− ad+1(r − d− 1))

[
k − r
i− r

] ∑
Rr⊆Li−1

E
Ri⊇Rr

[f(Ri)],

the second equality is by Proposition B.2. Plugging the previous two equalities into Equation 27 yields

E
L⊇Lj

[F [L]] =

[
`− j
i− j

]
µLj ,in(f) +

j−1∑
d=0

[
`−j
i−d
][

k−j
i−d
] j∑
r=d

(ad(r − d)− ad+1(r − d− 1))

[
k − r
i− r

] ∑
Rr⊆Li−1

µRr,in(f).

Interchanging the order of summation on d, r, we get that the last expression equals

=

[
`− j
i− j

]
µLj ,in(f) +

j∑
r=0

[
k − r
i− r

]min(r,j−1)∑
d=0

[
`−j
i−d
][

k−j
i−d
] (ad(r − d)− ad+1(r − d− 1))

∑
Rr⊆Lj

µRr,in(f)

=

[
`− j
i− j

]
µLi−1,in(f) +

j∑
r=0

βr
∑

Rr⊆Li−1

µRr,in(f),
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as desired. We next estimate the coefficients. Let r = 0, 1, ..., j − 1, then

|βr| =

∣∣∣∣∣∣
[
k − r
i− r

]min(r,j−1)∑
d=0

[
`−j
i−d
][

k−j
i−d
] (ad(r − d)− ad+1(r − d− 1))

∣∣∣∣∣∣
Note that since i − d > i − r for each j in the sum, and the Gaussian coefficients are increasing in that
interval, we have that

[
k−j
i−d
]
>
[
k−j
i−r
]
. Further note that by the triangle inequality and Proposition B.3,

maxd=0,...,j−1

∣∣∣ad(r − d)− ad+1(r − d− 1)
∣∣∣ 6 2(r + 1) · 2r2 6 22r2+1, we get that

|βr| 6 22r2+1

[
k−r
i−r
][

k−i+1
i−r

] j−1∑
d=0

[
`− j
i− d

]
.

The sum can be bounded by

j−1∑
d=0

[
`− j
i− d

]
6 j max

d=0,...,j−1

[
`− j
i− d

]
6 i2`

2
6 22`2 .

The ratio of the Gaussian coefficients can be bounded by:[
k−r
i−r
][

k−j
i−r
] =

(2k−r − 1) · · · (2k−r − 2i−r−1)(2i−r − 1) · · · (2i−r − 2i−r−1)

(2k−j − 1) · · · (2k−j − 2i−r−1)(2k−i+1 − 2i−r−1)(2i−r − 1) · · · (2i−r − 2i−r−1)

=
i−r−1∏
m=0

2k−r − 2m

2k−j − 2m
6

i−r−1∏
m=0

2k−r

2k−j−1
= 2(j+1−r)(i−r) 6 2`

2
.

Combining the above, we conclude that βr 6 22r2+122`22`
2
6 26`2 .

Finally we estimate the coefficient of µLj ,in(f). Clearly this coefficient is
[
`−i+1
i−j

]
+ βj .

|βj | =

∣∣∣∣∣
[
k − j
i− j

] j−1∑
d=0

[
`−j
i−d
][

k−j
i−d
] (ad(r − d)− ad+1(r − d− 1))

∣∣∣∣∣
6

[
k−j
i−j
][

k−j
i−j+1

] j−1∑
d=0

[
`− j
i− d

]∣∣∣ad(r − d)− ad+1(r − d− 1)
∣∣∣

The maximal difference between the a’s is bounded the same way as before by 23`2 . Additionally, a basic
computation shows that [

k−j
i−j
][

k−j
i−j+1

] =
1

(2k−j − 2i−j)

(2i−j+1 − 1) · · · (2i−j+1 − 2i−j)

(2i−j − 1) · · · (2i−j − 2i−j−1)

=
1

(2k−j − 2i−j)
2i−j−1(2i−j+1 − 1)

=
1

2k−i+1 − 2
(2i−j+1 − 1)

6
1

2k−i
(2i − 1)

6 22`−k.
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Combining the above yields

|βj | 6 23`222`−k
j−1∑
d=0

[
`− j
i− d

]
6 23`222`−kj max

d=0,...,j−1

[
`− j
i− d

]
6 23`222`−k2`2`

2

6 27`2−k.

C Proof of Theorem 3.6

Below we construct the S randomly.
Let {Xu}u∈V \{0} be independent uniform {−1, 1}-valued random variables. Let Y2, ..., Y2` be addi-

tional uniform {−1, 1} independent random variables (those will only be used in the analysis). Define a
random variable

g[L] =
1√

2` − 1

∑
u∈L\{0}

Xu.

To construct the set S, add each L ∈
[
V
`

]
such that g[L] > c log(1/δ) for constant c such that δ 6

PrL [g[L] > c log(1/δ)] 6 2δ (there exists such constant since g[L] is close to a standard Gaussian random
variable).

The density of S is Θ(δ) with probability 1− o(1). For each L, let QL be the indicator random variable
which is one iff L ∈ S. Let µ be the expectation of QL (which we know is between δ and 2δ). We prove
that

Pr


∣∣∣∣∣∣∣
∑
L∈[V` ]

QL −
[
k

`

]
µ

∣∣∣∣∣∣∣ 6 2−`
[
k

`

] > 1− o(1).

Given that, it is clear we have µ(S) = µ+O(2−`) = Θ(δ) with probability 1− o(1).

Proposition C.1.

Pr


∣∣∣∣∣∣∣
∑
L∈[V` ]

QL − µ

∣∣∣∣∣∣∣ 6 2−`
[
k

`

] > 1−O(210`−2k).

Proof. We use the fourth moment method. Note that all QL have identical expectation µ.
Let us estimate the variance of the sum of the QL’s.

E


 ∑
L∈[V` ]

QL − µ


4 = E

 ∑
L,M,P,N∈[V` ]

(QL − µ)(QM − µ)(QP − µ)(QN − µ)

.
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Note that if there is a space out of {L,M,P,N} that intersects all others in {0}, then the expectation is
0. For any quadruples, this expectation is at most 1. Therefore the variance above is at most the number
of quadruples such that for any space intersects at least one other space non-trivially. The number of such
quadruples is at most [

k

`

]
·
[
`

1

]
· 3
[
k − 1

`− 1

]
·
[
k

`

]
· 3
[
`

1

]
·
[
k − 1

`− 1

]
The first factor chooses L, the second factor chooses non-trivial intersection, the third factor chooses the rest
of the space to intersect L - say M . The fourth factor chooses P , and the fourth factor chooses non-trivial
intersection of N with one of L,M,N and the fifth completes the choice of N .

To get some crude estimate of it, note that[
k−1
`−1

][
k
`

] 6
22`

2k − 2`−1
6 22`+1−k.

Hence the number of quadruples is at most [
k

`

]4

26`+6−2k.

Therefore by Markov’s inequality

Pr


∣∣∣∣∣∣∣
∑
L∈[V` ]

QL − µ
[
k

`

]∣∣∣∣∣∣∣ > 2−`
[
k

`

] = Pr


∣∣∣∣∣∣∣
∑
L∈[V` ]

QL − µ
[
k

`

]∣∣∣∣∣∣∣
4

> 2−4`

[
k

`

]4

 6 O(210`−2k).

Zooms of S. For any hyperplane W , one can repeat the argument of the proof of Proposition C.1 to
show that µ(SW ) = µ + O(2−`) with probability O(210`−2k). Hence by union bound, zoom-outs into one
dimension do not increase the density of S by more that O(2−`) with probability 1−O(210`−k).

Fix a non-zero v ∈ V . We analyze the expectation of µ(Sv)− µ(S) conditioned on Xv = 1. A similar
analysis works conditioned on Xv = −1.

Denote m = dc
√

log(1/δ)
√

2` − 1e. Let L be a subspace containing v. Then the probability L condi-
tioned on Xv = 1 is in S is

Pr

[
1√

2` − 1
(1 + Y3 + ...+ Y2`) > c

√
log(1/δ)

]
= Pr [Y3 + ...+ Y2` > m− 1],

hence this is the expected density of Sv.
Similarly, the expected density of µ(S) is

Pr [Y2 + Y3 + ...+ Y2` > m] =
1

2
Pr [Y3 + ...+ Y2` > m− 1] +

1

2
Pr [Y3 + ...+ Y2` > m+ 1].

Let us assume m is even– the proof is similar otherwise. Then

E [µ(Sv)]− µ =
1

2
Pr [m− 1 6 Y3 + ...+ Y2` 6 m] = Θ(2−2`)

(
2` − 2

2`−1 − 1 +m/2

)
.
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Proposition C.2. E [µ(Sv) |Xv = 1]− µ 6 Ω(2−`/2).

Proof. Using the standard fact

n/2∑
i=m/2

(
n

n/2 + i

)
> Ω

( n
m

)( n

n/2 +m/2

)
we get that by the inequality preceding the proposition that

E [µ(Sv)]− µ 6 2−`/2
√

log(1/δ)O(2−2`)
2`−1−1∑
i=m/2

(
2` − 2

2`−1 − 1 + i

)

= O(2−`/2
√

log(1/δ))

2`−1−1∑
i=m/2

(
2` − 1

2`−1 + i

)
= O(2−`/2

√
log(1/δ))Pr [Y2 + ...+ Y2` > m]

= O(2−`/2
√

log(1/δ)δ).

Proposition C.3. E [µ(Sv) |Xv = 1]− µ > Ω(2−`/2δ).

Proof. Using the standard fact

n/2∑
i=m/2

(
n

n/2 + i

)
6
√
n

(
n

n/2 +m/2

)
we get that by the inequality preceding the propositions that

E [µ(Sv)]− µ > 2−`/2Ω(2−2`)
2`−1−1∑
i=m/2

(
2` − 2

2`−1 − 1 + i

)

= Ω(2−`/2)2−2`
2`−1−1∑
i=m/2

(
2` − 1

2`−1 + i

)
= Ω(2−`/2)Pr [Y2 + ...+ Y2` > m]

= Ω(2−`/2δ).

From both propositions we see that conditioned on Xv = 1, the expected density of Sv is µ+O(2−`/2).
Repeating the argument of C.1 it is easy to prove that with probability 1 − O(210`−2k) the density of Sv is
µ+O(2−`/2) conditioned on Xv = 1.

The case where we condition on Xv = −1 is similar.
By a union bound the probability for all v, the density of Sv is µ+O(2−`/2) is 1−O(210`−k).
Finally, taking a union bound over zoom-out and zoom-in we see S is (1, O(2−`/2)) pseudo-random

with probability 1−O(210`−k).
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S has weight Ω(δ2) on the first level with probability Ω(δ2). Recall that the weight of S on the first
level equals (Claim 6.2)

E
[
W=1[S]

][`
1

]
E
v

[
(µ(Sv)− µ(S))2

]
− o(1).

Fix vi ∈ V . Then

E
Xv1 ,....,Xv

2k

[
(µ(Sv)− µ(S))2

]
> E

Xvi

[
E

Xvj ,j 6=i
[µ(Sv)− µ(S)]2

]
= Pr [Xvi = 1]Ω(2−`δ2)

= Ω(2−`δ2).

The first inequality is by E
[
Z2
]
> E [Z]2. The second inequality one is by Proposition C.3 and the fact

that µ(S) = µ + O(2−`) with probability 1 − o(1) conditioned on Xvi = 1 (this is true since we proved
µ(S) = µ+O(2−`) with probability 1− o(1) and we condition on event of probability 1

2 ).
Therefore, since

[
`
1

]
= 2` − 1, we get that

E
[
W=1[S]

]
> Ω(δ2).

Since W=1[S] 6 µ(S) 6 1, we have by an averaging argument that W=1[S] > c′δ2 with probability Ω(δ2)
(for explicit c′).

Wrapping things up. Let G1 be the event µ(S) = Θ(δ), G2 the event S is (1, O(2−`/2)) pseudo-
random and G3 the event W=1[S] > c′δ2 for the an explicit constant. Then in the above we have seen
Pr [G1],Pr [G2] > 1− o(1) while Pr [G3] > 1

4δ
2, and therefore

Pr [G1 ∩G2 ∩G3] > Ω(δ2)− o(1) > 0,

and in particular there exists a choice of S as desired.

D Proof of Theorem 1.3

Fact D.1. Let δ > 0, k, ` be integers and V a k-dimensional space over F2. For sufficiently large k, `, if S
is a set of vertices in G(V, `) of density δ, then Φ(S) > 1

2 −
1
2δ.

Proof. Let F be the indicator function of S. Then

Φ(S) = 1− 1

δ
〈F,AG(V,`)F 〉. (28)

Writing the spectral decomposition F = F=0 + ...+F=` and plugging it into the inner product, we see that

〈F,AG(V,`)F 〉 =
∑̀
i=0

λi〈F=i, F=i〉 6 〈F=0, F=0〉+ λ1

∑̀
i=1

〈F=i, F=i〉.
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In the last inequality we used λ0 = 1 and λi 6 λ1 for all i > 1 (Fact 2.15). Notice that since F=0 ≡ δ and
λ1 6 1

2 (Fact 2.14), we get that

〈F,AG(V,`)F 〉 6 δ2 +
1

2
(
∑̀
i=1

〈F=i, F=i〉) = δ2 +
1

2
(
∑̀
i=0

〈F=i, F=i〉 − δ2) = δ2 +
1

2
(‖F‖22 − δ2).

The last equality is by Parseval. Since ‖F‖22 = δ, we conclude that

〈F,AG(V,`)F 〉 6
1

2
(δ2 + δ).

Plugging this into Equation 28 finishes the proof.

Theorem 1.3 (Restated) . For every δ > 1
2 there exists ε > 0 such that the following holds for sufficiently

large k, `. If F is a labeling of G(V, `) by linear functions that has δ-consistency in the Grassmann test,
then there exists a linear functionH : V → F2 such that

Pr
L

[F [L] ≡ H|L] > ε.

Proof. Define ε > 0 by δ = 1
2 + ε, and fix b = b`/10c. For any B ∈

[
V
b

]
, define

S[B] =

{
L ∈

[
V

`

] ∣∣∣∣B ⊆ L} .
Note that the following distribution over edges is uniform: sample B ∈

[
V
b

]
, then sample L,L′ ∈ S[B]

conditioned on dim(L ∩ L′) = ` − 1. Therefore, the expected fraction of edges satisfied by F inside S[B]
is δ. By an averaging argument, there is a set B ⊆

[
V
b

]
of relative size at least 1

2ε, such that at least 1
2 + 1

2ε
fraction of the edges are satisfied inside S[B] for each B ∈ B.

Fix B ∈ B. Partition S[B] into 2b parts, according to the value F [L]|B . Namely, let g1, ..., g2b be all 2b

linear functions gi : B → {0, 1}, and define

Pi[B] = {L ∈ S[B] | F [L]|B ≡ gi} .
We claim there exists i such that Pi[B] contains at least ε fraction of the spaces in S[B]. Assume towards

contradiction this is not the case. Note that the induced subgraph on S[B] is isomorphic to G(W, `− b) for
some W of dimension k − b. Since the density of each Pi[B] is strictly smaller than ε in this induced
subgraph, we have Φ(Pi[B]) > 1

2 −
1
2ε by Fact D.1.

Note that any edge going outside of Pi[B] is not satisfied by F (since the labels of the endpoints do not
agree on B). Since Pi[B] for i = 1, ..., 2b cover the subgraph, we conclude that all edges go out of one of
them. Combining all of the above, we see that less than 1

2 + 1
2ε fraction of the edges in S[B] are satisfied,

and contradiction.
Therefore, there exists iB such that |PiB [B]| > ε |S[B]|. Define the assignment P on

[
V
b

]
that assigns

each space a linear function on it, by P[B] = giB for B ∈ B and else arbitrarily. Then clearly

Pr
B∈[Vb ],L∈[V` ]

B⊆L

[F [L]|B ≡ P[B]] > Pr [B ∈ B] Pr
B∈B,L∈[V` ]

B⊆L

[F [L]|B ≡ P[B]] >
1

2
ε · ε =

1

2
ε2.

By [KMS16, Theorem D.1] (for large enough `), we conclude there exists a linear function g : V →
{0, 1}, such that

Pr
L∈[V` ]

[F [L] ≡ g|L] >
ε6

212
,

as desired.
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E Missing Proofs

E.1 Proof of Lemma 7.4

By definition

f̂≈2(S1, S2) = E
x,y

[f≈2(x, y)χS1(x)χS2(y)]

=
1

4

 E
x∈WS1
y∈WS2

[f≈2(x, y)]− E
x6∈WS1
y∈WS2

[f≈2(x, y))]− E
x∈WS1
y 6∈WS2

[f≈2(x, y)] + E
x 6∈WS1
y 6∈WS2

[f≈2(x, y)]

 .

Using the second item in Claim 7.2, we conclude that the sum of any two consecutive expectations is 0;
hence

f̂≈2(S1, S2) = E
x 6∈WS1
y 6∈WS2

[f≈2(x, y)].

Denote
U

def
= {(x, y) |x 6∈WS1 , y 6∈WS2} .

Since the probability x, y are linearly dependent is at most O(2−k), we have that

E
x 6∈WS1
y 6∈WS2

[f≈2(x, y)] = E
(x,y)∈RU

[
µSpan(x,y),in − µSpan(x),in − µSpan(y),in − µSpan(x+y),in + 2µ

]
+O(2−k‖F‖∞).

We now use linearity of expectation.

Proposition E.1. The distribution of x+ y is uniform over V when (x, y) ∈R U .

Proof. Sample (x, y) ∈R U With probability 1
2 , x ∈WS2 , in which case it is easy to see x+ y is distributed

uniformly outside WS2 . With probability 1
2 , x 6∈ WS2 in which case x + y is distributed uniformly over

WS2 .

Thus, the expectation of µSpan(x+y),in is µ, and the last expectation equals

E
(x,y)∈RU

[f≈2(x, y)] = E
(x,y)∈RU

[
(µSpan(x,y),in − µ)− (µSpan(x),in + µSpan(y),in − 2µ)

]
, (29)

which is E(x,y)∈RU
[
(µSpan(x,y),in − µ)− (f≈1(x) + f≈1(y))

]
by the definition of f≈1.

By the proof of Lemma 4.2,

− E
x 6∈WS1

[f≈1(x)] =

[
k−1
`

][
k
`

]
−
[
k−1
`

](µWS1
,out − µ),

and thus the above combined mean that

f̂≈2(S1, S2) = E
(x,y)∈RU

[
µSpan(x,y),in − µ

]
+

[
k−1
`

][
k
`

]
−
[
k−1
`

](µWS1
,out+µWS2

,out−2µ)+O(2−k‖F‖∞). (30)
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We compute the first expectation. Define U ′ = {(x, y) ∈ U |x 6= y}. Since the probability x = y when
(x, y) ∈ U is O(2−k), we have that

E
(x,y)∈RU

[
µSpan(x,y),in − µ

]
= E

(x,y)∈RU ′

[
µSpan(x,y),in − µ

]
+O(2−k‖F‖∞)

= E
(x,y)∈RU ′

[
E

L⊇Span(x,y)
[F [L]− µ]

]
+O(2−k‖F‖∞)

We now consider the resulting distribution on L. First, note that each L supported on that distribution
is not contained in WS1 and in WS2 . In particular, dim(L ∩ WS1 ∩ WS2) can be ` − 1, in which case
L ⊆WS1⊕S2 , L 6⊆WS1

12, or else dim(L ∩WS1 ∩WS2) = `− 2. We now proceed to calculate the precise
weight given to each L in the last expectation; clearly, it is proportional to the number of tuples (x, y) in U ′

so that x, y ∈ L. This number is (W
def
= V \W )(∣∣L ∩WS1

∣∣− ∣∣L ∩WS1 ∩WS2

∣∣) ∣∣L ∩WS2

∣∣
+
∣∣L ∩WS1 ∩WS2

∣∣ (∣∣L ∩WS2

∣∣− 1
)
,

the first line corresponds to choosing x ∈ WS2 \WS1 , and the second corresponds to choosing x outside
both WS1 ,WS2 (this reduces the options for y by 1). Thus, the weight of L is proportional to

ρ(L) =


22`−2 − 2`−1 L ⊆WS1⊕S2 , L 6⊆WS1 ,
22`−2 − 2`−2 dim(L ∩WS1 ∩WS2) = `− 2,
0 else.

And to get the weight of L, ρ(L) should be divided by

W =
∣∣U ′∣∣ [k − 2

`− 2

]
= (22k−2 − 2k−2)

[
k − 2

`− 2

]
.

Thus,

E
(x,y)∈RU

L⊇Span(x,y)

[F [L]− µ] =
1

W

∑
L:w(L)>0

ρ(L)(F [L]− µ).

We manipulate the last sum. We count all L-spaces 22`−2−2`−2 times and subtract L that were overcounted
due to that to get

=
22`−2 − 2`−2

W

∑
L

(F [L]− µ)− 22`−2 − 2`−2

W

∑
L⊆WS1

∩WS2

(F [L]− µ)− 2`−2

W

∑
L⊆WS1⊕S2
L6⊆WS1

∩WS2

(F [L]− µ)

− 22`−2 − 2`−2

W

∑
L⊆WS1

L6⊆WS1
∩WS2

(F [L]− µ)− 22`−2 − 2`−2

W

∑
L⊆WS1

L6⊆WS1
∩WS2

(F [L]− µ).

12In this case there must be W ⊇ WS1 ∩WS2 of co-dimension 1 containing L, but there are only 3 co-dimensional 1 spaces
containing WS1 ∩WS2 , namely WS1 ,WS2 ,WS1⊕S2 .
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The first sum is 0 since µ is the average of F over all L. For the 3 last sums, remove the restriction
L 6⊆WS1 ∩WS2 and compensate for that in the coefficient of the second sum to get

=
22`−2

W

∑
L⊆WS1

∩WS2

(F [L]− µ)− 2`−2

W

∑
L⊆WS1⊕S2

(F [L]− µ)

− 22`−2 − 2`−2

W

∑
L⊆WS1

(F [L]− µ)− 22`−2 − 2`−2

W

∑
L⊆WS1

(F [L]− µ).

We turn those into expectations to get

=
22`−2

[
k−2
`

]
W

(µWS1
∩WS2

,out − µ)

−
2`−2

[
k−1
`

]
W

(µWS1⊕S2
,out + µWS1

,out + µWS2
,out − 3µ)

−
(22`−2 − 2`−1)

[
k−1
`

]
W

(µWS1
,out + µWS2

,out − 2µ).

Plugging this into Equation (30) we conclude that

f̂≈2(S1, S2) =
22`−2

[
k−2
`

]
W

(µWS1
∩WS2

,out − µ)

−
2`−2

[
k−1
`

]
W

(µWS1⊕S2
,out + µWS1

,out + µWS2
,out − 3µ)

+

( [
k−1
`

][
k
`

]
−
[
k−1
`

] − (22`−2 − 2`−1)
[
k−1
`

]
W

)
(µWS1

,out + µWS2
,out − 2µ) +O(2−k‖F‖∞)

The last step in the proof is to estimate the coefficients above. Plugging in W and doing basic manipu-
lations with Gaussian coefficients shows that the coefficients in the third line is O(2`−k), that the difference

between the first two is O(2`−k), and that the second is O(2`−k)-close to c2(k, `) =
[k−2

` ]
[k`]−3[k−1

` ]+2[k−1
`−1]

.

Hence we get

f̂≈2(S1, S2) = c2

[
µWS1

∩WS2
,out − µ− (µWS1⊕S2

,out + µWS1
,out + µWS2

,out − 3µ)
]

+O(2`−k‖F‖∞)

E.2 Proof that Theorem 7.17 implies Theorem 3.7

Suppose F satisfying all the conditions, and let ε > δ be infimum of all ε such that F is (2, ε) pseudo-
random. We show that

ε > 2−51
(η
δ

)3
.

Suppose we showed that. Then either ε = δ and thus δ > 2−51
(η
δ

)3 - which cannot happen by the
assumption on η. Otherwise ε > δ and therefore F is not (2, 2−52

(η
δ

)3
) pseudo-random (minimality of ε).

We now show the lower bound on ε. By Theorem 7.17, we have that

η = W=2[F ] 6 217δε
1/3,

rearranging yields leads to the desired lower bound on ε.
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