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Abstract

Multiparty interactive coding allows a network of n parties to perform distributed computa-
tions when the communication channels suffer from noise. Previous results (Rajagopalan and
Schulman, STOC ’94) obtained a multiparty interactive coding protocol, resilient to random
noise, with a blowup of O(log(∆ + 1)) for networks whose topology has a maximal degree ∆.
Vitally, the communication model in their work forces all the parties to send one message at
every round of the protocol, even if they have nothing to send.

We re-examine the question of multiparty interactive coding, lifting the requirement that
forces all the parties to communicate at each and every round. We use the recently developed
information-theoretic machinery of Braverman et al. (STOC ’16) to show that if the network’s
topology is a cycle, then there is a specific “cycle task” for which any coding scheme has a
communication blowup of Ω(log n). This is quite surprising since the cycle has a maximal degree
of ∆ = 2, implying a coding with a constant blowup when all parties are forced to speak at all
rounds.

We complement our lower bound with a matching coding scheme for the “cycle task” that
has a communication blowup of Θ(log n). This makes our lower bound for the cycle task tight.

∗A preliminary version of this work appeared in the proceedings of the 8th Innovations in Theoretical Computer
Science (ITCS’17) conference.
†Part of this work was done while at Princeton University. Supported in part by NSF grant CCF-1149888.
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1 Introduction

In multiparty interactive communication, n parties, connected via some arbitrary network G = (V,E),
try to compute some function f of their private inputs by communicating messages over the network.
Coding for interactive communication asks for coding schemes that succeed to compute any such func-
tion even when the communication may be noisy. A fundamental question in this field is finding the
maximal rate such coding schemes can achieve1, that is, what is the minimal amount of redundancy
coding schemes must add in order to successfully compute any function f despite the noise.

The work of Rajagopalan and Schulman [RS94] gave an initial answer to this question, assuming
stochastic noise (e.g., when each bit is being flipped independently with some fixed probabil-
ity ε < 1/2): Let ∆ be the maximal degree in G, then any (noiseless) protocol χ can be simulated
with high probability over the noisy network by a protocol χ′ with communication complexity
CC(χ′) = CC(χ) ·O(log(∆ + 1)). That is, for constant-degree networks such as the line or the cycle,
the rate, CC(χ)/CC(χ′), is a constant bounded away from 0 while for highly-connected graphs such
as the star or the complete graph, the rate goes to zero when n tends to infinity, i.e., the rate is
Θ(1/ log n). The work of Alon et al. [ABE+16] shows that coding schemes with constant (non-zero)
rate also exist for the complete graph, and other highly-connected graphs, hinting that it may be
possible to achieve a constant rate coding scheme for any network G. This hope was terminated by
Braverman et al. [BEGH16], showing that a rate of Θ(log log n/ log n) is maximal for a specific task
over the star network.

All the above works assume that the communication over the network is performed in rounds,
where at every round all the parties “speak”, that is, 2|E| symbols are being communicated—one
symbol over each channel of the network. A natural question to ask is: Why is such an assumption
justifiable? One interpretation is that these previous works try to optimize the round complexity, as
opposed to the communication complexity, hence the assumption that all parties send a message to
all other connected parties in each round.

In this work, our goal is to optimize the communication complexity (as opposed to round
complexity), and we ask whether similar bounds on the rate follow if we don’t force all parties to
speak at every round.

1.1 Our Results

Surprisingly, we show that the rate of coding schemes when G is a cycle (assuming channels with
large alphabets) is at most O(1/ log n). This corresponds to a lower bound of Ω(log n) on the
communication blowup. Informally, our main theorem is the following:

Theorem 1.1 (main, informal). Let G be the cycle graph with n parties. Then, for any constant
ε < 1/2 there exists a task whose communication complexity over the noiseless G is d while any
coding scheme over any noisy graph G′ (with noise parameter ε) that succeeds with high probability
has communication complexity Ωε(d log n).

The above theorem is quite surprising in light of the result of Rajagopalan and Schulman [RS94]:
the maximal degree in the cycle graph is ∆ = 2, therefore the coding scheme of [RS94] (in the
“everybody speaks” model) has a constant rate which is independent of the size of the network! In
hindsight, the reason for this discrepancy is simple: the fact that everybody speaks in the model
of [RS94] implies an inherent blowup in the communication of O(n), which allows the parties to
overcome errors. Indeed, assume that the “relevant” information for computing the function f

1The rate of a coding scheme is the ratio between the communication of a protocol that performs over a noiseless
network, to the communication of the coding scheme for the same task, over the noisy network.
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progresses along the cycle: first p1 sends a message to p2 (while all the other parties have nothing
to send in the meantime), only then p2 has a message to send to p3 and so on. While the “relevant”
information is limited to a single edge on the network at any round, the fact that all the parties
must speak at every round multiplies the effective communication by n both for the noiseless and
noisy protocols, hence, it cancels out in the rate. On the other hand, this superfluous redundancy
gives the parties the opportunity to correct previous errors in rounds where they are supposed to be
idling if we weren’t to force all the parties to speak at every round, and charge the parties according
to the communication that actually happened.

For our lower bound we don’t restrict the topology G′ of the noisy graph, and allow any party
to communicate with any other party (since anyways we count the actual communication, allowing
the coding scheme to utilize any underlying graph just makes our lower bound stronger). Our lower
bound actually works when the noise erases symbols instead of corrupting symbols (again, making
the result stronger). The only “restrictive” assumption we have on the coding scheme is a fixed
speaking order, independent of the inputs and the noise; see the “Communication Model” paragraph
for a discussion regarding this assumption.

The Cycle Task The noiseless task we use for Theorem 1.1 is an analog of the “pointer jumping”
task over a cycle (see formal description in Section 2.1). Every party begins with a 2n-ary tree of
depth d, where each edge is labeled by a single bit. Each party begins at the root of its own tree,
and the goal is to travel down the tree until it reaches a leaf.

It is most convenient to describe this task via the protocol that solves it. The parties are
activated in a cyclic order (first p1, then p2, etc.). When pi is activated, it receives a message of the
form (b1, . . . , bn) from pi−1, corresponding to the labels of the edges traversed by the parties in the
previous n rounds (padding with zeros as necessary in the first n− 1 rounds). Upon receiving this
message ` = (b1, . . . , bn) from pi−1, pi moves down from its current node to its `-th child. Denoting
by b the label of the edge it just took, pi communicates to pi+1 the string (b2, . . . , bn, b). This process
continues until all parties reach a leaf at depth d in their input tree. The output is the path each
party took along its tree.

In addition to the lower bound on the communication blowup, we show a coding scheme that
successfully computes the cycle task over a noisy network with rate Θ(1/ log n), matching the rate
of our lower bound for the cycle task (up to a constant).

Theorem 1.2 (upper bound, informal). For any constant ε < 1/2, there exists a coding scheme
that solves the cycle task of depth d over noisy channels with large alphabet and error parameter ε.
The coding scheme obtains a rate of Θε(1/ log n) and a success probability of 1− 2−Ωε(d logn).

Communication Model For our communication model, we assume that protocols have a fixed
order of speaking. That is, we can assume that the protocol works in rounds so that the party that
speaks at round i is determined in advance, independently of inputs and noise. This assumption is
not without loss of generality, but we claim here that lifting this assumptions trivializes the model.

A completely unrestricted model would let the parties determine, at any round, whether they
speak or not (cf. adaptive protocols for the two party case [AGS16]; see also [GHS14]). Such a
model trivializes coding in the multiparty scenario, as parties can “encode” information via the
path that the message is sent through: say p1 wants to send a single bit to p2. If the bit is 0, then
p1 sends the message directly. If it is 1, it can send the bit through pn (who will relay it to p2).
Now, even if noise occurs2, p2 can figure out the bit in certainty by the identity of the sender.

2As long as we do not allow a stronger type of noise, i.e., insertions and deletions, see [BGMO16].
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Another model, which is not completely unrestricted but still trivializes coding in our scenario,
is described in [JKL15]. There, parties are allowed to decide whether to send a message or not
(and to whom) according to the transcript so far. On its surface, this restriction avoids the “path
encoding” described above, as parties are not allowed to change the delivery path according to
their inputs. Nevertheless, such a model still enables error correction via “path selection”, since
the transcript depends on the both the inputs and the noise. To give a simple example, assume
a noiseless protocol in which the parties speak in order (p1 sends a bit to p2, then p2 sends a bit
to p3, and so on). Such a protocol can be easily simulated over a noisy network in the [JKL15]
model: After pi sends a bit to pi+1 the latter sends the bit back either directly (if it was a 0), or
through pi−1 (if it was a 1); note that this decision is made as a function of the observed (possibly
noisy) transcript, and thus it is allowed in that model. Now p1 knows if its original bit reached pi+1

correctly or not and either retransmits the bit, or sends a message to pi+2 (who forwards it to pi+1)
to indicate that the bit was transferred correctly, and the simulation can move on to simulating
the next bit of the noiseless protocol. In other words, this model reduces bit flips into erasures,
and performing error correction from erasures with rate 1− ε is fairly simple if the model allows
changing the order of the speaking according to the observed noise.

To conclude, we show that there is a strong relation between the order of speaking and the
obtained coding rate. On one hand, allowing the order of speaking to change adaptively, allows
trivial coding schemes. On the other hand, fixing the order of speaking allows us to show an Ω(log n)
lower bound on the blowup for the cycle task. It is however possible that worse rates are possible
for other tasks. In fact, we conjecture that the blowup can get as high as Ω(n) in specific situations,
as a function of the “mismatch” between the order of speaking in the noiseless protocol and the
coding scheme.

Conjecture 1.3. There exists a topology G and a noiseless protocol χ with a fixed order of speaking
for which any coding scheme χ′ with a fixed order of speaking has a rate of at most O(1/n).

Our findings are reminiscent of the two-party case: if the simulation has a fixed order, the
order of speaking in the original scheme determines the maximal rate of the coding; specifically, it
is conjectured that there exists a protocol whose simulation has rate bounded away from 1. On
the other hand, if the simulation is allowed to be adaptive, better rates (that approach 1) can be
achieved. See discussion in [KR13, Hae14].

On Binary vs. Large Alphabet While our main result (Theorem 1.1) assumes that the parties
communicate symbols from a large alphabet, we also obtain a lower-bound for the case where the
parties communicate bits, i.e., use a binary alphabet. Typically, constructing coding schemes over
the binary alphabet is harder than constructing such schemes over a large alphabet. However, our
result is a lower-bound rather than a coding scheme, and it is not necessarily so that the binary-case
is stronger (nor is more difficult to obtain).

Nevertheless, the setting of binary channels and the setting of large-alphabet channels seem
incomparable, since the alphabet constraint applies both to the original (noiseless) protocol and to
the coded (noisy) protocol. We elaborate on this topic in Section 9.

We extend our lower bound result also to the case where the noiseless protocol and the
coding scheme are binary. Specifically, we show a lower bound of Ω̃(log n) on the blowup of the
communication for binary coding scheme over the star network (where the Ω̃ notation means
neglecting log log n terms). Informally, the theorem is the following.

Theorem 1.4 (binary case, informal). Let G be the star graph with n parties. Then, for any
constant ε < 1/2 there exists a task whose communication complexity over the noiseless G is d while
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any coding scheme (with fixed order) over any noisy graph G′ (with noise parameter ε) that succeeds
with high probability has communication complexity Ω̃ε(d log n).

We stress that the above theorem is incomparable to the result of [BEGH16]: in our model
parties may speak in an arbitrary (but fixed) order and are not forced to speak at every round.
The task in consideration is the generalized jumping pointer described in [BEGH16]. The proof of
Theorem 1.4 follows by combining the techniques developed in this paper for the cycle task with
the techniques of [BEGH16] in quite a straightforward way, and we omit the details here.

1.2 Overview of our Techniques

The proof of our lower bound uses techniques from [BEGH16] for bounding the progress of a coding
scheme χ′ in simulating a noiseless protocol χ. As in [BEGH16], we use the notion of cutoff
(Definition 4.1) that measures for any partial transcript of χ′, how many cycles of the noiseless
protocol χ are still not-simulated: when the cutoff is k, then the last d − k cycles of χ are not
simulated by the given transcript. More accurately (but still very informally) the transcript gives
very little of information about the labels {bi} of the last d− k cycles.

We show that any coding scheme that solves the cycle task with high probability must produce
transcripts whose cutoff is ≈ d, in expectation. Then, we show that for any segment in which the
coding scheme communicates O(n log n) symbols, the cutoff advances by at most O(1) cycles in
expectation. Namely, let π be some fixed previous communication (including erasures), and let
Πnew be the random variable describing the next O(n log n) symbols communicated by the coding
scheme χ′ (including erasures), then

E[cutoff(π ◦Πnew) | cutoff(π) = k] ≤ k +O(1).

In order for χ′ to achieve an expected cutoff of ≈ d, which is crucial for being correct with high
probability, the coding scheme must communicate at least Ω(dn log n) symbols, yielding a rate of
O(1/ log n).

The reason for the restricted progress in the cutoff is that many parties do not send any useful
information in the segment Πnew, and that the next “move” (in the input tree) of each party depends
on the moves of all the parties in the previous cycle. This means that most parties are missing a lot
of crucial information in order to advance more than a constant number of levels in their input tree.
Bounding the exact information sent by the parties (and thus the expected increase in the cutoff) is
performed via the machinery of [BEGH16].

Showing that many parties give no information in any segment of O(n log n) rounds in our
setting is a main technical difference from [BEGH16]. In the model of [BEGH16] all parties speak
at every round, thus when the coding scheme communicates O(n log n) symbols we know that this
communication is evenly spread—every party communicates exactly O(log n) symbols. In our setting,
it is possible that the communication is evenly spread, but it is also possible that all O(n log n)
symbols are communicated by a single party (or any other pattern in between). In the latter case,
even if the noise targets the single party that speaks, that party could still convey O(n log n) bits of
information by encoding its message via a standard error-correction code. Nevertheless, we show
that there is a large set of parties that do not communicate any information in the new segment:
either they don’t speak at all, or they speak very little and their entire communication is completely
erased by the noise. Furthermore, previous communication of these parties contains very little
information on their labels in the last d− k cycles to begin with.

The existence of this set of “erased” parties implies that the non-erased parties in this segment
don’t know how to proceed in their input tree, and their communication in that segment is “irrelevant”
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to the progress of the protocol, even if it is not erased by the noise. Indeed, assume a party’s current
node in its input tree is given, and assume that the party doesn’t know which of its children it should
go to next. The best that a party can do is to send all the labels below its current node. However,
due to the fact that each node has 2n children, that party cannot communicate more than O(1)
levels below its current node even if it gets to speak all the O(n log n) symbols in the next segment.

Naturally, the actual proof is more complex, since the party has some prior information about
the children it should go (due to communication in previous rounds). This means that the children
are not equiprobable and the party can communicate more information about (the labels of) more
probable children. Still, since the arity of the input tree is so large and since the information on the
next children it should take is rather little, the party will be able to communicate information on
the labels of only O(1) levels below its current node (in expectation).

1.3 Other Related Work

The field of coding for interactive communication was initiated by Schulman [Sch92, Sch96] who
formalized the question for the two-party case and developed basic techniques used for solving this
task, either when the noise is stochastic (where each bit is flipped with some constant probability)
or adversarial (where any subset of up to ε-fraction of the bits can be flipped). Later works in the
two-party setting improve on the computational efficiency, success probability, and achievable rate
of coding schemes. We refer the reader to [Gel15] for a survey on interactive coding.

As mentioned above, the interactive coding in the multiparty case was initiated by Rajagopalan
and Schulman [RS94] for the random noise case. Efficiency for this setting is obtained by Gelles,
Moitra and Sahai [GMS14]. The works of Alon et al. [ABE+16] and of Braverman et al. [BEGH16]
identify the maximal rate obtainable over the complete graph and the star (and provide efficient
schemes that obtain such a rate).

The work of Gallager [Gal88] considers the case where all the parties share a noisy broadcast
channel, and show a coding scheme with blowup of Θ(log logn) for the task where each party begins
with a single input bit and needs to learn all the input bits of all the other parties. Goyal, Kindler,
and Saks [GKS08] prove that a blowup of Θ(log logn) is tight for the case of learning all parties’
input bit over a noisy broadcast channel, i.e., they prove a blowup lower bound that matches the
blowup of Gallager’s scheme.

The case of multiparty interactive coding assuming adversarial noise is considered by Jain, Kalai
and Lewko [JKL15] providing a coding scheme for topologies that have a star as a subgraph, that
withstands O(1/n)-fraction of adversarial noise and blows up the communication by only a constant.
The work of Hoza and Schulman [HS16] provides a coding scheme for any topology G = (V,E) that
withstands O(1/n)-fraction of noise and obtains a rate of Θ(n/|E| log n).

1.4 Paper Outline

We begin by defining the setting and the communication task we wish to solve (Section 2). In
Section 3 we give our upper bound, showing a coding scheme for the cycle task with blowup O(log n).
The more complex lower bound is presented in Sections 4–8: In Section 4 we define the notion
of cutoff and prove that any successful coding protocol must produce a transcript with a large
cutoff value. In Section 5 we formalize the claim that the cutoff increases by only a constant for
every O(n log n) noisy transmissions of any given coding scheme; this implies the lower bound. The
detailed proof of this claim is given in sections 6–8; technical preliminaries and proofs of several
technical lemmas appear in Appendices A and B, respectively.
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2 Preliminaries: Notations, Model, Coding Schemes

Notations For n ∈ N we denote by [n] the set {1, 2, . . . , n}. The log() function is taken to base 2.
For two strings a, b we denote their concatenation by a ◦ b.

Given any tree T of depth N , we denote its first k levels by T ≤k and its N −k last levels by T >k.
Given a path z = (e1, e2, . . .), we denote by T [z] the subtree of T rooted at the end of the path
that begins at the root of T and follows the edge-sequence z. The above notation composes for sets
of trees, e.g., if ~T = (T1, T2, ...) is an array of trees and ~z = (z1, z2, . . .) is an array of paths, then we
let ~T ≤k denote the array (T ≤k1 , T ≤k2 , ...) and ~T [~z] the array (T1[z1], T2[z2], ...), etc.

As a rule, we use small letters to denote specific values (e.g., the input xi given to party i),
and capital letters to denote the corresponding random variables (i.e., Xi for the random variable
describing the input of the i-th party, when the inputs are drawn from some given distribution).

Multiparty Interactive Communication and Protocols We assume an undirected network
G = (V,E) of n = |V | parties, p1, . . . , pn, where pi is connected to pj if and only if (i, j) ∈ E. Each
party is given an input xi, and is assumed to output fi(x1, . . . , xn) at the end of the protocol.

A protocol dictates to each party what is the next symbol to send and over which channel, given
the party’s input, the round number, and all the symbols that the party has received so far. After a
fixed and predetermined number of rounds, the protocol terminates and each party outputs a value
as a function of its input and observed transcript. We assume that the order of speaking is fixed
and is independent of the party’s inputs and the noise. That is, it is determined in advance which
channel is utilized at each round.

Noisy and Noiseless Networks For the noiseless network, we focus on the cycle network. In
the cycle, each party pi is connected to pi−1 and pi+1 (all indices are modulo n).

For showing lower bounds over the noisy network we allow the parties to utilize the complete
graph, avoiding any limitation on the protocol (since limiting the connectivity may harm the rate
artificially). For our upper bound (coding scheme) the underlying topology is still the complete
graph, however, the specific scheme we show does not need to communicate over all possible links—
it communicates only over the cycle subgraph.

In a noisy network, each channel is assumed to suffer from random noise. For our lower bound
we will assume each channel is a large-alphabet erasure channel ECε with erasure probability ε.

Definition 2.1. For ε ∈ [0, 1] and a finite set Σ, the erasure channel over alphabet Σ is a random
function ECε : Σ→ Σ∪{⊥} which turns each input symbol into an erasure mark ⊥ with probability ε,
or otherwise keeps the symbol intact. When a channel is accessed multiple times, each instance is
independent.

When considering upper bounds (coding schemes), channels with random noise are too weak (i.e.,
they can be reduced to erasure channels with high probability). Therefore, for our coding scheme
we will assume a stronger type of noise we name semi-adversarial. Here, the transmissions that
will be corrupted are determined in a random manner, however the received symbol of a corrupted
transmission is determined adversarially ; see discussion in Section 3.

Definition 2.2. For ε ∈ [0, 1] and a finite set Σ, the semi-adversarial noisy channel over alphabet Σ
is a random function SACε : Σ→ Σ which corrupts any input symbol with probability ε, independently
per instance. Once a symbol is corrupted, it may turn into any symbol in Σ, determined adversarially
by the channel (possibly, all the corrupted symbols are chosen in a dependent manner).
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Communication Complexity For any protocol χ communicating symbols from an alphabet Σ,
denote by |χ| the maximum number of symbols communicated by any execution of χ. Since we
assume the order of speaking is fixed regardless of the inputs (and noise), each execution of χ
has exactly |χ| number of symbols communicated. We define the communication complexity of χ,
denoted by CC(χ), by

CC(χ) = |χ| · log |Σ|.

2.1 The Cycle Task: Problem Statement

In this section we define the cycle task and discuss a simple protocol that solves it over the noiseless
cycle network.

Recall we have n parties {p1, . . . , pn} where each pi receives the input xi. We assume each input
xi is a labeled |Σ|-ary tree of depth d, where Σ = {0, 1}n and each edge in the tree is labeled by a
single bit.

The output of pi is a simple root-to-leaf path (of length d) denoted by pathi, and the complete
task output is denoted by path = (path1, . . . , pathn). We define the output in an inductive manner.
For i ∈ [n] and j ∈ [d], let pathi(j) ∈ {0, 1}n denote the (index of the) j-th edge of pathi. Moreover,
let bi(j) ∈ {0, 1} denote the label of the edge that corresponds to pathi(j). For the induction basis,
assume bi(j) = 0 for all i ∈ [n] and j ≤ 0.

For j ≥ 1, and for i ∈ [n] we define pathi(j) as a function of {pathi′(j
′)}(j′,i′)<(j,i), where

(x, y) < (u, v) holds if x < u or if both x = u and y < v; note that this implies a total order on
pairs (j, i). The value of pathi(j) is given by the labels bi′(j

′) for the n−1 pairs (j′, i′) preceding (j, i)
according to the total order we defined. Namely,

pathi(j) = (bi+1(j − 1), bi+2(j − 1) . . . , bn(j − 1), b1(j), . . . , bi−2(j), bi−1(j)).

Note that the cycle task can be solved by a simple protocol as described in Section 1. The protocol
works in “cycles” where each such cycle means repeating the following process for p1, p2, . . . , pn in
order. During the j-th cycle pi sends to pi+1 the value of pathi(j) along with the label bi(j) of the
edge it just took. Now pi+1 can infer the value of pathi+1(j), and obtain the bit bi+1(j) labeling
that edge in its input xi+1. It follows that after d such “cycles” all parties reach a leaf at level d in
their input, and can output pathi. Assuming the parties communicate symbols from Σ, the protocol
communicates dn symbols3 and has a communication complexity of dn2 bits. It can be verified that
the communication complexity of solving the cycle task is Θ(dn2).

For our lower bound, we assume that the inputs X = (X1, . . . , Xn) are sampled so that each
label is uniform in {0, 1}. We are looking for coding schemes that solve the above task with high
probability over the inputs X, the noise and the randomness of the coding scheme.

3 Upper Bound: A coding scheme with blowup Θ(log n) for the
cycle task

In this section we provide a coding scheme for the cycle task that achieves a communication blowup
of Θ(log n) with respect to the communication complexity of solving the cycle task over noiseless
channels. The key idea behind our scheme is repeating each communicated symbol Θ(log n) times.
This in turn reduces the probability that the symbol is decoded incorrectly at the recipient to be
polynomially small in the number of parties. Then, the event of an error is rare enough that standard

3In fact, it is enough to use Σ = {0, 1}n−1. We will neglect this issue as it doesn’t change the asymptotic behaviour
of the communication complexity, nor the asymptotic rate of related coding schemes.
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interactive-coding techniques that recover from small amount of errors (e.g., [RS94]) succeed with
overwhelming probability.

When considering random noise over large alphabet, notice that the analog of the binary-
symmetric-channel—a channel that uniformly picks the corrupted symbol—is too weak. Indeed,
the parties could use only a small fraction of the symbol space in order to “catch” errors with
high probability, thus essentially reducing the noise model into the case of erasures, while keeping
the asymptotic rate the same up to a constant (see, for instance, the blueberry code technique
in [FGOS15]).

Hence, our upper bound is defined in the somewhat stronger noise-model, which we call semi-
adversarial, formally defined in Definition 2.2. In this noise model, each symbol is corrupted with
probability ε, independently across different symbols. However, once a symbol is corrupted, the
output symbol of the channel is chosen adversarially, in a worst case manner.

Our main theorem for this section is the following

Theorem 3.1. For any ε < 1/2, there exists a coding scheme with fixed order that solves the cycle
task over a noisy network where each communication channel is a SACε, with rate Θε(1/ log n) and
success probability at least 1− 2−Ωε(d logn).

3.1 Coding Scheme Construction

The construction of our coding scheme utilizes a primitive known as tree codes (see [Sch96]; also
see [Gel15]). Let us first recall Hamming distance.

Definition 3.2. The Hamming distance ∆(s, s′) of two strings s = s1 . . . sm and s′ = s′1 . . . s
′
m of

length m, is the number of positions i such that si 6= s′i.

A tree code is defined as follows.

Definition 3.3. A β-ary tree code of depth γ, distance α and alphabet σ is a prefix code TC :
[β]≤γ → σ≤γ that satisfies the following. For any two strings x, y ∈ [β]` of the same length ` ≤ γ
whose first difference is at the i-th coordinate,

∆(TC(x),TC(y)) ≥ α(`− i+ 1),

where ∆(·, ·) is the Hamming distance.

Schulman [Sch96] showed that infinite-depth tree codes exist, and described the tradeoff between
their distance and arity, and their alphabet size.

Lemma 3.4 ([Sch96]). For any fixed β ∈ N and α ∈ (0, 1), there exists a finite alphabet σ of size
|σ| = βO(1/(1−α)) which suffices to construct a β-ary tree code with distance α and any depth.

Our coding scheme is denoted by χ′ and described in Algorithm 1. The scheme builds on
tools from [RS94], and adapts them to our communication-model in which the parties are not
forced to speak at every round. Let χ be the noiseless protocol for the cycle task described in
Section 2.1. Our coding scheme χ′ simulates χ step by step, sending each symbol that χ sends using
two levels of coding (tree code TC and repetition code REP). The repetition code sends each symbol
for k = Θε(log n) repetitions, so that decoding via a simple majority fails at the recipient with
probability at most n−10. The tree codes ensures that the recipient correctly decodes an increasing
prefix of the communication. While we cannot guarantee that a party correctly decodes all the
symbols sent to it so far, symbols that were sent earlier in the protocol will be decoded correctly
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with an increasing probability. The party can then verify that symbols it has already sent during
previous rounds are consistent with its current understanding of the decoded incoming transmissions.
In case they are not, the party transmits a special B symbol whose meaning at the recipient is to
“delete” the last (non-B) symbol it has received. By sending multiple B symbols, the party can delete
any incorrect suffix of its outgoing transmissions, until they become consistent with its (current
view of its) incoming transmissions.

One special case can happen when a party has communicated a future symbol due to some
decoding error (e.g., the other parties where going back), however, in a later round it finds out that
the communicated symbol is indeed the correct one. In this case, the party sends a H symbol which
means “hold”: don’t go back, but also no new symbol is added.

In the coding scheme χ′ the parties communicate over channels with alphabet of size (|Σ|+ 2)
that corresponds to all the symbols of χ and the additional “back” symbol B and “hold” symbol H.
We assume a tree code with input alphabet O(Σ) (specifically, a (|Σ|+ 2)-ary tree), distance α > ε,
and output alphabet of size |Σ′| = |Σ|Oε(1). Such a tree code exists due to Lemma 3.4.

3.2 Coding Scheme Analysis

We now prove that the coding scheme χ′ of Algorithm 1 solves the cycle task with high probability
over noisy networks, and satisfies the conditions of Theorem 3.1.

Proof. (Theorem 3.1.) First, let us analyze the obtained rate. It is easy to verify that

CC(χ′) = 100d · n ·Oε(log n)× log |Σ′|.

Recall that CC(χ) = Θ(dn log |Σ|) to get that the rate is

CC(χ)

CC(χ′)
=

dn log |Σ|
100dn ·Oε(log n) ·Oε(1) log |Σ|

= Θε

(
1

log n

)
.

Next we show that χ′ simulates χ with high probability. For any j ∈ [d′] let ψ(j) be the potential
of the protocol at the end of cycle j defined as follows. For party pi, let r′i(j) and s′i(j) be the
parsed incoming and outgoing messages of pi up to cycle j of the simulation χ′, respectively; set
Ti(j) = s′i(j) be the simulated outgoing transcript of party pi up to cycle j. This transcript can be
compared to the correct transcript pi sees in χ. Usually, Ti agrees with the correct transcript up to
some point (this will be called the correct prefix), and possibly differ from the correct transcript
beyond it (this will be the incorrect suffix). let ψ+(j) be minimal length of correct prefix across all
the parties, and let ψ−(j) be length of the longest suffix some party pu holds, where we begin to
count the suffix length for pu starting at position ψ+(j) in Tu(j). The potential at the end of the
j-th cycle of the simulation is then

ψ(j) = ψ+(j)− ψ−(j).

We denote by k-error the event that at least dk/2e repetitions of a single symbol transmission
are corrupted, i.e., that the receiver decodes the repetition code to a different symbol than the
one sent. The correctness of the coding scheme follows from the following two claims, relating the
potential to the noise pattern observed throughout the coding scheme.

Claim 3.5. After every 3 cycles in which all the parties decode the correct incoming messages, the
potential increases by at least 1.

9



Algorithm 1 The coding scheme χ′ for the Cycle Task

Let χ be the noiseless protocol that solves the cycle task. In particular, for any i ∈ [n] and
any r ∈ Σ≤d let χi(r) be the next symbol pi sends if its incoming transcript is r. We assume
χi(r) = 0 for any r whose length is larger than d. Set k = Θε(log n).

1: Init: for all i ∈ [n], yi, si ← ∅.

2: repeat for d′ = 100d times
3: for i = 1 to n (sequentially) do for party pi:
4: Let Υ ∈ (Σ′)k be the last k symbols received from pi−1

5: yi ← yi ◦ REP−1(Υ) . Decode the repetition code and store the received symbol
6: r ← TC−1(yi) . Decode yi via the tree code
7: r′ ← Parse(r)

The function Parse(r) is defined in the following manner: Process the string r symbol-by-symbol in order.
When processing a symbol from Σ, copy it to the output register. When processing a H symbol, ignore
it and move on. When processing a B symbol, delete the last non-deleted symbol in the output register.
For instance, the string ‘aHbdBcccBdBBd’ is parsed to the string ‘abcd’.

. Check Consistency according to χ
8: s′ = Parse(si)
9: if |s′| < |r′| and for all j ≤ |s′|, s′(j) = χi(r

′
1 · · · r′j) then

10: σ ← χi(r
′
1, . . . , r

′
|s′|+1) . Consistent: the next symbol is set according to χ

11: else if |s′| = |r| and for all j ≤ |s′|, s′(j) = χi(r
′
1 · · · r′j) then

12: σ ← H . Consistent: correct next message was already sent; hold
13: else
14: σ ← B . Inconsistent: send a “back” symbol
15: end if
16: si ← si ◦ σ
17: Let σ̃ be the last symbol of TC(si) . Encode σ via the tree code
18: Send REP(σ̃) to pi+1 . Encode σ̃ via a repetition code (k symbols)
19: end for
20: end repeat

Ramark: The first party p1 behaves slightly different in order to initiate the cycle. We assume that p1
begins with a “received” transcript that contains the symbol 0d in a “hardcoded” manner. Specifically,
for p1 Line 7 in the above algorithm is always replaced with r′ ← 0d ◦ Parse(r). Indeed, on the first step
of the protocol p1 receives no incoming messages, therefore y1 = ∅ and r′ = 0d ◦ ∅, so p1 generates the
first message σ = χ1(0d).
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Proof. If all the parties posses correct transcripts Ti of the same length, i.e., ψ− = 0, then it is clear
that during the next cycle the potential increases by one.

If all Ti are correct, but they are not of the same length, parties with |Ti| = ψ+ will add a
correct symbol to Ti, while parties with |Ti| > ψ+ will either remove a symbol, add a symbol or
hold. In all cases ψ+ increases by one while ψ− either remains the same (if a symbol was added by
a party with |Ti| > ψ+) or otherwise decreases. Hence, in all cases, the potential ψ increases by at
least 1 at the end of the cycle.

Now consider the case where at the end of the (j − 1)-th cycle, some of the Ti’s are incorrect.
For this analysis assume that after the (j + 2)-th cycle, the Ti’s are still not all correct; we later
consider the case that they become correct during these three cycles. Since we assume all decodings
are correct in the next 3 cycles, for any 1 < i ≤ n and for j′ ∈ {j, j + 1, j + 2} it holds that
r′i(j

′) = s′i−1(j′) and for the first player we have r′1(j′) = 0d ◦ s′n(j′ − 1). Let P be the set of parties
that find an inconsistency in their Ti during the j + 2-th cycle, and let pk ∈ P be the first such
party. Note that P 6= ∅ or otherwise all Ti’s are correct before the end of the third cycle, which we
assumed is not the case.

We distinguish three cases.

1. For any party pi ∈ P : It is clear that Pi sends a B in the j-th cycle so it effectively removes a
symbol from its Ti.

2. Consider pk, . . . , pn: Denote by m≥k(j
′) = maxi≥k|Ti(j′)| the maximal length of Ti of the

parties pk, . . . , pn at the end of cycle j′. We claim that m≥k(j) < m≥k(j − 1). Let pi be the
first party (with i ≥ k) whose Ti is maximal, |Ti| = m≥i(j − 1). It is clear that this party
removes one symbol from its Ti: either it is pk who removes a symbols due to item 1 above, or
otherwise, it holds that Ti−1(j − 1) is not maximal. In this case, note that Ti−1(j) cannot be
maximal (i.e., it cannot be that pi−1 added a symbol to its transcript on the j-th cycle). This
holds since all the parties before pi−1 (up to pk) have a transcript’s length strictly less than
m≥k(j − 1) when it is pi′−1 turn. hence Ti−1 < Ti and due to the correct decoding we have
r′i < s′i so pi removes a symbol from its Ti (Line 14). A similar argument holds for the next
party that holds a transcript of maximal length, and so on. Hence, m≥k(j) < m≥k(j − 1).

The same argument applies to all three cycles, and we have m≥k(j + 2) ≤ m≥k(j − 1)− 3.

3. Now consider p1, . . . , pk−1. Similar to the above case, let m<k(j
′) = maxi<k |Ti(j′)| be the

maximal length of Ti of the parties p1, . . . , pk−1 at the end of cycle j′. There are three cases
here to consider.

(a) The first case is when T1(j − 1) ≤ Tn(j − 1) in which case p1 potentially adds a symbol
to its transcript, thus potentially m<k(j) = m<k(j − 1) + 1

(b) The second case is when T1(j − 1) = Tn(j − 1) + 1 in which case p1 potentially holds and
it can be that m<k(j) = m<k(j − 1).

(c) In the last case, it holds that m<k(j) < m<k(j − 1) by a similar argument to item 2
above.

It follows that, in each of the 3 cycles, either m<k decreases by 1, or otherwise it must be
that m<k ≤ m≥k + 2, that is, m<k is bounded by m≥k, maybe up to an additive constant
of 2. Therefore, if we look at the maximal transcript length m = max(m<k,m≥k) of three
consecutive cycles, we have that m≥k decreases in each of these cycles, and m<k is bounded
by m≥k + 2, then it must hold that m(j + 2) < m(j − 1), which proves the claim.
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Finally, in the above we assumed that at least one of Ti’s remain incorrect at the end of the
third cycle. If during the analysis above we reached a situation where all the Ti’s are correct,
it means that at this point ψ− is 0 (which already implies the potential has increased), and
from that point and on ψ+ (and the potential) can only increase.

Claim 3.6. During any given consecutive n steps of the for-loop (Line 3), the potential decreases
by at most 3.

Proof. Each of r′i, s
′
i either grows by at most one symbol (correct or not) or reduces by at most one

symbol (correct or not), so the worst case is when ψ+ decreases by one (since some party deleted
a symbol from its correct prefix) and ψ− increases by two (since some party added an incorrect
symbol, and the ‘correct prefix’ is now shorter by 1 due to the change in ψ+), thus ψ changes by at
most 3.

It follows from the above two claims, that the coding scheme is successful in simulating the
first d cycles of χ as long as there are less than 8d cycles in which an incorrect decoding happened
somewhere over the cycle—in that case the potential at the end of the coding scheme will be at
least ψ(d′) ≥ d implying that d cycles of χ are correctly simulated: A very conservative analysis
shows that 8d cycles with incorrect decodings can reduce the potential by at most 8d× (−3). Out
of the other cycles (where there is no decoding error), there are at least (100− 3× 8)d = 76d cycles
which are consecutive to another two cycles with no decoding error. Each triplet of cycles with no
decoding error increases the potential by at least 1, so the potential at the end is at least

ψ(d′) ≥ 8d× (−3) +
76d

3
× (+1) > d.

We now bound the failure probability, i.e., the probability to have at least 8d cycles with incorrect
decodings. For the i-th party, we can denote by `i(j) the magnitude of error at the j-th cycle
j ∈ [d′]. This is the length of the incorrect decoded suffix (so `i(j) = 0 when the entire j-symbol
word is correctly decoded). The tree code definition tells us that in order to cause a decoding error
of magnitude ` at cycle j, at least α`/2 k-errors must have happened in the symbols received at
cycles [j − `i(j), j] for that same party; this follows directly from the Hamming distance constrains
(Definition 3.3). However, note that intervals may overlap, thus the noise that causes different
intervals may be dependent.

Let Ii be the set of intervals Ii = {[j − `i(j), j] | j ∈ [d′]} corresponding to the error-intervals of
the i-th party. Lemma 7 in [Sch96] shows it is always possible to find a subset I ′i ⊆ Ii with non-
overlapping intervals whose union is at least half the size of the union of Ii, that is |

⋃
I ′i| ≥ 1

2 |
⋃
Ii|.4

Since the intervals in I ′i are non-overlapping, the noise causing any two such intervals is independent.

Having at least 8d cycles with decoding error implies that |
⋃(⋃

i∈[n] I
′
i

)
| > 4d. Also note that

any two intervals in
⋃
i∈[n] I

′
i are independent in the sense that the noise causing one interval is

independent of noise causing any other interval. It follows that at least α
2 · 4d corruptions (i.e.,

k-errors) must have happened during the protocol. Recall that the probability to have one or more
k-errors in a given cycle is bounded by n−9. Union bounding on all the possible noise patterns
(along the d′ = 100d cycles), the probability for such a large amount of noise is bounded by(

100d

2αd

)
· (n−9)2αd ≤ 2100d · 2−18αd logn ≤ 2−Ω(d logn).

4For a set of intervals I, the notation |
⋃

I| denotes the length of the union of all the intervals in I.
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4 The Cutoff of the Protocol and its Relation to the Success Prob-
ability

In this section we outline the proof of our lower bound. The reader may wish to refer to Appendix A
and Appendix B for several preliminaries regarding information theory and several technical lemmas,
that we will use in the following sections.

Following [BEGH16], we define the notion of cutoff which measures the progress a protocol has
performed in simulating the cycle task, as a function of the (noisy) transcript communicated by the
protocol. We show that the cutoff of a protocol is correlated with the length of the correct simulated
output, in the sense that if the cutoff is k, it is improbable that the protocol gives an output whose
correct prefix is of length more than k. Hence, if a protocol for the cycle task of depth d is correct
with high probability, the implied cutoff must be high (i.e., around d).

Recall that xi is the input of the i-th party, and Xi is the random variable describing it; similarly,
π is used to describe a specific (observed) transcript while Π is the corresponding random variable.
Also recall that the output of the i-th party is pathi describing the root-to-leaf path that the party
traversed along xi. Finally, recall that we denote by pathi(k) the first k edges in pathi and by
xi[pathi(k)] the subtree of xi rooted at the end of pathi(k).

Definition 4.1 (Cutoff). For any transcript π, and any input x = (x1, . . . , xn), the cutoff of the
protocol, denoted by cutoff(π, x), is the minimal number k, such that

n∑
i=1

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) ≤ 0.01n. (1)

We note that if cutoff(π, x) = k then for any x′ such that x′≤k = x≤k, it holds that cutoff(π, x′) =
k. Furthermore, the cutoff is only a function of the path up to level k, that is, if cutoff(π, x) = k
then for any input x′ that has the same path(k) it holds that cutoff(π, x′) = k; This property allows
us to abuse notation and write cutoff(π, path(k)) = k, when the path is fixed but we do not care
about the specific input.

The following proposition shows that in order for a protocol to output the correct value with
high probability, the cutoff (given the complete transcript) must be ≈ d. Hence, protocols that
succeed with high probability must produce transcripts whose cutoff is large in expectation.

Proposition 4.2. Fix a protocol that solves the cycle task of depth d over a network with n parties
(with large enough n), that succeeds with probability at least 1/5 on average, i.e., a protocol for which
PrX,Π[correct output] ≥ 1/5. Then,

EX,Π[cutoff(Π, X)] ≥ d

10
.

Proof. Recall that the event cutoff(π, x) = k depends only on π and path(k) and is independent
of x>k. In Claim 4.3 below we prove that if cutoff(π, path(k)) = k for some k < d, then the protocol
gives the correct output with only a small probability of 0.02. Therefore, conditioned on the event
that cutoff(Π, X) < d the protocol outputs the correct value with probability at most 0.02, that
is, PrX,Π[correct output | cutoff(Π, X) < d] ≤ 0.02. Since the protocol is correct with probability
1/5 on average over the inputs and randomness of the protocol (and the noise), the claim follows.
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Indeed,

1

5
≤PrX,Π[correct output]

= Pr[cutoff(Π, X) < d] Pr[correct output | cutoff(Π, X) < d]

+ Pr[cutoff(Π, X) = d] Pr[correct output | cutoff(Π, X) = d]

≤Pr[cutoff(Π, X) < d] · 0.02 + Pr[cutoff(Π, X) = d] · 1,

hence, Pr[cutoff(Π, X) = d] ≥ 1/5− 0.02 = 0.18 and EX,Π[cutoff(Π, X)] ≥ 0.18 · d.

Claim 4.3. Given π, k < d, and path(k) such that cutoff(π, path(k)) = k,

Pr[correct output | Π = π,PATH(k) = path(k)] < 0.02.

Proof. Let L = L1, . . . , Ln be the last (array of) edge(s) in the array of paths PATH(k + 1) =
PATH1(k + 1), . . . ,PATHn(k + 1); note that L is part of the output, specifically, Li ∈ {0, 1}n is part
of the output of the i-th party.

Note that once we condition on path(k), the edge Li is determined by X[n]\{i} alone, thus the
information about Li conditioned on any event is bounded by the information on X[n]\{i} below
the cutoff level k, conditioned on the same event. We can therefore bound the probability that pi
correctly outputs Li—it is at most the probability to guess this label given all its knowledge. We
can assume that pi learns the entire (corrupted) transcript, and we give it the path path(k) “for
free”. Note that the i-th party knows (in addition to its observed transcript, etc.) also its own
input xi.

2−H∞(Li|Π=π,PATH(k)=path(k),Xi) ≤ 1 + I(Li | Π = π,PATH(k) = path(k), Xi)

|Li|
(2)

≤ 1

n

(
1 + I(X[n]\{i}[path(k)] | Π = π,PATH(k) = path(k), Xi)

)
(3)

=
1

n

(
1 + I(X[n]\{i}[path(k)] | Π = π,PATH(k) = path(k))

)
(4)

=
1

n

(
1 +

∑
j 6=i

I(Xj [path(k)] | Π = π,PATH(k) = path(k))

)
(5)

≤ 1

n
(1 + 0.01n) < 0.02. (6)

Transition (2) follows from applying Lemma A.4. Transition (3) follows from the fact that Li is
a function of X[n]\{i} alone, so the information about the inputs X[n]\{i} bounds the information
about Li. Transition (4) follows from the fact that the different inputs {Xj}j∈[n] are independent
conditioned on π and path(k), as implied by Corollary B.8. Transition (5) follows from the fact that
the inputs are independent, together with the fact that the superadditivity of information satisfies
an equality in this case (Lemma A.2). Finally, Transition (6) follows from Definition 4.1 since k is
the cutoff given π, path(k).

Then, the probability that the protocol is correct is at most the probability that the i-th party
outputs the correct Li. Using the above derivation we get,

Pr[correct output | Π = π,PATH(k) = path(k)] ≤ 2−H∞(Li|Π=π,PATH(k)=path(k),Xi) < 0.02.
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5 Communication Lower Bound of Coding for the Cycle Task

In this section we prove our main theorem and show a lower bound of Ω(log n) on the blowup of
the communication for any protocol that solves the cycle task over noisy channels and succeeds
with high probability. Formally, our main theorem is the following.

Theorem 5.1. For any ε ∈ (0, 1) there exists a constant c = c(ε) such that for large enough n, any
protocol that solves the cycle task of depth d over a network with n parties communicating less than
cd · n log n symbols assuming each communication channel is an ECε, has a success probability at
most 1/5.

Let χ′ be a resilient protocol that solves the cycle task assuming noisy channels. The main idea
is to show that O(n log n) symbols sent by the protocol χ′ can increase the cutoff by at most O(1), in
expectation. That is, O(log n) cycles of the resilient protocol are required in order to advance O(1)
cycles in the cycle task, yielding a rate of O(1/ log n).

Assume that given the (partial) observed transcript π and some path path(`), the cutoff of χ′ is `,
that is, cutoff(π, path(`)) = `. Then, assume we let χ′ communicate another δ · n log n symbols for
some parameter δ = δ(ε) we set later. We denote these new observed (potentially erased) symbols
by Πnew; This is a random variable that depends on the noise and the randomness of the protocol.
We claim that the new cutoff (i.e., with respect to π ◦Πnew), is bounded by `+O(1) in expectation.

Proposition 5.2. For any ` ≤ d, any path(`) and any transcript π,

E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `] ≤ `+ 500.

The proof of Proposition 5.2 spans the next several sections and concludes in Section 8. With
the above proposition, the proof of the main theorem is immediate.

Proof. (Theorem 5.1) Assume χ′ is a resilient protocol for the cycle task that succeeds with
probability at least 1/5. Proposition 4.2 claims that the expected cutoff at the end of the protocol χ′

is at least d/10.
On the other hand, assume toward contradiction that χ′ communicates less than c · d · n log n

symbols. Split the transcript of χ′ transcript into segments of δ · n log n transmissions each. Using
Proposition 5.2, the cutoff at the end of χ′ is bounded in expectation by

cd · n log n · 1

δn log n
· 500 ≤ 500c

δ
d

By choosing, say, c < δ/5000, we get that the expected cutoff at the end of χ′ is strictly less
than d/10, contradicting Proposition 4.2.

5.1 Critical parties, and the event Es
We prove Proposition 5.2 in two steps. Most of the times, the noise in Πnew is large enough to show
that many parties were completely erased. In this case, one can bound the expected increase in
the cutoff by a constant (Section 6). However, it may happen that in a given segment of δn log n
symbols, there was very little noise, so the resilient protocol χ′ could practically advance without any
restrictions. In this case, we show that the increase in the cutoff is at most O(n log n) in expectation
(Section 7). However, this happens with very small probability of 2−

√
n, and has essentially no effect

on the expected increase in the total cutoff (Section 8).
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We now formally define the event Es that indicates that the noise, in a given segment of δn log n
symbols, is sufficient for our needs of bounding the cutoff. We begin by defining critical parties.
These are parties that we know very small amount of information about their inputs below the
cutoff level, and on top of that, all their communication (in the new segment) was erased.

Definition 5.3 (Critical party). Assume a (partial) transcript π and a path path(k) for which
cutoff(π, path(k)) = k, and let Πnew be the observed transcript of the next δn log n symbols. The i-th
party is called critical at the cutoff, if

(i) I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) < 0.03, and

(ii) all its outgoing communication was completely erased in Πnew (or alternatively, this party
didn’t speak at all).

Denote the set of all the critical parties as C and the non-critical as C.

The next claim proves that with high probability, at any segment of δn log n transmissions, there
exists a large set of critical parties.

Claim 5.4. Assume a (partial) transcript π and a path path(k) for which cutoff(π, path(k)) = k.
For any ε ∈ (0, 1), δ < min{0.1, 1/ log(ε−10)} let Πnew be the observed transcript of the next δn log n
symbols. Denote by Es the event that |C| >

√
n, then

Pr[Es] ≥ 1− 2−
√
n.

Proof. Note that there are at least 2n/3 parties for which

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) < 0.03.

Indeed, if there are more than n/3 parties whose information is above 0.03, then

n∑
i=1

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) ≥ n/3× 0.03 ≥ 0.01n

in contradiction to the cutoff definition. Denote the above set of parties by Q1. At the same time,
we consider only parties that speak at most 3δ log n symbols in the given continuation. There are at
least 2n/3 such parties, or otherwise, the total communication exceeds n/3 × 3δ log n = δn log n.
Denote these parties by Q2.

Next we focus only on parties in Q1 ∩Q2 (there are at least n/3 such parties), and show that
many of them are fully erased in the given continuation segment. Each such party is completely
erased with probability at least ε3δ logn. Since we assume δ < min{0.1, 1/ log(ε−10)} we get that
ε3δ logn ≥ 23δ log ε logn ≥ n−0.4. Since there are at least n/3 parties in Q1 ∩ Q2, in expectation we
will have n0.6/3 parties completely silenced. Using Chernoff’s inequality (Lemma B.6) it is easy to
show that, except with probability at most 2−

√
n, at least

√
n parties from Q1 ∩Q2 are completely

erased. Any such party is critical by definition, which completes the proof.

6 Bounding the cutoff when Es occurs

In this section we bound the progress of the cutoff, assuming Es occurs. That is, we prove the
following proposition.
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Proposition 6.1. For any ` ≤ T , any path(`) and any transcript π

E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `, Es] ≤ `+ 100.

Generally speaking, the proof follows the bounding technique of [BEGH16]. We begin by setting
some notations used throughout this section and proving some auxiliary properties (Section 6.1).
We then bound the expected amount of information the new segment leaks about the subtrees of
the inputs rooted on the correct path below the current cutoff (Section 6.2). Finally, we use the fact
that the information on such subtrees is small to bound the increase in the new cutoff (Section 6.3).

6.1 Preliminaries

Let Es be the event that |C| ≥
√
n as defined in Claim 5.4. Furthermore, we define the following

shorthands,

E def
= (Π = π,Πnew = πnew,PATH(`) = path(`)) ,

E+i def
= (E , Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k),

E+ def
=
⋃
i∈[n]

E+i,

Zi(k)
def
= PATHi(k + `).

Recall that whether the cutoff is ` depends only on π and the first ` levels of the correct path,
therefore, the event (Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `) is either empty or equal to
(Π = π,PATH(`) = path(`)). In the following we will implicitly assume that the event is not empty
and explicitly condition only on (Π = π,PATH(`) = path(`)).

Given any π, path(`) we define the functions

C∗i (k | πnew, path(k + `))
def
= I (Xi[pathi(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = path(k + `))

and

Ci(k | πnew, xi[pathi(`)]
≤k)

def
= Eρ∼PATH(k+`)|xi[pathi(`)]

≤k,E

I(Xi[ρi] | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k,PATH(k + `) = ρ, E).

In words, C∗i () measures the information on the inputs when starting k levels below path(`), assuming
we are given the path continuation from level ` to level k, that is, we know path(` + k). In the
measure Ci() we do not know how to continue path(`) from level ` to k, so we take the expectation
(of the information below level k + `) on all possible continuations path(`+ k). Moreover, in Ci()
we condition on additional information, namely, the labels in the first k levels of the subtree of xi
rooted at the end of pathi(`).

The quantity
∑

iC
∗
i () is exactly the measure of information we wish to bound in order to bound

the new cutoff (towards satisfying Eq. (1) given the new segment of communication). However, due
to technical reasons, namely, in order to obtain independence (see Claim 6.3 below), we will actually
bound

∑
iCi(), which in turn bounds

∑
iC
∗
i () via the following claim.

Claim 6.2 ([BEGH16]). Given any π, πnew, path(`), and for any k, and any i ∈ [n],

Epath(k+`)|E,EsC
∗
i (k | πnew, path(k + `)) ≤ Exi[pathi(`)]≤k|E,EsCi(k | π

new, xi[pathi(`)]
≤k).
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Proof. Note that E fully determines whether Es occurs or not. Indeed: πnew determines which bits
are erased, and π, path(`) determine the set of critical parties. Therefore, conditioning on E for
some fixed (π, path(`), πnew) ∈ Es is equivalent to conditioning on both E and Es (or otherwise, the
claim vacuously holds).

Exi[path(`)]≤k|ECi(k | π
new, xi[pathi(`)]

≤k)

= Exi[path(`)]≤k|EEρ∼PATH(k+`)|xi[pathi(`)]
≤k,EI(Xi[ρi] | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k,PATH(k + `) = ρ, E)

exchanging the order of expectations

= Eρ∼PATH(k+`)|EExi[path(`)]≤k|ρ,EI(Xi[ρi] | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k,PATH(k + `) = ρ, E)

by the definition of conditional information (Definition A.1),

= Eρ∼PATH(k+`)|EI(Xi[ρi] | Xi[pathi(`)]
≤k,PATH(k + `) = ρ, E)

using Lemma B.1(1) we get

≥ Eρ∼PATH(k+`)|EI(Xi[ρi] | PATH(k + `) = ρ, E)

= Eρ∼PATH(k+`)|EC
∗
i (k | πnew, ρ).

Claim 6.3. Conditioned on E+i, the path Zi(k) is independent of the labels in the subtrees of Xi

rooted at pathi(`).

Proof. Once we condition on pathi(`) and on Xi[pathi(`)]
≤k, then the continuation Zi(k) depends

only on X6=i between layers ` and k + `, and these are independent of Xi below `, even conditioned
on the transcript, etc. (Corollary B.8).

6.2 Bounding the information in subtrees below the cutoff

In the rest of this subsection we prove that the expected information on subtrees of the input
starting 30 steps below the cutoff level is sub-exponentially small.

Lemma 6.4. Given any (π, path(`)) for which the cutoff is `, it holds that

d−∑̀
k=30

Eπnew,x[path(`)]≤k|Π=π,PATH(`)=path(`),Es

[
n∑
i=1

Ci(k | πnew, xi[pathi(`)]
≤k)

]
< 2−0.1

√
n · n2 log n.

Proof. Lemma B.2 implies that, for any k, we can bound Ci(k) as the product of the probability to
guess a path Zi of length k, times the information the i-th party communicated about its xi below
level k + `. Formally,

Ci(k | πnew, xi[pathi(`)]
≤k) ≤ pmax

(
Zi(k)

∣∣∣ Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E
)

× I
(
Xi[pathi(`)]

>k
∣∣∣ Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E

)
. (7)

Note that in order to use Lemma B.2 we need to assert that Zi(k) is independent of Xi below
level `+ k (conditioned on E+i), which is provided by Lemma 6.3.

The lemma then follows from the following claims, which bound the two multiplicands separately.
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Claim 6.5. For any i ∈ [n], let ai(k) be such that Pr[Zi(k) = ~ai(k) | E+i] = pmax

(
Zi(k)

∣∣ E+i
)
.

~ai(k) can be seen as the path of length k taken by pi, which corresponds to the labels of the n− 1
paths traversed by the other n− 1 parties; we let (~ai(k))j be the part corresponding to the j-th party.
Denote by Pj(k) a possible path of length k in xj starting from the `-th level. Then,

pmax

(
Zi(k)

∣∣ E+i
)
≤
∏
j∈C

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)].

In particular, the right-hand side is not conditioned on πnew nor on xi[pathi(`)]
≤k.

Claim 6.6. For any i ∈ [n],

d−∑̀
k=30

pmax

(
Zi(k)

∣∣ E+i
)
≤

d−∑̀
k=30

∏
j∈C

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)]

≤ 2−0.1
√
n

Claim 6.7.
n∑
i=1

Eπnew|Π=π,PATH(`)=path(`),Es [I(Xi[pathi(`)] | E)] ≤ n2 log n.

Armed with the above claims, we can prove the lemma.

d−∑̀
k=30

Eπnew,x[path(`)]≤k|Π=π,PATH(`)=path(`),Es

[
n∑
i=1

Ci(k | πnew, xi[pathi(`)]
≤k)

]

≤
d−∑̀
k=30

Eπnew,x[path(`)]≤k|Π=π,PATH(`)=path(`),Es

[
n∑
i=1

pmax

(
Zi(k)

∣∣∣ Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E
)

×I
(
Xi[pathi(`)]

>k
∣∣∣ Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E

)]
Using Claim 6.5, and noting that the first multiplicand is constant with respect to the expectation

≤
n∑
i=1

d−∑̀
k=30

∏
j∈C

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)]

× Eπnew,x[path(`)]≤k|Π=π,PATH(`)=path(`),EsI
(
Xi[pathi(`)]

>k
∣∣∣ Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E

)
Performing the expectation over xi[pathi(`)]

≤k (note that given Π = π,PATH(`) = path(`), the
variables xi[pathi(`)]

≤k are independent of the event Es), and then using Lemma B.1(3),

≤
n∑
i=1

 d−∑̀
k=30

∏
j∈C

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)]


× Eπnew|Π=π,PATH(`)=path(`),EsI (Xi[pathi(`)] | E)

Now that the second term does not depend on k, we use Claim 6.6 on the first term (note that
Claim 6.6 applies to any i ∈ [n])

≤ 2−0.1
√
n ×

n∑
i=1

Eπnew|Π=π,PATH(`)=path(`),EsI (Xi[pathi(`)] | E)
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We conclude by employing Claim 6.7,

≤ 2−0.1
√
n × n2 log n.

We are left to prove the above three claims.
The following derivation proves both Claim 6.5 and Claim 6.6. The claim shows that since

the path Zi is affected by the labels of all other n − 1 parties, guessing that path is at least as
difficult as guessing the labels of all the critical parties (that were erased so we have no information
about their labels). Since there are

√
n such critical parties, we can guess their labels with only

sub-exponentially small probability.

Claim 6.8. For any i ∈ [n],

d−∑̀
k=30

pmax

(
Zi(k)

∣∣ E+i
)
≤ 2−0.1

√
n

Proof. For any specific k, assume a path ~ai(k) of length k that maximizes this probability,

Pr[Zi(k) = ~ai(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E ].

Once fixing ~ai(k), it is implied that there exist n− 1 paths Pi−1(k), . . . , Pi−(n−1)(k) of length k in
Xi−1, . . . , Xi−(n−1) respectively (modulus the number of parties, and adjusting the level in the input
tree if we “loop around”), where each path starts from level `, as a continuation of path(`). The
labels along these paths are exactly ~ai(k) (up to trivial reordering). The probability that Zi
goes through a path ai(k) is bounded by the probability to see the corresponding labels somewhere
in the respective trees,

Pr[Zi(k) = ~ai(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E ]

≤ max
P (k)

Pr[{label(Pi−1(k)), . . . , label(Pi−(n−1)(k))} = ~ai(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E ]

= max
P (k)

Pr[{label(Pi−1(k)), . . . , label(Pi−(n−1)(k))} = ~ai(k) | E ],

where the last step follows from Corollary B.8 that guarantees us the independence of the labels
of Xj

>` from those of Xi
>` for any j 6= i, even when conditioning on the transcript so far π, and

on E .
We can then bound the sum of the guessing probability of the path Zi(k), for all large enough k’s:

d−∑̀
k=30

pmax(Zi(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E)

≤
d−∑̀
k=30

max
P (k)

Pr[{label(Pi−1(k)), . . . , label(Pi−n(k))} = ~ai(k) | E ]

Using the independence of labels for different parties, Corollary B.8 we have

≤
d−∑̀
k=30

∏
j∈[n]\{i}

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | E ]
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In the above, (~ai(k))j denotes the parts of ~ai(k) that correspond to the j-th party. We can consider
only the critical parties (assume we can fully guess the others)5. Recall that each critical party is
completely erased in πnew; therefore (along with Corollary B.8) conditioning on πnew does not affect
the probability to see a specific labeling on a given path of xj

≤
d−∑̀
k=30

∏
j∈C

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)]

≤
∏
j∈C

d−∑̀
k=30

max
Pj(k)

Pr[label(Pj(k)) = (~ai(k))j | Π = π,PATH(`) = path(`)]

Using Lemma B.4

≤
∏
j∈C

(
2Ij + 4

√
Ij + 20 · 2−30/4

)
≤
∏
j∈C

0.9 ≤ 2−0.1
√
n.

where the penultimate transition is via Lemma B.4 by letting T of the lemma be all the labels of
Xj [pathj(`)]

>`, and setting Ij = I(Xj [pathj(`)]
>` | Π = π,PATH(`) = path(`)). If j is critical (given

the “old” transcript, Π = π), then Ij < 0.03 by definition, and 2Ij + 4
√
Ij + 20 · 2−30/4 < 0.9.

Recalling that |C| >
√
n completes the proof.

We now continue to proving Claim 6.7. Let us recall the claim:
Claim 6.7.

n∑
i=1

Eπnew|Π=π,PATH(`)=path(`),Es [I(Xi[pathi(`)] | E)] ≤ n2 log n.

Proof. Let E− def
= (Π = π,PATH(`) = path(`)). Writing E explicitly in the claim’s statement, we

have
n∑
i=1

Eπnew|E−,EsI(Xi[pathi(`)] | Π = π,PATH(`) = path(`),Πnew = πnew).

by linearity of expectation and the superadditivity of information (Lemma A.2),

≤ Eπnew|E−,EsI(X[path(`)] | Π = π,PATH(`) = path(`),Πnew = πnew)

= I(X[path(`)] | Π = π,PATH(`) = path(`), Π̃new)

where Π̃new is distributed according to Πnew conditioned on E−, Es. Recall that Π̃new contains up
to δn log n symbols, each of size at most n bits (where some symbols may be corrupted). Using
Lemma B.1(2),

≤ I(X[path(`)] | Π = π,PATH(`) = path(`)) + δ · n2 log n.

Now note that, conditioned on (Π = π,PATH(`) = path(`)), the variables X1, . . . , Xn are mutually
independent by Corollary B.8, thus the superadditivity (Lemma A.2) in this case satisfies an equality,

= δn2 log n+

n∑
i=1

I(Xi[pathi(`)] | Π = π,PATH(`) = path(`))

5We neglect the fact that party i shouldn’t be included in the product, in case i ∈ C.

21



finally, since ` is the cutoff given the transcript π, and recalling that δ < 0.1 we get

≤ δn2 log n+ 0.01n

≤ n2 log n.

6.3 Bounding the increase in the cutoff

We now show that, given that the old cutoff was ` and that Es occurred in the new δn log n
transmissions, then the expected new cutoff is at most `+O(1).

Proof. (Proposition 6.1) Given (π, path(`)) for which the cutoff is `, consider the following series
of non-negative random variables{

C̃(k)
def
= Eπnew,path(k+30+`)|π,path(`),Es

[ n∑
i=1

C∗i (k + 30 | πnew, path(k + 30 + `))
]}

k≥0

Lemma 6.4 and Claim 6.2 certify that
∑

k C̃(k) ≤ 2−0.1
√
n ·n2 log n. Therefore from Lemma B.3 it

follows that the expectation of the minimal k∗ for which
∑n

i=1C
∗
i (k∗+ 30 | πnew, path(k+ 30 + `)) <

0.01n is bounded, for large enough n, by

E[k∗] ≤ 1 +
2−0.1

√
n · n2 log n

0.01n
≤ 2.

This implies that the cutoff has advanced by at most 30 + k∗ ≤ 32 in expectation, since the new
cutoff is exactly the point where

∑n
i=1C

∗
i (k∗ + 30 | πnew, path(k+ 30 + `)) goes below the threshold

0.01n. (Note: we give the first 30 rounds “for free” since our bound in Lemma 6.4 applies only for
levels below depth `+ 30.)

7 Bounding the cutoff when Es does not occur

The following proposition bounds the progress of the cutoff in the rare case where Es doesn’t occur.

Proposition 7.1. For any ` ≤ d, any path(`) and any transcript π

E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `, Es] ≤ `+ 500n log n.

Proof. We show that each single noiseless transmission can be simulated, by k ·δn log n transmissions
for which Es occurs, in expectation, where k is a small constant. We know (Proposition 6.1) that
a segment of δn log n transmissions in which Es occurs can increase the cutoff by at most O(1) in
expectation. Furthermore, k only depends on the random noise pattern and is independent of the
increase in the cutoff. Therefore, a segment of δn log n noiseless transmissions (i.e., a segment in
which Es doesn’t occur) increases the cutoff by at most (δn log n) · k · O(1) = O(n log n) levels in
expectation.

Let c ≥ 1 be some constant. We can assume that all the noisy transmissions belong to the same
channel as the (noiseless) transmission we wish to simulate6. The probability that c segments of

6This assumption, in fact, causes Es to occur with probability 1, but we will nevertheless bound the event probability
by Pr[Es] ≥ 1− 2−

√
n via Claim 5.4.
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δn log n noisy transmissions each, in each of which Es occurs, are not enough to simulate one single
noiseless transmission is at most

Pr[k ≥ c] ≤ Pr

[
all the transmissions in the first c
segments are erased

∣∣∣∣ Es occurs in all c segments

]
<

εcδn logn(
1− 2−

√
n
)c

=

(
2δ log ε·n logn

1− 2−
√
n

)c
The base of the above exponent goes to zero with n→∞, thus for large enough n,

E[k] =

∞∑
c=0

Pr[k ≥ c]

≤ 5

It follows that a segment of δn log n transmissions in which Es did not occur, can increase the cutoff
by at most 500δn log n levels in expectation.

8 Completing the proof of Proposition 5.2

Given Proposition 6.1 and Proposition 7.1 we are able to complete the proof of Proposition 5.2.

Proof. For large enough n,

E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `]

= E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `, Es]× Pr[Es]
+ E[cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π, path(`)) = `, Es]× Pr[Es]

≤ (`+ 100)× (1− 2−
√
n) + (`+ 500n log n)2−

√
n

≤ `+ 500.

9 On the Rate vs. Channel’s Alphabet

In this section we discuss the effect of the channel’s alphabet size on the obtainable rate. We can
consider four independent settings: binary/large alphabet at the original (noiseless) scheme vs.
binary/large alphabet at the coding scheme. For any n ∈ N and for orig, code ∈ {b, l} let corig,code(n)
be the infimum over all possible n-party functions f of the maximal rate obtainable when the
original protocol χ for f is binary (orig = b) or with a large alphabet (orig = l) and the coding
schemes χ′ for f is binary or with a large alphabet (code = b or code = l, respectively),

corig,code(n) = inf
f

minχ CC(χ)

minχ′ CC(χ′)
.

The capacity of each setting—the maximal achievable rate in each setting—is defined to be the limit
inferior of the above quantities when n tends to infinity,

corig,code = lim inf
n→∞

corig,code(n).
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We now explore relations between the four capacities. See Table 1 for a summary of the relations
between the capacities of the different settings.

Coding Scheme χ′

Noiseless Scheme χ binary alphabet large alphabet

binary alphabet cbb cbl ≥
cbb

log |Σ|

large alphabet
Ω(cll) ≤clb

cbb ≤clb

cll ≥ cbl
cll ≥

clb
log |Σ|

Table 1: The relations between maximal rates of coding schemes with {binary, large}-alphabet,
given the noiseless protocol uses {binary, large}-alphabet.

Any binary coding can be simulated by a large-alphabet coding by incurring a blowup of log |Σ|,
thus trivial relations are cbl ≥ cbb/ log |Σ| and cll ≥ clb/ log |Σ|.

When the original protocol uses large alphabet, a large-alphabet coding can be reduced to a
binary one by translating each symbol to a sequence of bits encoded with a standard error-correction
code (so that the probability for the entire sequence to be decoded incorrectly is below ε; this can
be done with a constant overhead). Thus Ω(cll) ≤ clb.

To see that clb ≥ cbb, note that we can convert the original large-alphabet protocol (that
determines clb) into a binary one with the same communication complexity; this converted protocol
may not be the hardest one for coding with a binary simulation, thus the rate we can achieve when
coding it may be larger than the rate for the “worst” binary protocol, which determines cbb. A
similar reasoning yields cll ≥ cbl.

The above relations still allow cbb to be either larger or smaller than cll, and their specific relation
(as well as their feasibility with respect to a given underlying topology) remains an interesting open
question.
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Appendix

A Preliminaries: Information, entropy, and min-entropy

Throughout, we will use Un to denote a random variable uniformly distributed over {0, 1}n.

Definition A.1 (information). Let X be a random variable over a finite discrete domain Ω. The
information of X is given by

I(X)
def
= log |Ω| −H(X),

where H(X) is the Shannon entropy of X, H(X) =
∑

x∈Ω Pr(X = x) log(1/Pr(X = x)).
Given a random variable Y , the conditional information of X given Y is

I(X | Y )
def
= log |Ω| −H(X | Y )

= EyI(X | Y = y).
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Lemma A.2 (superadditivity of information). Let X1, . . . , Xn be n random variables. Then,

n∑
i=1

I(Xi) ≤ I(X1, . . . , Xn).

The equality is satisfied when X1, . . . , Xn are mutually independent.

Proof. Using the subadditivity of the entropy function, we get

n∑
i=1

I(Xi) =
∑
i

(log |Ωi| −H(Xi)) ≤ log

(∏
i

|Ωi|

)
−H(X1, . . . , Xn) = I(X1, . . . , Xn).

Definition A.3 (min-entropy). Let X be a random variable over a discrete domain Ω. The
min-entropy of X is given by

H∞(X) = log(1/pmax(X)).

pmax(X) is the probability of the most probable value of X, i.e., pmax(X)
def
= maxx∈Ω Pr(X = x). At

times, pmax is called the guessing probability of X.

Information (i.e., entropy) can be related to guessing probability (i.e., min-entropy) via the next
Lemma, which is a special case of Fano’s inequality.

Lemma A.4 ([BEGH16]). Let X be a random variable over a discrete finite domain Ω. It holds
that

I(X) ≥ pmax(X) log(|Ω|)− h(pmax(X)),

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy. Note that 0 ≤ h(x) ≤ 1, then an
immediate corollary is

pmax(X) ≤ I(X) + 1

log |Ω|
.

We note here that similar claims to the above lemmas hold when we additionally condition on some
event E , by applying the above lemmas on the random variable (X | E).

B Technical Lemmas

In this section we provide several technical lemmas which we will use throughout the paper. Most
of these lemmas appear in [BEGH16]. In order to be self-contained, we repeat the proofs in some
cases.

Lemma B.1. Let X,Y be random variables over a finite discrete domains ΩX and ΩY , respectively.
Then,

1. I(X | Y ) = I(X) + I(X;Y )

2. I(X | Y ) ≤ I(X) + log |ΩY |

3. I(X | Y ) ≤ I(X,Y )

where I(X;Y ) = H(X) +H(Y )−H(X,Y ) is the mutual information between X and Y (not to be
confused with I(X,Y ) = log |ΩX |+ log |ΩY | −H(X,Y )).
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Proof. We prove the three claims by order,

1. I(X | Y ) = log |ΩX | −H(X | Y )

= log |ΩX | −H(X) +H(Y )−H(Y | X)

= I(X) + I(X;Y ).

2. Follows from (1) and the fact that I(X;Y ) ≤ log |ΩY |.

3. I(X,Y ) = log |ΩX |+ log |ΩY | −H(X,Y )

≥ log |ΩX |+H(Y )− (H(Y ) +H(X | Y ))

= I(X | Y ).

Lemma B.2. Let Z,D,X1, . . . , Xn be random variables. Let f : Z → [n] be some function. Suppose
that, conditioned on D = d, Z and (X1, . . . , Xn) are independent. Denote the guessing probability
pmax(f(Z) | D = d) = 2−H∞(f(Z)|D=d), then

Ez∼Z|D=dI(Xf(Z) | D = d, Z = z) ≤ pmax(f(Z) | D = d) · I(X1, . . . , Xn | D = d).

Proof.

Ez∼Z|D=dI(Xf(Z) | D = d, Z = z) =
∑
z

Pr(Z = z | D = d)I(Xf(z) | D = d, Z = z)

=

n∑
i=1

 ∑
z:f(z)=i

Pr(Z = z | D = d)

 I(Xi | D = d)

=
n∑
i=1

Pr(f(Z) = i | D = d)I(Xi | D = d)

≤
n∑
i=1

pmax(f(Z) | D = d) · I(Xi | D = d)

≤ pmax(f(Z) | D = d) · I(X1, . . . , Xn|D = d).

The second line follows due the fact that Z and (X1, . . . , Xn) are independent conditioned on
D = d, grouping together terms with the same f(Z) value. The last inequality follows from the
super-additivity of information (Lemma A.2).

Lemma B.3. Let X1, . . . , Xn ≥ 0 be random variables, with expectations µi = E[Xi], and assume
that

∑n
i=1 µi ≤ C, for some constant C. Let M(t) = argmini{(Xi < t)} be the minimal index i for

which Xi is below the threshold t. Then,

E[M(t)] ≤ 1 +
C

t
.
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Proof.

E[M(t)] =
n∑
i=1

Pr[M(t) ≥ i]

≤ 1 +
n∑
i=1

Pr[M(t) > i]

= 1 +
n∑
i=1

Pr[(X1 ≥ t) ∧ · · · ∧ (Xi ≥ t)]

≤ 1 +

n∑
i=1

Pr[Xi ≥ t]

≤ 1 +

n∑
i=1

µi
t

≤ 1 +
C

t
.

where the penultimate inequality is due Markov’s inequality.

Lemma B.4. Let d be a set of binary random variables, ordered as a tree of depth n. For any
fixed path P of depth i ≤ n starting from the root of d, let T [P ] be the set of variables along that
path, and let pmax(T [P ]) = 2−H∞(T [P ]) be the maximal probability that some assignment to T [P ] can
obtain. For any i ≤ n define

pmax(i) = max
P s.t. |P |=i

{pmax(T [P ])} .

Then for any t ≥ 6 it holds that

n∑
i=t

pmax(i) < 2I(T ) + 4
√
I(T ) + 20 · 2−t/4 .

This lemma is an immediate corollary of the following stronger Lemma B.5, that proves a similar
claim when considering any subset S of n binary random variables. In particular, for the special
case of Lemma B.4, the subset S contains variables along a single path in d (note that the parameter
n in the above Lemma corresponds to |S| of Lemma B.5).

Lemma B.5 ([BEGH16]). Let B = (B1, . . . , Bn) be a sequence of n random variables, where

Bi ∈ {0, 1}. For any S ⊆ [n] we let B(S)
def
= {Bi | i ∈ S} be the variables indexes by S. Let

pmax(S) = 2−H∞(B(S)) i.e., the maximal probability that B(S) can attain. For 1 ≤ i ≤ n, let
pmax(i) = max|S|=i pmax(S). Then it holds that for any t ≥ 6,

n∑
i=t

pmax(i) < 2I(B) + 4
√
I(B) + 20 · 2−t/4 .

Lemma B.6 (Chernoff). Let X1, . . . , Xn be independent identically distributed random variables
on {0, 1} with expectation E[Xi] = µ. Then, for every δ > 0,

Pr

[∑
i

Xi < (1− δ)nµ

]
< e−δ

2nµ/2.
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B.1 Independence of inputs given (a corrupted) transcript in interactive com-
munication

A well known property of interactive communication is that conditioning on the transcript doesn’t
create dependencies in the inputs. That is, if the inputs were independent, they remain independent
conditioned on any given (noisy) transcript (or a prefix of a transcript).

Lemma B.7 ([BEGH16]). Conditioned on the observed transcript Π, the random variables X1, . . . , Xn

are mutually independent.

Proof. The proof goes by induction on the length of Π. The base case where |Π| = 0 is trivial from
the definition of the inputs X1, . . . , Xn.

Assume the claim holds for some transcript Π = π of length ` − 1, and consider the next
observed symbol Π`, sent without loss of generality by the i-th party. This symbol (in case it
was not corrupted by the channel) depends only on Xi and the previous communication Π, that
is Π` = f(Π, Xi). To simplify notations, denote by X6=i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) all the
variables except Xi. We have,

Pr(X1 = x1, . . . , Xn = xn | Π = π,Π` = σ)

=
Pr(X1 = x1, . . . , Xn = xn,Π` = σ | Π = π)

Pr(Π` = σ | Π = π)
by definition

=
Pr(X6=i = x 6=i | Π = π) Pr(Xi = xi,Π` = σ | Π = π)

Pr(Π` = σ | Π = π)

by induction, since
Xi, f(Xi,Π) ⊥ X6=i | Π

=

∏
j 6=i

Pr(Xj = xj | Π = π)

 Pr(Xi = xi,Π` = σ | Π = π)

Pr(Π` = σ | Π = π)

=
∏
j 6=i

Pr(Xj = xj | Π = π,Π` = σ)× Pr(Xi = xi | Π = π,Π` = σ),

where the last transition follows since Xi and X6=i are independent given Π, thus conditioning on a
function of either Xi or Π does not change the probability. Finally, note that if the symbol σ was
erased, the claim trivially holds.

As a corollary to the above, note that the inputs remain independent when conditioned on any
information that can be communicated by the parties by some protocol. For instance, parts of the
inputs or path up to some level, etc.

Corollary B.8. The random variables X1, . . . , Xn are independent, conditioned on the observed
transcript Π = π, the correct path PATH = path (up to some level ` ≤ d), and parts of the inputs
(i.e., any fixed set of edges from X[n]).

29
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


