
Multi Collision Resistant Hash Functions and their Applications∗

Itay Berman Akshay Degwekar Ron D. Rothblum
Prashant Nalini Vasudevan

May 30, 2017

Abstract

Collision resistant hash functions are functions that shrink their input, but for which it is
computationally infeasible to find a collision, namely two strings that hash to the same value
(although collisions are abundant).

In this work we study multi-collision resistant hash functions (MCRH) a natural relaxation
of collision resistant hash functions in which it is difficult to find a t-way collision (i.e., t strings
that hash to the same value) although finding (t− 1)-way collisions could be easy. We show the
following:

• The existence of MCRH follows from the average case hardness of a variant of Entropy
Approximation, a problem known to be complete for the class NISZK.

• MCRH imply the existence of constant-round statistically hiding (and computationally
binding) commitment schemes.

In addition, we show a blackbox separation of MCRH from any one-way permutation.

∗MIT. Emails: {itayberm, akshayd, ronr, prashvas}@mit.edu. Research supported in part by NSF Grants
CNS-1413920 and CNS-1350619, and by the Defense Advanced Research Projects Agency (DARPA) and the U.S.
Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 97 (2017)

Contents
1 Introduction 1

1.1 Our Results . 2
1.2 Related Works . 3
1.3 Our Techniques . 4

2 Preliminaries 10
2.1 Many-wise Independent Hashing . 11
2.2 Load Balancing . 11

3 Constructing MCRH Families 12
3.1 Entropy Approximation . 12
3.2 The Construction . 14

4 Constant-Round Statistically-Hiding Commitments 19
4.1 Proving Theorem 4.4 . 20

References 27

A Black-Box Separation 30
A.1 The Oracle Γt Description . 31
A.2 Breaking Multi-Collision-Resistant Hash Functions Relative to Γt 32
A.3 f is a One-Way Permutation Relative to Γt . 34

i

1 Introduction
Hash functions are efficiently computable functions that shrink their input and mimic ‘random
functions’ in various aspects. They are prevalent in cryptography: both in theory and in practice.
A central goal in the study of the foundations of cryptography has been to distill the precise, and
minimal, security requirements necessary from hash functions for different applications.

One widely studied notion of hashing is that of collision resistant hash functions (CRHF).
Namely, hash functions for which it is computationally infeasible to find two strings that hash
to the same value, even when such collisions are abundant. CRHF have been extremely fruit-
ful and have notable applications in cryptography such as digital signatures1 [GMR88], efficient
argument systems for NP [Kil92, Mic00] and (constant-round) statistically hiding commitment
schemes [NY89, DPP93, HM96].

In this work we study a natural relaxation of collision resistance. Specifically, we consider hash
functions for which it is infeasible to find a t-way collision: i.e., t strings that all have the same hash
value. Here t is a parameter, where the standard notion of collision resistance corresponds to the
special case of t = 2. Loosely speaking, we refer to such functions as multi-collision resistant hash
functions (MCRH) and emphasize that, for t > 2, it is a weaker requirement than that of standard
collision resistance. To the best of our knowledge, MCRH were first considered by Joux [Jou04],
who showed that for specific classes of hash functions called iterated hash functions, finding a large
number of collisions is no harder than finding just two colliding inputs.2

As in the case of CRH, to obtain a meaningful definition, we must consider keyed functions
(since for non keyed functions there are trivial non-uniform attacks). Thus, we define MCRH as
follows.

Definition 1.1 ((s, t)-MCRH). Let s = s(n) ∈ N and t = t(n) ∈ N be functions computable in
time poly(n).3 An (s, t)-Multi-Collision Resistant Hash Function Family ((s, t)-MCRH) consists of a
probabilistic polynomial-time algorithm Gen that on input 1n outputs a circuit h such that:

• s-Shrinkage: The circuit h : {0, 1}n → {0, 1}n−s maps inputs of length n to outputs of length
n− s.

• t-Collision Resistance: For every polynomial size family of circuits A = (An)n∈N,

Pr
h←Gen(1n),

(x1,x2,...,xt)←An(h)

[
For all i 6= j,

h(xi) = h(xj) and xi 6= xj

]
< negl(n).

Note that the standard notion of CRH simply corresponds to (1, 2)-MCRH (which is easily shown
to be equivalent to (s, 2)-CRH for any s = n− ω(logn)). We also remark that Definition 1.1 gives
a non-uniform security guarantee, which is natural, especially in the context of collision resistance.
Note though that all of our results are obtained by uniform reductions.

1We remark that the weaker notion of universal one-way hash functions (UOWHF) (which is known to be implied
by standard one-way functions) suffices for this application [NY89, Rom90].

2We emphasize that Joux’s result only applies to iterated hash functions and in the general case (i.e., arbitrary
hash functions) it seems that MCRH is a weaker property than CRH.

3Here and throughout this work, we use n to denote the security parameter.

1

Remark 1.2 (Shrinkage vs. Collision Resistance). Observe that (s, t)-MCRH are meaningful only
when s ≥ log t, as otherwise t-way collisions might not even exist (e.g., consider a (t − 1) regular
function mapping inputs of length n to outputs of length n− log(t− 1)).

Moreover, we note that in contrast to standard CRH, it is unclear whether the shrinkage fac-
tor s can be trivially improved (e.g., by composition) while preserving the value of t. Specifically,
constructions such as Tree Hashing (aka Merkle Tree) inherently rely on the fact that it is compu-
tationally infeasible to find any collision. It is possible to get some trade-offs between the number of
collisions and shrinkage. For example, given an (s = 2, t = 4)-MCRH, we can compose it with itself
to get an (s = 4, t = 10)-MCRH. But it is unclear if transformations that increase the shrinkage s
while not increasing t exist.

1.1 Our Results

The focus of this work is providing a systematic study of MCRH. We consider both the question of
constructing MCRH and what applications can we derive from them.

Constructions. Since any CRH is in particular also an MCRH, candidate constructions are abun-
dant (based on a variety of concrete computational assumptions). The actual question that we ask,
which has a more foundational flavor, is whether we can construct MCRH from assumptions that
are not known to imply CRH.

Our first main result is that the existence of MCRH follows from the average-case hardness of a
variant of the Entropy Approximation problem studied by Goldreich, Sahai and Vadhan [GSV99].
Entropy Approximation, denoted EA, is a promise problem, where YES inputs are circuits whose
output distribution4 has entropy at least k, whereas NO inputs are circuits whose output distri-
bution has entropy less than k − 1 (where k is a parameter that is unimportant for the current
discussion). Here by entropy we specifically refer to Shannon entropy.5 Goldreich et al. showed
that EA is complete for the class of languages that have non-interactive statistical zero-knowledge
proofs (NISZK).

In this work we consider a variant of EA with respect to different notions of entropy. Specifically,
consider the promise problem EAmin,max, where the goal now is to distinguish between circuits whose
output distribution has min-entropy6 at least k from those with max-entropy at most k − 1. It is
easy to verify that EAmin,max is a strictly easier problem than EA.

The problem EAmin,max was previously studied by Dvir et al. [DGRV11], who showed that its
average-case hardness follows from either quadratic residuocity (QR) or decisional Diffie Hellman
assumptions (DDH).7 Moreover, it is easy to see that the hardness of EAmin,max follows from the
average-case hardness of Shortest/Closest Vector Problem with approximation factor

√
n [GG98].

Assuming such average-case hardness of EAmin,max we construct MCRH.

Theorem 1 (Informal, see Theorem 3.6). If EAmin,max is average-case hard, then there exist (s, t)-
MCRH, where s =

√
n and t = 6n2.

4By the output distribution of a circuit, we mean the distribution generated over its outputs when its inputs are
sampled uniformly at random.

5Recall that the Shannon Entropy of a random variable X is defined as HShannon(X) = Ex←X
[
log
(

1
Pr[X=x]

)]
.

6For a random variable X, the min-entropy is defined as Hmin(X) = minx∈Supp(X) log
(

1
Pr[X=x]

)
whereas the

max-entropy is Hmax(X) = log (|Supp(X)|).
7In fact, [DGRV11] show that the same conclusion holds even if we restrcit to NC0 circuits.

2

(Note that in the MCRH that we construct there exist 2
√
n-way collisions, but it is computationally

hard to find even a 6n2-way collision.)
Since we do not know whether EAmin,max is also complete for NISZK, we remark that establishing

the existence of MCRH based solely on the average-case hardness of NISZK (or SZK) is a fascinating
open problem. Indeed such a result (which seems quite plausible) would be an interesting extension
of Ostrovsky’s [Ost91] proof that average-case hardness of SZK implies the existence of one-way
functions.

Applications. The main application that we derive from MCRH is a constant-round statistically-
hiding commitment scheme.

Theorem 2 (Informally stated, see Theorem 4.4). Assume that there exists a (log(t), t)-MCRH.
Then, there exists a 3-round statistically-hiding and computationally-binding commitment scheme.

We note that Theorem 2 is optimal in the sense of holding for MCRH that are minimally
shrinking. Indeed, as noted in Remark 1.2, (s, t)-MCRH with s ≤ log(t − 1) exist trivially and
unconditionally.

It is also worthwhile to point out that by a result of Haitner et al. [HNO+09], statistically-
hiding commitment schemes can be based on the existence of any one-way function. However, the
commitment scheme of [HNO+09] uses a polynomial number of rounds of interaction and the main
point in Theorem 2 is that it only uses only a constant number of rounds.

Moreover, by a result of [HHRS07], any fully black-box construction of a statistically hiding
commitment schemes from one-way permutations (let alone one-way functions) must use a poly-
nomial number of rounds. Loosely speaking, a construction is ‘fully black-box’ if the construction
only requires an input-output access to the underlying primitive and the security proof also relies
on the adversary in a black-box way. Most constructions in cryptography are fully black-box. Since
our proof of Theorem 2 is via a fully black-box construction, we obtain the following immediate
corollary:

Corollary 3 (Informally stated, see Theorem A.2). There is no fully blackbox construction of
MCRH from one-way permutations.

For self containment, we give a direct proof of Corollary 3 (i.e., without relying on the results
[HHRS07]) in Appendix A.

1.2 Related Works

The main result of the work of Dvir et al. [DGRV11] (that was mentioned above) was showing
that the problem EA for degree-3 polynomial mappings (i.e., where the entropies are measured by
Shannon entropy) is complete for SZKL, a sub-class of SZK in which the verifier and the simulator
run in logarithmic space. They also construct algorithms to approximate different notions of entropy
in certain restricted settings (and specifically, their algorithms do not violate the assumption that
EAmin,max is average-case hard).

Peikert and Waters [PW11] construct CRH from lossy trapdoor functions. Their construc-
tion can be viewed as a construction of CRH from EAmin,max with a huge gap. (Specifically, the
lossy trapdoor function h is either injective (i.e., Hmin(h) ≥ n) or very shrinking (i.e., Hmax(h) <

3

0.5n).8 One possible approach to constructing CRH from lossy functions with small ‘lossiness’
(Hmax(h)/Hmin(h)) is to first amplify the lossiness and then apply the [PW11] construction.
Pietrzak et al. [PRS12] rule out this approach by showing that it is impossible to improve the
‘lossiness’ in a black-box way.9 We show that even with distributions where the gap is tiny, we can
achieve weaker yet very meaningful notions of collision-resistance.

Applebaum and Raykov [AR16] construct CRH from any average-case hard language with a
perfect randomized encoding. Perfect Randomized Encodings are a way to encode the computation
of a function f on input x such that information-theoretically, the only information revealed about
x is the value f(x).10 The class of languages with such randomized encodings PRE is contained
in PZK. Their assumption of an average-case hard language with a perfect randomized encoding
implies EAmin,max as well.

Finally, Ong and Vadhan [OV08] construct constant-round statistically-hiding commitment
schemes from average-case hardness of SZK.11 Our construction of statistically-hiding commitments
via MCRH is arguably simpler, although it relies on a stronger assumption (EAmin,max) instead of
average-case hardness of SZK.

Independent and Concurrent Work. MCRH have been recently considered in an independent
and concurrent work by Komargodski et al. [KNY17]. Komargodski et al. study the problem, arising
from Ramsey theory, of finding either a clique or an independent set (of roughly logarithmic size)
in a graph, when such objects are guaranteed to exist. Interestingly, [KNY17] relate MCRH to the
hardness of a bipartite variant of the foregoing Ramsey problem.

Beyond the work of [KNY17], we have very recently also been informed of two other concurrent
works that study MCRH [KNY, BPK]. A comparison of these works with ours will be posted in an
upcoming revision.

1.3 Our Techniques

We provide a detailed overview of our two main results: Constructing MCRH from EAmin,max and
constructing constant-round statistically-hiding commitment scheme from MCRH.

1.3.1 Constructing MCRH from EAmin,max

Assume that we are given a distribution on circuits
{
C : {0, 1}n → {0, 1}2n

}
such that that it is

hard to distinguish between the cases Hmin(C) ≥ k or Hmax(C) ≤ k−1, where we overload notation
and let C also denote the output distribution of the circuit when given uniformly random inputs.
Note that we have set the output length of the circuit C to 2n but this is mainly for concreteness
(and to emphasize that the circuit need not be shrinking).

8The trapdoor to the lossy function is not used in the construction of CRH.
9It is easy to see that repetition amplifies the additive gap between the min-entropy and the max-entropy. In

fact, we use this in our construction.
10Applebaum and Raykov [AR16] need the randomized encoding to satisfy some additional structural properties

e.g. the encoding algorithm is one-to-one as a function of the randomness.
11Actually, Ong and Vadhan [OV08] only construct instance-dependent commitments. Dvir et al. [DGRV11]

attribute the construction of constant-round statistically hiding commitments to an unpublished manuscript of Roth-
blum and Vadhan [RV09].

4

Our goal is to construct an MCRH using C. We will present our construction in steps, where
in the first case we start off by assuming a very large entropy gap. Specifically, for the first (over-
simplified) case, we assume that it is hard to distinguish between min-entropy ≥ n vs. max-entropy
≤ n/2.12 Note that having min-entropy n means that C is injective.

Warmup: The case of Hmin(C) ≥ n vs. Hmax(C) � n/2. In this case, it is already difficult
to find even a 2-way collision in C: if Hmin(C) ≥ n, then C is injective and no collisions exist.
Thus, if one can find a collision, it must be the case that Hmax(C) ≤ n/2 and so any collision finder
distinguishes the two cases.

The problem though is that C by itself is not shrinking, and thus is not an MCRH. To resolve this
issue, a natural idea that comes to mind is to hash the output of C, using a pairwise independent
hash function.13 Thus, the first idea is to choose f : {0, 1}2n → {0, 1}n−s, for some s ≥ 1, from a
family of pairwise independent hash functions and consider the hash function h(x) = f(C(x)).

If Hmin(C) ≥ n (i.e., C is injective), then every collision in h is a collision on the hash function f .
On the other hand, if Hmax(C) ≤ n/2, then C itself has many collisions. To be able to distinguish
between the two cases, we would like that in the latter case there will be no collisions that originate
from f . The image size of C, if Hmax(C)� n/2, is smaller than 2n/2. If we set s to be sufficiently
small (say constant) than the range of f has size roughly 2n. Thus, we are hashing a set into a
range that is more than quadratic in its size. In such case, we are “below the birthday paradox
regime” and a random function on this set will be injective. A similar statement can be easily
shown also for functions that are merely pairwise independent (rather than being entirely random).

Thus, in case C is injective, all the collisions appear in the second part of the hash function
(i.e., the application of f). On the other hand, if C has max-entropy smaller than n/2, then all the
collisions happen in the first part of the hash function (i.e., in C). Thus, any adversary that finds
a collision distinguishes between the two cases and we actually obtain a full-fledged CRH (rather
than merely an MCRH) at the cost of making a much stronger assumption.

The next case that we consider is still restricted to circuits that are injective (i.e., have min
entropy n) in one case but assumes that it is hard to distinguish injective circuits from circuits
having max-entropy n−

√
n (rather than n/2 that we already handled).

The case of Hmin(C) ≥ n vs. Hmax(C) ≤ n−
√
n. The problem that we encounter now is that in

the low max entropy case, the output of C has max-entropy n−
√
n . To apply the above birthday

paradox argument we would need the range of f to be of size roughly (2n−
√
n)2 � 2n and so our

hash function would not be shrinking. Note that if the range of f were smaller, than even if f were
chosen entirely at random (let alone from a pairwise independent family) we would see collisions
in this case (again, by the birthday paradox).

The key observation that we make at this point is that although we will see collisions, there will
not be too many of them. Specifically, suppose we set s ≈

√
n. Then, we are now hashing a set

of size 2n−
√
n into a range of size 2n−

√
n. If we were to choose f entirely at random, this process

would correspond to throwing N = 2n−
√
n balls (i.e., the elements in the range of C) into N bins

12This setting (and construction) is similar to that of Peikert and Waters’s construction of CRH from lossy func-
tions [PW11].

13Recall that a collection of functions F is k-wise independent if for every distinct x1, . . . , xk, the distribution of
(f(x1), . . . , f(xk)) (over the choice of f ← F) is uniform.

5

(i.e., elements in the range of f). It is well-known that in such case, with high probability, the
maximal load for any bin will be at most log(N)

log log(N) < n. Thus, we are guaranteed that there will at
most n collisions.

Unfortunately, the work of Alon et al. [ADM+99] shows that the same argument does not
apply to functions that are merely pairwise independent (rather than entirely random). Thankfully
though, suitable derandomizations are known. Specifically, it is not too difficult to show that if we
take f from a family of n-wise independent hash functions, then the maximal load will also be at
most n.14

Similarly to before, in case C is injective, there are no collisions in the first part. On the other
hand, in case C has max-entropy at most n−

√
n, we have just argued that there will be less than

n collisions in the second part. Thus, an adversary that finds at least n collisions distinguishes
between the two cases and we have obtained an (s, t)-MCRH, with s =

√
n and t = n.

The case of Hmin(C) ≥ k vs. Hmax(C) ≤ k −
√
n. We want to remove the assumption that

when the min-entropy of C is high, then it is in fact injective. Specifically, we consider the case
that either C’s min-entropy is at least k (for some parameter k ≤ n) or its max entropy is at most
k −
√
n. Note that in the high min-entropy case, C — although not injective — maps at most

2n−k inputs to every output (this is essentially the definition of min-entropy). Our approach is to
apply hashing a second time (in a different way), to effectively make C injective, and then apply
the construction from the previous case.

Consider the mapping h′(x) = (C(x), f1(x)), where f1 will be defined ahead. For h′ to be
injective, f1 must be injective over all sets of size 2n−k. Taking f1 to be pairwise-independent will
force to set its output length to be too large, in a way that will ruin the entropy gap between the
cases.

As in the previous case, we use many-wise independent hashing. Let f1 : {0, 1}n → {0, 1}n−k
be a 3n-wise independent hash function. If Hmin(C) ≥ k, then the same load-balancing property of
f that we used in the previous case, along with a union bound, implies that with high probability
(over the choice of f1) there will be no 3n-way collisions in h′. Our final construction applies the
previous construction on h′. Namely,

hC,f1,f2(x) = f2(C(x), f1(x)),

for f1 : {0, 1}n → {0, 1}n−k and f2 : {0, 1}3n−k → {0, 1}n−
√
n being 3n-wise and 2n-wise independent

hash functions, respectively. We can now show that

• If Hmin(C) ≥ k, then there do not exist 3n distinct inputs x1, . . . , x3n such that they all have
the same value of (C(xi), f1(xi)); and

• If Hmax(C) ≤ k −
√
n, then there do not exist 2n distinct inputs x1, . . . , x2n such that they

all have distinct values of (C(xi), f1(xi)), but all have the same value f2(C(xi), f1(xi)).

We claim that hC,f1,f2 is (s, t)-MCRH for s =
√
n and t = 6n2: First, note that in any set

of 6n2 collisions for hC,f1,f2 , there has to be either a set of 3n collisions for (C, f1) or a set of
2n collisions for f2, and so at least one of the conditions in the above two statements is violated.
Now, assume that A finds 6n2-way collision in hC,f1,f2 with high probability. Then, an algorithm

14We remark that more efficient constructions are known, see Remark 2.5.

6

D that distinguishes between Hmin(C) ≥ k to Hmax(C) ≤ k −
√
n chooses f1 and f2 uniformly at

random and runs A on the input h = hC,f1,f2 to get x1, . . . , x6n2 with h(x1) = · · · = h(x6n2). The
distinguisher D now checks which of the two conditions above is violated, and thus can distinguish
if it was given C with Hmin(C) ≥ k or Hmax(C) ≤ k −

√
n.

We proceed to the case that the entropy gap is 1 (rather than
√
n).

The case of Hmin(C) ≥ k vs. Hmax(C) ≤ k − 1. This case is handled by reduction to the
previous case. The main observation is that if C has min-entropy at least k, and we take ` copies
of C, then we get a new circuit with min-entropy at least ` · k. In contrast, if C had max-entropy
at most k − 1, then C ′ has max-entropy at most ` · k − `. Setting ` = k, we obtain that in the
second case the max-entropy is n′ −

√
n′, where n′ = ` · k is the new input length. Thus, we have

obtained a reduction to the
√
n gap case that we already handled.

1.3.2 Constructing Constant-Round Statisticall-Hinidng Commitment from MCRH

As a warm-up, we start with the construction of statistically-hiding commitment scheme from
standard collision-resistance hash functions (i.e., 2-MCRH).

Warmup: Commitment from (Standard) CRH. Given a family of CRHFsH =
{
h : {0, 1}n → {0, 1}n−1

}
,

a natural first attempt is to have the receiver sample the hash function h← H and send it to the
sender. The sender, trying to commit to a bit b, chooses x ← {0, 1}n and r ← {0, 1}n, and sends
(y = h(x), r, σ = 〈r, x〉⊕b) to the receiver. The commitment is defined as c = (h, y, r, σ). To reveal,
the sender sends (x, b) to the receiver, which verifies that h(x) = y and σ = 〈r, x〉 ⊕ b. Pictorially,
the commit stage is as follows:

S(b) R

h h← Gen(1n)

x, r ← {0, 1}n c = (h(x), r, 〈r, x〉 ⊕ b)

The fact that the scheme is computational-binding follows immediately from the collision resis-
tance of h: if the sender can find (x, 0) and (x′, 1) that pass the receiver’s verification, then x 6= x′

and h(x) = h(x′).
Arguing that the scheme is statistically-hiding is trickier. The reason is that h(x) might reveal

a lot of information on x. What helps us is that h is shrinking, and thus some information about
x is hidden from the receiver. In particular, this means that x has positive min-entropy given
h(x). At this point we would like to apply the Leftover Hash Lemma (LHL) to show that for any
b, the statistical distance between (h(x), r, 〈r, x〉 ⊕ b) to (h(x), r, u) is small. Unfortunately, the
min-entropy is insufficient for the LHL and indeed the distance between these two distributions is
a constant (rather than negligible as required).

To reduce the statistical distance, we increase the min-entropy via repetition. We modify the
protocol so that the sender selects k values x = (x1, . . . , xk)← {0, 1}nk and r ← {0, 1}nk, and sends
(h(x1), . . . , h(xk), r, 〈r,x〉 ⊕ b) to the receiver. The min-entropy of x, even given h(x1), . . . , h(xk)
is now Ω(k), and the LHL now yields that the statistical distance between the two distributions

7

(h, h(x1), . . . , h(xk), r, 〈r,x〉 ⊕ 0) and (h, h(x1), . . . , h(xk), r, 〈r,x〉 ⊕ 1) is roughly 2−k. Setting k
to be sufficiently large (e.g., k = poly(n) or even k = poly log(n)) we obtain that the scheme is
statistically-hiding. Note that repetition also does not hurt binding: if the sender can find valid
decommitments (x = (x1 . . . , xk), 0) and (x′ = (x′1, . . . , x′k), 1) that pass the receiver’s verification,
then there must exists i ∈ [k] with xi 6= x′i and h(xi) = h(x′i) (i.e., a collision).

Handling MCRHs. For simplicity, let us focus on the case t = 4 (since it basically incorporates
all the difficulty encountered when dealing the larger values of t). That is, we assume that H ={
h : {0, 1}n → {0, 1}n−2

}
is a (s, t)-MCRH where the shrinkage s = 2 and t = 4. Namely, it is hard

to find 4 inputs that maps to the same hash value for a random function from H, even though such
4-way collisions exist. Note however that it might very well be easy to find 3 such colliding inputs.
And indeed, the binding argument that we had before breaks: finding x 6= x′ with h(x) = h(x) is
no longer (necessarily) a difficult task.

The problem comes up because even after the sender ‘commits’ to y1 = h(x1), . . . , yk = h(xk),
it is no longer forced to reveal x1, . . . , xk. Intuitively, for every yi, the sender might know 3 inputs
that map to yi, so, the sender is free to reveal any value in the Cartesian product of these triples.
Concretely, let Syi be the set of inputs that h maps to yi that the sender can find efficiently, and
let Sy = Sy1 ×· · ·×Syk . Since the sender can find at most 3 colliding inputs, it holds that |Syi | ≤ 3
for every i, and thus |Sy| ≤ 3k. To fix the binding argument, we want to force every efficient sender
to reveal a unique x = x1, . . . , xk ∈ Sy.

A first attempt toward achieving the above goal is to use a pairwise-independent hash function
f that is injective over Sy with high probability. At a high level, the sender will also specify to the
receiver a random function f from the pairwise independent hash function family. The receiver in
turn sends f(x) as well as (h(x1), . . . , h(xk)). The receiver adds a check to the verification step to
ensure that f maps the input sequence x′1, . . . , x′k to the value that was pre-specified.

In order for the function f to be injective on the set Sy, the birthday paradox tells us that the
range of f must have size at at least (roughly) |Sy|2, which means at least 32k. Thus, to ensure
that f is injective on Sy, we can use a pairwise-independent function f : {0, 1}nk → {0, 1}2k log(3).

Unfortunately, this scheme is still not binding: f is promised (with high probability) to be
injective for fixed sets of size 3k, but the sender can choose y based on the value of f . Specif-
ically, to choose y so that f is not injective over Sy. To fix the latter issue, we split the mes-
sages that the receiver send into two rounds. In the first round the receiver sends h and receives
y = (h(x1), . . . , h(xk)) from the sender. Only then the receiver sends f and receive z1 = f(x).
Now, the scheme is binding: since f is chosen after y is set, the pairwise-independence property
guarantee that it will be injective over Sy with high probability. Pictorially, the commit stage of
the new scheme is as follows:

8

S(b) R

h h← Gen(1n)

x← {0, 1}nk,
yi = h(xi)

y = (y1, y2 . . . yk)

f f : {0, 1}nk → {0, 1}2k log(3)

r ← {0, 1}nk f(x), r, 〈r,x〉 ⊕ b

But is this scheme statistically-hiding? Recall that to argue hiding, we used the fact that the
mapping (x1, . . . , xk) 7→ (h(x1), . . . , h(xk)) is shrinking. Analogously here, we need the mapping
(x1, . . . , xk) 7→ (h(x1), . . . , h(xk), f(x)) to be shrinking. However, the latter mapping maps n ·k bits
to (n−2) ·k+2 log(3) ·k bit, which is obviously not shrinking. One work-around is to simply assume
that the given MCRH shrinks much more than we assumed so far. For example, to assume that
H is (4, 4)-MCRH (or more generally (s, t)-MCRH for s � log(t)).15 However, we can actually fix
the protocol so that it gives statistically-hiding commitments even with tight shrinkage of log(t) by
using hash functions that guarantee good load-balancing and adding one more round of interaction.

Overcoming the Birthday Paradox. To guarantee hiding, it seems that we cannot afford the
domain of f to be as large as (3k)2. Instead, we set its domain size to 3k (i.e., f : {0, 1}nk →
{0, 1}k log(3)). Moreover, rather than choosing it from a pairwise independent hash function family,
we shall use one that is many-wise-independent. Since such functions are load-balanced (see ??) it
holds that with high probability, z1 — the value the sender sends in the second round — has at
most log(3k) = k · log(3) pre-images from Sy under f (i.e., |{x ∈ Sy : f(x) = z1}| ≤ k · log(3)). We
once more face the problem that the sender can reveal any of these inputs, but now their number
is exponentially smaller — it is only k log(3) (as opposed to 3k before). We can now choose a
pairwise-independent g : {0, 1}nk → {0, 1}2(log(k)+log log(3)) that is injective over sets of size k · log(3)
(with high probability). For the same reasons that f was sent after h, the receiver sends g only
after receiving f(x).

Thus, our final protocol has three rounds (where each round is composed of one message for
each of the two parties) and is as follows: In the first round, the receiver selects h← H and sends
it to the sender. The sender, trying to commit to a bit b, chooses x = (x1, . . . , xk)← {0, 1}nk and
sends y = (y1 = h(x1), . . . , yk = h(xk)). In the second round, the receiver selects a many-wise-
independent hash function f : {0, 1}nk → {0, 1}k log(3) and sends it to the sender. The sender sends
z1 = f(x) to the receiver. In the third and final round, the receiver selects a pairwise-independent
hash function g : {0, 1}n·k → {0, 1}2(log(k)+log log(3)) and sends it to the sender. The sender selects
r ← {0, 1}nk, and sends (z2 = g(x), r, σ = 〈r,x〉 ⊕ b) to the receiver. The commitment is defined
as c = (h,y, f, z1, g, z2, σ). To reveal, the sender sends (x, b) to the receiver, which verifies that
h(xi) = yi for every i, that f(x) = z1, g(x) = z2 and σ = 〈r,x〉 ⊕ b. Pictorially, the commit stage
is as follows:

15We remark that our construction of MCRH based on EAmin,max (see Section 3) actually supports such large
shrinkage.

9

S(b) R

h h← Gen(1n)

x← {0, 1}nk,
yi = h(xi)

y = (y1, y2 . . . yk)

f f : {0, 1}nk → {0, 1}k log(3)

f(x)

g g : {0, 1}nk → {0, 1}2(log k+log log(3))

r ← {0, 1}nk g(x), r, 〈r,x〉 ⊕ b

Intuitively, the scheme is computationally-binding since for any computationally-bounded sender
that committed to c, there is a unique x that pass the receiver’s verification. As for the hiding, we
need the mapping (x1, . . . , xk) 7→ (h(x1), . . . , h(xk), f(x), g(x)) to be shrinking. Observe that we
are mapping n ·k bits to (n−2)k+log(3)k+2(log(k)+log log(3)) bits. Choosing k to be sufficiently
large (e.g., k = poly(n) certainly suffices) yields that the mapping is shrinking.

Organization

In Section 2 we define the notion of many-wise independent hashing and prove that it has some
load-balancing properties. In Section 3 we formally state the entropy approximation assumption
and present our construction of MCRH. In Section 4 we describe the construction of constant-round
statistically-hiding commitments from MCRH. Lastly, in Appendix A we provide a self-contained
proof of the blackbox separation of MCRH from one-way functions (see Corollary 3).

2 Preliminaries
We use lowercase letters for values, uppercase for random variables, uppercase calligraphic let-
ters (e.g., U) to denote sets, boldface for vectors (e.g., x), and uppercase sans-serif (e.g., A)
for algorithms (i.e., Turing Machines). All logarithms considered here are in base two. Given a
probabilistic polynomial-time algorithm A, we let A(x; r) be an execution of A on input x given
randomness r. We let poly denote the set all polynomials. A function ν : N → [0, 1] is negligible,
denoted ν(n) = negl(n), if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a random variable X, we write x ← X to indicate that x is selected according to X.
Similarly, given a finite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. We adopt the convention that when the same random variable occurs several
times in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is
defined to be the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n. The support of a distribution D over a finite
set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The statistical distance of two distri-
butions P and Q over a finite set U , denoted as SD(P,Q), is defined as maxS⊆U |P (S)−Q(S)| =
1
2
∑
u∈U |P (u)−Q(u)|.

10

We make use of the following simple fact, that show that a [0, 1] random variable with high-
enough expected value, cannot be very small with high probability.

Fact 2.1. Assume that X is a random variable taking values in [0, 1] with E[X] ≥ µ. Then,
Pr
[
X ≥ µ2] ≥ µ/(1 + µ).

Proof. Let p = Pr
[
X ≥ µ2]. It holds that

µ ≤ E[X] ≤ p · 1 + (1− p) · µ2.

Rearranging, we have that

p ≥ µ− µ2

1− µ2 = µ(1− µ)
(1 + µ)(1− µ) = µ

1 + µ
,

as required.

2.1 Many-wise Independent Hashing

Many-wise independent hash functions are used extensively in complexity theory and cryptography.

Definition 2.2 (`-wise Independent Hash Functions). For ` ∈ N, a family of functions F =
{f : {0, 1}n → {0, 1}m} is `-wise independent if for every distinct x1, x2, . . . , x` ∈ {0, 1}n and every
y1, y2, . . . , y` ∈ {0, 1}m, it holds that

Pr
f←F

[f(x1) = y1 ∧ f(x2) = y2 ∧ · · · ∧ f(x`) = y`] = 1
M `

.

Note that if H is k-wise independent for k ≥ 2, it is also universal. The existence of efficient
many-wise hash function families is well known.

Fact 2.3 (c.f. [Vad12, Corollary 3.34]). For every n,m, ` ∈ N, there exists a family of `-wise
independent hash functions F (`)

n,m = {f : {0, 1}n → {0, 1}m} where a random function from Fn,m
can be selected using ` ·max(m,n) bits, and given a description of f ∈ F (`)

n.m and x ∈ {0, 1}n, the
value f(x) can be evaluated in time poly(n,m, `).

Whenever we only need pairwise independent hash function F (2)
n,m, we remove the two from the

superscript and simply write Fn,m.

2.2 Load Balancing

The theory of load balancing deals with allocating elements into bins, such that no bin has too
many elements. If the allocation is done at random, it can be shown that with high probability
the max load (i.e., the number of elements in the largest bin) is not large. In fact, allocating via
many-wise independent hash function also suffices.

Fact 2.4 (Folklore (see, e.g., [CRSW13])). Let n,m, ` ∈ N with ` ≥ 2e (where e is the base of the
natural logarithm) and let F `n,m be an `-wise independent hash function family. Then, for every set
S ⊆ {0, 1}n with |S| ≤ 2m it holds that:

Pr
f←F`n,m

[
∃y ∈ {0, 1}m such that

∣∣∣f−1(y) ∩ S
∣∣∣ ≥ `] ≤ 2m−`,

where f−1(y) = {x ∈ {0, 1}n : f(x) = y}.

11

Proof. Fix y ∈ {0, 1}m. It holds that

Pr
f←F`n,m

[∣∣∣f−1(y) ∩ S
∣∣∣ ≥ `] ≤ Pr

f←F`n,m
[∃ distinct x1, . . . , x` ∈ S : f(x1) = y ∧ · · · ∧ f(x`) = y]

≤
∑

distinct x1,...,x`∈S
Pr

f←F`n,m
[f(x1) = y ∧ · · · ∧ f(x`) = y]

≤
(

2m

`

)
·
(1

2m
)`

≤
(
e · 2m

`

)`
·
(1

2m
)`

≤ 2−`,

where the second inequality is by a union bound, the third inequality follows from the `-wise
independence of F `n,m, the fourth inequality is by a standard bound on binomial coefficients, and
the last inequality follows by our assumption that ` ≥ 2e.

Fact 2.4 follows from a union bound over all values of y ∈ {0, 1}m.

Remark 2.5 (More Efficient Hash Functions). We remark that more efficient constructions of
hash functions guaranteeing the same load balancing performance as in Fact 2.4 are known in the
literature.

Specifically, focusing on the setting of ` = O(m), Fact 2.4 gives a load balancing guarantee for
functions whose description size (i.e., key length) is Ω(m2) bits. In contrast, a recent result of Celis
et al. [CRSW13] constructs such functions that require only Õ(m) key size. Furthermore, a follow
up work of Meka et al. [MRRR14] improves the evaluation time of the [CRSW13] hash function to
be only poly-logarithmic in m (in the word RAM model).

However, since our focus is not on concrete efficiency, we ignore these optimizations throughout
this work.

3 Constructing MCRH Families
In this section, we present a construction of a Multi-Collision Resistant Hash family based on the
hardness of estimating certain notions of entropy of a distribution given a circuit that samples it.
We define and discuss this problem in Section 3.1, and present the construction in Section 3.2.

3.1 Entropy Approximation

In order to discuss the problem central to our construction, we first recall some standard notions
of entropy.

Definition 3.1. For a random variable X, we define the following notions of entropy:

• Min-entropy: Hmin(X) = minx∈Supp(X) log
(

1
Pr[X=x]

)
.

• Max-entropy: Hmax(X) = log (|Supp(X)|).

• Shannon entropy: HShannon(X) = Ex←X
[
log
(

1
Pr[X=x]

)]
.

12

For any random variable, these entropies are related as described below. These relations ensure
that the problems we describe later are well-defined.

Fact 3.2. For a random variable X supported over {0, 1}m,

0 ≤ Hmin(X) ≤ HShannon(X) ≤ Hmax(X) ≤ m.

Given a circuit C : {0, 1}n → {0, 1}m, we overload C to also denote the random variable
induced by evaluating C on a uniformly random input from {0, 1}n. With this notation, the
Entropy Approximation problem is defined as below.

Definition 3.3. Let g = g(n) ∈ R be a function. The min-max Entropy Approximation problem
with gap g, denoted EA(g)

min,max, is a promise problem (YES,NO) for YES = {YESn}n∈N and NO =
{NOn}n∈N, where we define

YESn = {(1n, Cn, k) : Hmin(Cn) ≥ k}, and
NOn = {(1n, Cn, k) : Hmax(Cn) ≤ k − g(n)},

and where in both cases Cn is a circuit that takes n bits of input, and k ∈ {0, . . . , n}.

We also define EAmin,max = EA(1)
min,max. That is, when we omit g we simply mean that g = 1.

The Shannon Entropy Approximation problem (where Hmin and Hmax above are replaced with
HShannon) with constant gap was shown by Goldreich et al. [GSV99] to be complete for the class
NISZK (problems with non-interactive statistical zero knowledge proof systems). For a discussion of
generalizations of Entropy Approximation to other notions of entropy, and other related problems,
see [DGRV11].

3.1.1 The Assumption: Average-Case Hardness of Entropy Approximation

Our construction of MCRH is based on the average-case hardness of the Entropy Approximation
problem EAmin,max defined above (i.e., with gap 1). We use the following definition of average-case
hardness of promise problems.

Definition 3.4 (Average-case Hardness). We say that a promise problem Π = (YES,NO), where
YES = {YESn}n∈N and NO = {NOn}n∈N, is average-case hard if there is a probabilistic algorithm
S such that S(1n) outputs samples from (YESn ∪ NOn), and for every family of polynomial-sized
circuits A = (An)n∈N,

Pr
x←S(1n)

[An(x) = Π(x)] ≤ 1
2 + negl(n),

where Π(x) = 1 if x ∈ YES and Π(x) = 0 if x ∈ NO. We call S a hard-instance sampler for Π.
The quantity (Prx←S(1n)[An(x) = Π(x)]− 1/2) is referred to as the advantage the algorithm A has
in deciding Π with respect to the sampler S.

In our construction and proofs, it will be convenient for us to work with the problem EA(b√nc)
min,max

rather than EAmin,max = EA(1)
min,max. At first glance EA(b√nc)

min,max seems to be an easier problem because
the gap here is b

√
nc, which is much larger than a constant. The following simple proposition shows

that these two problems are in fact equivalent (even in their average-case complexity). The key idea
here is repetition: given a circuit C, we can construct a new circuit C ′ that outputs C evaluated
on independent inputs with a larger gap.

13

The Construction of MCRH

Let S be a hard-instance sampler for EA(b√nc)
min,max.

Gen(1n):
1. Sample (1n, Cn, k)← S(1n), where Cn maps {0, 1}n → {0, 1}n

′
.

2. Samplea f1 ← F3n
n,(n−k) and f2 ← F2n

(n′+n−k),(n−b√nc).
3. Output the circuit that computes the function hCn,f1,f2 : {0, 1}n → {0, 1}n−b

√
nc that is

defined as follows:

hCn,f1,f2(x) := f2
(
Cn(x), f1(x)

)
.

aRecall that F`n,m = {f : {0, 1}n → {0, 1}m} is a family of `-wise independent hash functions.

Figure 1: Construction of MCRH from Entropy Approximation.

Proposition 3.5. EA(b√nc)
min,max is average-case hard if and only if EAmin,max is average-case hard.

Proof Sketch. Any YES instance of EA(b√nc)
min,max is itself a YES instance of EAmin,max, and the same

holds for NO instances. So the average-case hardness of EA(b√nc)
min,max immediately implies that of

EAmin,max, with the same hard-instance sampler. In order to show the implication in the other
direction, we show how to use a hard-instance sampler for EAmin,max to construct a hard-instance

sampler S′ for EA(b√nc)
min,max.

S′ on input (1n):
1. Let ` = b

√
nc. S′ samples (1`, C`, k)← S(1`).

2. Let Ĉn be the following circuit that takes an n-bit input x. It breaks x into ` + 1 disjoint
blocks x1, . . . , x`+1, where x1, . . . , x` are of size `, and x`+1 is whatever remains. It ignores
x`+1, runs a copy of C` on each of the other xi’s, and outputs a concatenation of all the
outputs.

3. S′ outputs (1n, Ĉn, k · `).
. .

As Ĉn is the `-fold repetition of C`, all its entropies are ` times the respective entropies of C`. So
if C` had min-entropy at least k, then Ĉn has min-entropy at least k · `, and if C` had max-entropy
at most (k − 1), then Ĉn has max-entropy at most (k − 1) · ` = k · ` − `, where ` = b

√
nc. The

proposition follows.

3.2 The Construction

Our construction of a Multi-Collision Resistant Hash (MCRH) family is presented in Figure 1. For
most of this section, to avoid cluttering up notations, we will denote the problem EA(b√nc)

min,max by just
EA. We now prove that the construction is secure under our average-case hardness assumption.

14

Theorem 3.6. If EA(b√nc)
min,max is average-case hard, then the construction in Figure 1 is an (s, t)-

MCRH, where s = 6n2 and t = b
√
nc.

The above theorem, along with Proposition 3.5, now implies the following.

Corollary 3.7. If EAmin,max is average-case hard, then there exists an (s, t)-MCRH, where s = 6n2

and t = b
√
nc.

Note that above, the shrinkage being b
√
nc guarantees that there exist 2b

√
nc-way collisions.

But the construction is such that it is not possible to find even a 6n2-way collision, (which is sub-
exponentially smaller). This is significant because, unlike in the case of standard collision-resistant
hash functions (i.e., in which it is hard to find a pair of collisions), shrinkage in MCRHs cannot
be easily amplified by composition while maintaining the same amount of collision-resistance (see
Remark 1.2).

The rest of this section is dedicated to proving Theorem 3.6.

Proof of Theorem 3.6. Let Gen denote the algorithm described in Figure 1, and S be the hard-
instance sampler used there. Fact 2.3, along with the fact that S runs in polynomial-time ensures
that Gen runs in polynomial-time as well. The shrinkage requirement of an MCRH is satisfied
because here the shrinkage is s(n) = b

√
nc. To demonstrate multi-collision resistance, we show

how to use an adversary that finds 6n2 collisions in hash functions sampled by Gen to break the
average-case hardness of EA(b√nc)

min,max.
We begin with an informal discussion of the proof. We first prove that large sets of collisions

that exist in a hash function output by Gen have different properties depending on whether the
instance that was sampled in step 1 of Gen was a YES or NO instance of EA. Specifically, notice
that the hash functions that are output by Gen have the form hCn,f1,f2(x) = f2(Cn(x), f1(x)); we
show that, except with negligible probability:

• In functions hCn,f1,f2 generated from (1n, Cn, k) ∈ EA, there do not exist 3n distinct inputs
x1, . . . , x3n such that they all have the same value of (Cn(xi), f1(xi)).

• In functions hCn,f1,f2 generated from (1n, Cn, k) 6∈ EA, there do not exist 2n distinct inputs
x1, . . . , x2n such that they all have distinct values of (Cn(xi), f1(xi)), but all have the same
value f2(Cn(xi), f1(xi)).

Note that in any set of 6n2 collisions for hCn,f1,f2 , there has to be either a set of 3n collisions
for (Cn, f1) or a set of 2n collisions for f2, and so at least one of the conclusions in the above two
statements is violated.

A candidate average-case solver for EA, when given an instance (1n, Cn, k), runs steps 2 and 3 of
the algorithm Gen from Figure 1 with this Cn and k. It then runs the collision-finding adversary on
the hash function hCn,f1,f2 that is thus produced. If the adversary does not return 6n2 collisions,
it outputs a random answer. But if these many collisions are returned, it checks which of the
conclusions above is violated, and thus knows whether it started with a YES or NO instance. So
whenever the adversary succeeds in finding collisions, the distinguisher can decide EA correctly
with overwhelming probability. So if the collision-finding adversary works with non-negligible
probability, then the distinguisher also has non-negligible advantage, contradicting the average-
case hardness of EA, which was assumed.

15

We now state and prove the above claims about the properties of sets of collisions, then formally
write down the adversary outlined above and prove that it works. The first claim is that for hash
functions hCn,f1,f2 generated according to Gen using a YES instance, there is no set of 3n distinct
xi’s that all have the same value for Cn(xi) and f1(xi), except with negligible probability.

Claim 3.7.1. Let (1n, Cn, k) be a YES instance of EA. Then,

Pr
f1←F3n

n,(n−k)

[
∃y, y1 :

∣∣∣C−1
n (y) ∩ f−1

1 (y1)
∣∣∣ ≥ 3n

]
≤ negl(n)

Intuitively, the reason this should be true is that when Cn comes from a YES instance, it has
high min-entropy. This means that for any y, C−1

n (y) will be quite small. f1 can now be thought
of as partitioning each set C−1

n (y) into several parts, none of which will be too large because of the
load-balancing properties of many-wise independent hash functions.

Proof. The above probability can be bounded using the union bound as follows:

Pr
f1

[
∃y, y1 :

∣∣∣C−1
n (y) ∩ f−1

1 (y1)
∣∣∣ ≥ 3n

]
≤

∑
y∈Im(Cn)

Pr
f1

[
∃y1 :

∣∣∣C−1
n (y) ∩ f−1

1 (y1)
∣∣∣ ≥ 3n

]
.

The fact that (1n, Cn, k) is a YES instance of EA means that Hmin(Cn) ≥ k. The definition of
min-entropy now implies that for any y ∈ Im(Cn):

log
(

1
Prx←{0,1}n [Cn(x) = y]

)
≥ k.

This implies that for any y,
∣∣C−1

n (y)
∣∣ ≤ 2n−k. Fact 2.4 (about the load-balancing properties of

F3n
n,(n−k)) now implies that for any y ∈ Im(Cn):

Pr
f1

[
∃y1 :

∣∣∣C−1
n (y) ∩ f−1

1 (y1)
∣∣∣ ≥ 3n

]
≤ 2n−k

23n ≤
1

22n .

Putting this back into the union bound and noting that the image of Cn has at most 2n elements,
we get the bound we want:

Pr
f1

[
∃y, y1 :

∣∣∣C−1
n (y) ∩ f−1

1 (y1)
∣∣∣ ≥ 3n

]
≤ 2n · 1

22n ≤ negl(n).

The next claim is that for hash functions hCn,f1,f2 generated according to Gen using a NO
instance, there is no set of 2n values of xi that all have distinct values of (Cn(xi), f1(xi)), but the
same value f2(Cn(xi), f1(xi)), except with negligible probability.

Claim 3.7.2. Let (1n, Cn, k) be a NO instance of EA. Then,

Pr
f1←F3n

n,(n−k)
f2←F2n

(n′+n−k),(n−b√nc)

[
∃x1, . . . , x2n : For all i 6= j, (Cn(xi), f1(xi)) 6= (Cn(xj), f1(xj)), and

f2(Cn(xi), f1(xi)) = f2(Cn(xj), f1(xj))

]
≤ negl(n)

16

Proof. The fact that (1n, Cn, k) is a NO instance of EA means that Hmax(Cn) ≤ k− b
√
nc; that is,

Cn has a small range:

|Im(Cn)| ≤ 2k−b
√
nc.

For any f1 ∈ F3n
n,(n−k), which is what is sampled by Gen when this instance is used, the range

of f1 is a subset of {0, 1}n−k. This implies that even together, Cn and f1 have a range whose size
is bounded as:

|Im(Cn, f1)| ≤ 2k−b
√
nc · 2n−k = 2n−b

√
nc.

For there to exist a set of 2n inputs xi that all have distinct values for (Cn(xi), f1(xi)) but the
same value for f2(Cn(xi), f1(xi)), there has to be a y that has more than 2n inverses under f2 that
are all in the image of (Cn, f1). As f2 comes from F2n

(n′+n−k),(n−b√nc), we can use Fact 2.4 along
with the above bound on the size of the image of (Cn, f1) to bound the probability that such a y
exists as follows:

Pr
f2

[
∃y :

∣∣∣f−1
2 (y) ∩ Im(Cn, f1)

∣∣∣ ≥ 2n
]
≤ 2n−b

√
nc

22n ≤ negl(n).

Let A = (An)n∈N be a polynomial-size family of circuits that given a hash function output
by Gen(1n) finds 6n2 collisions in it with non-negligible probability. The candidate circuit family
A′ = (A′n)n∈N for solving EA on average is described below.

A′n on input (1n, Cn, k):

1. Run steps 2 and 3 of the algorithm Gen in Figure 1 with (1n, Cn, k) in place of the instance
sampled from S there. This results in the description of a hash function hCn,f1,f2 .

2. Run An(hCn,f1,f2) to get a set of purported collisions S.
3. If S does not actually contain 6n2 collisions under hCn,f1,f2 , output a random bit.
4. If S contains 3n distinct xi’s such that they all have the same value of (Cn(xi), f1(xi)), output

0.
5. If S contains 2n distinct xi’s such that they all have distinct values of (Cn(xi), f1(xi)) but

the same value f2(Cn(xi), f1(xi)), output 1.

. .

The following claim now states that any collision-finding adversary for the MCRH constructed
can be used to break the average-case hardness of EA, thus completing the proof.

Claim 3.7.3. If A finds 6n2 collisions in hash functions output by Gen(1n) with non-negligible
probability, then A′ has non-negligible advantage in deciding EA with respect to the hard-instance
sampler S used in Gen.

Proof. On input (1n, Cn, k), say A′n computes hCn,f1,f2 and runs An on it. If An does not find 6n2

collisions for hCn,f1,f2 , then A′n guesses at random and is correct in its output with probability 1/2.
If An does find 6n2 collisions, then A′n is correct whenever one of the following is true:

17

1. (1n, Cn, k) is a YES instance and there is no set of 3n collisions for (Cn, f1).
2. (1n, Cn, k) is a NO instance and there is no set of 2n collisions for f2 in the image of (Cn, f1).

Note that inputs to A′n are drawn from S(1n), and so the distribution over hCn,f1,f2 produced
by A′n is the same as that produced by Gen(1n) itself. With such samples, let E1 denote the event
of (Cn, f1) having a set of 3n collisions from S (the set output by An), and let E2 denote the event
of f2 having a set of 2n collisions in the image of (Cn, f1) from S. Also, let EY denote the event of
the input to A′n being a YES instance, EN that of it being a NO instance, and EA the event that
S contains at least 6n2 collisions.

Following the statements above, the probability that A′n is wrong in deciding EA with respect
to (1n, Cn, k)← S(1n) can be upper-bounded as:

Pr
[
A′n(1n, Cn, k) is wrong

]
= Pr

[
(¬EA) ∧ (A′n is wrong)

]
+ Pr

[
EA ∧ (A′n is wrong)

]
≤ Pr[¬EA] · 1

2 + Pr[(EY ∧ E1) ∨ (EN ∧ E2)].

The first term comes from the fact that if An doesn’t find enough collisions, A′n guesses at random.
The second term comes from the fact that if both (EY ∧ E1) and (EN ∧ E2) are false and EA is
true, then since at least one of EY and EN is always true, one of (EY ∧¬E1) and (EN ∧¬E2) will
also be true, either of which would ensure that A′n is correct, as noted earlier.

We now bound the second term above, starting as follows:

Pr[(EY ∧ E1) ∨ (EN ∧ E2)] ≤ Pr[(EY ∧ E1)] + Pr[(EN ∧ E2)]
= Pr[EY] Pr[E1|EY] + Pr[EN] Pr[E2|EN]
≤ Pr[EY] · negl(n) + Pr[EN] · negl(n) = negl(n),

where the first inequality follows from the union bound and the last inequality follows from
Claims 3.7.1 and 3.7.2.

Putting this back in the earlier expression,

Pr
[
A′n(1n, Cn, k) is wrong

]
≤ Pr[¬EA] · 1

2 + negl(n)

= 1
2 −

Pr[EA]
2 + negl(n).

In other words,

Pr
[
A′n(1n, Cn, k) is correct

]
≥ 1

2 + Pr[EA]
2 − negl(n).

So if A succeeds with non-negligible probability in finding 6n2 collisions, then A′ had non-
negligible advantage in deciding EA over S.

18

4 Constant-Round Statistically-Hiding Commitments
In this section we show that multi-collision-resistance hash functions imply the existence of constant-
round statistically-hiding commitments.
Definition 4.1 (Commitment Scheme). A commitment scheme is an interactive protocol between
two polynomial-time parties — the sender S and the receiver R — that satisfies the following prop-
erties.

1. The protocol proceeds in two stages: the commit stage and the reveal stage.

2. At the start of the commit stage both parties get a security parameter 1n as a common input
and the sender S also gets a private input b ∈ {0, 1}. At the end of the commit stage the
parties have a shared output c, which is called the commitment, and the sender S has an
additional private output d, which is called the decommitment.

3. In the reveal stage, the sender S sends (b, d) to the receiver R. The receiver R accepts or
rejects based on c, d and b. If both parties follow the protocol, then the receiver R always
accepts.

In this section we focus on commitment schemes that are statistically-hiding and computation-
ally-binding.
Definition 4.2 (Statistically Hiding Commitment). A commitment scheme (S,R) is statistically-
hiding if for every cheating receiver R∗ it holds that

SD((S(0),R∗)(1n), (S(1),R∗)(1n)) = negl(n),

where (S(b),R∗)(1n) denotes the transcript of the interaction between R∗ and S(b) in the commit
stage.
Definition 4.3 (Computationally Binding Commitment). A commitment scheme (S,R) is computationally-
binding if for every family of polynomial-size circuits sender S∗ = (S∗n)n∈N it holds that S∗ wins in
the following game with only with negl(n) probability:

1. The cheating sender S∗n interacts with the honest receiver R(1n) in the commit stage obtaining
a commitment c.

2. Then, S∗n outputs two pairs (0, d0) and (1, d1). The cheating sender S∗ wins if the honest
receiver R accepts both (c, 0, d0) and (c, 1, d1).

We are now ready to state the main result of this section. A round of a commitment scheme is
a pair of messages, the first sent from the receiver to the sender, and the second the other way.
Theorem 4.4 (MCRH =⇒ Constant-Round Statistically-Hiding Commitments). Let t = t(n) ∈ N
be a polynomial computable in poly(n) time. Assume that there exists a (s, t)-MCRH for s ≥ log(t),
then there exists a three-round statistically-hiding computationally-binding commitment scheme.

As we already mentioned in Section 1, constructions of statistically-hiding computationally-
binding commitment schemes are known assuming only the minimal assumption that one-way
functions exist. Those constructions, however, have polynomial number of rounds (and this in
inherit for black-box constructions). Our construction, on the other hand, has only three rounds
and is simple to describe.

The rest of this section is dedicated to proving Theorem 4.4.

19

The Commitment Scheme (S,R)

S’s Input: security parameter 1n and a bit b ∈ {0, 1}.
R’s Input: security parameter 1n.
Algorithm Gen: polynomial-time algorithm that on input 1n returns a circuit computing a
(dlog(t(n))e, t(n))-MCRH h : {0, 1}n → {0, 1}n−dlog(t(n))e

The commit stage:

1. Both parties set t = t(n) and k = n · t.
2. R samples h← Gen(1n) and sends h to S.
3. S samples x = (x1, . . . , xk)← {0, 1}n·k, computes y = (y1, . . . , yk) for yi = h(xi), and sends y to

R.
4. R samplesa f ← F (dk·log(t−1)e)

n·k,dk·log(t−1)e and sends f to S.
5. S sends z1 = f(x) to R.
6. R samples g ← Fn·k,d2 log(k)+2 log log(t−1)+log2(n)e and sends g to S.
7. S sends z2 = g(x) to R.
8. S samples r ← {0, 1}n·k and computes σ = 〈r,x〉 ⊕ b and sends (r, σ) to R.
9. The commitment is defined as c = (h,y, f, z1, g, z2, r, σ) and the decommitment is defined as

d = x.

The reveal stage:

1. S sends (b,x) to R.
2. R accepts if h(xi) = yi for every i ∈ [k], f(x) = z1, g(x) = z2 and 〈r,x〉 ⊕ b = σ.

aRecall that F (k)
n,m is a family of k-wise-independent hash functions from {0, 1}n to {0, 1}m. See Fact 2.3.

Figure 2: Statistically Hiding Commitment

4.1 Proving Theorem 4.4

The proof follows the outline detailed in Section 1.3.2.
Let Gen be the generating algorithm that defines a (s, t)-MCRH for s ≥ log(t), assumed to

exists in the theorem’s statement. Since s must be an integer, we can assume without the loss of
generality that the function defined by Gen is (dlog(t)e, t)-MCRH (we can always pad the output
of the function without making it easier to find collisions). Consider the protocol in Fig. 2. The
proof now follows from the next two lemmas.

Lemma 4.5 (Computationally Binding). The commitment scheme (S,R) in Fig. 2 is computa-
tionally binding.

Lemma 4.6 (Statistically Hiding). The commitment scheme (S,R) in Fig. 2 is statistically hiding.

The proof of Lemma 4.5 is given in Section 4.1.1 and the proof of Lemma 4.6 is given in
Section 4.1.2.

20

CollFindern on input (1n):

1. Set t = t(n), k = n · t2 and q = q(n)
2. Sample at random coinsa for S∗n, denoted by τ , and h← Gen(1n)
3. Emulateb S∗n(h; τ) to obtain y = (y1, . . . , yk)
4. For i ∈ [k] set Si = ∅
5. Repeat for 2 · q3 · n · (t− 1) · k times:

(a) Sample f ← F (2·dk·log(t−1)e)
n·k,dk·log(t−1)e

(b) Emulate S∗n(f ; τ) to obtain z1
(c) Sample g ← Fn·k,d2 log(k)+2 log log(t−1)+log2(n)e
(d) Emulate S∗n(g; τ) to obtain r, σ, x = (x1, . . . , xk) and x′ = (x′1, . . . , x′k)
(e) If S∗ wins,c then for every i update Si = Si ∪ {xi, x

′
i}

6. Output Sout = Sj such that j = arg maxi{|Si|}
aSince we consider a non-uniform adversary S∗, we could have simply fixed its random coins. However, we

avoid doing so to highlight that the reduction is uniform.
bRecall that A(·; τ) mean that A is run when its coins are set to τ .
cNamely, if the conditions in Eq. (1) are satisfied, or equvalently if (f, g) ∈ Wh,τ .

Figure 3: Algorithm to find t-collision in H

4.1.1 Analyzing Binding — Proving Lemma 4.5

Assume toward a contradiction that the scheme is not computationally binding. That is, there
exists a polynomial-size family of circuits S∗ = (S∗n)n∈N of size q ∈ poly(n), and an infinite index set
I ⊆ N such that for every n ∈ I the following events occur with probability at least 1/q(n): (1) the
cheating sender S∗n interacts with the honest receiver R(1n) in the commit stage of the protocol and
the parties obtain a commitment c = (h,y = (y1 . . . , yk), f, z1, g, z2, r, σ); then (2) S∗n outputs valid
decommitments to two distinct values (0,x = (x1, . . . , xk)) and (1,x′ = (x′1, . . . , x′k)) such that

∀i ∈ [k] : h(xi) = h(x′i) = yi

f(x) = f(x′) = z1 and g(x) = g(x′) = z2 (1)
〈r,x〉 ⊕ 0 = σ and

〈
r,x′

〉
⊕ 1 = σ.

Whenever the above conditions are met, we say that S∗ wins. We use S∗ to find t-collisions in
H and thus deriving a contradiction.

Let τ be some random coins used by S∗ during its interaction with R. Observe that y, the first
message sent by S∗, is a deterministic function of τ and h, where the latter is the first message sent
by R. Similarly, z1, the second message sent by S∗, is a deterministic function of τ , h and f , where
the latter is the second message sent by R. Finally, r, σ, x and x′, the values sent in the third
message of S∗, are all deterministic functions of τ , h, f and g, where the latter is the third message
sent by R. Hence, for τ and h we can define

Wτ,h =
{
(f, g) : (h,y, f, g, r, σ,x,x′) satisfy the condition in Eq. (1)

}
.

We can now describe an algorithm to find t-way collision in H. Consider the (non-uniform)
algorithm CollFinder = (CollFindern)n∈N given in Fig. 3. It is easy to verify that CollFindern is of

21

polynomial size.16 In the rest of the proof we show that CollFinder finds t-way collision in H with
probability roughly 1/q(n).

Intuitively, the sets Si store collisions of h. The choice of f and g guarantee that, with probability
at least 1/poly(n) and as long as |Si| < t for every i, in every iteration the main loop of CollFinder
in which S∗ wins, at least one of the Si increases. Iterating the loop for sufficiently many times
guarantee that with probability at least 1/poly(n), one of the Si’s contain at least t values at the
end of the loop.

Formally, fix some large enough n ∈ I and remove it from notation. Observe that Sout, the
set of alleged collisions returned by CollFinder, is updated only when S∗ wins. Thus, it holds that
h(x) = h(x′) for every x, x′ ∈ Sout. Let L be a random variable induced by cardinality of Sout in a
random execution of CollFinder. Hence, out goal is to show that

Pr[L ≥ t] ≥ Ω
(1
q

)
. (2)

Our first step is to analyze how the choice of (τ, h) affects the success probability of CollFinder.
Let (T,H, F,G) be (jointly distributed) random variables induced by the values of (τ, h, f, g) in a
random execution of (S∗(b),R) where τ are the random coins used by S∗ and b ∈ {0, 1}.17 Note
that (T,H) are both independent of (F,G) and distributed as the values of (τ, h) in Step 2 in a
random execution of CollFinder. Let

W =
{

(τ, h) ∈ Supp(T,H) : Pr[(F,G) ∈ Wτ,h] ≥ 1
q2

}
.

We make use of the next claim.

Claim 4.6.1. It holds that Pr[(T,H) ∈ W] ≥ 1/(q + 1).

Proof. Let Pτ,h = Pr[(F,G) ∈ Wτ,h]. It follows that,

1
q
≤ Pr[S∗ wins] = Pr[(F,G) ∈ WT,H] = E[PT,H].

Fact 2.1 now yields that,

Pr[(T,H) ∈ W] = Pr
[
PT,H ≥

1
q2

]
≥ 1
q + 1 .

For τ, h, let Lτ,h denote the random variable distributed as L conditioned on (T,H) = (τ, h).
Using Claim 4.6.1, we have that

Pr[L ≥ t] = E
(τ,h)←(T,H)

[
Pr[Lτ,h ≥ t]

]
(3)

≥ Pr[(T,H) ∈ W] · E
(τ,h)←(T,H)

[
Pr[Lτ,h ≥ t | (τ, h) ∈ W]

]
≥ 1
q + 1 · E

(τ,h)←(T,H)

[
Pr[Lτ,h ≥ t | (τ, h) ∈ W]

]
.

16We assume, without the loss of generality, that q(n) is efficiently computed (otherwise, take q′ > q that is
efficiently computed)

17Those random variables are identically distributed if b = 0 or b = 1.

22

In the rest of the proof we show that for every (τ, h) ∈ W, it holds that

Pr[Lτ,h ≥ t] ≥ 1− negl(n). (4)

Fix (τ, h) ∈ W and let S1, . . . , Si be random variables induced by the values of S1, . . . ,Sk at
the end of a random execution of CollFinder, conditioned on (T,H) = (τ, h). It holds that

Pr[Lτ,h < t] = Pr[|S1| ≤ t− 1 ∧ · · · ∧ |Sk| ≤ t− 1] (5)
= Pr[∃S1, . . . ,Sk : ∀i |Si| ≤ t− 1 ∧ Si = Si]

≤
∑
S1,...,Sk
∀i : |Si|≤t−1

Pr[S1 = S1 ∧ · · · ∧ Sk = Sk],

where the last inequality follows from the union bound.
Fix S1, . . . ,Sk with |Si| ≤ t−1 for every i ∈ [k]. For f, z1, let Sf,z1 = {x ∈ S1 × · · · × Sk : f(x) = z1}.

The crux of the proof is the next two claims.

Claim 4.6.2. If (h,y, f, g, r, σ,x,x′) satisfy the condition in Eq. (1) and g is injective over Sf,z1,
then there exists i ∈ [k] such that xi /∈ Si or x′i /∈ Si.

Proof. First, note that since the conditions in Eq. (1) are satisfied, it holds that 〈r, r〉 ⊕ 0 = σ and
〈r,x′〉 ⊕ 1 = σ, and thus x 6= x′.

Assume toward a contradiction that xi ∈ Si and x′i ∈ Si for every i. It follows that x,x′ ∈
S1×· · ·×Sk. Since the conditions in Eq. (1) are satisfied it holds that f(x) = f(x′) = z1, and thus
x,x′ ∈ Sf,z1 . Using once more that the conditions in Eq. (1) are satisfied it holds that g(x) = g(x′),
a contradiction to the assumption that g is injective over Sf,z1 .

Recall that z1 is a deterministic function of τ , h and f , and since τ and h are fixed, z1 is a
deterministic function of f , i.e., z1 = z1(f). For (f, g), let inj(f, g) = 1 if g is injective over Sf,z1 .

Claim 4.6.3. It holds that

Pr[inj(F,G) = 1] ≥ 1− negl(n).

Proof. For f ∈ Supp(F), let Bf =
∣∣∣Sf,z1(f)

∣∣∣. First, we show that with high probability BF is small.
Indeed, since |Si| ≤ (t − 1) for every i ∈ [k], it follows that |S1 × · · · × Sk| ≤ (t − 1)k. Moreover,
since F is chosen from the family F (2·dk·log(t−1)e)

n·k,dk·log(t−1)e, Fact 2.4 (about the load balancing of many-wise
independent functions) yields that

Pr[BF ≥ 2 · dk · log(t− 1)e] ≤ Pr[∃z : |SF,z| ≥ 2 · dk · log(t− 1)e]

≤ 2−2·dk·log(t−1)e+dk·log(t−1)e = 2−dk·log(t−1)e = negl(n),

where the last equality follows since k = n · t.
Second, we show that if BF is small, then inj(F,G) = 1 with high probability. Recall that in

the protocol (S∗,R), the function G is chosen (independently from everything else) from the family
Fn·k,d2 log(k)+2 log log(t−1)+log2(n)e after z1(F) (and SF,z1(F)) is determined. Thus, we can use the

23

pairwise independence of G to complete the proof. Fix f ∈ Supp(F) with Bf < 2 · dk · log(t− 1)e.
It holds that

Pr[inj(F,G) = 0 | F = f] = Pr
[
∃x 6= x′ ∈ Sf,z1(f) : G(x) = G(x′)

]
≤

∑
x 6=x′∈Sf,z1(f)

Pr
[
G(x) = G(x′)

]
≤ (2(k · log(t− 1) + 1))2

(k2 · log2(t− 1) · 2log2(n))
= negl(n).

Finally, combining the above we have that

Pr[inj(F,G) = 1]
≥ Pr[BF < 2 · dk · log(t− 1)e] · Pr[inj(F,G) = 1|BF < 2 · dk · log(t− 1)e]

≥ (1− negl(n)) · (1− negl(n)) = 1− negl(n).

Using the above claims, we can proceed to complete the proof. For j ∈ [2 · q3 · n · (t − 1) · k]
let F (j) and G(j) be random variables induced by the values of f and g in j’th iteration of the
loop in Step 5 in a random execution of CollFinder, conditioned that (T,H) = (τ, h). Claim 4.6.2
implies that if inj(F (j∗), G(j∗)) = 1 and (F (j∗), G(j∗)) ∈ Wτ,h for some j∗, then the random variables
S1, . . . , Sk cannot take the values of the sets S1, . . . ,Sk. It follows that

Pr[S1 = S1 ∧ · · · ∧ Sk = Sk] ≤ Pr
[
∀j ∈ [2 · q3 · n · (t− 1) · k], inj(F (j), G(j)) = 0 ∨ (F (j), G(j)) /∈ Wτ,h

]
(6)

=
2·q3·n·(t−1)·k∏

j=1
Pr
[
inj(F (j), G(j)) = 0 ∨ (F (j), G(j)) /∈ Wτ,h

]

≤
2·q3·n·(t−1)·k∏

j=1

(
Pr
[
inj(F (j), G(j)) = 0

]
+ Pr

[
(F (j), G(j)) /∈ Wτ,h

])

≤
2·q3·n·(t−1)·k∏

j=1

(
negl(n) + 1− 1

q2

)

≤
(

1− 1
q3

)2·q3·n·(t−1)·k

≤ e−2·n·(t−1)·k,

where the first equality follows since (F (j), G(j))’s are independent, the third inequality follows from
Claim 4.6.3, since (τ, h) ∈ W and since (F (j), G(j)) are identically distributed as (F,G), and the
last inequality follows since ln(1− x) ≤ −x for any x.

Finally, we bound the number of different sets S1, . . . ,Sk with |Si| ≤ t− 1. For every Si, there
are

t−1∑
s=1

(
2n·k

s

)
≤ (2n·k + 1)t−1 ≤ 22n·(t−1)·k,

24

different possibilities. Hence, there are at most
(
22n·(t−1)·k

)k
= 22n·(t−1)·k2 different possibilities for

S1, . . . ,Sk.
Plugging Eq. (6) into Eq. (5) yields that

Pr[Lτ,h < t] ≤ 22n·(t−1)·k2 · e−2n·(t−1)·k2 = negl(n).

Hence, Eq. (4) holds, and the proof of Lemma 4.5 is complete.

4.1.2 Analyzing Hiding — Proving Lemma 4.6

The crux of proving that the scheme is statistically-hiding is the following observation: If a function
f is shrinking and X is a random input for it, then the random variable (X | f(X)) has (some form
of) conditional min-entropy. Assuming this observation hold, the receiver — who sees only f(X) —
cannot completely recover X. The actual notion of entropy we use is that of average min-entropy.

Average Min-Entropy. The notion of average min-entropy was defined by Dodis et al. [DORS08]
as follows.

Definition 4.7 (Average Min-Entropy [DORS08]). Let X,Y be jointly distributed random variables.
The average min-entropy of X given Y is defined by

H̃min(X|Y) := − log
(

E
y←Y

[
max
x

Pr[X = x | Y = y]
])
.

This notion is useful since the Leftover Hash Lemma can be generalized to sources having high
average min-entropy.

Definition 4.8 (Universal Hash Function). A family of functions F = {f : {0, 1}n → {0, 1}m} is
Universal if for every x1 6= x2 ∈ {0, 1}n, it holds that

Pr
f←F

[f(x1) = f(x2)] = 1
2m .

Lemma 4.9 (Generalized Leftover Hash Lemma [DORS08, Lemma 2.4]). Let F = {h : {0, 1}n → {0, 1}m}
be a family of universal hash functions. Then, for any random variables X and Y and the random
variable F ← F , it holds that

SD
((
F (X), F, Y

)
,
(
Um, F, Y

))
≤ 1

2 ·
√

2−H̃min(X|Y) · 2m ,

where Um is distributed uniformly over {0, 1}m.

Finally, we can show that if f is shrinking, then the average min-entropy of (X | f(X)) is high.

Claim 4.9.1. Let f : {0, 1}n → {0, 1}n−m, let X be a random variable uniformly distributed over
{0, 1}n, and let Y = f(X). Then, H̃min(X|Y) ≥ m.

Proof. For y ∈ {0, 1}n−m, let f−1(y) = {x ∈ {0, 1}n : f(x) = y}. Fix y ∈ Im(f). For x ∈ f−1(y), it
holds that Pr[X = x|Y = y] = 1/

∣∣f−1(y)
∣∣, while for x /∈ f−1(y), it holds that Pr[X = x|Y = y] = 0.

25

Thus, maxx Pr[X = x|Y = y] = 1/
∣∣f−1(y)

∣∣. Moreover, it holds that Pr[Y = y] =
∣∣f−1(y)

∣∣/2n.
Finally, for every y /∈ Im(f), it holds that Pr[Y = y] = 0. Hence,

H̃min(X|Y) = − log
(

E
y←Y

[
max
x

Pr[X = x|Y = y]
])

= − log

 ∑
y∈Im(f)

∣∣f−1(y)
∣∣

2n · 1
|f−1(y)|


= log

(2n

|Im(f)|

)
≥ log(2m) = m.

We are now finally ready to prove that the scheme is statistically-hiding.

Proof of Lemma 4.6. Let R∗ be any (possibly unbounded) algorithm. Fix large enough n ∈ N
and remove it from notation when convenient. Let (H∗,X = (X1, . . . , Xk), F ∗, G∗, r) be (jointly
distributed) random variables induced by the values of (h∗,x = (x1, . . . , xk), f∗, g∗, r) in a random
execution of (S(b),R∗), for an arbitrary b ∈ {0, 1}.18 The transcript of the interaction between S(b)
and R∗ for any b ∈ {0, 1} is thus

(S(b),R∗) ≡ (H∗, H∗(X1), . . . ,H∗(Xk), F ∗, F ∗(X), G∗, G∗(X), r, 〈r,X〉 ⊕ b).

Note that (H∗, F ∗, G∗) can be viewed as a description of a function Q∗ mapping n · k bits to
n · k − m bits for m := k · dlog te − dk · log(t− 1)e −

⌈
2 log(k) + 2 log log(t− 1) + log2(n)

⌉
bits.

Namely, Q∗(X) = (H∗(X1), . . . ,H∗(Xk), F ∗(X), G∗(X)). We can thus write

(S(b),R∗) ≡ (Q∗, Q∗(X), r, 〈r,X〉 ⊕ b).

Fix b ∈ {0, 1} and let U ← {0, 1} be a uniform bit. It holds that

SD
((
Q∗, Q∗(X), r, 〈r,X〉 ⊕ b

)
,
(
Q∗, Q∗(X), r, U

))
(7)

= E
q∗←Q∗

[
SD
((
q∗(X), r, 〈r,X〉 ⊕ b

)
,
(
q∗(X), r, U ⊕ b

))]
≤ E

q∗←Q∗

[1
2 ·
√

2−H̃min(X|q∗(X)) · 2
]

≤ 1
2 · 2

−(m−1)/2,

where the equality follows since r and X are independent of Q∗, the first inequality follows from
Lemma 4.9 (Generalized Leftover Hash Lemma) and since inner product is a universal hash function,
and the second inequality follows from Claim 4.9.1.

18Note that these random variables are identically distributed if b = 0 or b = 1.

26

Finally, by the setting of parameters and for large enough n it holds that

m = k · dlog te − dk · log(t− 1)e −
⌈
2 log(k) + 2 log log(t− 1) + log2(n)

⌉
(8)

≥ k · log(t)− k · log(t− 1)− 1− 2 log(k)− 2 log log(t− 1)− log2(n)− 1

= k · log
(

1 + 1
t− 1

)
− 2 log(k)− 2 log log(t− 1)− log2(n)− 2

≥ k · 1
t− 1 − 2 log(k)− 2 log log(t− 1)− log2(n)− 2

≥ (n · t2) · 1
t− 1 − 2 log(n · t2)− 2 log log(t− 1)− log2(n)− 2

≥ log3(n).

Putting it all together, it holds that

SD((S(0),R∗), (S(1),R∗)) = SD
((
Q∗, Q∗(X), R, 〈R,X〉 ⊕ 0

)
,
(
Q∗, Q∗(X), R, 〈R,X〉 ⊕ 1

))
≤

∑
b∈{0,1}

SD
((
Q∗, Q∗(X), R, 〈R,X〉 ⊕ b

)
,
(
Q∗, Q∗(X), R, U

))
≤ 2−(m−1)/2

≤ 2−(log3(n)−1)/2 = negl(n),

where the first inequality follows from the triangle inequality for statistical distance, the second
inequality follows from Eq. (7) and the last inequality follows from Eq. (8).

Acknowledgments
We thank Vinod Vaikuntanathan for helpful discussions and for his support. We also thank Nir
Bitansky, Yael Kalai, Ilan Komargodski, Moni Naor, Omer Paneth and Eylon Yogev for helping us
provide a good example of a t-way collision. .

References
[ADM+99] Noga Alon, Martin Dietzfelbinger, Peter Bro Miltersen, Erez Petrank, and Gábor Tar-

dos. Linear hash functions. J. ACM, 46(5):667–683, 1999.

[AR16] Benny Applebaum and Pavel Raykov. On the relationship between statistical zero-
knowledge and statistical randomized encodings. In Annual Cryptology Conference,
pages 449–477. Springer, 2016.

[AS15] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation
and functional encryption. In Symposium on the Foundations of Computer Science,
2015.

[BPK] Nir Bitansky, Omer Paneth, and Yael Kalai. Private Communication.

[CRSW13] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller
hash families and faster evaluation. SIAM J. Comput., 42(3):1030–1050, 2013.

27

[DGRV11] Zeev Dvir, Dan Gutfreund, Guy N. Rothblum, and Salil P. Vadhan. On approximat-
ing the entropy of polynomial mappings. In Bernard Chazelle, editor, Innovations in
Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 7-9, 2011.
Proceedings, pages 460–475. Tsinghua University Press, 2011.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, 2008.

[DPP93] Ivan Damgård, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of statis-
tically hiding bit commitment schemes and fail-stop signatures. In Douglas R. Stinson,
editor, Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume
773 of Lecture Notes in Computer Science, pages 250–265. Springer, 1993.

[GG98] Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability of lat-
tice problems. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 1–9. ACM, 1998.

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GSV99] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be
made non-interactive? or on the relationship of SZK and NISZK. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 467–484. Springer, 1999.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 305–313.
IEEE Computer Society, 2000.

[HHRS07] Iftach Haitner, Jonathan J Hoch, Omer Reingold, and Gil Segev. Finding collisions in
interactive protocols-a tight lower bound on the round complexity of statistically-hiding
commitments. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE
Symposium on, pages 669–679. IEEE, 2007.

[HM96] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from
collision-free hashing. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96,
16th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science,
pages 201–215. Springer, 1996.

28

[HNO+09] Iftach Haitner, Minh-Huyen Nguyen, Shien Jin Ong, Omer Reingold, and Salil P. Vad-
han. Statistically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput., 39(3):1153–1218, 2009.

[Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004,
24th Annual International CryptologyConference, Santa Barbara, California, USA, Au-
gust 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages
306–316. Springer, 2004.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732, 1992.

[KNY] Ilan Komargodski, Moni Naor, and Eylon Yogev. Private Communication.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. Electronic Colloquium on
Computational Complexity (ECCC), 24:15, 2017.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[MRRR14] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Fast pseudo-
randomness for independence and load balancing - (extended abstract). In Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copen-
hagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 859–870, 2014.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, May 14-17, 1989, Seattle, Washigton, USA, pages 33–43, 1989.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the Sixth Annual Structure in Complexity Theory
Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pages 133–138, 1991.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and com-
mitments. In Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008., pages 482–500, 2008.

[PRS12] Krzysztof Pietrzak, Alon Rosen, and Gil Segev. Lossy functions do not amplify well.
In Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume
7194 of Lecture Notes in Computer Science, pages 458–475. Springer, 2012.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM
J. Comput., 40(6):1803–1844, 2011.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 387–394, 1990.

29

[RV09] Guy N. Rothblum and Salil P. Vadhan. Unpublished manuscript. 2009.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology -
EUROCRYPT ’98, International Conference on the Theory and Application of Cryp-
tographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403
of Lecture Notes in Computer Science, pages 334–345. Springer, 1998.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

A Black-Box Separation
This separation builds on Simon’s oracle [Sim98], and the Reconstruction Paradigm of Gennaro and
Trevisan [GT00] and extensions [GGKT05, HHRS07]. The presentation here closely follows that
of Asharov and Segev [AS15]. We start by defining the notion of a fully-black-box construction.

Definition A.1. A fully black-box construction of (s(n), t(n))-multi-collision resistant function fam-
ily from a one-way permutation family, where s(n) ≥ log t(n), consists of a polynomial-time oracle-
aided algorithm Gen and an oracle-aided security reduction M that runs in time TM(·), with loss
functions εM,1(·) and εM,2(·), satisfying:

• Correctness: Given any permutation f = {fn : {0, 1}n → {0, 1}n}n∈N, the algorithm Genf (1n)
outputs the description of an oracle aided circuit C(·) : {0, 1}n → {0, 1}n−s(n).

• Black-Box Proof of Security: Let f = {fn : {0, 1}n → {0, 1}n}n∈N be any permutation.
There exists a reduction M that runs in time TM(·), that given any (possibly non-uniform)
adversary A, that runs in time TA(·), such that,

Pr
C(·)←Genf (1n)

(x1,x2...xt)←Af (1n,C)

[
For all i 6= j, xi 6= xj and

Cf (xi) = Cf (xj)

]
≥ εA(n)

for infinitely many n ∈ N, the reduction M inverts the one-way permutation for infinitely
many n ∈ N. That is,

Pr
y←{0,1}n

[
Mf,A(y) = f−1(y)

]
≥ εM,1

(
ε−1
A (n) · TA(n)

)
· εR,2(n)

where the probability is over the randomness ofM.

We will rule out fully-black-box constructions of (s, t)-MCRHs from one-way permutations for
all s ≥ log t. In contrast, note that (log(t − 1), t)-MCRHs exist trivially (and unconditionally) for
all values of t.19

19Consider a (t− 1)-regular function f : {0, 1}n → {0, 1}n−log(t−1). For such a function t-way collisions simply do
not exist.

30

Theorem A.2. Let (Gen,R, TR, εR,1, εR,2) be a fully black-box construction of (s, t)-MCRH from
a one-way permutation family F , where t ∈ poly and s(n) ≥ log t(n), then at least one of the two
holds:
• TM(n) ≥ 2n/30 (i.e., the reduction runs in exponential time).

• εM,1(nc) · εM,2(n) ≤ 2−n/30 for some constant c > 1 (i.e., the security loss is exponential).
Because fully-black box constructions relativize, these constructions are correct and secure even

when the underlying primitive (one-way permutations) and the adversary A (that breaks MCRHs)
are given as oracles. So, as is the norm, we will prove the theorem by constructing an oracle Γ
such that relative to Γ, secure one-way permutations exist while no construction of a multi-collision
resistant hash function family is secure. In the next section, we describe the oracle used to prove
this separation and give a proof outline.

A.1 The Oracle Γt Description

In this section, we define the oracle Γt relative to which we will show that one-way permutations
exist while (log t, t)-MCRH do not. We then give an overview of the proof. The oracle is an extension
of Simon’s oracle [Sim98] for breaking collision resistant hash functions. Instead of returning a pair
of inputs that collide w.r.t. the circuit C, this oracle provides a vector of poly(t(n)) inputs that
collide w.r.t. C. Formally, we define the oracle below.
Definition A.3. The oracle Γt’s interface is a pair of functions (f,MCFindft). Further, the oracle’s
state includes a randomness tape R which cannot be queried externally. We describe these below.
• The function f = {fn}n∈N : {0, 1}n → {0, 1}n. For every n ∈ N, the function fn is a
uniformly chosen permutation over {0, 1}n.

• Randomness tape R. The randomness tape R that has independent randomness for every
possible circuit C queried to MCFindft .

• The multi-collision finder MCFindft . Given the encoding of an oracle-aided circuit C that
takes n-bit inputs and may access the oracle f , the multi collision finder oracle does the follow-
ing:

MCFindf,Rt (C):
1. Let t′ = 3t2 + t.
2. From the random tape R, interpret the random bits allocated for circuit

C as (w1, π2, π3, . . . πt′) where w1 ∈ {0, 1}n is a random n-bit string and
each πi : {0, 1}n → {0, 1}n is a random permutation.

3. For all i ∈ {2, 3, . . . t′},
(a) Find the first j such that Cf (w1) = Cf (πi(j)). Set wj = πi(j).

4. Output (w1, w2 . . . wt′).
We need to show that relative to the oracle Γt, a random permutation f is still one-way and that

no t-MCRH exists. We use a family of one-way permutations f = {fn}n∈N to allow the construction
to invoke one-way permutation instances of various security parameters. We explicitly mention the
randomness R because we want the oracle to return the same answer to any query when queried
repeatedly.

31

Breaking MCRHs. This part is straightforward. The adversary given the encoding of the hash
function C queries the MCFind oracle to find colliding inputs. We need to compute the success
probability of this attack. A formal statement is given in Appendix A.2.

f is one-way relative to Γ. Showing that no adversary can invert f even given the MCFind-
oracle is the challenging part. The proof here is based on the Reconstruction Paradigm due to
Gennaro and Trevisan [GT00]. In this paradigm, f is proved to be one way by using any adversary
who inverts the one-way permutation to find a compressed encoding of the oracle f . Since the
oracle is a random permutation, it is incompressible. The formal proof is given in Appendix A.3.

This proof proceeds in two parts. In this first part, we show that the MCFindf oracle is not very
helpful in inverting f . The key challenge here is limiting the amount of information the adversary
can learn using the MCFindf oracle. The MCFindf oracle makes exponentially many queries to
f when it finds collisions. We want to show that even if that is the case, given that it does not
output all the queries it makes, we can limit the amount of assistance it provides in inverting f . In
particular we will crucially rely on the fact that, for a circuit C queried to MCFindf , in the vector of
collisions w the oracle returns, the marginal distribution of each element wi is uniformly random.

In the second part, we show that given any adversary A that can invert f ‘without much help
from’ the MCFind oracle, we can compress the random permutation f . This gives us a contradiction.

A.2 Breaking Multi-Collision-Resistant Hash Functions Relative to Γt
In this section, we prove that the MCFindf,Rt oracle can be used to break any candidate construction
of a t(n)-MCRH. For brevity, we will refer to t(n) as t.

Lemma A.4. Relative to the oracle Γt, there exists a probabilistic polynomial-time algorithm A,
such that for any function f , for any n ∈ N, and for any oracle-aided circuit Cf : {0, 1}n →
{0, 1}n−s, where s ≥ log t(n), it holds that:

Pr
x←AΓt (1n,C)

[
For all i 6= j ∈ [t],

xi 6= xj ∧ Cf (xi) = Cf (xj)

]
>

1
2t .

where x = (x1, x2 . . . xt).

Proof. The input is a circuit C : {0, 1}n → {0, 1}n−dlog te. For any input x ∈ {0, 1}n, let SC,x be
the set of inputs x′ such that C(x) = C(x′). Consider the following adversary A:

AΓt(C)
1. Get w← MCFindft (C).
2. If w has more than t distinct elements, output any t distinct elements.
3. Else output ⊥.

We claim that A succeeds with the required probability. We show this in two steps. In the first
step, we show that at least 1/t fraction of inputs have over t distinct collisions. In the second step,
we bound the probability of the oracle finding t distinct collisions if they existed.

Claim A.4.1. It holds that,
Pr

x←{0,1}n
[|SC,x| ≥ t] ≥ 1/t.

32

Proof. The proof is by a counting argument. For any y ∈ {0, 1}n−dlog te, let C−1(y) = {x ∈ {0, 1}n : C(x) = y}.
If x ∈ C−1(y), then the set SC,x is exactly C−1(y). Let Bad = {x ∈ {0, 1}n : |SC,x| ≤ t− 1}. As
Prx[|SC,x| ≥ t] = 1− Prx[x ∈ Bad], we bound the size of the set Bad.

Bad =
{
x : |SC,x| ≤ t− 1

}
=

⋃
y∈{0,1}n−dlog te

C−1(y) where
∣∣∣C−1(y)

∣∣∣ ≤ t− 1

Hence,

|Bad| ≤ 2n−dlog te(t− 1) ≤ 2n ·
(

1− 1
t

)
.

This implies that

Pr
x

[|SC,x| ≥ t] = 1− Pr
x

[x ∈ Bad] ≥ 1− 2n(1− 1/t)
2n ≥ 1

t
,

as required.

We will now show that for any w1 ∈ {0, 1}n with at least t-collisions w.r.t C, the MCFind oracle
will find t distinct collisions with good probability.

Claim A.4.2. Given any circuit C, consider any w1 ∈ {0, 1}n such that Sw1 ≥ t, then

Pr
R

w←MCFind(C)

[w has t distinct elements] ≥ 1
2

Proof. Let τ ≥ t be the size of the set SC,w1 . Each subsequent wi is an independent random sample
from the set SC,w1 . Let Fail denote the event that the set of wi’s take at most t − 1 values. We
bound the probability of Fail as follows:

Pr
R

[Fail] ≤
(

τ

t− 1

)(
t− 1
τ

)t′

≤
(

eτ

t− 1

)t(t− 1
τ

)t′
using

(
N

R

)
≤
(
eN

R

)R
≤
(
t− 1
t

)3t2

et substituting t′ = 3t2 + t

≤
(1

2

)3t
et ≤ 1

2 using
(

1− 1
t

)t
≤ 1/2

Together, the two claims complete the proof. Since w1 is chosen at random, with probability
at least 1/t, w1 has at least t collisions w.r.t. C and then with probability 1/2, the MCFind oracle
will output at least t of them.

33

A.3 f is a One-Way Permutation Relative to Γt
In this section, we will show that a random permutation f = {fn : {0, 1}n → {0, 1}n}n is one-way
relative to the oracle Γt for any t = poly(n). We say that an adversary A is a (q, q′)-adversary if A
on any input makes at most q(n) queries to the oracle Γt and for every circuit Cf (·) it queries to
the MCFind oracle, Cf makes at most q′(n) queries to f when evaluating any input.

We show that any (possibly computationally-unbounded) adversary that makes a bounded
number of queries to the oracle Γt cannot invert a random one-way permutation.

Theorem A.5. For any (q, q)-adversary A where q = 2n/30, it holds that:

Pr
f,R

y←{0,1}n

[
AΓ(y) = f−1(y)

]
< 2−n/30

We will show that this result holds for any fixing of the oracle f−n = {fm}m 6=n while only fn
is picked at random. We want to formalize what it means for the adversary A to learn about an
input y from the MCFind oracle. We define this notion below:

Definition A.6. A query x to the oracle f produces a y-hit if f(x) = y. A query Cf (·) to the
MCFind-oracle produces a indirect-y-hit if MCFind outputs a vector w = (w1, w2 . . . wt′) such that
there exists an index j such that the evaluation of Cf (wj) produces a y-hit.

We denote by CollHity the event where one of the MCFind-queries made by the adversary AΓ(y)
produces an indirect-y-hit.

If the event CollHity occurred, then the adversary A learns the pre-image of y from the MCFind
oracle. Our proof proceeds in two steps. In the first step, we show that for every adversary A
that succeeds in inverting y via a CollHity, there is another adversary B that also inverts with good
probability, but without triggering the CollHity event.

Lemma A.7. Fix the values for the one-way permutation at other input lengths f−n = {fm}m 6=n.
For every (q, q)-query algorithm A such that,

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y)

]
≥ 1
q(n) ,

then there exists a (2q2, q)-query algorithm B such that,

Pr
fn,R,

y←{0,1}n

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ 1

8t′q(n)2 .

We prove Lemma A.7 in Appendix A.3.1. In the second step, using Gennaro and Trevisan’s
reconstruction paradigm, we show that no adversary can invert f without triggering the CollHity
event.

Lemma A.8. For every (q, q)-query algorithm A, where q(n) = 2n/8,

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity

]
≤ 2−n/7.

34

Lemma A.8 is proved in Appendix A.3.2. Taken together, these two lemmas complete the proof.

Proof of Theorem A.5. Assume towards a contradiction that there exists an algorithm A with q =
2n/30 such that,

Pr
f,y←{0,1}n

[
AΓ(y) = f−1(y)

]
> 2−n/30

for infinitely many n, we can transform it to B, a (2 · 2n/15, 2n/30) algorithm such that,

Pr
fn,R,

y←{0,1}n

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ 1

8t′q(n)2 ≥
1

8t′22n/30 > 2−n/7

for infinitely many n’s. This contradicts Lemma A.8.

A.3.1 Hit Elimination

We will now prove Lemma A.7. We state it below for reference.

Lemma A.7. Fix the values for the one-way permutation at other input lengths f−n = {fm}m 6=n.
For every (q, q)-query algorithm A such that,

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y)

]
≥ 1
q(n) ,

then there exists a (2q2, q)-query algorithm B such that,

Pr
fn,R,

y←{0,1}n

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ 1

8t′q(n)2 .

Proof. In this proof, we will show that given any adversary A that can invert the one-way permu-
tation, we can construct another adversary B that does so without ‘getting the inverse using the
MCFind oracle’. We describe the adversary B below.

BΓ on input y ∈ {0, 1}n

Run A(·)(y) step-by-step and answer the queries to Γ as follows:
1. f query: Forward the query to Γ and return the answer.
2. MCFindf query: Given a circuit Cf : {0, 1}m → {0, 1}m

′
as query,

(a) Hit Attempt: Pick a random z ← {0, 1}m and locally evaluate Cf (z). While evaluating
an f -gate in C, if a y-hit happens (i.e., the output of the gate is y), terminate and return
the input to the gate as pre-image.

(b) Forward: Query MCFindf at C and return the answer.
Output. When A stops, return its output.
. .

The queries B makes to MCFind oracle are subset of the ones A makes. So, B makes at most q
queries to MCFind and q2+q ≤ 2q2 queries to f oracle (A could make q queries to f and additionally
every MCFind query that A makes, B incurrs q more f -queries). We need to show that B can invert

35

without the event CollHity happening. First, if A inverts with good probability without CollHity,
then we are done. That is, if

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ 1

2q(n)

for infinitely many n’s, then the claim holds. So, let us assume that:

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y) ∧ CollHity

]
≥ 1

2q(n)

In this case, we will show that B can also invert fn without triggering CollHity. First we state a
claim about particular ‘good’ y’s and then use it to complete the proof using an averaging argument.

Claim A.8.1. For every choice of f and y ∈ {0, 1}n that satisfy:

Pr
R

[
AΓ(y) = f−1(y) ∧ CollHity

]
≥ 1

4q(n) ,

B also inverts y with good probability without a CollHity:

Pr
R

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ 1

4q(n)t′

We will prove the claim below. First, we finish the proof of Lemma A.7 by an averaging
argument. Let T =

{
(y, f) | PrR

[
AΓ(y) = f−1(y) ∧ CollHity

]
≥ 1

4q(n)

}
. Observe that

Pr
y,f

[(y, f) ∈ T] ≥ 1/4q(n)

because 1
2q(n) ≤ PrR,f,y

[
AΓ(y) = f−1(y) ∧ CollHity

]
≤ Pry,f [(y, f) ∈ T]+ 1

4q(n) Pry,f [(y, f) 6∈ T]. We
lower bound the success probability of B below:

Pr
fn,R,

y←{0,1}n

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
≥ Pr

f,y
[(f, y) ∈ T] · Pr

R

[
BΓ(y) = f−1(y) ∧ ¬CollHity

]

≥ 1
2q(n) ·

1
4t′q(n) ≥

1
8t′q(n)2 .

This concludes the proof.

Proof of Claim A.8.1. In this proof, we need to show that if A can invert f by triggering the CollHity
event, B can do so without triggering the event. This proof crucially relies on the fact that in the
output of the MCFind oracle w, the marginal distribution of every individual coordinate of w is
uniform. This allows B to ‘mimic’ a MCFind(C) query by simply picking a random z and evaluating
Cf (z). While this will not help in finding collisions, we show that it has an identical effect in terms
of finding y’s pre-image.

Let q = q(n) and C1, C2, . . . , Cq be the random variables corresponding to A’s queries to MCFind.
Assume that they are distinct. In addition, let w1,w2 . . .wq denote the responses by the oracle.
We define two notions of hits. While B is running A on input y, and A asks B to query Ci to the
MCFind oracle:

36

• Good Hit: A GoodHiti event happens when B runs Cfi (zi) in Step 2a and a y-hit happens.

• Bad Hit: A BadHiti event happens when B sends query Ci to MCFind-oracle and a CollHity
happens (i.e., the oracle MCFind returns wi where one of the elements in the vector incurs
an indirect-y-hit.)

GoodHit is the event when B has inverted the one-way permutation without incurring a CollHity
on any query to MCFind oracle. In the GoodHit event, B discovers the inverse itself while in the
BadHit event, the MCFind oracle finds the inverse. We want to show that B can invert with good
probability when a GoodHiti event occurs before any BadHit events happen. Let BadHit<i denote
the event when BadHiti′ happens for some i′ < i.

It holds that,

1
4q ≤ Pr

R

[
AΓ(y) = f−1(y) ∧ CollHity

]
≤
∑
i

Pr
R

[BadHiti | ¬BadHit<i]

We observe that, Przi [GoodHiti | BadHit<i] ≥ 1
t′ PrR[BadHiti | BadHit<i]. This follows from the fact

that R has independent randomness for every circuit and that in the vector wi = (wi,1, wi,2 . . . wi,t′)
output by MCFind, the marginal distribution of each wi,j is uniformly random. Hence,

≤ t′ ·
∑
i

Pr
R,zi

[GoodHiti | ¬BadHit<i]

This implies that, ∑
i

Pr
R,zi

[GoodHiti | ¬BadHit<i] ≥
1
t′
· 1

4q .

This is precisely the success probability PrR,z,y
[
BΓ(y) = f−1(y) ∧ ¬CollHity

]
. This completes the

argument.

A.3.2 From Inverting to Compressing

In this section we will use any adversary A that inverts fn with good probability to construct a
shorter encoding for the random permutation fn. The canonical encoding for a random permutation
on {0, 1}n requires log(2n!) bits to store, and this is necessary. If our new encoding is shorter, it is
a contradiction.

Lemma A.8. For every (q, q)-query algorithm A, where q(n) = 2n/8,

Pr
fn,R,

y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity

]
≤ 2−n/7.

Proof. We will prove the statement for any fixed R and f−n. Let q = q(n). This argument is
based on the Reconstruction Paradigm of Gennaro and Trevisan. The oracle Γ consists of the
random permutation f = {fi}i∈N and the randomness tape R. We will show that given such an
adversary A, we can compress the oracle Γ and this yields a contradiction because random oracles
are incompressible.

37

Encoding fn. The permutation fn is usually encoded as a truth table. The new encoding also
has a partial truth table Z, and a set of pre-images X and images Y such that fn(X) = Y . But
the exact truth table mapping the relationship between X and Y is not stored, instead A is used
to reconstruct this. This is the source of compression.

Let If ⊆ {0, 1}n be the set of images A inverts without CollHit happening. That is,

If
∆=
{
y | AΓ(y) = f−1(y) ∧ ¬CollHity

}
.

We will now construct Yf ⊆ If :

EncodeY on input If

1. Set Y = ∅, where ∅ denotes the empty set.
2. While I 6= ∅,

(a) Pick y, the lexicographically smallest element in I.
(b) Construct the set Fy as follows:

i. For each fn-query xi made by A(y), add the output yi = fn(xi) to Fy.
ii. For each MCFind-query Ci made by A, let the output be wi = (wi,1, wi,2 . . . wi,t′).

Add to Fy the output of all queries made to fn while evaluating Cfi (wi,j) for all
j ∈ [t′].

(c) I = I \ Fy (Remove all the elements of Fy from I.)
(d) I = I \ {y}
(e) Y = Y ∪ {y}

3. Output the set Y
. .

Claim A.8.1. The set Yf = EncodeY(If) is not too small.

|Yf | ≥
|If |
t′q2

Proof. The claim follows from the fact that If = ∪y∈YfFy and that for every y, |Fy| ≤ t′q2. This
follows from the fact that A is a (q, q)-adversary and hence makes at most q queries to Γ. Every
query to f adds one element to Fy while every query Ci to MCFind-oracle can add t′q elements
when the Ci is evaluated on every output from wi. Therefore, at most t′q2 queries are added to
Fy.

Let Xf = f−1(Yf). Let Zf be the partial truth-table of fn corresponding to all elements in
{0, 1}n \ Yf . The new encoding of f consists of f−n and R as before along with Xf , Yf , Zf . The
sets Xf and Yf are stored but not the mapping of fn between them. The sets Xf and Yf need
log

(2n
|Yf |
)
bits each to describe while encoding Zf needs log((2n − |Yf |)!) bits of space.

Claim A.8.2. The oracle Γt can be encoded as (f−n,R, Xf , Yf , Zf) along with a description of A.

Proof. To prove the claim, given R, f−n along with Xf , Yf , Zf and a description of A we will show
how to reconstruct fn. We drop the subscript f for convenience. This implies that the compressed
encoding is a valid encoding of the oracle Γt. To reconstruct Γt, we need to show an algorithm that

38

can reconstruct the truth-table of fn. We describe the algorithm below:

Reconstruct on input (R, f−n, Xf , Yf , Zf)

1. While Y 6= ∅ do:
(a) Pick the lexicographically first element y ∈ Y .
(b) Run A with input y. Answer every query as follows:

i. For an fn query x′, if (x′, y′) ∈ Z for some y′, answer y′. Else, do the following:
A. Answer y.
B. Set Z = Z ∪ {(x′, y)}.
C. Remove y from Y .
D. Jump to Step 1.

ii. For an MCFind-query C ′, run the modified MCFind algorithm described below:
A. Set γ = d2t log te.
B. Interpret randomness for C ′ as (w1, π2, π3, . . . πt′) where w1 ∈ {0, 1}n and each

πi : {0, 1}n → {0, 1}n is a permutation.
C. Compute C ′f (w1) answer all fn queries according to Z.
D. For all i ∈ {2, 3, . . . t′}:
• For every j from 0 to 2n, evaluate Cf (πi(j)). If any fn query is not in Z, pick

the next j. If all fn queries are in Z and Cf (πi(j)) = Cf (w1), set wj = πi(j).
E. return (w1, w2 . . . wt′).

(c) When A terminates and outputs x do the following:
i. Set Z = Z ∪ {(x, y)}.
ii. Remove y from Y .
iii. Repeat.

2. Output. The completed truth table Z.
. .

We will now show that the Reconstruct algorithm does reconstruct the truth table of fn.

Claim A.8.3. The set Z output by ReConstruct contains the entire truth table of fn

Proof. We need to show that the reconstruction algorithm finds the pre-images for all y ∈ Y .
We prove this by induction on y’s sorted lexicographically. The base case and the induction are
identical. Assume that the reconstruction algorithm trying to invert is y, the lexicographically
smallest element in the set Y , and that all elements lexicographically smaller have been inverted
and are now in Z.

The reconstruction algorithm runs A with input y. Because y ∈ Y ⊆ I, the algorithm A would
invert y correctly if every query it makes to Γt is answered correctly. First we will show that every
MCFind query that A(y) makes is answered identically.

MCFind returns the same response. Consider any query C ′ that A(y) made to MCFind oracle
and w′ be the response received. We want to show that the reconstruction algorithm would give
the same response. First we show that all fn-queries made while evaluating C ′(w′i) are in Z. Then
we use this fact to show that the reconstruction algorithm will return the same response.

39

Consider the set Fy from the EncodeY algorithm. The set Fy contains all fn-queries made
while evaluating C ′(w′i). Furthermore, we also know that none of these queries returned the answer
y because CollHity did not happen (because the set If is defined as elements which A inverts
without CollHity event happening). Hence Fy \ {y} contains all the queries made the fn-queries
made when evaluating C ′(w′i) for all i. Finally, we claim that Fy \ {y} is contained in Z. Observe
that all elements in Fy \ {y} not in If were originally in Z; by induction, all elements in Fy ∩ If
lexicographically smaller than y are in Z, finally all the elements that were lexicographically larger
were removed from If and added to Z while encoding Y .

To show that the reconstruction algorithm would return the same answer, first observe that the
algorithm uses the same randomnesss R to find the same w′1 and the permutations π2 to πt′ . We
know that each subsequent w′i is the first element according to πi that collides with w′1 w.r.t. C ′.
We also know that the reconstruction algorithm can compute C ′(w′i). The reconstruction algorithm
picks the first j such that it can compute C ′(πi(j)) and that C ′(πi(j)) = C ′(w′1). Hence for every
coordinate, it would pick w′i — the original answer. This implies that its response will be identical.

Answering fn queries. We know that when A ran on input y one of the two happened:

1. The event y-hit occurred, i.e., A made a query x directly to f such that the response was y.
We will show that in this case, the ReConstruct algorithm will find the pre-image of y in Step
1(b)i.

2. The event y-hit did not occur. In this case, we will show that all the queries to f are answered
correctly and hence the output of the algorithm A(y) will be the pre-image of y.

Event y-hit happened. This implies that when A ran on input y, there was a query x such
that fn(x) = y. We claim that this would cause loop-termination in Item 1(b)i. We have already
seen that MCFind oracle returns the same responses. Consider every query made to fn by A: either
the value was already in Z, in which case it was answered correctly or the value was in X. If the
value was in X, we claim that the query must be x (the pre-image of y). Assume not, let the query
be x′ 6= x. Let y′ = fn(x′). We know that y′ ∈ Y , because otherwise, it would be in Z and hence
answered. We also know that y is the lexicographically smallest element in Y at the moment and
hence smaller than y′. Then the EncodeY algorithm inserted y in to Y before y′. Also y′ ∈ Fy
because it was queried in the execution of A on y. This is a contradiction because y′ ∈ Fy implies
that y′ would have been removed from If and hence not inserted in to Yf . So, it must be the case
that x was the query made and the reconstruction algorithm correctly answered y.

Event y-hit did not occur. We also know that the event CollHity did not happen. This
implies that Fy does not contain the element y. Hence all the queries needed for executing A on y
are present in Z. Hence A would get the same answers on all the queries it makes. Hence A would
terminate returning the pre-image of y, x = f−1(y) as the output. The reconstruction algorithm
would then add that pair (x, y) to Z.

This implies that the Reconstruction algorithm will populate Z with the pre-images of all
elements in Yf .

This completes the proof. We have shown that (f−n,R, Xf , Yf , Zf) is a valid encoding of the
oracle.

40

Now we will show that the success probability of A must be low. Otherwise, it can be used to
compress the oracle ‘too much.’

Computations. Set ε = 2−n/8 and q = 2n/8. For any fixed values of R, f−n, consider the
following set:

SR,f−n =
{
fn : Pr

y←{0,1}n

[
AΓ(y) = f−1

n (y) ∧ ¬CollHity
]
≥ ε

}
.

Any fn ∈ SR,f−n can be encoded in 2 log(
(2n
|Yf |
)
) + log((2n − |Yf |)!) bits. From Claim A.8.1,

|Yf | ≥
|If |
q2t′ ≥ 25n/8/t′

∆= B. Hence f−n can be encoded in 2 log(
(2n
|B|
)
)+log((2n−B)!) bits. The total

number of permutations that can be encoded by 2 log(
(2n
|B|
)
) + log((2n − B)!) bits is bounded by

22 log((2n
|B|))+log((2n−B)!). This is an upper-bound on the size of SR,f−n . Hence, for any fixed R, f−n,

Pr
fn

[
fn ∈ SR,f−n

]
≤
(2n
B

)2 · (2n −B)!
(2n)! =

(2n
B

)
|Y |! ≤

(2ne
B

)B(e
B

)B
=
(

2ne2

B2

)B
,

where we use the inequalities N ! ≥ (N/e)N and
(N
R

)
≤ (Ne/R)R. Substituting B = 25n/8/t′, for

large enough n, this implies that:(
2ne2

B2

)B
≤
(

2ne2t′2

210n/8

)B
≤
(
2−n/4e2t′

2
)B
≤ 2−n.

So, we can conclude that for any computationally-unbounded algorithm A that makes at most
2n/8 queries to Γt, and its queries to MCFind are circuits of size at most q cannot invert f without
triggering the CollHity event: For every f−n,R,

Pr
fn

y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity

]
≤ Pr

fn

[
fn ∈ SR,f−n

]
· Pr
y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity | fn ∈ SR,f−n

]
+ Pr

fn

[
fn /∈ SR,f−n

]
· Pr
y←{0,1}n

[
AΓ(y) = f−1(y) ∧ ¬CollHity | fn /∈ SR,f−n

]
≤ 2−n · 1 + 1 · 2−n/8

≤ 2−n/7.

This completes the argument.

41

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

