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Abstract

Given a function f : [N]k
→ [M]k, the Z-test is a three query test for checking if a

function f is a direct product, namely if there are functions 11, . . . 1k : [N] → [M] such
that f (x1, . . . , xk) = (11(x1), . . . 1k(xk)) for every input x ∈ [N]k.

This test was introduced by Impagliazzo et. al. (SICOMP 2012), who showed that
if the test passes with probability ε > exp(−

√
k) then f is Ω(ε) close to a direct product

function in some precise sense. It remained an open question whether the soundness of
this test can be pushed all the way down to exp(−k) (which would be optimal). This is
our main result: we show that whenever f passes the Z test with probability ε > exp(−k),
there must be a global reason for this: namely, f must be close to a product function on
some Ω(ε) fraction of its domain.

Towards proving our result we analyze the related (two-query) V-test, and prove a
“restricted global structure” theorem for it. Such theorems were also proven in previ-
ous works on direct product testing in the small soundness regime. The most recent
work, by Dinur and Steurer (CCC 2014), analyzed the V test in the exponentially small
soundness regime. We strengthen their conclusion of that theorem by moving from an
“in expectation” statement to a stronger “concentration of measure” type of statement,
which we prove using hyper-contractivity. This stronger statement allows us to proceed
to analyze the Z test.

We analyze two variants of direct product tests. One for functions on ordered tuples,
as above, and another for functions on sets, f :

([N]
k
)
→ [M]k. The work of Impagliazzo

et. al was actually focused only on functions of the latter type, i.e. on sets. We prove
exponentially small soundness for the Z-test for both variants. Although the two appear
very similar, the analysis for tuples is more tricky and requires some additional ideas.
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1 Introduction

A function f : [N]k
→ [M]k for N,M, k ∈ N, is a direct product function if f = (11, . . . 1k), for

1i : [N]→ [M], i.e. the output of f on each coordinate depends on the input to this coordinate
alone. Direct products appear in a variety of contexts in complexity, usually for hardness
amplification. In PCPs it underlies the parallel repetition theorem [Raz98] and implicitly
appears in other forms of gap amplification, e.g. [Din07]. The specific task of testing direct
products as an abstraction of a certain element of PCP constructions was introduced by
[GS00].

The combinatorial question that underlies these works is the direct product testing ques-
tion: given a function f : [N]k

→ [M]k, is it a direct product function? The setting of interest
here is where we query f in the smallest number of inputs possible, and decide if is it a direct
product function or not.

The direct product testing question is a type of property testing question, yet it is not
in the standard property testing parameter regime. In property testing we are generally
interested in showing that functions that pass the test with high probability, for example
99%, are close to having the property.

In our case, we are interested in understanding the structure of functions that pass the test
with small - but non-trivial - probability, e.g. 1%. The 1% regime is often more challenging
than the 99% regime. It plays an important role in PCPs where one needs to prove a large
gap. In such arguments one needs to be able to deduce non trivial structure even from a
proof that passes a verification test with small probability, e.g. 1%.

There are very few families of tests for which 1% theorems are known. These include
algebraic low degree tests and direct product tests. For low degree tests there has been a
considerable amount of work in various regimes and in particular towards understanding
the extent of the 1% theorems, see e.g. [RS97, AS97, BDN17] and [BTZ10]. It is intriguing
to understand more broadly for which tests such theorems can hold. Indeed, as far as we
know, there are no other tests that exhibit such strong “structure vs. randomness” behavior,
and direct product tests are natural candidates in which to study this question.

We remark that finding new settings where 1% theorems hold (including in particular
derandomized direct products) can be potentially useful for constructing locally testable
codes and stronger PCPs, see e.g. the recent works of [KMS16, DKK+16]. Towards this goal
gaining a more comprehensive understanding of direct product tests, as well as developing
tools for proving them, is a natural goal.

1.1 Our Main Result

The main question we study is: if f : [N]k
→ [M]k passes a certain natural test (Test 1 below)

with non-negligible probability, how can f look like? We prove

Theorem 1.1 (Main Theorem - Global Structure). For every N,M > 1, there exist small
constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if f : [N]k

→ [M]k

is a function that passes Test 1 with probability αZ( k
10 )( f ) = ε ≥ e−c1λ2k, then there exist

functions (11, . . . 1k), 1i : [N]→ [M] such that

P
x∈[N]k

[
f (x)

λk
≈ (11(x1) . . . 1k(xk))

]
≥ c2 · ε.

Where
λk
≈ means that the strings are equal on all but at most λk coordinates.
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Test 1: ”Z”-test with parameter t (3-query test)

1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N]k such
that xA = yA and yB = zB.

3. Reject if f (x)A , f (y)A or f (z)B , f (y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)( f ) the success probability of f on this test.

The theorem is qualitatively tight with respect to several parameters: (i) Soundness, (i.e.
the parameter ε), (ii) Approximate equality vs. exact equality (i.e. the parameter λ), (iii)
Number of queries in the test. We discuss these next.

(i) Soundness The soundness of the theorem is the smallest success probability in which
the theorem is valid, in our case it is 2−ck for some constant c > 0. This is tight up to the
constant c, as can be seen by the example bellow.

Example 1 (Random function). Let f : [N]k
→ {0, 1}k be a random function; i.e. for each

x ∈ [N]k choose f (x) ∈ {0, 1}k uniformly and independently. Two random strings in {0, 1}t are
equal with probability 2−t, therefore αZ(t)( f ) = 2−2t, since the test performs two such checks.
On the other hand, since f is random, it is not close to any direct product function.

We remark that every function f : [N]k
→ {0, 1}k is at least 2−k close to a direct product

function 1, so this amount of correlation is meaningless. We conclude that in order to have
direct product theorem that is not trivial, the minimal soundness has to be 2−c′k for some
constant c′ < 1.

(ii) Approximate equality vs. exact equality In the theorem, we prove that for Ω(ε) of

the inputs x: f (x)
λk
≈ (11(x), . . . , 1k(x)). A priori, one could hope for a stronger conclusion in

which f (x) = (11(x), . . . , 1k(x)) for Ω(ε) of the x’s. However, Example 2 shows that for t = k
10 ,

approximate equality is necessary.

Example 2 (Noisy direct product function). This example is from [DG08]. Let f be a direct
product function, except that on each input x we ”corrupt” f (x) on λk random coordinates by
changing f (x) on these coordinates into random values. Forλ < 1

10 , the probability that Test 1
on f missed all the corrupted coordinates is 2−Ω(λk), in which case the test succeeds. Since
we have changed f (x) on λk coordinates into random values, no direct product function can
approximate f on more than (1 − λ) of the coordinates.

From this example we conclude that for f that passes Test 1 for t = k
10 with probability

e−δλk, it is not possible to approximate f on more than (1 − λ) of the coordinates. Further
discussion and examples for different intersection sizes (i.e. t) are in Section 6.

1Consider the direct product function constructed incrementally by taking the most common value out of
{0, 1} on each step.

3



Test 2: ”V” test with parameter t (2-query test)

1. Choose A ⊂ [k] of size t, uniformly at random.

2. Choose uniformly at random x, y ∈ [N]k such
that xA = yA.

3. Accept if f (x)A = f (y)A.

A

x

y

Denote by αV(t)( f ) the success probability of f on this test.

(iii) Number of queries in the test The absolute minimal number of queries for any direct
product test is two. Indeed, there is a very natural 2-query test, Test 2. Dinur and Goldenberg
showed that it is not possible to have a direct product theorem with soundness lower than

1
poly(k) using the 2-query test [DG08].

Example 3 (Localized direct product functions). In this example we assume N � k. For
every b ∈ [N] we choose a random function 1b : [N] → [M] independently. For every input
x ∈ [N]k, we choose a random ix ∈ k, set b = xi and set f (x) = (1b(x1), . . . , 1b(xk)).

The function f satisfies αV(t)( f ) ≥ 1
k ·

t
k ; indeed, for x, y and A chosen in the test, if ix = iy

and ix ∈ A, then the test will pass. The probability that ix = iy is 1
k , and the probability that

ix ∈ A is t
k .

For N � k, the function f is very far from direct product, since it is made up from
N different direct product functions. Each piece consisting of roughly 1/N fraction of the
domain [N]k.

For every t, the function described in the example satisfies αV(t)( f ) ≥ 1
k2 , yet there is

no direct product function that approximates f when N � k. In [DG08] the conclusion
from Example 3 was that 1/poly(k) is the limit for small soundness for direct product tests.
However, [IKW12] showed that by adding just one more query, this limitation goes away.
They introduced a 3-query test, similar to Test 1, and proved a direct product theorem for all
ε > 2−kβ for some constant β ≤ 1/2.

Direct product test for functions over sets Some of the previous direct product works,
such as [IKW12] were proven in a slightly different setting, where the function tested is
f :

([N]
k
)
→ [M]k, i.e. the input to the function f is an unordered set S ⊂ [N] of k elements. In

this work, we also prove a direct product testing theorem for this setting, Test 3 is the analog
of Test 1 for functions over sets. In Test 3 (see figure), we pick disjoint sets W,X,Y,Z such
that X ∩W = Y ∩W = Y ∩ V = ∅ so that |X ∪W| = |Y ∪W| = |Y ∪ V| = k and they can be
inputs to the function f .

Theorem 1.2 (Global Structure for Sets). There exist a small constant c > 0, such that for
every constant λ > 0, large enough k ∈ N and N > k2e10cλk, if the function f :

([N]
k
)
→ [M]k

passes Test 3 with probability αZset( k
10 )( f ) = ε > e−cλk, then there exist a function 1 : [N]→ [M]

such that
P
S

[
f (S)

λk
≈ 1(S)

]
≥ ε − 4ε2.

Notice that the probability bound of ε − 4ε2 is better than Ω(ε), and it is tight as demon-
strated by the function f which is a hybrid of 1

ε different direct product functions on equals
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Test 3: ”Z” test for functions over sets, with parameter t (3-queries)

1. Choose random V,W,X,Y ⊂ [N], such that |W| =
|V| = t, |X| = |Y| = k − t and X ∩W = Y ∩W =
Y ∩ V = ∅.

2. Reject if f (X ∪W)W , f (Y ∪W)W or
f (Y ∪W)Y , f (Y ∪ V)Y, else accept.

X W

Y V

Denote by αZset(t)( f ) the success probability of f on this test.

parts of the inputs. f passes Test 3 with probability ε, and every direct product function is
close to f only on ε fraction of the inputs.

We remark that the two theorems are not the same. In Theorem 1.1, there are k different
functions 11, . . . , 1k : [N] → [M] whereas in Theorem 1.2 there is a single one. Furthermore,
Theorem 1.1 holds for any N,M ∈ N and large enough k, and Theorem 1.2 (and other such
direct product theorems) only holds for N � k. The proofs of the theorems are also different,
which is discussed later in the introduction.

1.2 Restricted Global Structure

Our proof has two main parts, similar to the structure of the proof of [DG08, IKW12]. In the
first part, we analyze only Test 2 (which is on tuples) and prove a restricted global structure
theorem for it, Theorem 1.3 below (this was called local structure in [IKW12, DS14]). The
term “restricted global structure” refers to when we restrict the domain to small (but not
trivial) pieces, and show that f is close to a product function on each piece separately. This
is the structure of the function in Example 3.

More explicitly, for every A ∈ [k] of size k
10 , r ∈ [N]A and γ ∈ [M]A, a restriction is a triple

τ = (A, r, γ). The choice of t = k
10 in Theorem 1.1 is somewhat arbitrary, the theorem can be

proven with t = ck for c < 1
2 . The restriction corresponds to the set of inputs

Vτ = {w ∈ [N][k]\A
| f (r,w)A = γ}.

Our next theorem shows that for many restrictions τ there exist a direct product function
that is close to f onVτ.

Theorem 1.3 (Restricted Global Structure - informal). Let f : [N]k
→ [M]k be a function that

passes Test 2 with probability αV( k
10 )( f ) = ε > e−δλk, then there exist a natural distribution over

restrictions τ = (A, r, γ) such that with probability Ω(ε), there exist functions (1τ1, . . . 1
τ
9k
10

), 1τi :

[N]→ [M] such that,

P
w∈[N][k]\A

[
f (r,w)[k]\A

λk
≈ (1τ1(w1), . . . 1τ9k

10
(w 9k

10
))

∣∣∣∣∣ w ∈ Vτ

]
≥ 1 − ε2. (1)

Where the distribution over τ is the test distribution, namely choose A ⊂ [k], x ∈ [N]k

uniformly, and set τ = (A, xA, f (x)A).

A similar theorem was proven in [IKW12] but only for soundness (i.e. ε) at least exp(−kβ)
for a constant β ≤ 1/2. This was strengthened to soundness exp(−Ω(k)) in [DS14]. Our
Theorem 1.3 improves on the conclusion of [DS14] . In [DS14] the probability in (1) was
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shown to be at least 1−O(λ) (recall that λ is a constant), whereas we show it is exponentially
close to 1 (when ε is that small). This difference may seem minor but in fact it is what
prevented [DS14] from deriving global structure via a three query test (i.e. moving from the
V test to the Z test). When we try to move from restricted global structure to global structure,
the consistency inside each restriction needs to be very high for the probabilistic arguments
to work, as we try to explain below.

The restricted global structure gives us a direct product function that approximates f
only on a restricted subset of the inputs. In the proof of the global structure, we use the
third query to show that there exists a global function. A key step in the proof of the global
structure is to show that for many restrictions τ, the function 1τ is close to f on a much larger
subsets of inputs. This is done, intuitively, by claiming that if f (x)A = f (y)A, then with high
probability f (y) ≈ 1τ(y) for τ = (A, xA, f (x)A). Since B is a random set and f (z)B = f (y)B, then
f (z), 1τ(z) are also close. This claim only holds if the success probability on (1) is more than
1 − ε, else it is possible that all the success probability of the test comes from f such that
f (x)A = f (y)A, but f (y), 1τ(y) are far.

1.3 Technical Contribution

In terms of technical contribution our proof consists of two new components.

Domain extension Our first contribution a new domain extension step that facilitates the
proof of the restricted global structure. The restricted global structure shows that with
probability Ω(ε), the function f is close to a direct product on the restricted domain Vτ.
A natural way to show that a function is close to a direct product function is to define a
direct product function by majority value. However, this method fails when the agreement
guaranteed for f is small, as in our case.

This is usually resolved by moving to a restricted domain in which the agreement is
much higher, and to define majority there. The first part of our proof is to show that with
probability Ω(ε), over restrictions τ = (A, r, γ) ∼ D, the set Vτ satisfies the following two
properties:

1. Its density is at least ε2 .

2. f has very high agreement in Vτ, informally it means that taking a random pair
w, v ∈ Vτ such that wJ = vJ, results in agreeing answers, i.e. f (r,w)J ≈ f (r, v))J, with
probability greater than 1 − ε120.

We call such restrictions excellent, following [IKW12].
We show that for every excellent restrictionVτ, the restriction hτ of f toVτ, defined by

hτ(w) = f (r,w)[k]\A, is close to a direct product function. The function hτ has high agreement,
which is good for defining majority, but unfortunately the low density ofVτ, which can be
as low as ε

2 , which is exponentially small, is where the techniques used in [IKW12] break
down. In order to prove that hτ is close to a direct product function, we use a local averaging
operator to extend the domain fromVτ to [N][k]\A.

The local averaging operator P 3
4

is the majority of a 3
4 -correlated neighborhood,

∀w ∈ [N][k]\A, i < A P 3
4
hτ(w)i = Plurality

v∈N 3
4

(w),v∈Vτ,vi=wi

{hτ(v)i},
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where v ∈ N 3
4

(w) means that v is 3
4 -correlated with w, i.e. we change each coordinate of w

with probability 1
4 independently. The new function, P 3

4
hτ is defined over all [N][k]\A, unlike

hτ which is defined only onVτ.
In order to use P 3

4
hτ for showing that hτ is close to a direct product function, we show

two things:

1. P 3
4
hτ and hτ are similar onVτ.

2. P 3
4
hτ has high agreement, taking a random pair w, v ∈ [N][k]\A such that wJ = vJ, results

in agreeing answers, P 3
4
hτ(w)J ≈ P 3

4
hτ(v)J with probability 1 − ε6.

To prove that P 3
4
hτ has high agreement we use reverse hypercontractivity to show that only

a few w ∈ [N][k]\A have sparse neighborhood (with density less than ε50), and use the very
high agreement of hτ.

Lastly, we define a direct product function 1τ by taking the plurality overP 3
4
hτ, and show

that it is close to hτ.

Direct product testing in a dense regime A second new element comes when stitching the
many localized functions into one global direct product function, by using the third query.

We prove two global structure theorems, Theorem 1.1 for functions on tuples f : [N]k
→

[M]k and Theorem 1.2 for functions on sets f :
([N]

k
)
→ [M]k.

When we work with f that is defined over sets, we can directly follow the approach
of [IKW12] to complete the proof. However, when working with f defined on tuples we
reach a combinatorial question that itself resembles a direct product testing question, but in
a different (dense) regime. Luckily, the fact that this question is in a dense regime makes it
easier to solve, and this leads to our global structure theorem for tuples. An outline of the
global structure proofs appears in Section 5.1.

1.4 Agreement Tests and Direct Product Tests

The question of direct product testing fits into a more general family of tests called agreement
tests. We next describe this setting formally and explain how direct product tests fit into this
framework.

Agreement tests In all efficient PCPs we break a proof into small overlapping pieces, use
a relatively inefficient PCPs (i.e. PCPs that incur a large blowup) to encode each small piece,
and then through an agreement test put the pieces back together. The agreement test is needed
because given the collection of pieces, there is no guarantee that the different pieces come
from the same underlying global proof, i.e. that the proofs of each piece can be “put back
together again”. The PCP system needs to ensure this through agreement testing: we take
two pieces that have some overlap, and check that they agree.

This situation can be formulated as an agreement testing question as follows. Let V be a
ground set, |V| = N, and let H be a collection of subsets of V, namely, a set of hyperedges.
Let [M] be a finite set of colors, where it is sufficient to think of M = 2.

A local assignment is a collection a = {as} of local colorings as : s → [M], one per subset
s ∈ H. A local assignment is called global if there is a global coloring 1 : V → [M] such that

∀s ∈ H, as ≡ 1|s.
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h ∈ H

V1 V2 Vk

N
vertices

Figure 1: complete k-uniform k-partite graph

An agreement check for a pair of subsets s1, s2 checks whether their local functions agree,
denoted as1 ∼ as2 . Formally,

as1 ∼ as2 ⇔ ∀x ∈ s1 ∩ s2, as1(x) = as2(x).

A local assignment that is global passes all agreement checks. The converse is also true: a
local assignment that passes all agreement checks must be global.

An agreement test is specified by giving a distributionD over pairs (or triples) of subsets
s1, s2. We define the agreement of a local assignment to be the probability of agreement,

a1reeD(a) = P
s1,s2∼D

[
as1 ∼ as2

]
.

An agreement theorem shows that if a is a local assignment with a1reeD(a) > ε then a
is somewhat close to a global assignment. Agreement theorems can be studied for any
hypergraph and in this work we prove such theorems for two specific hypergraphs: the
k-uniform complete hypergraph, and the k-uniform k-partite complete hypergraph.

Relation to direct product testing Theorem 1.1 is equivalent to an agreement theorem on
the complete k-uniform k-partite hypergraph (see Figure 1). Let G = (V = V1, . . .Vk,H) be the
complete k-partite hypergraph with |Vi| = N for i ∈ [k], and

H = {(v1, . . . vk) | ∀i ∈ [k], vi ∈ Vi} .

There is a bijection between H and [N]k. We shall interpret f (x1, . . . , xk) as a local coloring of
the vertices x1, . . . , xk. In this way, we have the following equivalence

f : [N]k
→ [M]k

⇐⇒ a = {ax}x∈H.

Moreover, local assignments which are global, i.e. a such that ax = 1|x for some global
coloring 1 : V1∪· · ·∪Vk → [M], correspond exactly to functions f which are direct products,
f = (11, . . . , 1k) where 1i = 1|Vi ,

f = (11, . . . , 1k) ⇐⇒ a is global.

Finally, Test 2 can be described as taking 2 hyperedges that intersect on t vertices, and
check if their local functions agree on the intersection. Similarly, Test 1 can be described
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as picking three hyperedges, h1, h2, h3 ∈ H such that h1, h2 intersect on t vertices, and h2, h3
intersect on a disjoint set of t vertices, and checking agreement.

Our main theorem, Theorem 1.1, is equivalent to an agreement theorem showing that if
a local assignment a passes a certain 3-query agreement test with non-negligible probability,
then there exists a global assignment 1 : V → [M] with which it agrees non-negligibly.

The k-uniform complete hypergraph (it is non-partite, in contrast to the above), is related
to Theorem 1.2. In this hypergraph the vertex set is [N] and there is a hyperedge for
every possible k-element subset of [N]. Now we have a similar equivalence between local
assignments and functions over sets, i.e. functions where the input is a set S ⊂ [N] of size k,

f :
(
[N]

k

)
→ [M]k

⇐⇒ a = {as}s∈([N]
k ).

An agreement theorem for this hypergraph is equivalent to Theorem 1.2, in which f is defined
not on “tuples” [N]k but on “sets”

([N]
k
)
. A global assignment a or this graph is equivalent to

a direct product function over sets, i.e. f = 1 : [N]→ [M].

1.5 Organization of the Paper

Section 2 contains preliminary notations and definitions. In Section 3 we prove the restricted
global structure, Theorem 1.3. Section 4 is dedicated to the global structure for functions on
sets. We show how to deduce a variant of Theorem 1.3 for sets rather than tuples and then
prove the global structure theorem for sets, Theorem 1.2. In Section 5 we prove the global
structure theorem for tuples, Theorem 1.1. Lastly, in Section 6 we discuss lower bounds for
various 3-query direct product tests that were not presented in the introduction.

2 Preliminaries

Definition 2.1. For each two strings x, y ∈ [N]k we say that

1. x
t
≈ y if x, y differ in at most t coordinates.

2. x
t
0 y if x, y differ in more than t coordinates.

Definition 2.2 (Plurality). The plurality of a function f on a distributionD is its most frequent
value

Plurality
x∼D

( f (x)) = arg max
β

{
P

x∈D

[
f (x) = β

]}
For a set A ⊂ [k] we denote by Ā the set [k] \ A.

Fact 2.3 (Chernoff bound). Let X1, . . .Xk be independent random variables in {0, 1}, let X =∑k
i=1, and denote µ = E[X], then for every δ ∈ (0, 1),

P
X1,...Xk

[X ≤ (1 − δ)ν] ≤ e−
δ2µ2

2 ,

and for every δ ∈ (0, 1]

P
X1,...Xk

[X ≥ (1 + δ)ν] ≤ e−
δ2µ2

3 .
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Corollary 2.4. Let k be a large integer, and let A ⊆ [k] be the set generated by inserting each
i ∈ [k] into A with probability ρ. For every constant c ∈ (0, 1)

P
A

[
|A| ≤ cρk

]
≤ e−

(1−c)2
2 ρk,

and for every c′ ∈ [1, 2],

P
A

[
|A| ≥ c′ρk

]
≤ e−

(c′−1)2
3 ρk.

Claim 2.5 (Chernoff bound for fixed size subsets). Let k ∈ N be a large integer, D ⊂ [k] be a
fixed subset of size at most k

3 . Let A be a random subset of size exactly k
10 , then

P
A

[
|A ∩D| ≥

1
5
|D|

]
≤ e−

1
320 |D| (2)

If |D| ≤ 1
30 k then

P
A

[
|A ∩D| ≤

1
20
|D|

]
≤ e−

1
60 |D| (3)

The proof appears in Appendix A.
In our proof we also need Chernoff bound for non-binary random variables.

Fact 2.6 (Non-binary Chernoff bound). Let X1, . . .Xk be independent random variables in
[0, 1], let X =

∑k
i=1 Xi, and denote µ = E[X] then,

P
X1,...Xk

[
|X − µ| > t

]
≤ 2e−t2k,

2.1 Reverse Hypercontractivity

Definition 2.7 (ρ-correlated distribution). For each string y ∈ [N]k and constant ρ ∈ (0, 1),
the ρ correlated distribution from y will be denoted by (x, J) ∈ Nρ

(
y
)
. For each i ∈ [k]

independently, i ∈ J with probability ρ, and x is chosen such that xJ = yJ, and the rest is
uniform.

We quote Proposition 9.2 from [MOS13]:

Claim 2.8. Let A,B ⊆ [N]k of sizes Pw∈[N]k[w ∈ A] = e−
a2
2 and Pw∈[N]k[w ∈ B] = e−

b2
2 , then

P
x∈[N]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ e−
(2−ρ)(a2+b2)

4(1−ρ) −
ρab

2(1−ρ)

By changing notations and simplifying, we get the following corollary.

Corollary 2.9. For |A| ≥ |B|,

P
x∈[N]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ P
x∈[N]k

[x ∈ A]1+
ρ

2(1−ρ) P
x∈[N]k

[x ∈ B]1+
3ρ

2(1−ρ)

Claim 2.10. Let G ⊂ [N]k be a set of measure ν, then for any η ∈ (0, 1) the set L ={
w ∈ [N]k

∣∣∣∣∣ P(v,J)∈N 3
4

(w) [v ∈ G] ≤ η
}

has a measure less than ν−
11
9 η

2
9 .

Both proofs appears in Appendix A.

10



3 Restricted Global Structure

Let f : [N]k
→ [M]k be such that αV( k

10 )( f ) = ε ≥ e−cλk, i.e. the success probability of f on
Test 2 equals ε. To make the reading easy, we write again Test 2 from the introduction.

Test 2: ”V” test with parameter t (2-query test)

1. Choose A ⊂ [k] of size t, uniformly at random.

2. Choose uniformly at random x, y ∈ [N]k such
that xA = yA.

3. Accept if f (x)A = f (y)A.

A

x

y

Denote by αV(t)( f ) the success probability of f on this test.

We show in this section that αV( k
10 )( f ) = ε already implies that f is somewhat structured,

namely there are restrictions of the domain Vτ ⊂ [N]k such that on these restrictions f is
roughly a product function.

Recalling the definition from the introduction, we define a restriction to be a triple τ =
(A, r, γ), for A ⊂ [k], r ∈ [N]A and γ ∈ [M]A. In this section denote by k′ = 9k

10 , and recall that
Ā = [k] \ A.

Definition 3.1 (Consistent strings). For each restriction τ = (A, r, γ), a string w ∈ [N]Ā is
consistent with τ if f (r,w)A = γ. For every τ, letVτ be the set of consistent strings,

Vτ =
{
w ∈ [N]Ā

∣∣∣ f (r,w)A = γ
}
.

Definition 3.2 (Distribution of Restrictions). LetD be the following distribution over restric-
tions τ. Pick a uniform set A ⊂ [k] of size k

10 , pick a uniform x ∈ [N]k and set r = xA and
γ = f (x)A.

Note that the distributionD depends on the function f .
We define good restriction in an analogous way to the definitions of [IKW12].

Definition 3.3 (Good restriction). A restriction τ = (A, r, γ) is good, if Pw∈[N]Ā[w ∈ Vτ] ≥ ε
2 .

Definition 3.4 (DP restriction). A restriction τ = (A, r, γ) is a DP restriction if it is good, and
if there exist functions (1τ1, . . . 1

τ
k′), 1

τ
i : [N]→ [M] such that

P
w∈[N]Ā

[
f (r,w)Ā

λk
0 (1τ1(w1), . . . 1τk′(wk′))

∣∣∣∣∣ w ∈ Vτ

]
≤ ε2.

The main theorem of this section shows that (a) a non-negligible fraction of restrictions
are good, and that (b) almost all good restrictions are DP restrictions.

Theorem 3.5 (Restricted Global Structure, restated). There exist a small constant δ > 0, such
that for every constant λ > 0 and large enough k ∈N the following holds. For every function
f : [N]k

→ [M]k, if αV( k
10 )( f ) = ε > e−δλk, then with probability at least ε

2 , τ ∼ D is good, and

with probability at least 1 − ε2 over the good restrictions, τ is a DP restriction. Namely, τ is
such that there exist functions (1τ1, . . . 1

τ
k′), 1

τ
i : [N]→ [M] such that

P
w∈[N]Ā

[
f (r,w)Ā

λk
0 (1τ1(w1), . . . 1τk′(wk′))

∣∣∣∣∣ w ∈ Vτ

]
≤ ε2.

11



A similar theorem was proven in [DS14] under the name “local structure”. Under the
same assumptions [DS14] showed that f must be close to a product function for many
restrictions Vτ of the domain. However the closeness was considerably weaker: unlike
in our definition of a DP restriction, in [DS14] even in the restricted part of the domain,
Vτ ⊂ [N]k, there could be a (small) constant fraction of the inputs on which f differs from the
global product function 1τ. In contrast, we only allow an ε2 fraction of disagreeing inputs.
As explained in the introduction, in order to extend the restricted global structure into a
global one, the set of disagreeing inputs inVτ has to be smaller than ε.

3.1 Proof of Theorem 3.5

In this section we prove Theorem 3.5, we start by writing a few definitions and lemmas that
are used in the proof, and give an intuition for the proof of each lemma. We deffer the proofs
of these lemmas to the next sections.

The distribution D over τ is related to the distribution of Test 2. The test can also be
written as choose τ = (A, r, γ) ∼ D, w ∈ [N]Ā and accept iff f (r,w)A = γ. Therefore, if the
function f passes Test 2 with probability ε, by a simple averaging argument

P
τ∼D

[
τ is good

]
≥
ε
2
. (4)

For each τ we define the function hτ, which is a restriction of f toVτ.

Definition 3.6. For each restriction τ = (A, r, γ), let hτ :Vτ → [M]
9k
10 be the function,

hτ(w) = f (r,w)Ā.

We define excellent restriction, in an analogous way to [IKW12],

Definition 3.7 (Excellent restriction). Fix a constant α = 1
1600λ, a restriction τ = (A, r, γ) is

excellent, if

1. τ is good.

2. For every ρ ∈
{

a
b

∣∣∣ a, b ∈N, a < b ≤ k
}
, if we pick w ∈ [N]Ā and (v, J) ∈ Nρ (w) then,

P
w,(v,J)

[
w, v ∈ Vτ, hτ(w)J

αk
0 hτ(v)J

]
≤

( 9
10

) 1
2αk
. (5)

Note that (5) holds trivially when ρ < α, because with high probability |J| ≈ ρk < αk, in
which it is not possible that h(w)J, h(v)J differs in more than αk coordinates. For an excellent
τ, the setVτ is of measure at least ε2 , and the function f is consistent onVτ.

We assume that the constant δ is small enough to satisfy
(

9
10

) 1
2αk

< ε120 = e−120δλk, and

ε120 > e−
αk

43000 .

Lemma 3.10. For every ρ ∈ (0, 1), let τ = (A, r, γ) ∼ D, let w ∈ [N]Ā be uniform, and let
(v, J) ∈ Nρ (w), then

P
τ,w,(v,J)

[
w, v ∈ Vτ, hτ(w)J

αk
0 hτ(v)J

]
≤

( 9
10

)αk
.

12



The proof appears on Section 3.2, the main idea in the proof is that the probability of

w, v ∈ Vτ, h(w)J
αk
0 h(v)J is low when averaging over τ as well. From the definition of hτ, this

is equivalent to f (r,w)A = f (r, v)A = γ and f (r,w)J
αk
0 f (r, v)J. When r,w, v,A, J are all random,

the probability for a uniform A, J to be such that f (r,w), f (r, v) are equal on A but far on J is
very small.

Corollary 3.8. A good τ ∼ D is excellent with probability larger than 1 − ε2.

Proof. Let µ =
(

9
10

) 1
2αk

, and denote by E(τ,w, v, J) the event of w, v ∈ Vτ, hτ(w)J
αk
0 hτ(v)J.

Lemma 3.10 in these notations is: for every ρ ∈ (0, 1), Pτ∼D,w,(v,J)∈Nρ(w) [E] ≤ µ2.

For every τ that is good but not excellent, exist ρ ∈
{

a
b

∣∣∣ a, b ∈N, a < b ≤ k
}

such that,

P
w,(v,J)∈Nρ(w)

[E] > µ.

In this case we say that τ is bad for ρ.
Assume towards contradiction that Pτ∼D

[
τ is good but not excellent

]
> ε4. The set{

a
b

∣∣∣ a, b ∈N, a < b ≤ k
}

contains less than k2 elements, so there exists ρ in this set such that

P
τ∼D

[
τ is bad for ρ

]
≥
ε4

k2 .

For this ρ,

P
τ∼D,w,(v,J)∈Nρ(w)

[E] ≥ P
τ∼D

[
τ is bad for ρ

]
P

w,(v,J)∈Nρ(w)

[
E

∣∣∣ τ is bad for ρ
]
≥
ε3

k2µ.

This contradicts Lemma 3.10, because ε4

k2µ � µ2 (we assume that µ < ε120). Therefore, we
conclude that Pτ∼D

[
τ is good but not excellent

]
≤ ε4

Since τ ∼ D is good with probability at least ε
2 , by averaging a good τ ∼ D is excellent

with probability at least 1 − ε2. �

In order to prove Theorem 3.5, it is enough to show that every excellent restriction is a
DP restriction. A natural idea is to define a direct product function by taking the plurality of
hτ onVτ, because the agreement of hτ insideVτ is almost 1. However, it is difficult to prove
that this function is close to hτ because the setVτ is very sparse. We define a local averaging
operator, which allows us to go from hτ that is defined on Vτ, to a function that is defined
on [N]Ā.

Definition 3.9 (Local averaging operator). For every ρ ∈ [0, 1], let Pρ be the following
function operator. For every subset Vτ ⊂ [N]Ā, and every function h : Vτ → [M]t, the
function Pρh : [N]t

→ [M]t satisfies ∀i ∈ [k],w ∈ [N]t,

Pρh(w)i = Plurality
(v,J)∈Nρ(w),vi=wi

(h(v)i).

If there is no v such that vi = wi inVτ, we define Pρh(w)i to an arbitrary value.

13



The local averaging operator of h takes for every w and i the most frequent value h(v)i
over a ρ-correlated neighborhood of w. We note that the function operator is not linear.

In order to prove that hτ is close to a direct product function, we first show that thatP 3
4
hτ

is close to hτ, and then thatP 3
4
hτ is close to a direct product function. Clearly 3

4 is an arbitrary

constant, our proof works for any constant ρ > 1
2 , and we fix ρ = 3

4 .

Lemma 3.11. For every excellent τ,

P
w∈[N]

9k
10

[
hτ(w)

12αk
0 P 3

4
hτ(w)

∣∣∣∣∣ w ∈ Vτ

]
≤ ε3.

The proof is in Section 3.3, and uses the very high consistency of hτ inside Vτ to show
that the plurality vote is almost always consistent with hτ(w). In the proof we use reverse
hypercontractivity [MOS13] to show that the set Vτ is not too sparse, such that for almost
all w ∈ Vτ, the neighborhoodN 3

4
(w) is not empty.

In a similar way to the proof of Lemma 3.11, we show that for an excellent τ the function
P 3

4
hτ has high agreement.

Lemma 3.12. For every excellent τ,

P
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1 − ε10,

where w ∈ [N]
9k
10 and (v, J) ∈ N 1

2
(w).

The proof of this lemma also appears in Section 3.3, the main idea is that if P 3
4
h(w1),

P 3
4
h(w2) disagree on a lot of coordinates, then a large fraction of their 3

4 -correlated neighbor-
hood also disagree on a lot of coordinates. This can only happen for very few inputs w, else
we contradict the fact that τ is excellent.

After showing that P 3
4
hτ has high agreement, we define 1τ to be the plurality vote of

P 3
4
hτ, and then use the high agreement, Lemma 3.12, to show that they 1τ is close to P 3

4
hτ.

Lemma 3.13. For every excellent restriction τ there exist a direct product function 1τ =

1τ1 . . . 1
τ
9k
10

: [N]
9k
10 → [M]

9k
10 such that

P
w∈[N]

9k
10

[
P 3

4
hτ(w)

1500αk
0 1τ(w)

]
≤ 3ε4.

The proof is in Section 3.4.
Using the above lemmas we can prove the local structure.

Proof of Theorem 3.5. Let f : [N]k
→ [M]k be a function that passes Test 2 with probability ε.

From averaging, Pτ∼D
[
τ is good

]
≥

ε
2 , Lemma 3.10 implies that with probability (1− ε2),

a good τ is also excellent.
Fix an excellent τ, by definition the function hτ has high consistency inside Vτ, and by

Lemma 3.11, P 3
4
h is close to h onVτ. Let E1(w) be the event that hτ(w)

12αk
0 P 3

4
hτ(w), in this

notation Lemma 3.11 implies that

P
w

[E1 | w ∈ Vτ] ≤ ε3. (6)

14



From Lemma 3.13, there exists a product function 1τ that is similar to P 3
4
hτ. Denote by

E2(w) the event that P 3
4
hτ(w)

1500αk
0 1τ(w). In this notation,

P
w

[E2] ≤ 3ε4. (7)

We want to use (6) and (7) to prove that hτ is similar to 1τ onVτ. In order to do that, we
need to bound the probability of E2 conditioned on w ∈ Vτ.

3ε4
≥P

w
[E2]

≥P
w

[w ∈ Vτ]Pw [E2 | w ∈ Vτ] (τ is excellent)

≥
ε
2
P
w

[E2 | w ∈ Vτ] .

Therefore Pw [E2 | w ∈ Vτ] ≤ 6ε3.
If w is such that none of E1,E2 happened, then hτ(w),P 3

4
hτ(w) are equal in all but 12αk

of the coordinates, and P 3
4
hτ(w), 1τ(w) are equal in all but 1500αk of the coordinates, which

means that hτ(w)
1512αk
≈ 1τ(w).

P
w

[
hτ(w)

1512αk
0 1τ(w)

∣∣∣∣∣ w ∈ Vτ

]
≤P

w
[E1 ∨ E2 | w ∈ Vτ]

≤P
w

[E1 | w ∈ Vτ] + P
w

[E2 | w ∈ Vτ]

≤ε3 + 6ε3 < ε2.

By definition, hτ(w) = f (xA,w)Ā,

P
w

[
f (xA,w)Ā

1512αk
0 1τ(w)

∣∣∣∣∣ w ∈ Vτ

]
= P

w

[
hτ(w)

1512αk
0 1τ(w)

∣∣∣∣∣ w ∈ Vτ

]
< ε2.

Since λ = 1600α we are done. �

3.2 Good Restrictions are Excellent with High Probability

For convenience, we restate the lemma.

Lemma 3.10. For every ρ ∈ (0, 1), let τ ∼ D, w ∈ [N]
9k
10 and (v, J) ∈ Nρ (w), then

P
τ,w,(v,J)

[
w, v ∈ Vτ, hτ(w)J

αk
0 hτ(v)J

]
≤

( 9
10

)αk
.

Proof. Fix ρ ∈ (0, 1), let E1(τ,w, v, J) be the event in equation (5) of the definition of excellence,

Definition 3.7. More explicitly, E1 = 1 if w, v ∈ Vτ and hτ(w)J
αk
0 hτ(v)J.

Recall the definition of hτ for τ = (A, r, γ), for w ∈ Vτ, hτ(w) = f (r,w)Ā. Therefore, the

event E1 can also be written as f (r,w)A = f (r, v)A = γ and f (r,w)Ā
αk
0 f (r, v)Ā.

Let E2 be the event that f (r,w)A = f (r, v)A and f (r,w)Ā
αk
0 f (r, v)Ā. We can easily see that

E1 ⊆ E2, therefore over every distribution P[E1] ≤ P[E2].
We start by bounding the probability of event E2, over the distribution τ ∼ D, w ∈ [N]

9k
10

uniformly and (v, J) ∈ Nρ (w). Writing the distribution explicitly:
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1. Pick A ⊂ [k] of size k
10 .

2. Pick x ∈ [N]k, set r = xA and γ = f (x)A.

3. Pick J ⊂
[

9k
10

]
of size B( 9k

10 , ρ) (binomial random variable).

4. Pick uniform w, v ∈ [N]
9k
10 such that wJ = vJ.

Notice that E2 is independent of γ, so it does not matter how γ is chosen. We can define an
equivalent process for producing the same distribution (without γ):

1. Pick a set A′ ⊂ [k] of size k
10 + B( 9k

10 , ρ).

2. Pick y, z ∈ [N]k such that yA′ = zA′ .

3. Pick A ⊆ A′ of size k
10 .

4. Set r = yA, w = yĀ and v = zĀ.

In order of E2 to happen, y, z,A′ must be such that f (y)A′
αk
0 f (z)A′ . Furthermore, the set A

must be chosen such that f (y)A = f (z)A. As the second random process allows us to see, A is
a random subset of A′, and each of the αk coordinates i on which f (y)i , f (z)i has probability
of at least 1

10 to be chosen to A (as |A| = k
10 and |A′| ≤ k). The probability that none of the αk

coordinates are in A is at most
(

9
10

)αk
, so

P
τ,w,(v,J)

[E1] ≤ P
τ,w,(v,J)

[E2] ≤
( 9
10

)αk
. (8)

�

3.3 Local Averaging Operator

In this section we prove the two lemmas concerning local averaging operator. We repeat the
two lemmas and prove them.

Lemma 3.11. For every excellent τ,

P
w∈[N]

9k
10

[
hτ(w)

12αk
0 P 3

4
hτ(w)

∣∣∣∣∣ w ∈ Vτ

]
≤ ε3.

Proof. Fix an excellent restriction τ, denote by V = Vτ, h = hτ, P 3
4
h = P 3

4
hτ and k′ = 9k

10 . In

order to simplify the notations, denote by µ =
(

9
10

) 1
2αk

the constant from the definition of
excellence (Definition 3.7).

From the fact that τ is excellent, we know that Pw∈[N]k′ [w ∈ V] ≥ ε
2 and

P
w,(v,J)∈N 3

4
(w)

[
w, v ∈ V, hJ(w)

αk
0 hJ(v)

]
≤ µ.

16



Our goal is to prove that for almost all w ∈ V, P 3
4
h(w) ≈ h(w). First, we characterize the

”bad” inputs w ∈ V for which we can’t prove this claim . Then, we prove it on the rest. Fix
η = ε20, the first set of ”bad” inputs is the set of inconsistent ones,

B =

w ∈ V

∣∣∣∣∣∣∣ P
(v,J)∈N 3

4
(w)

[
v ∈ V, h(v)J

αk
0 h(w)J

]
≥

η

100

 .
By averaging, Pw[w ∈ B] ≤ 100µ

η .
The second set is the set of ”lonely” inputs, inputs that have very sparse neighborhood,

L =

w ∈ V

∣∣∣∣∣∣∣ P
(v,J)∈N 3

4
(w)

[v ∈ V] ≤ η

 .
By hypercontractivity, Claim 2.10 (uses [MOS13]), Pw[w ∈ L] ≤ η

2
9

(
ε
2

)− 11
9 .

Fix an input w ∈ V \ {B ∪ L}, we will show that h(w)
12αk
≈ P 3

4
h(w), i.e. h(w) and P 3

4
h(w)

are equal on all but 12αk of the coordinates. Since Pw [w < B ∩ L] ≤ 100µ
η η

2
9

(
ε
2

)− 11
9
≤ ε3, this

finishes the proof (ε is such that ε120 > µ).
Denote by D the following set

D =
{
i ∈ [k′]

∣∣∣∣ h(w)i , P 3
4
h(w)i

}
.

D is the set of coordinates in which the local averaging of h doesn’t equal h. Since w < B∪ L,
the neighborhood of w is very consistent, and we show that the set D is small.

Assume towards a contradiction that |D| > 12αk. For v ∈ [N]k′ , J ⊂ [K] and i ∈ [k], let
E(v, J, i) be the event

E(v, J, i) = (i ∈ J ∧ h(w)i , h(v)i) .

We will reach a contradiction by upper bounding and lower bounding the probability of the
event E, under the distribution i ∈ D and (v, J) ∈ N 3

4
(w), given that v ∈ V

Lower bound We look on E = E1∧E2, where E1 = i ∈ J and E2 = h(w)i , h(v)i. By definition,
for every i ∈ D, the value h(w)i is not the most probable h(v)i when (v, J) ∈ N 3

4
(w). Therefore,

∀i ∈ D, P
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V] = P
(v,J)∈N 3

4
(w)

[h(w)i , h(v)i | i ∈ J, v ∈ V] ≥
1
2
. (9)

We want to remove the conditioning over E1, in order to get a bound E. If we choose a
uniform (v, J) ∈ N 3

4
(w), the probability of i ∈ J is exactly 3

4 . If we condition on v ∈ V, this
probability can be different. We start by bounding the probability of D ∩ J to be small.

Every i ∈ D has probability of 3
4 be be in J independently, by Chernoff bound (Corol-

lary 2.4), P(v,J)∈N 3
4

(w)

[
|D ∩ J| ≤ 3

5 |D|
]
≤ e−

αk
10 . If we condition on v ∈ V, this probability can

increase by a factor of at most 1
η , where η ≤ P(v,J)∈N 3

4
(w) [v ∈ V].

P
(v,J)∈N 3

4
(w)

[
|D ∩ J| ≤

3
5
|D|

∣∣∣∣∣ v ∈ V
]
≤

1
η

e−
αk
10 . (10)
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Equation (10) implies that for a typical i ∈ D, the probability E1 is not very far from 3
4 . If (v, J)

are such that |D ∩ J| ≥ 3
5 |D|, a random i ∈ D has probability at least 3

5 to be in J.

P
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] = P
(v,J)∈N 3

4
(w),i∈D

[i ∈ J | v ∈ V]

≥ P
(v,J)∈N 3

4
(w),i∈D

[
i ∈ J ∧ |D ∩ J| ≥

3
5
|D|

∣∣∣∣∣ v ∈ V
]

(by (10))

≥
3
5

(
1 −

1
η

e−
αk
10

)
. (11)

Now we can lower bound the probability of E:

P
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] = P
(v,J)∈N 3

4
(w),i∈D

[E1 ∧ E2 | v ∈ V]

= P
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] P
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V] (by (9))

≥ P
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V]
1
2

(by (11))

≥
3
5

(
1 −

1
η

e−
αk
10

)
1
2
≥

1
5
. (12)

Where the last inequality holds since η = ε20 and ε satisfies ε120 > e−
αk
10 .

Upper Bound We want to upper bound the same probability, and reach a contradiction.
Since w < L, P(v,J)∈N 3

4
(w) [v ∈ V] ≥ η, and from the fact that w < B we know that its neighbor-

hood is consistent, i.e. P(v,J)∈N 3
4

(w)

[
v ∈ V, h(v)J

αk
0 h(w)J

]
≤

η
100 . Combining both together,

P
(v,J)∈N 3

4
(w)

[
h(v)J

αk
0 h(w)J

∣∣∣∣∣ v ∈ V
]
≤

1
100

. (13)

This implies that with probability at most 1
100 the chosen (v, J) can be such that h(v)J

αk
0 h(w)J.

Else, h(v)J
αk
≈ h(w)J, so there are at most αk coordinates i ∈ J in which h(v)i , h(w)i. Since

|D| ≥ 12αk, with probability at most 1
12 a uniform i ∈ D is in these αk coordinates.

P
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] ≤
1

100
+

1
12
<

1
5
. (14)

And we reached a contradiction with (12). �

In order to show that the function P 3
4
hτ is close to a product function, we need to show

that it is consistent in a similar way to hτ (as in the definition of excellence, Definition 3.7).
Lemma 3.11 only gives us that P 3

4
hτ is consistent among the inputs in Vτ, and not in all

[N]
9k
10 .
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Lemma 3.12. For every excellent τ,

P
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1 − ε10,

where w ∈ [N]
9k
10 and (v, J) ∈ N 1

2
(w).

Proof. This proof is similar to the proof of Lemma 3.11. We fix excellent τ and denoteV =Vτ,

h = hτ and P 3
4
h = P 3

4
hτ , k′ = 9k

10 and µ =
(

9
10

) 1
2αk

.

We characterize the inputs w, (v, J) on which we can’t prove that P 3
4
h(w)J

20αk
≈ P 3

4
h(v)J.

Instead of the set B in the proof of Lemma 3.11, we define a set of two correlated inputs
(w, (v, J)) that are inconsistent. Fixing η = ε51, let

C =

{
w, (v, J)

∣∣∣∣∣∣ P
(w′,J′),(v′,J′′)

[
w′, v′ ∈ V, h(w′) J̃

αk
0 h(v′) J̃

]
≥

η2

4000

}
.

Where (w′, J′) ∈ N 3
4

(w) , (v′, J′′) ∈ N 3
4

(v) and J̃ = J ∩ J′ ∩ J′′.
If w is chosen uniformly in [N]k′ and (v, J) ∈ N 1

2
(w), then the marginal distribution on w′

is uniform, and (v′, J̃) ∈ N( 3
4 )2 1

2
(w′), since for each i independently, the probability of i to be

in J̃ = J ∩ J′ ∩ J′′ is
(

3
4

)2 1
2 .

Since τ is excellent, Pw′,(v′, J̃)

[
w′, v′ ∈ V, h(w′) J̃

αk
0 h(v′) J̃

]
≤ µ. By averaging, it means that

Pw,(v,J) [w, (v, J) ∈ C] ≤ 4000µ
η2 .

We define the set of inputs with sparse neighborhood,

L =

w ∈ [N]k′

∣∣∣∣∣∣∣ P
(w′,J′)∈N 3

4
(w)

[w′ ∈ V] ≤ η

 .
From hypercontractivity argument, see Claim 2.10, Pw[w ∈ L] ≤ η

2
9

(
ε
2

)− 11
9 .

For every w and (v, J) such that w, v < L and (w, (v, J)) < C, we show that P 3
4
h(w)J

20αk
0

P 3
4
h(v)J. This finishes the proof since for w ∈ [N]k′ and (v, J) ∈ N 1

2
(w),

P
w,(v,J)

[(w, (v, J)) ∈ C ∨ w ∈ L ∨ v ∈ L] ≤
4000µ
η2 + 2 · η

2
9

(
ε
2

)− 11
9
≤ ε10.

Fix w, (v, J) such that w, v < L and (w, (v, J)) < C, and let D ⊆ J be the set

D =
{
i ∈ J

∣∣∣∣ P 3
4
h(w)i , P 3

4
h(v)i

}
.

Similarly to the previous proof, we assume towards a contradiction that |D| ≥ 20αk.
For every J′, J′′ ⊂ [k′],w′, v′ ∈ V and i ∈ [k′], we denote by E(J′, J′′,w′, v′, i) the following

event:
E(J′, J′′,w′, v′, i) = (h(w′)i , h(v′)i ∧ i ∈ J′ ∩ J′′) .

We upper bound and lower bound the probability of this event, under the distribution i ∈ D
and (w′, J′) ∈ N 3

4
(w) , (v′, J′′) ∈ N 3

4
(v) given that w′, v′ ∈ V.
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Lower Bound We look on E = E1 ∧ E2, where E1 = i ∈ J′ ∩ J′′ and E2 = h(w′)i , h(v′)i.
For every i ∈ D, P 3

4
h(w)i , P 3

4
h(v)i, so the most frequent value h(w′)i for (w′, J′) ∈ N 3

4
(w)

doesn’t equal the most frequent value h(v′)i for (v′, J′′) ∈ N 3
4

(v). For every i ∈ D, taking
(w′, J′) ∈ N 3

4
(w) , (v′, J′′) ∈ N 3

4
(v):

P
(w′,J′)
(v′,J′′)

[E2
∣∣ E1,w′, v′ ∈ V] = P

(w′,J′)
(v′,J′′)

[h(w′)i , h(v′)i
∣∣ i ∈ J′ ∩ J′′,w′, v′ ∈ V] ≥

1
2
. (15)

In order to prove the lower bound, we need to remove the condition over E1. To do that,
we need to lower bound the size of D ∩ J′ ∩ J′′. Both J′ and J′′ are taken by picking each
coordinated independently with probability 3

4 . If we do not condition on w′, v′ ∈ V expected

value of |D ∩ J′ ∩ J′′| is
(

3
4

)2
|D|. Each i ∈ D is in J′ ∩ J′′ with probability

(
3
4

)2
independently,

so using Chernoff bound (Corollary 2.4),

P
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J′ ∩ J′′| ≤ 0.56|D|] ≤ e−
αk

9000 .

If we condition on w′ ∈ V, v′ ∈ V, the probability can increase by a factor of at most 1
η2 ,

where P(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and P(v′,J′′)∈N 3
4

(v) [v′ ∈ V] ≥ η,

P
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J′ ∩ J′′| ≤ 0.56|D|
∣∣ w′, v′ ∈ V] ≤

1
η2 e−

αk
9000 . (16)

If |D∩ J′∩ J′′| ≥ 0.56|D|, then a uniform i ∈ D has probability of at least 0.56 to be in J′∩ J′′,

P
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E1
∣∣ w′, v′ ∈ V] ≥

(
1 −

1
η2 e−

αk
9000

)
0.56 ≥ 0.55. (17)

The last inequality is correct because we assume ε is large enough to satisfy ε120 > 1
η2 e−

αk
9000 .

Combining (15) and (17), we can lower bound the probability of E, when i ∈ D, (w′, J′) ∈
N 3

4
(w) and (v′, J′′) ∈ N 3

4
(v),

P
i,(w′,J′),(v′,J′′)

[E
∣∣ w′, v′ ∈ V] = P

i,(w′,J′),(v′,J′′)
[E1 ∧ E2,

∣∣ w′, v′ ∈ V]

= P
i,(w′,J′),(v′,J′′)

[E1
∣∣ w′, v′ ∈ V] (18)

· P
i,(w′,J′),(v′,J′′)

[E2
∣∣ w′, v′ ∈ V,E1]

≥
1
2
· 0.55 >

1
4
. (19)

Upper Bound Since (w, (v, J)) < C, we know that

P
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
w′, v′ ∈ V, h(w′) J̃

αk
0 h(v′) J̃

]
≤

η2

4000
,
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where J̃ = J ∩ J′ ∩ J′′. From the fact that w < L, P(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and since v < L,

P(v′,J′′)∈N 3
4

(v) [v′ ∈ V] ≥ η. This implies that

P
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
h(w′) J̃

αk
0 h(v′) J̃

∣∣∣∣∣ w′, v′ ∈ V
]
≤

1
4000

.

If h(w′) J̃
αk
≈ h(v′) J̃, then even if all these αk coordinates are in D, a uniform i ∈ D has

probability of at most αk
|D| ≤

αk
20αk ≤

1
20 to be one of these coordinates. Therefore,

P
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E] ≤
1

4000
+

1
20
<

1
10
,

which contradicts (19). �

3.4 Direct Product Function

Fixing an excellent τ, we first show that the local average function P 3
4
hτ is close to a product

function 1τ. Then, by Lemma 3.11, we will conclude that hτ is close to 1τ. This implies that
τ is a DP restriction as needed.

In this section we prove Lemma 3.13,

Lemma 3.13. For every excellent restriction τ there exist a product function 1τ : [N]
9k
10 →

[M]
9k
10 such that

P
w∈[N]

9k
10

[
P 3

4
hτ(w)

1500αk
0 1τ(w)

]
≤ 3ε4.

We first define 1τ, the candidate direct product function

Definition 3.14. For each excellent τ = (A, r, γ), let 1τ : [N]
9k
10 → [M]

9k
10 be the following

function, for each i < A and b ∈ [N],

1τ,i(b) = Plurality
w∈[N]

9k
10 s.t. wi=b

{P 3
4
h(w)i},

ties are broken arbitrarily.

We prove Lemma 3.13 using the following few claims.

Claim 3.15.
P

i∈[ 9k
10 ],w,v∈[N]

9k
10

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣∣ wi = vi

]
≥ 1 − 200α.

In order to prove Claim 3.15, we need to define an ”almost ρ-correlated” distribution.

Definition 3.16. (x, J) are almost ρ-correlated to y ∈ [N]k, denoted by (x, J) ∈ Aρ
(
y
)
, if they

are chosen by the following process:

1. Choose i ∈ [k] uniformly at random, set J = {i}.
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2. For each j , i, add j to J with probability ρ independently.

3. Set xJ = yJ and the rest of x is uniform.

Claim 3.17. For any ρ ∈ (0, 1) and any event E(y, x, J) over x, y ∈ [N]k and J ⊆ [k],

P
y∈[N]k,(x,J)∈Aρ(y)

[
E(y, x, J)

]
≤ 2 P

y∈[N]k,(x,J)∈Nρ(y)

[
E(y, x, J)

]
+ 5e−

ρk
4 .

The proof appears at the end of the section.

Proof of Claim 3.15. Let k′ = 9k
10 . We start by showing that for a uniform w ∈ [N]k′ , (u, J′) ∈

A 1
2

(w) and i ∈ J′, Pi,w,(v,J′)

[
P 3

4
h(w)i = P 3

4
h(v)i

]
≥ 1 − 100α.

Let E1 be the event that P 3
4
h(w)i , P 3

4
h(v)i, we further define the following two events,

let E2 to be the event P 3
4
h(w)J′

20αk
0 P 3

4
h(u)J′ , and let E3 be the event that |J′| < k

4 .

If both E2,E3 don’t happen, then |J′| ≥ k
4 , and there are at most 20αk coordinates i in

which P 3
4
h(w)i , P 3

4
h(v)i. Therefore, a uniform i ∈ J′ has probability at most 20αk

k
4

to satisfy

P 3
4
h(w)i , P 3

4
h(v)i,

P
w,(v,J′),i

[E1 | ¬E2,¬E3] ≤
20αk

k
4

= 80α. (20)

In order to remove the condition over¬E2,¬E3, we bound their probability. For a uniform
w ∈ [N]k′ and (u, J′) ∈ A 1

2

(
ρ
)
,

P
w,(u,J′)∈A 1

2
(w)

[E2] ≤2 P
w,(u,J′)∈N 1

2
(w)

[E2] + 5e−
ρk
4 (by Claim 3.17)

≤2ε10 + 5e−
ρk
4 ≤ 3ε10. (by Lemma 3.12)

Similarly, for w ∈ [N]k′ and (u, J′) ∈ A 1
2

(w),

P
w,(u,J′)∈A 1

2
(w)

[E3] ≤2 P
w,(u,J′)∈N 1

2
(w)

[E3] + 5e−
ρk
4 (by Claim 3.17)

≤2e−
k

100 + 5e−
ρk
4 ≤ ε10. (Chernoff Bound)

For (u, J′) ∈ N 1
2

(w), each coordinate i is in J′ with probability 1
2 independently, so we can use

Chernoff bound. If we add a condition on ¬E2, it can increase the probability by a factor of
1

P[¬E2] < 2, therefore Pw,(u,J′)∈A 1
2

(w) [E3 | ¬E2] ≤ 2ε10.

Combining everything together, for a uniform w ∈ [N]k′ , (u, J′) ∈ A 1
2

(w) and i ∈ J′,

P
w,(u,J′),i

[E1] ≤ P
w,(u,J′),i

[E2] + P
w,(u,J′),i

[E3 | ¬E2] + P
w,(u,J′),i

[E1 | ¬E2,¬E3]

≤3ε10 + 2ε10 + 80α ≤ 100α (21)

Let D′ : [k′] × [N]k′
× [N]k′

× [N]k′
→ {0, 1} be the following distribution, generating

i,w, v,u:
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1. Pick a uniform i ∈ [k′].

2. Pick w, v ∈ [N]k′ such that wi = vi.

3. For every j , i, insert j into J with probability 1
2 independently.

4. For every j ∈ [k′], u j =

w j j ∈ J
v j else

.

The distributionD′ is built such that the marginal distribution over w, v, i is that i ∈ [k′]
uniformly, and w, v are uniform in [N]k′ such that wi = vi. Furthermore, the marginal
distribution over w, (u, J ∪ {i}), i is such that w ∈ [N]k′ uniformly, (u, J ∩ {i}) ∈ A 1

2
(w) and the

coordinate i is uniform in {i} ∪ J. Similarly, the marginal distribution over v, (u, J̄) is v ∈ [N]k′ ,
(u, J̄) ∈ A 1

2
(v) and i ∈ J̄.

Therefore, we can use equation (21) on the pairs w, (u, J ∪ {i}) and v, (u, J̄), and by union
bound,

P
i∈[k′]

w,v∈[N]k′

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣∣ wi = vi

]
≥ P

i,w,v,u∼D′

[
P 3

4
h(w)i = P 3

4
h(v)i = P 3

4
h(u)i

]
≥1 − 100α − 100α.

�

Corollary 3.18.
P

w∈[N]
9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i = 1(w)i

]
≥ 1 − 400α.

Proof. For each w ∈ [N]
9k
10 and i ∈ [ 9k

10 ] such that P 3
4
h(w)i , 1(w)i, the value P 3

4
h(w)i is not the

most frequent, P
v∈[N]

9k
10

[P 3
4
h(w)i = P 3

4
h(v)i|wi = vi] ≤ 1

2 . Therefore,

P
w,v∈[N]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i , P 3

4
h(v)i

∣∣∣∣ wi = vi

]
≥

1
2

P
w∈[N]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i , 1(w)i

]
.

Using Claim 3.15 we reach the corollary. �

Proof of Lemma 3.13. Fix an excellent τ, denote k′ = 9k
10 .

For each w ∈ [N]k′ , let Dw ⊂ [k′] be the set of coordinates in which 1τ(w),P 3
4
hτ(w) differs

Dw =
{
i ∈ [k′]

∣∣∣∣ 1τ(w)i , P 3
4
hτ(w)i

}
.

Let C ⊂ [N]k′ be the set of inputs such that 1τ,P 3
4
hτ are similar on them,

C =
{
w ∈ [N]k′

∣∣∣ |Dw| ≤ 500αk
}
.

By Corollary 3.18 and averaging, Pw[w ∈ C] ≥ 1
5 .

Let B ⊂ [N]k′ be the set of inputs on which 1τ,P 3
4
hτ are far,

B =
{
w ∈ [N]k′

∣∣∣ |Dw| ≥ 1500αk
}
.
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B is the set of inputs in which P 3
4
hτ(w)

1500αk
0 1τ(w), so our goal is to prove that B is small.

Let E1(w, v, J) be the event that |J ∩ Dw| > 600αk, and let E2(w, v, J) be the event that

P 3
4
h(w)J

20α
0 P 3

4
h(v)J. By Lemma 3.12, Pw∈[N]k′ ,(v,J)∈N 1

2
(w) [E2] ≤ ε10.

For every v,w, J such that vJ = wJ, the function 1 satisfies 1τ(w)J = 1τ(v)J (since 1 is a
product function), and therefore E1∧ (v ∈ C) =⇒ E2. This is because if E2 doesn’t hold, then

P 3
4
h(w)J

20α
≈ P 3

4
h(v)J, if E1 does hold then |J∩Dw| > 600αk, which means that |Dv∩ J| ≥ 580αk,

and v < C.
We show if B isn’t small, then E1 ∧ (v ∈ C) happens often, when we pick w ∈ [N]k, (v, J) ∈

N 1
2

(w).
For w ∈ B, the set Dw is large, |Dw| ≥ 1500αk, if we take (v, J) ∈ N 1

2
(w), each coordinate

i ∈ Dw is in J with probability 1
2 independently, so for w ∈ B, by Chernoff bound

P
(v,J)∈N 1

2
(w)

[E1(w)] = P
(v,J)∈N 1

2
(w)

[|J ∩Dw| > 600αk] ≥ 1 − e−
ρk
100 .

From reverse hypercontractivity [MOS13], Corollary 2.9

P
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C] ≥ P
w

[w ∈ C]
3
2 P

w
[w ∈ B]

5
2 .

Therefore,

P
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C ∧ E1] ≥P
w

[w ∈ C]
3
2 P

w
[w ∈ B]

5
2 − e−

ρk
100

≥

(1
5

) 3
2

P
w

[w ∈ B]
5
2 − e−

ρk
100 . (22)

Where (22) is since Pw[w ∈ C] ≥ 1
5 .

Since E1 ∧ (v ∈ C) =⇒ E2 and by Lemma 3.12, Pw∈[N]k′ ,(v,J)∈N 1
2

(w) [E2] ≤ ε10, it means that

(22) should be smaller than ε10, which implies Pw[w ∈ B] ≤ 3ε4 and finishes the proof. �

We are left with proving the simple distribution claim - that almost ρ correlated is similar
to ρ correlated.

Proof of Claim 3.17. The proof is based on the fact that the distributions Nρ
(
y
)
,Aρ

(
y
)

are
very close, and the probability of an event depending on y, x, J is not much different in both
distributions.

By Chernoff bound, ρ-correlated sets are almost always of size about ρk, this holds for
almost ρ correlated as well,

P
(x,J)∈Nρ(y)

[
|J| > 2ρk

]
≤ e−

ρk
3 ,

P
(x,J)∈Aρ(y)

[
|J| > 2ρk

]
≤ e−

ρk
4 .

For each y ∈ [N]k, let By be the (x, J) that satisfy E(y, x, J)

By =
{
(x, J)

∣∣∣ E(y, x, J) = 1
}
.
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Using this notation

P
y∈[N]k,(x,J)∈Nρ(y)

[
E(y, x, J)

]
= P

y∈[N]k,(x,J)∈Nρ(y)

[
(x, J) ∈ By

]
.

Fix y ∈ [N]k, for each (x, J) ∈ By, by the definition of ρ-correlation,

P
(z,J′)∈Nρ(y)

[(z, J′) = (x, J)] = ρ|J|(1 − ρ)k−|J|
( 1
N

)k−|J|
.

By the definition of almost ρ correlation,

P
(z,J′)∈Aρ(y)

[(z, J′) = (x, J)] =
|J|
k
ρ|J|−1(1 − ρ)k−|J|

( 1
N

)k−|J|
.

Note that for each such (x, J) ∈ By such that |J| ≤ 2ρk,

P
(z,J′)∈Aρ(y)

[(z, J′) = (x, J)] ≤ 2 P
(z,J′)∈Nρ(y)

[(z, J′) = (x, J)] .

Therefore

P
(x,J)∈Aρ(y)

[
(x, J) ∈ By

]
≤ P

(x,J)∈Aρ(y)

[
|J| ≥ 2ρk

]
+ P

(x,J)∈Aρ(y)

[
(x, J) ∈ By

∣∣∣ |J| ≤ 2ρk
]

≤e−
ρk
4 + 2 P

(x,J)∈Nρ(y)

[
(x, J) ∈ By

∣∣∣ |J| ≤ 2ρk
]

≤e−
ρk
4 + 2 P

(x,J)∈Nρ(y)

[
(x, J) ∈ By

]
+ 4e−

ρk
3 .

When we used conditional probability in the last inequality. This is true for all y ∈ [N]k′ ,
therefore,

P
y∈[N]k,(x,J)∈Aρ(y)

[
E(y, x, J)

]
= P

y∈[N]k,(x,J)∈Aρ(y)

[
(x, J) ∈ By

]
≤ 2 P

y∈[N]k,(x,J)∈Nρ(y)

[
(x, J) ∈ By

]
+ 5e−

ρk′

4 .

�

4 Global Structure for Sets

Up until now we have considered functions f : [N]k
→ [M]k whose inputs are ordered tuples

(x1 . . . , xk) ∈ [N]k. We now move to consider functions f :
([N]

k
)
→ [M]k whose inputs are

unordered {x1, . . . , xk} ∈
([N]

k
)
, and we assume that N � k (for tuples no such assumption was

made).
To each subset S = {s1, . . . , sk} the function f assigns f (S) ∈ [M]k. f (S) should be viewed

as a “local function” on S, assigning a value from [M] to every a ∈ S. We denote by f (S)a
the output of f that corresponds to a. For a subset W ⊂ S, let f (S)W be the outputs of f
corresponding to the elements in W.
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There are straightforward analogs to Theorem 1.1 and Theorem 3.5 which we present
and prove in this section. Interestingly, in the case of sets deducing global structure from
restricted global structure is quite easier than it is for tuples.

First, let us present the Z test for sets, from [IKW12] when t = k
10 . Let αZset( k

10 )( f ) be the
success probability of this test. This is the same test as Test 3 from the introduction written
differently, it is written this way because it is easier to refer to the test items during the proof.

Test 4: ”Z” test for functions over sets, with t = k
10 (3-query test)

1. Choose a random set W ⊂ [N] of size k
10 .

2. Choose X,Y ⊂ [N] \W of size 9k
10 .

3. If f (X ∪W)W , f (Y ∪W)W reject.

4. Choose V ⊂ [N] \ Y of size k
10 .

5. If f (Y ∪W)Y , f (Y ∪ V)Y reject, else accept.

X W

Y V

Denote by αZset( k
10 )( f ) the success probability of f on this test.

Theorem 1.2. There exist a small constant c > 0, such that for every constant λ > 0, large
enough k ∈N and N > k2e10cλk, if the function f :

([N]
k
)
→ [M]k passes Test 3 with probability

αZset( k
10 )( f ) = ε > e−cλk, then there exist a function 1 : [N]→ [M] such that

P
S

[
f (S)

λk
≈ 1(S)

]
≥ ε − 4ε2.

In order to analyze this test, we first need to ”translate” the restricted global structure
result into this setting, and then prove the global structure in this setting.

4.1 Restricted Global Structure for Sets

In this section, we see that for N � k, the restricted global structure for tuples, Theorem 3.5,
implies restricted global structure for sets. First we define analog definitions for sets, for
good restrictions and DP restrictions. To make the reduction proof simpler, we use a constant
η ∈

[
1 − k2

N , 1
]

(i.e. almost 1) and define good pair using η.

Definition 4.1 (Good pair). A pair X,W ⊂ [N], |X| = 9k
10 , |W| =

k
10 is good if

P
Y

[
f (X ∪W)W = f (Y ∪W)W

∣∣∣ Y ∩W = ∅
]
>
ε
2
η.

This definition is analog to Definition 3.3 of good restriction, the main difference between
the definitions is that here we don’t have a set of coordinates A ⊂ [k], because f is defined
on sets and not coordinates.

Definition 4.2 (DP pair). A pair X,W ⊂ [N], |X| = 9k
10 , |W| =

k
10 is a DP pair if it is good, and

if there exist a function 1X,W : [N]→ [M] such that

P
Y

[
f (Y ∪W)Y

3αk
0 1X,W(Y)

∣∣∣∣∣ Y ∩W = ∅, f (X ∪W)W = f (Y ∪W)W

]
≤ 2ε2.
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This definition is analog to Definition 3.4 of DP restriction, only here there is a single
function 1X,W, instead of 9k

10 different functions in the case of coordinates.

Lemma 4.3 (Restricted global structure for sets). There exist a small constants δ > 0, such
that for every constant λ > 0 and large enough k ∈ N such that N > k2e10δλk, the following
holds,

For every function f :
([N]

k
)
→ [M]k, if αZset( k

10 )( f ) = ε > e−δλk, then at least (1 − ε2
−

k2

N ) of

the good pairs W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
are DP pairs, i.e. there exist 1X,W : [N]→ [M] such that

P
Y

[
f (Y ∪W)Y

3αk
0 1X,W(Y)

∣∣∣∣∣ Y ∩W = ∅, f (X ∪W)W = f (Y ∪W)W

]
≤ 2ε2.

This lemma for sets is analog to Theorem 3.5, and we prove it by a reduction from it. For
every f :

([N]
k
)
→ [M]k we define a function f ′ : [N]k

→ [M]k
∪ ⊥ that equals ⊥ if the input

has two identical coordinates, and identifies with f everywhere else. For N � k, almost all
inputs don’t have two identical coordinates, and f ′, f are equal almost always.

Using Theorem 3.5, we derive a restricted global structure on f ′ which gives a direct
product function 1τ = 1τ1, . . . 1

τ
9k
10 k

for every excellent τ. Since f equals f ′ almost always, we

find an equivalence between excellent τ and excellent X,W. Then, we build a restricted
global function 1X,W by taking the most frequent value among the product 1τ1, . . . 1

τ
9k
10

. Note

that even though f ′ is permutation invariant, the functions 1τ1, . . . 1
τ
9k
10

may not be the same.

Since the proof is technical, and its main points are described in the paragraph above,
we deffer it to Appendix B.

4.2 Global Structure for Sets

Now we are ready to prove Theorem 1.2. The proof is very similar to lemma 3.16 in [IKW12].

Proof. Fix a function f :
([N]

k
)
→ [M]k that passes Test 4 with probability ε > e−cλk, denote by

δ = c
5 and α = 5λ.

Let W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
be the subsets chosen on the first two items of the test, if

PY
[

f (X ∪W)W = f (Y ∪W)W
∣∣∣ Y ∩W = ∅

]
< ε

2η, the test rejects in Item 3 with probability
at least 1 − ε

2η.
Therefore, in order for f to pass the test with probability ε, the test must pass with

probability at least ε on W,X such that PY
[

f (X ∪W)W = f (Y ∪W)W
∣∣∣ Y ∩W = ∅

]
> ε

2η, we
call these W,X good.

Using Lemma 4.3, for at least (1 − 2ε2
−

k2

N ) of the good W,X there exist a function
1W,X : [N]→ [M] such that

P
Y

[
f (Y ∪W)Y

3αk
0 1X,W(Y)

∣∣∣∣∣ Y ∩W = ∅, f (X ∪W)W = f (Y ∪W)W

]
≤ 2ε2.

Fix such W,X, let G =
{
Y ∈

([N]
9k
10

) ∣∣∣∣ Y ∩W = ∅, f (X ∪W)W = f (Y ∪W)W

}
, and let 1 = 1X,W :

[N] → [M]. We want to use the last query to show that this 1 is in fact a global product
function, i.e f (S) ≈ 1(S) for about an ε fraction of S ∈

([N]
k
)
.
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For every set S, we say that S is bad if f (S)
5αk
0 1(S). Let p be the probability of a uniform

S to be bad, i.e. p = PS∈([N]
k )

[
f (S)

5αk
0 1(S)

]
.

Suppose that instead of running Test 4 as is, we choose Y,V by the following process:

1. Choose a uniform S ∈
([N]

k
)
.

2. Choose Y to be a uniform 9k
10 subset of S.

3. Set V = S \ Y and return (Y,V).

We suppose that if the process outputs Y such that Y∩W , ∅, the test rejects. The probability
of this event is less than k2

N , and if it doesn’t happen the process generates the test distribution.
Therefore, the test on f using this distribution should success with probability at least ε− k2

N .
In order for Test 4 to pass, two checks must hold:

1. f (X ∪W)W = f (Y ∪W)W, equivalent to Y ∈ G.

2. f (Y ∪ V)Y = f (Y ∪W)Y.

Suppose that S is bad, and we let Y ∪ V = S to be the sets used in the test. If Y < G, the
test will fail. If y ∈ G, from the local structure, Lemma 4.3,

P
Y

[
f (Y ∪W)Y

3αk
0 1(Y)

∣∣∣∣∣ Y ∈ G
]
≤ 2ε2.

If we condition on S to be bad, we restrict Y and therefore the probability of this event
can increase by a factor of 1

p .

P
Y

[
f (Y ∪W)Y

3αk
0 1(Y)

∣∣∣∣∣ Y ∈ G,S is bad
]
≤

1
p

2ε2. (23)

Since S is bad and Y is a uniform 9k
10 sized set inside S, the probability that less than 3αk

out of the 5αk elements in which f (S), 1(S) differ is in Y is exponentially small.

P
Y⊂S

[
f (S)Y

3αk
≈ 1(Y)

∣∣∣∣∣ S is bad
]
≤ e−

1
320αk. (24)

The inequality is due to Chernoff bound, using Claim 2.5 (if D is the set of elements in which

f (S), 1(S) differ, f (S)Y
3αk
≈ 1(Y) =⇒ |Y ∩D| ≤ 3

5 |D|, in the claim we use A = S \ Y).

From equation (23), we know that with probability 1− 2ε2

p , f (Y∪W)Y
3αk
≈ 1(Y). From (24),

with probability 1− e−
1

320αk, f (S)Y
3αk
0 1(Y). If both holds, then f (S)Y = f (Y∪V)Y , f (Y∪W)Y,

and the test will fail. Therefore,

P
S

[
Test passes

∣∣∣ S is bad
]
≤ e−

1
320αk +

2ε2

p
≤

3ε2

p
. (25)
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The test must pass with probability ε − k2

N ,

ε −
k2

N
= P[Test passes] =P[S is bad]P

[
Test passes

∣∣∣ S is bad
]

+ P[S isn’t bad]P
[
Test passes

∣∣∣ S isn’t bad
]

≤p
3ε2

p
+ (1 − p)

Therefore p = P[S is bad] ≤ 1− ε+ k2

N + 3ε2, which implies that at least ε− k2

N − 3ε2 of the test

S are not bad, and for such sets f (S)
5αk
≈ 1(S). We choose c = δ

5 so α = 1
5λ, and notice that

ε − 4ε2
≤ ε − k2

N − 3ε2 which finishes the proof. �

In the introduction, we stressed that in order to extend the restricted global structure
into a global structure, the restricted global structure theorem has to be ”strong”, i.e. the

probability of f (Y ∪W)Y
3αk
0 1X,W(Y) should be strictly smaller than ε, it is 2ε2 in our case.

If the local structure was not strong, the bound in (25) would have been larger than ε. This
means that all the success probability of the test could come from bad sets S. From (25), we
see that almost all of the success probability of the test comes from sets that are not bad, this
we couldn’t have deduced from the restricted structure theorem of [DS14].

5 Global Structure for Tuples

In this section we prove our main theorem - global structure for tuples. The proof uses the
restricted global structure, Theorem 3.5. For convenience we copy the test and theorem from
the introduction.

Test 1: ”Z”-test with parameter t (3-query test)

1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N]k such
that xA = yA and yB = zB.

3. Reject if f (x)A , f (y)A or f (z)B , f (y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)( f ) the success probability of f on this test.

Theorem 1.1 (Main theorem - Global Structure for tuples). For every N,M > 1, there exist
small constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if f : [N]k

→

[M]k is a function that passes Test 1 with probability αZ( k
10 )( f ) = ε ≥ e−c1λ2k, then there exist

functions (11, . . . 1k), 1i : [N]→ [M] such that

P
x∈[N]k

[
f (x)

λk
≈ (11(x1) . . . 1k(xk))

]
≥ c2 · ε.

Where
λk
≈ means that the strings are equal on all but at most λk coordinates.
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5.1 Proof Outline

Our proof of Theorem 1.1 relies on Theorem 3.5, which gives us, for many restrictions τ, a
product function 1τ that is defined on a set A of 9k

10 coordinates and approximately equals f
on Vτ. In this section we show how to stitch the restricted functions 1τ together into one
global function 1. The proof has three parts.

1. In Section 5.2, we show that there exist an x ∈ [N]k such that,

(a) On at least Ω(ε) of the sets A, the tuple τ = (A, xA, f (x)A) is excellent, and Test 1
passes with probability at least ε3 .

(b) Taking two such sets A1,A2, their functions 1τ1 , 1τ2 are similar with probability
Ω(ε2).

We start from picking x such that the test succeeds on it with probability Ω(ε), and that
for Ω(ε) of the sets A, τ = (A, xA, f (x)A) satisfies the first item above. We use the third
query of the test to show that each 1τ approximates f on [k] \A in Ω(ε) of the inputs in
[N]k. This implies that for many different pairs τ1, τ2, both 1τ1 and 1τ2 are close to f on
[k] \ {A1 ∪A2} in Ω(ε2) of the inputs, which means that 1τ1 , 1τ2 are similar to each other.

2. In Section 5.3 we view this situation abstractly as yet another agreement question, with a
different setting of parameters: given a set of direct product functions, each defined on
9
10 k coordinates, such that each two are consistent with probability Ω(ε2), find a global
direct product function 1 = (11, . . . 1k) that is consistent with Ω(ε2) of these functions.
We show that such a 1 can be found, essentially proving an agreement testing theorem
for this setting. This may seem circular but in fact the current setting is easier than
our original problem because of the density: Since the sets are so large, every two sets
intersect.

In order to solve this agreement question, we build a graph with the functions as nodes,
and connect by an edge each two consistent functions. We connect by a ”weak edge”
each two functions that are somewhat consistent, where we allow a larger difference
between the two functions. The weak and strong edges have an ”almost transitive”
property, if (v1, v2) and (v2, v3) are connected by a strong edge, then almost surely
(v1, v3) are connected by a weak edge. We use this property to show that there exist a
set of vertices C of size Ω(ε2) that is almost a clique, i.e. almost every two functions in
C are consistent. We build the global function by taking the plurality over C, and show
that it is close to most functions in C.

3. Lastly, in Section 5.4, we connect the two previous items. The functions 1τ for τ =
(A, x, f (x)A) from the first item are each defined on 9k

10 coordinates, and each two are
similar with probability Ω(ε2). This means that they satisfies the conditions of the
second item, and there exists a global function 1 defined on all [k] that is close to Ω(ε2)
of them. We recall that on Section 5.2 we showed that each 1τ is close to f on Ω(ε)
fraction of the inputs, and conclude that the global function 1 is also close to f on Ω(ε)
fraction of the input, which finishes the proof.

5.2 Consistency Between Restricted Global Functions

From Theorem 3.5, we know with probability 1 − ε2 a good τ ∼ D is excellent, and for each
excellent τ there exist a local direct product function 1τ = (1τ1, . . . , 1

τ
9k
10

) that equals f onVτ.
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Definition 5.1. For every x ∈ [N]k, letAx be the set of subsets A ⊂ [k] of size k
10 such that

1. Fixing A, x, Py,B,z
[
Test 1 passed

]
≥

ε
3 .

2. τ = (A, xA, f (x)A) is excellent.

Definition 5.2. Let τ1 = (A1, r1, γ1), τ2 = (A2, r2, γ2) be two excellent tuples, we say that 1τ1 ,
1τ1 are consistent if for a uniform i < A1 ∪ A2 and u ∈ [N],

P
i,u

[
1
τ1
i (u) , 1τ2

i (u)
]
≤ 60λ.

The main claim we prove in this section is the following,

Claim 5.3. There exist x ∈ [N]k, such that

1. PA [A ∈ Ax] ≥ ε
4 .

2. PA1,A2∈Ax

[
1τ1 , 1τ1 are consistent

]
≥

ε2

32 , where the tuples are τ1 = (A1, xA1 , f (x)A1) and
τ2 = (A2, xA2 , f (x)A2).

We start from looking for a candidate x ∈ [N]k.

Claim 5.4. Let
X1 =

{
x ∈ [N]k

∣∣∣∣ P [
Test 1 passed with x

]
≥
ε
4

}
,

X2 =
{
x ∈ [N]k

∣∣∣∣∣ PA [A ∈ Ax] ≥
ε
8

}
.

Then
X1 ∩X2 , ∅.

Proof. Let G be the full weighted bipartite graph, with vertex sets L =
([k]

9k
10

)
and R = [N]k. The

weight of an edge A, x equals the success probability of Test 1 given that A, x are chosen.
The expected weight of an edge is equal to the test success probability of Test 1, ε. For

each edges with weight less than ε
2 , we change its weight to 0. We removed at most half of

the total weight, so the expected weight of a uniform edge now is at least ε2 .
All the edges that remain with positive weight are of (A, x) such that τ = (A, x, f (x)A) is

good (there may also be good tuples with weight 0, if Test 2 passed with probability larger
than ε

2 but Test 1 didn’t). We further change to 0 the weight of all the edges A, x such that
τ = (A, xA, f (x)A) is not excellent.

From Theorem 3.5, a random good τ ∼ D is excellent with probability 1 − ε2, and the
distribution τ ∼ D corresponds to a uniform choice of A ∈ L, x ∈ R. Therefore, changing to
0 the wight over these edges means changing to 0 the weight of at most ε2 of the edges in
G. The maximal weight of an edge is 1, we have reduced the expected weight by at most ε2.
The expected weight now is more than ε

2 − ε
2
≥

ε
3 .

Let x be the vertex with the maximal sum of weights of neighbor edges, then

P
[
Test 1 passed given x

]
≥ E

A
[ω(A, x)] ≥

ε
3
.

The inequality is because we have changed to zero the weight some edges.
All edges (A, x) that still have positive weight satisfy A ∈ Ax,

P
A

[A ∈ Ax] = P
A

[ω(A, x) > 0] ≥
ε
3
,
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since the maximal weight an edge can have is 1.
Therefore, x ∈X1 ∩X2. �

In the rest of this section we fix x ∈ X1 ∩X2, denoteA = Ax and 1A = 1τ = (1τ1, . . . , 1
τ
9k
10

)

for τ = (A, x, f (x)A), and prove that it fulfills the conditions of Claim 5.3.

Definition 5.5. An input z ∈ [N]k is consistent with a set A ∈ A if f (z)Ā
20λk
≈ 1A(zĀ). Let ZA

be the set of inputs that are consistent with A.

ZA =
{
z ∈ [N]k

∣∣∣∣∣ f (z)Ā
20λk
≈ 1A(zĀ)

}
.

Claim 5.6. For every A ∈ A, Pz [z ∈ ZA] ≥ ε
4 .

Proof. Assume towards contradiction that the claim does not hold, and fix a set A ∈ A such
that Pz [z ∈ ZA] < ε

4 .
We reach a contradiction by showing that conditioning on A, x chosen by the test,

Py,B,z
[
Test 1 passes

]
< ε

3 contradicting the fact that A ∈ A.
We define the following events, under the assumption that yA = xA and yB = zB as in the

test.

1. E1: f (x)A = f (y)A.

2. E2: f (z)B = f (y)B.

3. E3: f (y)B
λk
≈ 1A(yB).

4. E4: f (z)B
λk
≈ 1A(zB).

5. E5: z < ZA.

Note that since 1A is a product function and yB = zB, E4 can also be written as f (z)B
λk
≈ 1A(yB).

We also notice that E2 ∧ E3 =⇒ E4, since we can switch f (y)B by f (z)B in E3.
By definition, Test 1 succeeds if E1,E2 both happened.

P
y,B

[E1 ∧ E2] ≤ P
y,B,z

[E1 ∧ E2 ∧ E3 ∧ E5] + P
y,B,z

[E1 ∧ E2 ∧ ¬E3] + P
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ P
y,B,z

[E1 ∧ E4 ∧ E5] + P
y,B,z

[E1 ∧ E2 ∧ ¬E3] + P
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ P
y,B,z

[E4 | E5] + P
y,B,z

[¬E3 | E1] + P
y,B,z

[¬E5] . (26)

We bound each of the three probabilities.

1. If E5 happened, z < ZA so f (z)Ā
20λk
0 1A(zĀ), let D be the set of coordinates in which

f (z)Ā and 1A(zĀ) differ
D =

{
i ∈ Ā

∣∣∣ f (z)i , 1A,i(zi)
}
.

In order to satisfy E4, the set B should be such that |B∩D| ≤ λk, since B is a random set
of size k

10 , using Claim 2.5

P
B,y,z

[E4 | E5] ≤ P
B

[|B ∩D| ≤ λk] ≤ e−
λk
60 < ε2.
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2. Since A ∈ Ax the tuple (A, xA, f (x)A) is excellent, and from Theorem 3.5

P
y,B,z

[¬E3 | E1] = P
y,B

[
f (y)B

λk
0 1A(yB)

∣∣∣∣∣ f (x)A = f (y)A

]
≤ ε2,

where we use the fact that B ⊆ Ā, therefore f (y)B
λk
0 1A(yB) implies f (y)Ā

λk
0 1A(yĀ).

3. From our assumption,

P
y,B,z

[E5] = P
z

[z ∈ ZA] ≤
ε
4
.

Therefore, from (26) we get

P
y,B,z

[
Test 1 passes

∣∣∣ x,A
]

= P
y,B,z

[E1 ∧ E2] ≤ ε2 + ε2 +
ε
4
<
ε
3
,

contradicting A ∈ A. �

In the introduction, we explained the difference between our restricted global structure,
and the result of [DS14]. In our result, Theorem 3.5, f (y)Ā ≈ 1

τ(y) for 1 − ε2 of y ∈ Vτ, and it
their result it was much less.

Claim 5.7.

P
A1,A2∈A

[
|ZA1 ∩ZA2 | ≥

ε2

32
Nk

]
≥
ε2

32
.

Proof. For a uniform pair A1,A2 ∈ A:

E
A1,A2

[
|ZA1 ∩ZA2 |

]
=

∑
z
E

A1,A2

[
I(z ∈ ZA1 ∩ZA2)

]
≥

∑
z
P
A1

[
z ∈ ZA1

]2
(27)

Where I is an indicator. The last inequality holds since A1,A2 are independent uniform sets
inA, and the square function is convex.

From Claim 5.6, Pz [z ∈ ZA] ≥ ε
4 for every A ∈ A. Therefore, from (27) we get

E
A1,A2

[
|ZA1 ∩ZA2 |

]
≥

∑
z
P
A1

[
z ∈ ZA1

]2

≥

∑
z

N−
k
2 P

A1

[
z ∈ ZA1

]2

(Cauchy Swartz)

≥

(
ε
4

)2
Nk. (Claim 5.6)

The maximal value of |ZA1 ∩ZA2 | is Nk, therefore by averaging

P
A1,A2

[
|ZA1 ∩ZA2 | ≥

ε2

32
Nk

]
≥
ε2

32
.

�

Claim 5.8. If A1,A2 ∈ A are such that |ZA1 ∩ZA2 | ≥
ε2

32 Nk, then 1A1 , 1A2 are consistent, i.e. for
a uniform i ∈ [k] \ {A1 ∪ A2} and u ∈ [N],

P
i,u

[
1A1,i(u) , 1A2,i(u)

]
≤ 60λ.
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Proof. Let A1,A2 ∈ A be two sets such that |ZA1 ∩ ZA2 | ≥
ε2

32 Nk, and let Z12 = ZA1 ∩ ZA2 .
In order to simplify the notation, denote S1 = [k] \ A1, S2 = [k] \ A2 and S12 = S1 ∩ S2 =
[k] \ {A1 ∪ A2}. S12 is the set of coordinates that both 1A1 , 1A2 are defined on, |S12| ≥ 0.8k.

For each i ∈ S12, let
pi = P

u∈[N]

[
1A1,i(u) , 1A2,i(u)

]
.

Let w ∈ [N]S12 uniformly at random, and let Ii be indicator for 1A1,i(wi) , 1A2,i(wi). Each Ii
equals 1 with probability pi independently. In this notation

E
w

[
dist(1A1(w), 1A2(w))

]
= E

∑
i∈S12

Ii


Assume towards contradiction that Pi,b

[
1A1,i(u) , 1A2,i(u)

]
> 60λ, this will imply that

Ew
[
dist(1A1(w), 1A2(w))

]
> 60λ · 0.8k.

Using Chernoff bound:

P
w

[
dist(1A1(w), 1A2(w)) ≤ 40λk

]
= P

∑
i∈S12

Ii ≤
5
6
E

∑
i∈S12

Ii


 ≤ e−

1
2λk

If instead of taking a completely uniform w ∈ [N]S12 , we pick a random z ∈ Z12, and
restrict it to S12, getting w = zS12 . The probability of any event on w can increase by a factor
of at most Nk

|Z12|
≤

32
ε2 ,

P
z∈Z12

[
dist(1A1(zS12), 1A2(zS12)) ≤ 40λk

]
≤

32
ε2 e−

1
2λk <

1
2
. (28)

By the definition of ZA1 ,ZA2 , each input z ∈ Z12 satisfies both f (z)S1

20λk
≈ 1A1(zS1) and

f (z)S2

20λk
≈ 1A2(zS2) which implies 1A1(zS12)

40λk
≈ 1A2(zS12) with probability 1, which contradicts

(28). �

Combining the last two claims, we prove Claim 5.3.

5.3 Agreement Theorem in the Dense Case

In this section, we present and prove an abstract problem that will later be used to create the
global product function. Given a collection of local functions F = { fS}S∈( [k]

9k
10

), such that for

each S ∈
([k]

9k
10

)
, fS : S → Σ, can we deduce from the agreement of fS the existence of a single

global function 1 : [k]→ Σ that is close to many fS?
We need to define what exactly agreement means in the case of F , as it is not the setting

on which we previously defined agreement on. In order to do so, we assume that we have
a bounded distance measure on Σ, i.e. for every σ1, σ2 ∈ Σ, dist(σ1, σ2) ∈ [0, 1].

Definition 5.9. The difference between fS1 , fS2 ∈ F , denoted by ∆( fS1 , fS2) is defined by

∆( fS1 , fS2) = E
i∈S1∩S2

[dist( fS1(i), fS1(i))].

The difference between fS ∈ F to a function 1 : [k]→ Σ is defined by,

∆( fS, 1) = E
i∈S

[dist( fS(i), 1(i))].
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Note that the difference defined above is not a distance, it may be that ∆( fS1 , fS2) = 0 for
S1 , S2.

Now we are ready to define the agreement, notice that since we are talking on an
agreement inside a function set F , the definition is different. The general idea is the same -
we check for the agreement of two random elements in F according to some distribution.

Definition 5.10. The agreement of the collection of local functions F regarding the uniform
distribution with parameter α, denoted by agreeα(F ) is defined by,

agreeα(F ) = P
fS1 , fS2∈F

[∆( fS1 , fS2) < α].

Theorem 5.11. For every small constant α ∈ (0, 1) and ν > e−
1
3α

2k, if a collection of local
functions F has agreeα(F ) > ν, then there exists a global function 1 : [k]→ Σ such that

P
S∈( [k]

9k
10

)

[
∆( fS, 1) ≤ 300α

]
≥

1
4
ν.

In order to prove the theorem, it is helpful to look at the elements S ∈
([k]

9k
10

)
as vertices in a

graph. Let G = (V,ES ∪ EW) to be the graph with the vertex setV =
([k]

9k
10

)
, and two edge sets,

weak edges and strong edges.

Definition 5.12. For every two sets S1,S2 ∈ V,

1. S1,S2 are connected by a strong edge, denoted by S1 − S2, if ∆( fS1 , fS2) < α.

2. S1,S2 are connected by a weak edge, denoted by S1 ∼ S2, if ∆( fS1 , fS2) < 60α.

We want to find a subset of vertices that is close to a clique in G, such subset will allow
us to define a global function 1. We start by showing that there exist many vertices of high
degree in G.

Claim 5.13. Exists a set S ⊂ V of measure at least ν2 , such that for every S ∈ S

P
S′∈V

[S − S′] ≥
1
2
ν.

Proof. Let

S =
{
S ⊆ V

∣∣∣∣∣ PS′ [S − S′] ≥
1
2
ν
}
.

By averaging

ν ≤ P
S1,S2

[S1 − S2]

≤P
S1

[S1 ∈ S] P
S1,S2

[S1 − S2 | S1 ∈ S] + P
S1

[S1 < S] P
S1,S2

[S1 − S2 | S1 < S]

≤P
S1

[S1 ∈ S] +
1
2
ν

(
1 − P

S1
[S1 ∈ S]

)
.

Then PS1 [S1 ∈ S] ≥ 1
2ν. �

35



Strong connectivity is not transitive, but we can have an ”almost transitive” property by
considering both strong and weak edges.

Claim 5.14. For S,S1,S2 ∈ V uniformly and independently,

P
S,S1,S2

[S − S1,S − S2,S1 6∼ S2] ≤ 2e−α
2k

Proof. Fix S1,S2 ∈ V to be two vertices such that S1 6∼ S2 (if there are no such vertices, the
probability is 0 and we are done).

For every S ∈ V, we define by di, d1
i , d

2
i the following distances:

1. For each i ∈ S1 ∩ S2, di = dist( fS1(i), fS2(i)).

2. For each i ∈ S ∩ S1, d1
i = dist( fS(i), fS1(i)).

3. For each i ∈ S ∩ S2, d2
i = dist( fS(i), fS2(i)).

By the triangle inequality, for every i ∈ S ∩ S1 ∩ S2, di ≤ d1
i + d2

i , therefore for every such i,
max{d1

i , d
2
i } ≥

di
2 .

Since S1 6∼ S2, we know that Ei∈S1∩S2[di] ≥ 60α, if we look on the sum
∑

i∈S1∩S2
di ≥

8k
10 60α

(because |S1 ∩S2| ≥
8
10 k). If S−S1,S−S2, then max{Ei∈S∩S1[d1

i ],Ei∈S∩S2[d2
i ]} ≤ α, which means

that max{
∑

i∈S∩S1
d1

i ,
∑

i∈S∩S2
d2

i } ≤
9

10αk (we switched expectation in a sum, |S ∩ S1| ≤
9k
10 ).

max

 ∑
i∈S∩S1

d1
i ,

∑
i∈S∩S2

d2
i

 ≥ 1
2

∑
i∈S∩S1∩S2

max
{
d1

i , d
2
i

}
≥

1
4

∑
i∈S∩S1∩S2

di (29)

The first inequality is since taking the maximum over every i can increase the total sum
in a factor of 2 at most from taking maximum of the sum. The second inequality is since
max{d1

i , d
2
i } ≥

di
2 .

Notice that the last expression is independent of the function fS, and depends only on
the set S. Let XS be the random variable XS = 1

4
∑

i∈S∩S1∩S2
di for a uniform S ∈ V. Since the

set S is a uniform 9k
10 sized subset of [k], ES[XS] = 9

10
∑

i∈S1∩S2
di ≥

9
10

8
10 60αk. For S ∈ V such

that XS > αk, by (29) it means that S is not strongly connected to one of S1,S2.
To finish the proof, we need to show that XS ≤ αk for very few S ∈ V. Let D contain the

k
3 indices i ∈ S1 ∩ S2 with the largest di. Obviously

∑
i∈D di ≥

1
3
∑

i∈S1∩S2
di ≥ 16αk. In order of

XS ≤ αk, the sum over i ∈ D ∩ S should satisfy,
∑

i∈D∩S di ≤ 4αk. By Claim 5.15, this happens
with probability less than 2e−α

2k.
Therefore, for every S1 6∼ S2, the probability of a uniform S ∈ V to be strongly connected

to both is at most 2e−α
2k. This is true for every S1 6∼ S2, it is also true for a random pair. �

Claim 5.15 (Fixed sized Chernoff bound). For every constant α ∈ (0, 1), let k ∈ N be a large
enough integer, D ⊂ [k] a subset of size at most k

3 , and for every i ∈ D let di ∈ [0, 1] be
constants such that

∑
i∈D di > 4αk.

Let S ⊂ [k] be a random subset of size exactly 9k
10 , then

P
S

 ∑
i∈S∩D

di ≤ αk

 ≤ 2e−α
2k (30)

36



Proof. For a set S that is chosen by putting each i ∈ [k] in S with probability 9
10 independently,

Chernoff bound gives us the required bound easily. Because S has a fixed size, we need to
work a little harder.

For each i ∈ D, let S be a uniform set in
([k]

9k
10

)
, and let Ii be,

Ii =

di i ∈ S
0 i < S

In this notation,
∑

i∈S∩D di =
∑

i∈D Ii. The random variables Ii are not independent, we define
the independent random variables Ji,

Ji =

di w.p 1
2

0 w.p 1
2
.

Since |D| = k
3 , and S is a uniform 9

10 k sized subset of [k], even conditioning on all other
j ∈ D \ {i} to be in S, the probability of i to be in S is at least 1

2 .

P
[
Ii = di

∣∣∣ ∀ j ∈ D \ {i}, I j > 0
]
≥ P [Ji = di] . (31)

So a lower bound for Ji implies a lower bound for Ii.
The random variables Ji satisfies E

[∑
i∈D Ji

]
= 1

2
∑

i∈D di ≥ 2αk.

P
S

 ∑
i∈S∩D

di ≤ αk

 =P
Ii

∑
i∈D

Ii ≤ αk


≤P

Ji

∑
i∈D

Ji ≤ αk


≤P

Ji


∣∣∣∣∣∣∣∑i∈D Ji − E

∑
i∈D

Ji


∣∣∣∣∣∣∣ ≥ αk

 (Chernoff bound)

≤2e−α
2k.

�

From the last two claims, Claim 5.13 and Claim 5.14, conclude that there is a high degree
vertex inV that its neighbors almost form a clique.

Claim 5.16. There exists a set S ∈ S such that

P
S1,S2∈V

[S1 ∼ S2 | S1 − S,S2 − S] ≥ 1 − α

Proof. From Claim 5.13, we know that if we choose S,S1,S2 ∈ V independently,

P
S,S1,S2

[S ∈ S,S − S1,S − S2] ≥ P
S

[S ∈ S] P
S,S1

[S − S1 | S ∈ S]2
≥

(
ν
2

)3

From Claim 5.14, on the same distribution

P
S,S1,S2

[S − S1,S − S2,S1 6∼ S2] ≤ 2e−α
2k
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Therefore

P
S,S1,S2

[S1 6∼ S2 | S ∈ S,S − S1,S − S2] ≤
(2
ν

)3
2e−α

2k < α

The last inequality is since log
(

1
ν

)
≤

1
3α

2k.
From averaging, there must be S ∈ S that achieves this bound. �

Proof of Theorem 5.11. Let S̃ ∈ S be the vertex promised from Claim 5.16, and denote by C its
strong neighbors,

C =

{
S ∈

(
[k]
9k
10

) ∣∣∣∣∣∣ S − S̃
}
,

since S̃ ∈ S, the measure of C is at least ν
2 . From the claim we also know that PS1,S2∈C[S1 6∼

S2] ≤ α, so almost every two sets in C have small difference.
The global function 1(i) is defined to be β ∈ Σ that is closest to fS(i) over all S ∈ C that

contains i,
∀i ∈ [k], 1(i) = argmin

β∈Σ

{
E

S∈C s.t. i∈S
[dist( fS(i), β)]

}
.

If there is no S ∈ C such that i ∈ S, we define 1(i) to an arbitrary value.
We notice that for every i, by definition

P
S∈C s.t. i∈S

[dist( fS(i), 1(i))] ≤ P
S1,S2∈C s.t. i∈S1,S2

[dist( fS1(i), fS2(i))]. (32)

We know that S1,S2 ∈ C are weakly connected with probability at least 1 − α, which means
that the difference between their functions is small.

E
S1,S2∈C

[
∆( fS1 , fS2)

]
≤1 · P

S1,S2∈C
[S1 6∼ S2] + E

S1,S2∈C

[
∆( fS1 , fS2)

∣∣∣ S1 ∼ S2

]
≤α + 60α ≤ 61α.

By the definition of difference, we get that,

61α ≥ E
S1,S2∈C

[
∆( fS1 , fS2)

]
≥ E

S1,S2∈C,i∈S1∩S2

[
dist( fS1(i), fS2(i))

]
. (33)

Notice that the distribution over i in this expression is not uniform, we define formally the
distributions over i that we use.

1. LetD1 : [k]→ [0, 1] be the distribution that picks S ∈ C uniformly, then i ∈ S.

2. LetD2 : [k]→ [0, 1] be the distribution that picks S1,S2 ∈ C uniformly, then i ∈ S1 ∩ S2
(as |Si| =

9k
10 there is always such i).

Using this definition, (33) can also be written as

E
i∼D2,S1,S2∈C

[
dist( fS1(i), fS2(i))

∣∣∣ i ∈ S1 ∩ S2

]
≤ 61α. (34)

To prove the theorem, we need to prove (34) when i ∼ D1. First, we show that the dis-
tributions D1,D2 are close to each other. In order to do so, we define the following set,
D,

D =
{
i ∈ [k]

∣∣∣∣∣ PS∈C [i ∈ S] <
1
2

}
.
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By Claim 5.17, the set D is small |D| ≤ 4αk. For each i < D, PS∈C [i ∈ S] ∈
[

1
2 , 1

]
which means

that for every i < D,

P
j∼D1

[
j = i

∣∣∣ j < D
]
≤ 2 P

j∼D2

[
j = i

∣∣∣ j < D
]
. (35)

Using (35), (34) and (32), we show that the expected difference between 1 and fS for a
random S ∈ C is small,

E
S∈C

[
∆( fS, 1)

]
= E

S∈C,i∈S

[
dist( f (i), 1(i))

]
(by definition ofD1)

= E
i∼D1,S∈C

[
dist( fS1(i), 1(i))

∣∣∣ i ∈ S
]

(by (32))

≤ E
i∼D1,S1,S2∈C

[
dist( fS1(i), fS2(i))

∣∣∣ i ∈ S1 ∩ S2

]
≤ P

i∼D1
[i ∈ D] + E

i∼D1,S1,S2∈C

[
dist( fS1(i), fS2(i))

∣∣∣ i ∈ S1 ∩ S2 \D
]

(by (35))

≤4α + 2 E
i∼D2,S1,S2∈C

[
dist( fS1(i), fS2(i))

∣∣∣ i ∈ S1 ∩ S2 \D
]

(by (34))

≤4α + 2 ·
61α

1 − 4α
≤ 150α. (36)

Equation (32) holds for every i ∈ [k], therefore it holds for expectation over i under any
distribution. The last inequality holds because of (34), and because if we condition on i < D
we can increase the probability by a factor of at most Pi∼D2 [i < D], which is small.

The only thing left now is a Markov argument, if ES∈C
[
∆( fS, 1)

]
≤ 150α, then at least half

of the sets S ∈ C satisfies ∆( fS, 1) ≤ 300α, since the measure of C is ν
2 , the measure of half of

C is ν
4 and we are done. �

Claim 5.17. Let C ⊂
([k]

9k
10

)
a subset of fraction size ν

2 , then the number of indices i ∈ k such that

PS∈C [i ∈ S] ≤ 1
2 is at most 4αk.

Proof. Let D ⊂ [k] be this set of indices

D =
{
i ∈ [k]

∣∣∣∣∣ PS∈C [i ∈ S] ≤
1
2

}
If we pick a completely uniform S′ ∈

( [k]
9

10 k

)
,

E
S′

[|S′ ∩D|] =
9
10
|D|

From Chernoff, using Claim 2.5 with A = [k] \ S′, (if |D| ≥ k
3 , the probability is even smaller)

P
S′

[
|S′ ∩D| ≤

2
3
|D|

]
≤ e−

|D|
45

If we pick a uniform subset in S ∈ C, instead of a completely uniform set:

P
S∈C

[
|S ∩D| ≤

2
3
|D|

]
≤

2
ν

e−
|D|
45
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From the definition of D, for each i ∈ D, PS∈C [i ∈ S] ≤ 1
2 , so of course

E
S∈C

[|S ∩D|] ≤
1
2
|D|

From averaging

P
S∈C

[
|S ∩D| ≤

2
3
|D|

]
≥

1
4

This implies that 2
νe−

|D|
45 ≥

1
4 , which means that |D| ≤ 4αk (recall that ν > e−

1
150αk) . �

5.4 Direct Product Function Inputs

In Section 5.2 we proved Claim 5.3, let A = Ax for this input x. From the claim, we know
that for each A ∈ A there exists a direct product function 1A such that,

P
A1,A2∈A

[1A1 , 1A1 are consistent] ≥
ε2

32
.

We want to use Theorem 5.11 in order to build a global direct product function. For every
A ∈ A, the direct product function 1A = (1A,1, . . . 1A, 9k

10
), 1A,i : [N] → [M] can also be written

as fS : S → Σ, where S = [k] \ A, and Σ = [M]N. For every i ∈ S, fS(i) is the truth table of
1A,i. The distance measure in Σ is the normalized hamming distance between two strings in
[M]N, i.e.

dist(σ1, σ2) = P
u∈[N]

[σ1(u) , σ2(u)].

From the definition of consistent, for every consistent A1,A2, the functions fS1 , fS2 satisfy
∆( fS1 , fS2) < 60λ.

For every A < A, we define a ”fake” function fS for S = [k]\A, and assume that its outputs
are at distance 1 from any other outputs, i.e. for every S′ ∈

([N]
k
)
, i ∈ S∩S′, dist( fS(i), fS′(i)) = 1.

Let F be the collection of local functions { fS}S∈([N]
k ) that we have just defined, let α = 60λ

and ν =
(
ε
4

)2 ε2

32 = ε4

512 .

agreeα(F ) = P
A1,A2

[A1,A2 ∈ A,A1,A2 are consistent] ≥
(
ε
4

)2 ε2

32
= ν.

In order of the theorem to hold, we need ν = ε4

32 = 1
32 e−4c1λ2k to satisfy ν > e−

1
3α

2k = e−
1
3 (60λ)2k,

this holds for a small enough c1.
By Theorem 5.11, there exists a product function 1′ : [k] → Σ which is close to ν

4 of the
functions fS. Translating it back to our setting, we can write 1′ as 1 = (11, . . . 1k), 1i : [N] →
[M], and a setA∗ of size ν

4 = 1
2048ε

4, such that for each A ∈ A∗,

P
i∈Ā,u∈[N]

[
1i(ui) , 1A,i(ui)

]
≤ 300α = 18000λ.

For simplicity of notations, let δ = 300α. Notice that by our definition, for each A < A
the function 1A never agrees with any other function, thereforeA∗ ⊂ A.

Definition 5.18. An input z is consistent with a set A ∈ A∗ with respect to the product

function 1, denoted by z ∈ Z
1

A , if z ∈ ZA, and 1A(zĀ)
2δk
≈ 1(z)Ā.
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Claim 5.19. For each A ∈ A∗,
P

z∈[N]k

[
z ∈ Z

1

A

]
≥
ε
8

Proof. Fix A ∈ A∗, for each i ∈ Ā, denote by pi the probability of 1, 1A to differ on the ith
coordinate, pi = Pu∈[N]

[
1A,i(u) , 1i(u)

]
, from Theorem 5.11 Ei∈Ā

[
pi
]
≤ δ.

Let Ii be the indicator random variable that equals 1 with probability pi independently
for each i. For a uniform z ∈ [N]k,

E
z∈[N]k

[
dist(1A(z), 1(z)Ā)

]
=

∑
i∈Ā

Ii

Using Chernoff

P
z

[
1A(zĀ)

2δk
0 1(z)Ā

]
≤ P

 ∑
i∈[k]\A

Ii ≥ 2E

 ∑
i∈[k]\A

Ii


 ≤ e−

1
9 δk
≤
ε
8
.

We know that A ∈ A, therefore Pz [z ∈ ZA] ≥ ε
4 , therefore

P
z

[
z ∈ Z

1

A

]
≥ P

z

[
z ∈ ZA, 1A(zĀ)

2δk
≈ 1(z)Ā

]
≥
ε
4
−
ε
8
≥
ε
8

�

Claim 5.20. If z ∈ [N]k is satisfies z ∈ Z
1

A for more than ε
16 fraction of the sets A ∈ A∗, then

f (z)
3δk
≈ 1(z).

Proof. Fix z ∈ [N]k such that z ∈ Z
1

A for more than ε
16 fraction of the sets A ∈ A∗.

Assume towards contradiction that f (z)
3δk
0 1(z), and denote by D ⊂ [k] the set of coordi-

nates in which they differ
D =

{
i ∈ [k]

∣∣∣ f (z)i , 1(z)i

}
.

For each A such that z ∈ Z
1

A , by definition 1(z)Ā
2δk
≈ 1A(zĀ). Since z ∈ ZA, we also know

that 1A(zĀ)
20λk
≈ f (z)Ā. Using both,

1(z)Ā
2δk+20λk
≈ f (z)Ā.

By the definition of D, this implies that |Ā ∩ D| ≤ 2δk + 20λk ≤ 2.1δk, the rest of D must
be in A, |A ∩ D| ≥ |D| − 2.1δk. According to our assumption, |D| ≥ 3δk, which implies that
|A ∩D| ≥ 1

4 |D|.
From the previous paragraph, all sets A such that z ∈ Z

1

A satisfies |A ∩ D| ≥ 1
4 |D|, and

there are ε
16 |A

∗
| such sets.

From Claim 2.5, we know that for a random set A ⊂ [k] of size 1
10 k,

P
A

[
|D ∩ A| ≥

1
4
|D|

]
≤ e−150λk.

The setA∗ has measure ε4

2048 ,in order to satisfy the requirements ε
16

ε4

2048 < e−150λk, and we
reach a contradiction. �
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The previous claims practically finishes the proof

Proof of Theorem 1.1. From Claim 5.19, each A ∈ A∗ satisfies |Z 1

A | ≥
ε
8 Nk, therefore

E
z

[∣∣∣∣{A ∈ A∗ ∣∣∣ z ∈ Z
1

A

}∣∣∣∣] =
∑

A∈A∗
E
z

[
I(z ∈ Z

1

A )
]

=
1
8
ε|A∗|

From averaging, a uniform z ∈ [N]k satisfies
∣∣∣∣{A ∈ A∗ ∣∣∣ z ∈ Z

1

A

}∣∣∣∣ ≥ 1
16ε|A

∗
| with prob-

ability at least 1
16ε. Using Claim 5.20, each such input z satisfies f (z)

3δk
≈ 1(z). We chose

δ = 300α = 18000λ, in order to get that f (z)
λ′k
≈ 1(z) we just need to choose small enough c1,

and substitute λ′ = 1
18000λ in the proof. �

6 Lower Bounds for Approximate Equality

Our direct product theorem states that if a function f : [N]k
→ [M]k passes Test 1 with t = k

10
with probability ε > e−c1λ2k, i.e. αZ( k

10 )( f ) > e−c1λ2k, then there exists a direct product function
1 = (11, . . . 1k) such that

P
x∈[N]k

[
f (x)

λk
≈ 1(x)

]
≥ Ω(ε).

Ideally, we want the stronger conclusion that

P
x∈[N]k

[
f (x) = 1(x)

]
≥ Ω(ε).

i.e., replacing approximate equality with equality.
In the introduction there is an example explaining why approximate equality is necessary

for f such that αZ( k
10 )( f ) ≥ e−δk. In this section, we show two extensions.

1. We generalize Test 1 with intersection size t to Test 5 with two intersection parameters
t1, t2 ∈ N, t1 + t2 ≤ k, and show a lower bound for Test 5 with every such t1, t2 (Test 5
with t1 = t2 is equivalent to Test 1).

2. We analyze the triangle test, Test 6, and give a lower bound for this test.

Definition 6.1. We say that functions f1, f2 : [N]k
→ [M]k are (ε, δ) close, if

P
x∈[N]k

[
f1(x)

δk
≈ f2(x)

]
≥ ε.

A function f : [N]k
→ [M]k is (ε, δ) far from direct product, if there is no direct product

function 1 = (11, . . . , 1k) : [N]k
→ [M]k that is (ε, δ) close to f .

Recall w
t
≈ w′ if w,w′ are equal in all but t of the coordinates.

In this notation, Theorem 1.1 states that if αZ( k
10 )( f ) = ε > e−c1λ2k, then f is (Ω(ε), λ) close to

a direct product function. We are interested to know if it is possible to have a direct product
theorem such that f is (Ω(ε), 0) close to a direct product function.

Let h be the function from Example 2 in the introduction, it satisfies αZ( k
10 )(h) = ε > e−c1λ2k,

but is (c · ε, λ)-far from a direct product function for any constant c. Therefore, it is not true
that αZ( k

10 )(h) > e−c1λ2k implies (Ω(ε), 0) close to a direct product function.
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Test 5: ”Z”-test with parameters t1, t2 (3-query test)

1. Choose A,B,C to be a random partition of [k],
such that |A| = t1, |B| = t2.

2. Choose uniformly at random x, y, z ∈ [N]k such
that xA = yA and yB = zB.

3. Reject if f (x)A , f (y)A or f (z)B , f (y)B, else
accept.

A C B

x

y

z

Denote by αZ(t1,t2)( f ) the success probability of f on this test.

h is a direct product function with noise, on each input x ∈ [N]k, h(x) is corrupted on λk
coordinates. The direct product test with t = k

10 does not check all the coordinates of each
input, so with probability e−λδk, non of the corrupted coordinates are checked. However, if
we change the parameters of the test from t = k

10 to t = k
2 , in which all coordinates of the

input y are checked, the function h no longer passes the test.
Is it possible to prove (Ω(ε), 0) close for Test 1 with t = 1

2 ? the answer is no. For m = {0, 1}
we don’t know the answer, and it remains an open question.

Claim 6.2. For every constant δ > 0 and t1, t2 ∈N, t1 + t2 ≤ k, there exist a constant β > 0 and
a function f : [N]k

→ [M]k for N,M � k, such that αZ(t1,t2)( f ) = ε ≥ e−δk, but f is (ε2,
β

log k ) far
from any direct product function.

Proof. Test 5 is symmetric with respect to t1, t2, so we can assume wlog that t1 ≥ t2. We
choose N,M ≥ ek2

such that M ≤
√

N. We divide the proof into two cases, depending on t1.
For each of the two cases we construct a function with ` corrupted coordinates, such that
αZ(t1,t2)( f ) = ε ≥ e−δk, and show that both these functions are (ε2, `2k ) far from direct product
function.

If t1 ≤ 0.4k This case is similar to Example 2, and we provide here a detailed analysis. Let
f : [N]k

→ [M]k be the constant function 1, i.e. f (x) = 1, . . . 1 for every x ∈ [N]k, but for
every x ∈ [N]k we corrupt f (x) on ` ≤ 1

10 k random coordinates i(1)
x , . . . i

(`)
x to random values in

[M] \ {1}. The number of corrupted coordinates ` is decided later.
Let A,B,C, x, y, z the sets and inputs chosen in Test 5, since t2 ≤ t1 ≤ 0.4k, |C| ≥ 0.2k. If all

the corrupted coordinates of x, y, z are not in A and all the corrupted coordinates of y, z not
in B, the output of f on all of the corrupted coordinates is not checked and the test passes.

P
[
Test passes

]
≥ P

[
i(1)
x , . . . i

(`)
x < A, i(1)

y , . . . i
(`)
y < A ∪ B, i(1)

z , . . . i
(`)
z < B

]
≥ 0.13`.

The last inequality is because the corrupted coordinates on x, y, z are independent. For input
x and i(1)

x , . . . i
(`)
x , even conditioning on i(1)

x , . . . i
(`−1)
x ∈ C, the probability of i(`)x to be in C is at

least 0.1 (since ` ≤ 0.1k), same for y, z.
We choose ` = βk for a constant β, such that 0.13`

≥ e−δk, this means that f satisfies
αZ(t1,t2)( f ) = ε ≥ e−δk.

We now show that f is (ε2, `2k )-far from every direct product function. We do it by
describing a property of f , showing that our function satisfies it with high probability and
that this property implies (ε2, `2k )-far from direct product function.
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For every i ∈ [k], b ∈ [N] let Gi,b be

Gi,b =
{
x ∈ [N]k

∣∣∣ xi = b
}
.

The function f is called balanced if for every i ∈ [k], b ∈ [N], a ∈ [M] \ {1},

P
x∈Gi,b

[
f (x)i = a

]
≤

2k
M
.

We show that our random function f is balanced with probability almost 1. Fix i ∈ [k], b ∈
[N], a ∈ [M] \ {1}. By the definition of f , Px,∈Gi,b[ f (x)i = a] ≤ 1

M , and this is independent for
each x ∈ Gi,b, therefore using Chernoff bound

P

 ∑
x∈Gi,b

I( f (x)i = a) ≥
2
M

Nk−1

 ≤ e−
1

3M Nk−1
.

Preforming union bound over all i ∈ [k], b ∈ [N], a ∈ [M], the probability that f is balanced is
at least 1 − kNMe−

1
3M Nk−1

≥ 1 − e−N.
Given that f is balanced and has exactly ` corrupted coordinates per input, we show

it is (ε2, `2k )-far from direct product function. Let f be such function, and assume to-
wards contradiction that there exist 1 = (11, . . . , 1k) that is (ε2, `2k ) close to f . Let F ={
x ∈ [N]k

∣∣∣∣∣ f (x)
`−1
≈ 1(x)

}
, by our assumption |F| ≥ ε2Nk.

Let Fi,b ⊆ Gi,b be the set

Fi,b =
{
x ∈ F

∣∣∣ xi = b, 1i(xi) = f (x)i , 1
}
.

Every x ∈ F has ` coordinates i ∈ [k] in which f (x)i , 1. For every x ∈ F, f (x)
`−1
≈ 1(x), so there

must be i ∈ [k] such that f (x)i = 1i(xi) , 1. Therefore, every x ∈ F must be in at least one Fi,b,
and the sets {Fi,b}i∈[k],b∈[N] must cover F, i.e. F ⊆

⋃
i∈[k],b∈[N] Fi,b.

By definition, all x ∈ Fi,b satisfies f (x)i = 1i(b) ∈ [M] \ {1}, since f is balanced, |Fi,b| ≤
2k
M |Gi,b| ≤

2k
M Nk−1.

|F| ≤
∑

i∈[k],b∈[N]

|Fi,b| ≤ Nk ·
2k
M

Nk−1
≤

2k2

M
Nk
� ε2Nk

and we reached a contradiction to the assumption |F| ≥ ε2Nk.

If t1 > 0.4k In this case, we can’t simply corrupt coordinates to random values, because
it is possible that t1 + t2 = t, and all coordinates of f (y) are checked. Instead, we corrupt
coordinates in a more subtle way. We start by constructing a function f : [N]k

→ [M]k that
has a single corrupted coordinate per input, and αZ(t1,t2)( f ) = Ω( 1

k2 ).
Let f : [N]k

→ [M]k be the constant 1 function (i.e. f (x) = 1, . . . 1 for all x), and for every
b ∈ [N], let pb : [N] → [M] \ {1} be a random function. For every input x ∈ [N]k, we choose
two random coordinates ix , jx ∈ [k], ix is the corrupted coordinate, and jx is the master
coordinate. We corrupt f (x) by setting b = x jx and

f (x)ix = pb(xix).
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Let A,B, x, y, z be the sets and inputs chosen in the test, if ix = iy, jx = jy and ix, jx ∈ A, then
f (x)A = f (y)A (because the corrupted coordinates are corrupted to the same value). If in
addition iz < B, then also f (z)B = f (y)B (because y, z don’t have any corrupted coordinates
on B).

The probability of ix = iy and jx = jy is 1
k2 , as they are both random indices in [k]. The

probability of ix, jx ∈ A, iz < B is at least 0.33, therefore αZ(t1,t2)( f ) = Ω( 1
k2 ).

Instead of corrupting a single coordinate per input, we can corrupt ` ≤ 0.1k different
coordinates, by choosing different i(1)

x , . . . , i
(`)
x and j(1)

x , . . . , j(`)x for every x ∈ [N]k, and continue
as before. A similar probabilistic argument shows that that this function f has αZ(t1,t2)( f ) =

Ω( 1
k2` ) (conditioning on all other i(1)

x , . . . i
(`)
x , j(1)

x , . . . , j(`−1)
x ∈ A, the probability of j(`)x ∈ A is at

least 0.2).
Fix a constant δ > 0, in order of the function f to pass the test with probability e−δk, the

number of corrupted coordinates ` should satisfy c
k2` > e−δk, which means that we can choose

` = β k
log k for some constant β > 0.

The constant function 1 is (1, `k ) close to f , we show that any direct product function
1 = (11, . . . , 1k) is (ε2, `2k )-far from f . Intuitively, it is true because the corrupted coordinates
are corrupted to N different random functions, receiving values in M, for k � N,M. More
formally, we show that with high probability the function f is also balanced, and use the
proof of the previous case.

In the previous case, we showed that f is balanced with high probability by Chernoff
bound over the inputs in Gi,b. This is not possible to do in our case, because for x, y ∈ Gi,b,
there is a dependence between the values of the corrupted coordinates of x and y. Instead,
we look at the random set of functions {pb}b∈[N].

The function set {pb}b∈[N] is called balanced, if for every b′ ∈ [N] and a ∈ [M] \ {1},
Pb∈[N][pb(b′) = a] ≤ 2 1

M .
Fix b′ ∈ [N], a ∈ [M] \ {1}, a random function set {pb}b∈[N] satisfies for every b ∈ [N],

Ppb[pb(b′) = a] = 1
M−1 , independently for each function pb. Therefore using Chernoff bound,

P
{pb}

 ∑
b∈[N]

I(pb(b′) = a) >
2N
M

 ≤ e−
N

4M ≤ e−
√

N
4 .

Preforming union bound over all b′ ∈ [N], a ∈ [M] \ {1}, a random function set {pb}b∈[N] is

balanced with probability at least 1 −NMe−
√

N
4 .

We now show that a balanced function set {pb}b∈[N] implies a balanced function f . Fix
i ∈ [k], b′ ∈ [N], a ∈ [M] , and let A =

{
b ∈ [N]

∣∣∣ pb(b′) = a
}
, if {pb}b∈[N] is balanced, then

|A| ≤ 2
M N. The set Gi,b′ is a subcube of dimension k− 1, so its coordinates are uniform in [N],

and by union bound

P
x∈Gb′ ,i

[∃ j ∈ [k] \ {i} s.t x j ∈ A] ≤
2k
M
.

If there is no j such that x j ∈ A, it is impossible that f (x)i = a, because f (x)i is either 1, or
px j(b

′) for some j ∈ [k] \ {i}. Therefore, at most 2k
M of x ∈ Gi,b′ can satisfy f (x)i = a, and such f

is balanced with probability 1.
The function f is balanced with ` corrupted coordinates per input, so by the previous

case, f is (ε2, `2k )-far from direct product. �
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Notice that in the proof, the range of t1 ≤ 0.4k has a lower bound of ` = βk, whereas in
the second case, the lower bound is only ` =

βk
log k .

The example in the proof can easily be transformed into a function on sets f :
([N]

k
)
→ [M]k,

which gives a bound on Test 4. This is done by choosing for each set S ∈
([N]

k
)
` elements in

S to corrupt and ` master elements (instead of coordinates) .

In Test 5 with t1 + t2 = k, we compare f (y) on all coordinates, but only part of the
coordinates of f (x), f (z). What if we compare all coordinates of all three inputs? This brings
us to the triangle test, ,Test 6, for functions over sets. In this test, every two out of the three
inputs share a joint subset of size k

2 , for this test we must assume that k is even.

Test 6: Triangle test (3-query test, for even k)

1. Choose disjoint W,X,Y ⊂ [N] of size k
2 .

2. Reject if f (X ∪W)W , f (Y ∪W)W, f (X ∪ Y)Y ,
f (Y∪W)Y or f (X∪W)X , f (X∪Y)X, else accept. X

W Y

Denote by αTset( f ) the success probability of f on this test.

Claim 6.3. For every constant δ > 0, there exist a constant β > 0 and a function f :
([N]

k
)
→ [M]k

with N,M� k, such thatαTset( f ) = ε > e−δk , and f is (ε2,
β

log k ) far from direct product function.

Proof. The function f that we describe in this proof is similar to the function from the previous
proof, we only need to modify it slightly such that there is the same number of corrupted
elements in each half of the inputs. We start by describing a function with two corrupted
elements per input.

Let f :
([N]

k
)
→ [M]k be the constant function 1, i.e. f (S) = 1, . . . 1 for every set S, and for

every b ∈ [N] we choose a random function pb : [N] → [M] \ {1}. For every S ∈
([N]

k
)
, we

choose two elements to corrupt a1, a2 ∈ S and two master elements b1, b2 ∈ S. Then, we set
f (S)a1 = pb1(a1) and f (S)a2 = pb2(a2).

Suppose W,X,Y are the sets chosen in Test 6, fix a1, b1 ∈ X, a2, b2 ∈ Y and a3, b3 ∈W. If the
following three events hold, the test passes, see Figure 2

1. In the set S2 = X∪Y the elements chosen to corrupt are a1, a2 with the master elements
b1, b2 respectively.

2. In the set S1 = X∪W the elements chosen to corrupt are a1, a3 with the master elements
b1 b3 respectively.

3. In the set S3 = Y∪W the elements chosen to corrupt are a2, a3 with the master elements
b2, b3 respectively.
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X

W Y

a1 b1

a2

b2

Figure 2: The set S2 = X ∪ Y is marked in yellow

If the three events hold, then on every check of the test, both the corrupted element and its
master element are the same in both inputs, so they are corrupted to the same value and the
check passes.

The probability of each event is at least 1
k4 , and the event are independent, since the choice

of which elements to corrupt is done independently for each S ∈
([N]

k
)
. Therefore the function

f passes Test 6 with probability at least 1
k12 . It is possible to do a more careful analysis and

get a higher success probability bound, but it is not important in our case.

If we corrupt 2` elements per set S ∈
([N]

k
)
, similar analysis shows that f satisfies αTset( f ) =

Ω( 1
k12` ). Setting ` =

βk
log k for some constant β, we get f such that αTset( f ) ≥ e−δk.

We show that f with 2` corrupted coordinates is (ε2, `2k )-far from direct product function
in a very similar way to the previous proof. As we have seen in the proof of Claim 6.2, the
random function set {pb}b∈[N] is balanced with probability at least 1 −MNe−

1
4

√
N.

For every b ∈ [N], let Gb = {S ⊂ [N] | |S| = k, b ∈ S}, we say that the function f :
([N]

k
)
→

[M]k is balanced if for every b′ ∈ [N], a ∈ [M] \ {1},

P
S∈Gb′

[
f (S)b′ = a

]
≤

2k
M
.

We show that every f with a balanced function set {pb}b∈[N] is balanced. Fix b′ ∈ [N], a ∈
[M], and let A =

{
b ∈ [N]

∣∣∣ pb(b′) = a
}
, for a balanced function set, |A| ≤ 2M

N . Like previously,
the set Gb′ is actually equivalent to all subset of size k − 1 of elements in [N] \ {b′}, therefore
a uniform S ∈ Gb′ contains b ∈ A with probability at most 2k

M , and f is balanced.

Assume towards contradiction that f is (ε2, `2k ) close to a direct product function 1 : [N]→

[M], and let F be set set of inputs in which f (S)
`−1
≈ 1(S). Similar to the previous proof, for

every b ∈ [N] let Fb =
{
S ∈ F

∣∣∣ b ∈ S, f (S)b = 1(b) , 1
}
.

Since 1 approximated F up to `− 1 elements, and f has ` corrupted elements, every S ∈ F
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is in some Fb′ , and F ⊆ ∪b′∈[N]Fb′ . Since f is balanced, for every b′ ∈ [N], |Fb′ | ≤
2k
M |Gb′ |,

|F| ≤
∑

b′∈[N]

|Fb′ | ≤ N
2k
M
|Gb′ | ≤

2k2

M

∣∣∣∣∣∣
(
[N]

k

)∣∣∣∣∣∣ .
The last inequality, is because each S ∈

([N]
k
)

is in at most k sets Gb′ . This is a contradiction of
|F| ≥ ε2

∣∣∣([N]
k
)∣∣∣. �
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A Chernoff and Hypercontractivity Proofs

Proof of Claim 2.5. For each element i ∈ D, we define the indicator random variable Ii to
indicate that i ∈ A. In this notation

|A ∩D| =
∑
i∈D

Ii.

We want to use Chernoff bound on Ii, but since A is of fixed size, the indicator variables
are not independent. Instead, we define for each i the new random variables Ji that are
independent.

For (2), let

Ji =

1 w.p 3
20

0 w.p 1 − 3
20
.

For every i ∈ D and every fixed value b ∈ {0, 1}|D| of the indicators {Il, l , i} ,

P [Ii = 1 | ∀l , i, Il = bl] ≤ P [Ji = 1] .

In the worse case, they are all set to 0 (none is in A), and P[Ii = 1] = 3
20 . Therefore, we can

use Chernoff bound on the random variables Ji and get a result for Ii:

P
A

∑
i∈D

Ii ≥
1
5
|D|

 ≤ PJ
∑

i∈D

Ji ≥
1
5
|D|

 ≤ e−
1

320 |D|

For (3), we define

Ji =

1 w.p 1
15

0 w.p 1 − 1
15
.

In this case, for every i ∈ D and fixed value b ∈ {0, 1}|D|, P [Ii = 1 | ∀l , i, Il = bl] ≥ P [Ji = 1],
and

P
A

∑
i∈D

Ii ≤
1
20
|D|

 ≤ PJ
∑

i∈D

Ji ≤
1
20
|D|

 ≤ e−
1
60 |D|

�
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Proof of Corollary 2.9. |A| ≥ |B| implies a ≤ b, we know that

e−
ρab

2(1−ρ) ≥ e−
ρb2

2(1−ρ) = P
x∈[N]k

[x ∈ B]
ρ

1−ρ

Similarly

e−
(2−ρ)(a2+b2)

4(1−ρ) = e
2−ρ

2(1−ρ) ·

(
−

a2
2 −

b2
2

)
= e

(
1+

ρ
2(1−ρ)

)
·

(
−

a2
2 −

b2
2

)
=

P
x∈[N]k

[x ∈ B]1+
ρ

2(1−ρ) P
x∈[N]k

[x ∈ A]1+
ρ

2(1−ρ)

Together we get

P
x,y

[x ∈ A, y ∈ B] ≥ P
x∈[N]k

[x ∈ A]1+
ρ

2(1−ρ) P
x∈[N]k

[x ∈ B]1+
3ρ

2(1−ρ)

�

Proof of Claim 2.10. We notice that regardless which of the sets G,L is the largest, by Corol-
lary 2.9,

P
w∈[N]k,(v,J)∈N 3

4
(w)

[w ∈ L, v ∈ G] ≥
(
P
w

[w ∈ L]
) 11

2
ν

11
2 .

By the definition of L,

P
w∈[N]k,(v,J)∈Nρ(w)

[w ∈ L, v ∈ G] ≤ P
w

[w ∈ L]η.

Therefore
P
w

[w ∈ L]
9
2 ≤ ν−

11
2 η.

�

B Tuples to Sets Local Structure Proof

In this section we prove Lemma 4.3, restricted global structure for sets, we restate it bellow.

Lemma 4.3. There exist a small constants δ > 0, such that for every constant λ > 0 and large
enough k ∈N such that N > k2e10δλk, the following holds,

For every function f :
([N]

k
)
→ [M]k, if αZset( k

10 )( f ) = ε > e−δλk, then at least (1 − ε2
−

k2

N ) of

the good pairs W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
are DP pairs, i.e. there exist 1X,W : [N]→ [M] such that

P
Y

[
f (Y ∪W)Y

3αk
0 1X,W(Y)

∣∣∣∣∣ Y ∩W = ∅, f (X ∪W)W = f (Y ∪W)W

]
≤ 2ε2.
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In order to prove the lemma, for every function f :
([N]

k
)
→ [M]k we define a function

f ′ : [N]k
→ [M]k

∪ ⊥. For every S ⊂ [N], we assume that the output of f (S) is ordered in an
ascending order over the elements or S.

In order to simplify the notation, for every string x ∈ [N]k, we define U(x) = 1 if x has
unique coordinates, i.e there is no i , j such that xi = x j, else U(x) = 0.

Definition B.1. Given a function f :
([N]

k
)
→ [M]k, let f ′ : [N]k

→ [M]k
∪ ⊥ be defined as

follows. For every x ∈ [N]k let X be the set of elements in x,

f ′(x) =

π( f (X)) U(x) = 1
⊥ U(x) = 0

.

Where π ∈ Sk is the permutation from the ascending order over the elements of X to x.

For a set S ⊂ [N] of size k and a permutation π ∈ Sk, we denote by π(S) ∈ [N]k the string
generated by applying π on the elements of S ordered in an ascending order. Therefore, for
every X ∈

([N]
k
)
, f ′(π(X)) = π( f (X)).

Definition B.2. LetD :
([N]

k
10

)
×

([N]
9k
10

)
×

([N]
9k
10

)
→ [0, 1] be the following distribution:

1. Choose W ⊂ [N] of size k
10 .

2. Choose X ⊂ [N] of size 9k
10 such that X ∩W = ∅.

3. Choose Y ⊂ [N] of size 9k
10 such that Y ∩W = ∅.

LetD′ :
([k]

k
10

)
× [N]k

× [N]k
→ [0, 1] be the following distribution:

1. Choose a set A ⊂ [k] of size k
10 .

2. Choose x ∈ [N]k such that U(x) = 1.

3. Choose y ∈ [N]k such that xA = yA and U(y) = 1.

Fixing a set A ⊂ [k] and x ∈ [N]k such that U(x) = 1, we denote byD′|A, x the distribution
over y, conditioning on A, x being already chosen. Similarly for W,X ⊂ [N], we defineD|W,X
the distribution over Y.

We can easily see that if we pick (W,X,Y) ∼ D, then choose a random set A and random
permutations π1 ∈ S k

10
, π2, π3 ∈ S k

10
, and set x = (π1(W)A, π2(X)Ā),y = (π1(W)A, π3(Y)Ā), we

get (A, x, y) ∼ D′.

For each two sets W,X, let x = (π1(W)A, π2(X)Ā) for an arbitrary A ⊂ [k] and π1, π2, then
the distribution y ∼ D′|A, x is the same distribution as (π1(W)A, π3(Y)Ā) for Y ∼ D|W,X and
uniform π3 ∈ S 9k

10
.
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We further notice that the distribution (W,X,Y) ∼ D is the distribution used in Test 4.
The distribution (A, x, y) ∼ D′ is the distribution of Test 2 with t = k

10 conditioning on
U(x) = U(y) = 1.

Let p1 = Px∈[N]k [U(x) = 0]. For every x ∈ [N]k such that U(x) = 1 and a set A ⊂ [k], let
p2 = Py

[
U(y) = 0

∣∣∣ yA = xA
]

(p2 is the same for every A, x such that U(x) = 1). We bound the
probabilities p1, p2.

Choosing a uniform x ∈ [N]k can be done coordinate by coordinate. For each coordinate
i, the probability that xi = x j for j < i is less than i−1

N , therefore

p1 = P
x∈[N]k

[U(x) = 0] ≤
k∑

i=1

i − 1
N
≤

k2

2N
.

Similarly, we can think of picking y given A, x as starting with the fixed yA (which doesn’t
contain two identical coordinates as U(x) = 1) and choosing coordinates one by one.

p2 = P
y

[
U(y) = 0

∣∣∣ yA = xA
]
≤

k∑
i= k

10

i − 1
N
≤

k2

2N
.

Claim B.3. For every function f :
([N]

k
)
→ [M]k , the function f ′ : [N]k

→ [M]k from Defini-
tion B.1 satisfies

αV( k
10 )( f ′) = (1 − p1)(1 − p2)P[ f passes Item 3 of Test 4],

Proof. Fix a function f :
([N]

k
)
→ [M]k, and let f ′ : [N]k

→ [M]k be the function from
Definition B.1.

If either U(x) = 0 or U(y) = 0, by definition f ′ outputs⊥ and the test fails. If we condition
on U(x) = U(y) = 1, the test distribution equalsD′. Let W be the set of elements of xA, X of
xĀ and Y of yĀ, then (W,X,Y) ∼ D.

For every A, x, y such that U(x) = U(y) = 1 and xA = yA, the permutation π1 ∈ S k
10

from the ascending order in W to the order of xA satisfies f ′(x)A = π1( f (X,W)W), and
f ′(y)A = π1( f (Y,W)W). Therefore, f ′(x)A = f ′(y)A ⇐⇒ f (X,W)W = f (Y,W)W.

This implies that

P[ f ′ passes Test 2] = P
A,x,y

[
f ′(x)A = f ′(y)A

∣∣∣ xA = yA
]

= P
A,x,y

[
U(x) = U(y) = 1

∣∣∣ xA = yA
]
P

(A,x,y)∼D′

[
f ′(x)A = f ′(y)A

]
=(1 − p1)(1 − p2) P

(W,X,Y)∼D

[
f (X,W)W = f (Y,W)W

]
=(1 − p1)(1 − p2)P[ f passes Item 3 of Test 4].

Where PA,x,y
[
U(x) = U(y) = 1

∣∣∣ xA = yA
]

= (1 − p1)(1 − p2) by the definition of p1, p2.

�
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Claim B.4. For every function on sets f :
([N]

k
)
→ [M]k, the function f ′ : [N]k

→ [M]k

from Definition B.1 satisfies the following. For every disjoint W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
, every set

A ⊂ [k], |A| = k
10 and every permutationsπ1 ∈ S k

10
, π2 ∈ S 9k

10
, the pair (A, x = (π1(W)A, π2(X)Ā))

satisfies

P
y

[
f ′(x)A = f ′(y)A

∣∣∣ yA = xA
]

= (1 − p2) P
Y∼D|W,X

[
f (X ∪W)W = f (Y ∪W)W

]
,

Proof. Fix a function f :
([N]

k
)
→ [M]k, and let f ′ : [N]k

→ [M]k be the function from

Definition B.1. Fix two disjoint subsets W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
, a subset A ⊂ [k], |A| = k

10 , and

permutations π1 ∈ S k
10
, π2 ∈ S 9k

10
. Set x = (π1(W)A, π2(X)Ā), since X,W are disjoint, U(x) = 1.

By the definition of f ′, f ′(x)A = π1( f (X,W)W).

Let y ∈ [N]k be a random string such that xA = yA, if U(y) = 0, then f ′(y) = ⊥ and
f ′(x)A , f ′(y)A. By definition, p2 = Py[U(y) = 0|xA = yA]. If we condition on U(y) = 1, the
distribution over y is D′|A, x. If we take Y to be the elements of yĀ, then the distribution
over Y isD|W,X.

For y such that U(y) = 1, by the definition of f ′, f ′(y)A = π1( f (Y,W)W), and therefore
f ′(x)A = f ′(y)A ⇐⇒ f (X,W)W = f (Y,W)W.

P
y

[
f ′(x)A = f ′(y)A

∣∣∣ yA = xA
]

=P
y

[
U(y) = 0

∣∣∣ xA = yA
]
P

y∼D′|A,x

[
f ′(x)A = f ′(y)A

]
=(1 − p2) P

Y∼D|W,X

[
f (X ∪W)W = f (Y ∪W)W

]
.

�

Proof of Lemma 4.3. Let f :
([N]

k
)
→ [M]k be the function such that αZset( k

10 )( f ) = ε > e−δλk, and

let f ′ : [N]k
→ [M]k be the function from Definition B.1. By Claim B.3, f ′ passes Test 2 with

probability ε′ = (1 − p1)(1 − p2)ε, therefore, Theorem 3.5 holds for the function f ′.

By Claim B.4, for every disjoint W ∈
([N]

k
10

)
,X ∈

([N]
9k
10

)
,

P
y

[
f ′(x)A = f ′(y)A

∣∣∣ yA = xA
]

= (1 − p2) P
Y∼DW,X

[
f (X ∪W)W = f (Y ∪W)W

]
.

Setting η = 1 − p1, this means that if X,W satisfies PY
[

f (X ∪W)W = f (Y ∪W)W
]
≥ η ε2 ,

then for every set A ⊂ [k] and permutations π1, π2, the pair (A, x = (π1(W)A, π2(X)Ā)) satisfies
Py

[
f ′(x)A = f ′(y)A

∣∣∣ yA = xA
]
≥

ε′

2 .

Theorem 3.5 implies that with probability 1 − ε′2 a good τ ∼ D (equivalent to A, x that
satisfiesPy

[
f ′(x)A = f ′(y)A

∣∣∣ yA = xA
]
≥

ε′

2 ) is a DP-restriction. Since every W,X corresponds
for the same number of (A, x), for at least (1 − ε′2) ≥ (1 − ε2

−
k2

N ) of the sets W,X, there exist
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at least one set A and permutations π1, π2 such that τ = (A, x, f ′(x)A) is a DP restriction, for
x = (π1(W)A, π2(X)Ā).

Let W,X be such sets, i.e. there exist A ⊂ [k] and permutations π1, π2 such that τ =
(A, x, f ′(x)A) is a DP-restriction, for x = (π1(W)A, π2(X)Ā). We show that (W,X) are a DP-
pair. Let 1τ = 1τ1, . . . 1

τ
9k
10
, 1τi : [N] → [M] be the direct product function of τ. We define

1W,X : [N]→ [M] to be the following function, for every a ∈ [N], 1W,X(a) is the most frequent
value 1τi (a), among all i ∈ 9k

10 .

We recall that Vτ =
{
w ∈ [N]Ā

∣∣∣ f ′(xA,w)A = f ′(x)A

}
and denote by VW,X the analog in

sets,

VW,X =

{
Y ∈

(
[N]

9k
10

) ∣∣∣∣∣∣ Y ∩W = ∅, f (Y,W)W = f (X,W)W

}
.

We notice that for every w ∈ Vτ, f ′(xA,w) , ⊥, so it has unique coordinates, U(xA,w) = 1.

In these notations, Theorem 3.5 implies Pw∈Vτ

[
f ′(xA,w)Ā

αk
0 1τ(w)

]
≤ ε′2, and we need to

prove the analog statement for Y ∈ VW,X.

We describe the following random process: for every Y ∈ VW,X, we choose a random
permutation π3 and set w = π3(Y). We notice that for every Y ∈ VW,X, f (Y,W)W = f (X,W)W,
and by the definition of f ′ this implies that f ′(xA,w)A = f ′(x)A, so w ∈ Vτ. Moreover, for
every w ∈ Vτ exists exactly one Y ∈ VW,X and permutation π3 such that w = π3(Y).

Suppose Y ∈ VW,X such that 1W,X(Y)
3αk
0 f (Y ∪W)Y, and let B ⊂ Y be the set of elements

that 1W,X(Y), f (Y ∪W)Y differ on, i.e. for every b ∈ B, 1W,X(b) , f (Y ∪W)b. Since 1W,X is the
most frequent value among 1τi (b), for at least half of the locations i, 1τi (b) , f (Y ∪W)b.

For a random permutation π3, each b ∈ B has probability of at least 1
2 to fall into a ”bad

location”, i.e i such that 1τi (b) , f (Y∪W)b. Since α is a very small constant, even conditioning
on αk of b ∈ B to be in a bad location, the probability of b′ ∈ B to fall into a bad location is at
least 2

5 . By Chernoff bound, with probability larger than 1 − e−
1

100αk, π3 is such that at least 1
3

of b ∈ B are in a ”bad location”. By the definition of f ′, this implies that f ′(xA,w)Ā
αk
0 1τ(w).

Therefore, we get that

P
Y∈VW,X

[
1W,X(Y)

3αk
0 f (Y ∪W)Y

] (
1 − e−

1
100αk

)
≤ P

w∈Vτ

[
f ′(xA,w)Ā

αk
0 1τ(w)

]
≤ ε′2.

Which implies that

P
Y∈VW,X

[
1W,X(Y)

3αk
0 f (Y ∪W)Y

]
≤ ε′2 + e−

1
100αk
≤ 2ε2.

�
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