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Abstract

Despite over 25 years of research on non-malleable commitments in the plain model, their
round complexity has remained open. The goal of achieving non-malleable commitment proto-
cols with only one or two rounds has been especially elusive. Pass (TCC 2013, CC 2016) captured
this di�culty by proving important impossibility results regarding two-round non-malleable
commitments. This led to the widespread belief that achieving two-round non-malleable com-
mitments was impossible from standard sub-exponential assumptions. We show that this belief
was false. Indeed, we obtain the following positive results:

◦ We construct the �rst two-message non-malleable commitments satisfying the strong de�-
nition of non-malleability with respect to commitment, assuming standard sub-exponential
assumptions, namely: sub-exponentially hard one-way permutations, sub-exponential ZAPs,
and sub-exponential DDH. Furthermore, our protocol is public-coin.

◦ We also obtain two-message private-coin non-malleable commitments with respect to com-
mitment, assuming only sub-exponentially hard DDH or QR or N th-residuosity.

◦ We bootstrap the above protocols (under the same assumptions) to obtain constant bounded-
concurrent non-malleability while preserving round complexity.

◦ We compile the above protocols to obtain, in the simultaneous messages model, the �rst
one-round non-malleable commitments, with unbounded concurrent security respect to
opening, under standard sub-exponential assumptions.

� This implies non-interactive non-malleable commitments with respect to opening, in a
restricted model with a broadcast channel, and a-priori bounded polynomially many
parties such that every party is aware of every other party in the system.
To the best of our knowledge, this is the �rst protocol to achieve completely non-
interactive non-malleability in any plain model setting from standard assumptions.

� As an application of this result, in the simultaneous exchange model, we obtain the
�rst two-round multi-party pseudorandom coin-�ipping.

We believe that our protocols are likely to �nd several additional applications.

◦ In order to obtain our results, we develop several tools and techniques that may be of
independent interest.

� We give the �rst two-round black-box rewinding strategy based on standard sub-
exponential assumptions, in the plain model.

� We also develop the �rst two-message zero-knowledge arguments with strong super-
polynomial simulation.

� Finally, we give a two-round tag ampli�cation technique for non-malleable commit-
ments, that ampli�es a 4-tag scheme to a scheme for all tags, while only relying on
sub-exponential DDH. This includes a more e�cient alternative to the DDN encoding.

∗This updated manuscript subsumes an earlier work �Birthday Simulation from Exponential Hardness: 2 Round
Non-Malleable Commitments and 3 Round Gap ZK� by the same authors. The results, however, remain identical to
the previous manuscript: �How to Achieve Non-Malleability in One or Two Rounds�.
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1 Introduction

The notion of non-malleability was introduced by Dolev, Dwork and Naor [DDN91] in 1991, to
counter the ubiquitous problem of man-in-the-middle (MIM) attacks on cryptographic protocols. An
MIM adversary participates in two or more instantiations of a protocol, trying to use information
obtained in one execution to breach security in the other protocol execution. A non-malleable
protocol should ensure that such an adversary gains no advantage. Let's call any interactive protocol
between two parties, where both parties send at least one message to each other, a conversation.
In this paper, we ask if we can provably embed non-malleability into any two-party conversation.
We focus on a core non-malleable cryptographic primitive: non-malleable commitments (described
below). Thus, the main question we consider in this work is,

Can we construct two-message non-malleable commitments from
standard sub-exponential assumptions?

A commitment scheme is a two-party protocol between a committer and a receiver. The com-
mitter has a message m as input, while the receiver obtains no input. The two parties engage in a
probabilistic interactive commitment protocol, and the receiver's view at the end of this protocol
is denoted by com(m). Later, in the opening phase, the committer sends an opening message to
the receiver, allowing the receiver to verify that the message m was really the message committed
during the commitment phase.

In a (statistically) binding commitment, the receiver's view com(m) should be binding in the
sense that with high probability, there should not exist an opening message that would convince
the receiver that the committer had used any string m′ 6= m. In short, we say that the commitment
cannot be later opened to any message m′ 6= m. A commitment should also be hiding; that is,
for any pair of messages (m,m′) the distributions com(m) and com(m′) should be computationally
indistinguishable. Finally, such a scheme is said to be non-malleable with respect to commitment, if
for every messagem, noMIM adversary, intercepting a commitment protocol com(m), and modifying
every message sent during this protocol arbitrarily, is able to e�ciently generate a commitment
com(m′) such that message m′ is related to the original message m.

In the standard model, we call each message sent by any party a round. We will also consider
the simultaneous-message model, wherein a round consists of both (or all) parties sending a single
message simultaneously. Non-malleable commitments are among the core building blocks of (and
therefore have a direct impact on the round complexity of) various cryptographic protocols such
as coin-�ipping, secure auctions, electronic voting, non-malleable proof systems and multi-party
computation protocols.

The goal of achieving non-malleable commitment protocols with only two messages has been
particularly elusive. Notably, Pass [Pas13] proved that two-message non-malleable commitments
(satisfying non-malleability with respect to commitment) are impossible to construct with a black-
box reduction to any polynomial falsi�able assumption. However, another claim from [Pas13] stated
that two-message non-malleable commitments are impossible to construct with a black-box reduc-
tion to any sub-exponentially hard falsi�able assumptions, seemingly cutting o� hope of achieving
two-message non-malleable commitments from standard assumptions.

On the impossibility result of [Pas13]. Let us examine the impossibility result of [Pas13]: it
considers the setting where there are only two identities/tags in the system, and discusses how one

1



cannot achieve non-malleability even in this restricted setting via black-box reductions to falsi�able
hardness. The impossibility builds as a counter-example, a MIM that runs the reduction in order to
break hiding of an honest commitment and carry out a successful mauling attack. If the assumption
is with regard to any polynomial-time attacker with inverse polynomial advantage, then this proof
works, and the impossibility holds. It might appear that this argument should also extend to
assumptions that require security against sub-exponential attackers with inverse sub-exponential
advantage. However, we observe that an actual MIM only participates in at most a polynomial
number of interactions and is required to break non-malleability in one of them1, whereas a (sub-
exponential) time reduction has oracle access to an adversary � and can therefore participate in
sub-exponentially many interactions.

This gap between the number of sessions that the reduction can participate in, and the number
of sessions in which participation is possible for any adversary that wants to �run the reduction,�
precludes the impossibility claim. Therefore, Theorem 5.11 as stated in [Pas16], is incorrect2.
Indeed, we show how to contradict this statement by achieving several positive results from standard
sub-exponential assumptions.

We stress that when considering a reduction that can run in sub-exponential time, a reduction
that participates in sub-exponentially many sessions is no worse asymptotically than a reduction
that participates in only polynomially many sessions. For example, let δ < ε, and suppose that we
consider a reduction R that runs in time 2n

ε
, and participates in m sessions with an adversary MIM

that runs in time 2n
δ
. Then observe:

◦ If R participates in poly(n) sessions, then the total security loss is 2n
ε
+poly(n) ·2nδ = O(2n

ε
).

◦ If R participates in 2n
δ
sessions, the security loss is 2n

ε
+ 2n

δ · 2nδ = 2n
ε

+ 22nδ = O(2n
ε
).

Thus, it makes sense asymptotically to consider reductions that can participate in sub-exponentially
many sessions.

The state of the art before our work. There has been a long line of work on constructing
non-malleable commitments with respect to commitment, in the plain model in as few rounds
as possible (e.g.[DDN91, Bar02, PR05b, Wee10, PW10, LP, Goy11, GLOV12, GRRV14, GPR15,
COSV16b, COSV16a]). In a major advance, [GPR15] showed how to construct three-message
non-malleable commitments, and subsequently [COSV16b, COSV16a] obtained concurrent three-
message non-malleable commitments. These results relied on super-polynomial or sub-exponential
injective one-way functions to achieve general notions of non-malleability in three rounds. Thus,
to the best of our knowledge, current constructions of even 3-message non-malleable commitments
(with respect to commitment) require super-polynomial assumptions. In contrast, in this paper, we
will construct the �rst 2-message non-malleable commitments with respect to commitment, from
standard sub-exponential assumptions.

In our work, we will also consider a weaker notion of malleable commitments called non-
malleability with respect to opening (see below for a discussion of this de�nition), where our goal
will be to construct one-round non-malleable commitments in the simultaneous-message model.
Prior to our work, no one-round non-malleable commitment with respect to opening was known,
for any �avor of the de�nition, in any communication model, without setup and based on stan-
dard assumptions. Before our work, the work of [GKS16] had the fewest rounds of interaction for

1Alternately, an MIM is required to maul with some inverse polynomial probability in a single interaction.
2We contacted Pass via personal communication, and he explicitly agreed that the impossibility result as stated

in [Pas16] is incorrect. As we note above, however, the only case not ruled out by Pass is a reduction that makes
super-polynomially many queries to the adversary.
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non-malleable commitment with respect to opening from standard assumptions. That work showed
how to construct two-round unidirectional non-malleable commitments achieving a form of non-
malleability with respect to opening, from polynomial hardness of injective one-way functions. The
model and de�nition in [GKS16] were carefully chosen to avoid the impossibility of [Pas13] for two
rounds, even in the polynomial hardness regime. As a result, [GKS16] achieve a weaker de�nition
of non-malleability with respect to opening than ours, achieve non-malleability only with respect to
synchronizing adversaries, and require two rounds in the commit phase.

1.1 Our Results

As mentioned above, broadly speaking, there are two �avors of de�nitions for non-malleable com-
mitment that have been considered in the literature, called non-malleability with respect to com-
mitment, and non-malleability with respect to opening. We will obtain di�erent positive results for
each of these de�nitions.

Non-Malleable Commitments with respect to Commitment. We �rst consider the stan-
dard model, where each round consists of a single message from one party to another. In the
standard model, we work with the stronger of the two standard de�nitions of non-malleability,
namely non-malleability with respect to commitment (against both synchronous and asynchronous
adversaries). Informally, this de�nition requires that non-malleability hold with respect to the un-
derlying message as soon as the commitment phase completes. Thus, even if an adversary MIM
never actually opens its commitment, nevertheless we can be assured that the message underlying
his commitment did not depend on the message committed to by the honest party.

In the standard model, we obtain the �rst positive results from standard sub-exponential as-
sumptions, for two-round non-malleable commitments with respect to to commitment.

◦ We construct two-message public-coin non-malleable commitments with respect to commit-
ment, assuming sub-exponentially hard one-way permutations, sub-exponential ZAPs, and
sub-exponentially hard DDH.

◦ We obtain two-message private-coin non-malleable commitments with respect to commitment,
assuming only sub-exponentially hard DDH or QR or N th-residuosity.

◦ We bootstrap the above protocols (under the same assumptions) to obtain constant3 bounded-
concurrent non-malleability while preserving round complexity.

Another viewpoint: Non-interactive non-malleability with a tamperable CRS. If we
were willing to rely on a trusted setup that generates a common random string (CRS) for all
parties, constructions of non-interactive non-malleable commitments become much simpler [CIO98].
However, a major design goal of all of theoretical cryptography is to reduce global trust as much as
possible. A trusted CRS is a straightforward example of the kind of global trust that we would like
to avoid.

Indeed, we can interpret our result above through the lens of an untrusted CRS: what if the
man-in-the-middle attacker can arbitrarily tamper with a CRS, and convince an honest committer
to generate his commitment with respect to this tampered CRS? For all prior constructions, in
this situation, all bets would be o�. On the other hand, our work shows the �rst solution to this

3Our actual construction imposes a trade-o� between the concurrent non-malleability and the tag space. Please
see Section 6.4 for a discussion of this tradeo�, and the actual bounds that we have in di�erent settings.
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problem: we obtain non-interactive non-malleable commitment with respect to commitment, where
the honest committer must use a tampered CRS.

Non-Malleable Commitments with respect to Opening. We next consider the simultaneous-
message model, where a round consists of both (or all) parties sending a single message to all other
parties. We consider the standard asynchronous model with rushing adversaries.

We achieve the �rst one-round non-malleable commitment protocols in this model under stan-
dard sub-exponential assumptions. To achieve one-round protocols, we work with the other de�ni-
tion of non-malleable commitments, called non-malleability with respect to opening. Roughly speak-
ing, this de�nition requires that the adversary cannot open his commitment to a value related to the
honest party's opened value. There are several ways to formulate the de�nition of non-malleability
with respect to opening. We formulate a simulation-based de�nition that is both simpler and more
powerful than the recent indistinguishability-based de�nition of [GKS16] (in particular, our de�ni-
tion implies the de�nition of [GKS16], see Section 4.2 for more details). Furthermore, we require
and obtain security against asynchronous adversaries, whereas the work of [GKS16] required an
additional round and only obtained non-malleable commitments with respect to opening against
synchronous adversaries.

In particular, in the simultaneous-message model, we obtain the following results from standard
sub-exponential assumptions:

◦ We compile the previously described two-round protocols in the standard model to obtain
one-round non-malleable commitments with respect to opening, in the simultaneous-message
model. The opening phase of this protocol remains non-interactive.

◦ We further show how to transform this protocol to achieve fully concurrent non-malleable
commitments with respect to opening, in the simultaneous-message exchange model, still using
only one round. The opening phase of this transformed protocol remains non-interactive.

◦ We show that this implies concurrent completely non-interactive non-malleable commitments
with respect to opening, in a model with a broadcast channel, and an a-priori �xed polynomial
number of parties such that every party is aware of every other party in the system. To
the best of our knowledge, this is the �rst protocol to achieve completely non-interactive
non-malleability in any plain model setting from standard assumptions.

Applicability. The general applicability of non-malleable commitments within cryptography is
well known; a classic and simple example is conducting sealed-bid auctions online. As mentioned
above, in a setting where there are a �xed polynomial number of participants and a broadcast chan-
nel, our results give the �rst completely non-interactive method of conducting sealed-bid auctions
based on standard sub-exponential assumptions.

Can we break round-complexity barriers in other settings as well? Indeed, consider the clas-
sic question of secure coin �ipping [Blu81] in a multi-party setting, where parties wish to agree
on a shared random string. Note that the standard model of interaction in this setting is the
simultaneous-message model. The work of [GMPP16] establish a lower bound of 4 rounds for secure
multi-party coin-�ipping with black-box security from polynomial hardness assumptions (with poly-
nomial simulation). We show that by moving to the sub-exponential regime (with sub-exponential
simulation), we can cut this lower bound in half! We give the �rst two-round bounded multi-
party secure coin �ipping protocol (with sub-exponential simulation) from standard sub-exponential
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assumptions. Note that sub-exponential simulation also implies two-round pseudorandom coin-
�ipping, where the output of the coin �ipping protocol is indistinguishable from random even to
sub-exponential time distinguishers.

1.2 Related Work

In less than three messages, the only prior method of achieving 2-message non-malleable commit-
ments with respect to commitment was via the assumption of adaptive one-way functions [PPV08],
which essentially assumes the existence of a one-way function that already exhibits strong non-
malleability properties. Such assumptions are very di�erent in spirit from traditional hardness
assumptions, and are both non-falsi�able [Nao03] and not complexity assumptions in the sense
of [GK90]. We also note that constructions of non-malleable commitments in two rounds were
previously not known even based on indistinguishability obfuscation.

1.3 Comparison with Concurrent Independent Work of [LPS17]

In a fascinating concurrent and independent work, Lin, Pass, and Soni (LPS) [LPS17] construct two-
message concurrent non-malleable commitments, and non-interactive non-malleable commitments
with respect to commitment against uniform adversaries. Their work is substantially di�erent from
ours in terms of techniques as well as assumptions.

The constructions of LPS require several assumptions, most notably a novel sub-exponential
variant of the Rivest-Shamir-Wagner (RSW) assumption �rst proposed for constructing time-lock
puzzles by [RSW96]. Roughly speaking, the RSW assumption considers the Repeated Squaring
Algorithm for computing h = g2n , and requires that the natural algorithm for computing h in
time n cannot be sped up by parallel computation. The novel variant of the RSW assumption
considered by [LPS17] is more complex than the original RSW assumption in that it is essentially
a �two-dimensional� family of assumptions: In the new assumption, there is a security parameter

n and another parameter t, and it is required that computing h = g22
t

cannot be done by circuits
of overall size 2n

ε
and depth 2t

δ
, for constants ε and δ. For example, their assumption implies the

following two speci�c assumptions (informally stated) as special cases.

(RSW Variant A): There exist constants ε, δ, and c, such that the value g2n
c

cannot be computed

by circuits of size 2n
ε
and depth polylog(n). Note that g2n

c

can be computed in roughly time nc.

(RSW Variant B): There exist constants ε and δ such that the value g22
n

cannot be computed

by circuits of size 2n
ε
and depth 2n

δ
.

Thus, the new assumption of [LPS17] essentially assumes that (a large family of) computations
cannot be sped up via parallelism.

In contrast, standard subexponential assumptions in cryptography � including the assumptions
that we make in our work � require only security against circuits of subexponential size, regardless
of the depth of these circuits. In this way, the assumption of [LPS17] falls outside the de�nition
of falsi�able assumptions ruled out by Pass [Pas13]. The authors in [LPS17] note that assump-
tions of this type were previously used only in time-release cryptography. On the other hand, the
assumptions that we use in our work have been considered by many previous works constructing
cryptographic protocols, including secure computation protocols.

It is also noted in [LPS17] that their 2-round protocols can be based entirely on search as-
sumptions (note that their non-interactive protocols require additional nonstandard assumptions).
However, in this case, [LPS17] also require subexponential trapdoor permutations (for building
ZAPs) in addition to their novel variant of the RSW assumption.
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Finally, on a quantitative level, we only require O(log∗ n) levels of complexity leveraging, thereby
only requiring sub-subexponential hardness assumptions as per the new de�nition of [LPS17].

In terms of techniques, the novel assumption on parallel complexity allows LPS to4 construct
a pair of commitment schemes Com1 and Com2 that are simultaneously harder than the other, in
di�erent axes. In particular, Com2 is harder in the axis of circuit-size, in the sense that Com1 admits
an extractor of size S while Com2 is secure against all circuits of size S; on the other hand, Com1 is
harder in the axis of circuit-depth, in the sense that it admits an extractor of depth D (and some
size S) while Com1 is hiding against all circuits with depth D (and size S). This scheme already
achieves a �avor of non-malleability for two tags.

In contrast, we develop new techniques to work with a single axis of hardness, in order to rely
on standard subexponential assumptions. Indeed, a lot of work in our paper goes into constructing
extractable commitments that help us obtain a non-malleable commitment scheme for just two tags
(please refer to Section 2 for more details).

2 Overview of Techniques

As we already discussed, we would like to build protocol that admits a security reduction that can
access the (adversarial) committer a super-polynomial number of times, while an actual adversary
can only interact with the honest committer in polynomially many executions. Any hope of ob-
taining a positive result requires us to exploit this disparity between the MIM and the reduction,
otherwise our approach would succumb to the impossibility result of [Pas16].

Main Tool: Extractable Commitments. The crux of this question boils down to building a
special kind of extractable commitment with just two messages. In such a commitment scheme,
informally speaking, there is a black-box extractor algorithm that runs in time T ′, that extracts
the values committed to by any malicious polynomial-time committer. Popular intuition so far has
been that rewinding with only two rounds is useless: whatever the extractor can do, a malicious
receiver can also do.

However, in our new kind of extractable commitment, we will require that the hiding property
of the commitment scheme holds with respect to any malicious receiver that runs in time T that
exceeds T ′. This seemingly contradictory requirement means that a malicious receiver should not
be able to run the extractor on his own.

This is the point at which we will use the disparity in the number of interactions that a malicious
receiver can participate in, versus those that an extractor can participate in. Our techniques will be
centered around the following question for cryptographic protocols between parties Alice and Bob:

Can extractor E with black-box access to Alice, gain an advantage in just 2 messages,
over (malicious) Bob interacting with Alice in the actual protocol?

As we have already discussed, we do not want to restrict the running time of Bob to be less
than that of the extractor. Prior to our work, achieving black-box extraction in just 2 rounds from
standard assumptions eluded all attempts at analysis.

2.1 Our Approach: Extractable Commitments

We devise a completely new simulation strategy that allows the reduction to gain an advantage over
a malicious receiver potentially running in more time than the reduction itself. We begin by giving

4The following text is largely copied directly from [LPS17].
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a high-level overview of the properties that this strategy should satisfy, after which we describe how
it is implemented.

We will think of every execution of the committer as being analogous to taking one random
walk. The receiver is also allowed one random walk. The receiver is given the ability to �steal�
the committed value, without the committer's realization, if and only if the receiver's path ends
up being the same as the path chosen by the committer. We set parameters up so that this event
occurs with probability exactly 1

T ′ , even if one of the parties is malicious. On the other hand, with
probability 1− 1

T ′ , the committer is �safe� in any single execution and the committed value remains
well-hidden. In fact, the parameters are set so that the committed value remains well-hidden even
against a receiver that runs in time T that is much larger than T ′, and interacts with the committer
in polynomially many executions (we note that T ′ and T are set to be super-polynomial).

At the same time, an extractor that runs in time slightly larger than T ′ can keep rewinding
a malicious committer T ′ times, using honest receiver strategy with fresh randomness each time.
With overwhelming probability, such an extractor will succeed in crossing the committer's path in
at least one execution � thereby extracting the value committed in this interaction. It is important
that the committer be unable to tell whether the extractor was able to extract the committed value
from a particular execution, to ensure that the distribution of extracted values is not skewed.

Implementing extractable commitments. We now turn to describing the construction of
extractable commitments. The commitments will be hiding against T -time receivers, and yet will
be extractable by T ′-time extractors where T ′ is much smaller than T . Formally, we will write
T ′ � T to mean that T ′ is smaller than T multiplied by any polynomial in the security parameter.
At this point in the technical overview, it will be useful to assume that we have two idealized
technical tools. We will in fact make do with less ideal tools, as we discuss later5. For now,
assume that we have the following two primitives that can be leveraged to be secure against T -time
adversaries:

◦ Two-message two-party computation, against semi-honest senders and malicious receivers.

◦ Two-message �ideal� ZK arguments.

The leprechauns described above will be implemented using secure two-party computation for

the following functionality: F
(
(x,M), y

)
=

{
⊥ if x 6= y
M if x = y

}
Intuitively, this functionality denotes the committer choosing path x and the leprechaun choosing

path y, such that the leprechaun steals the committed message M if and only if x = y.

More formally, the receiver will sample a random challenge ch
$← {0, 1}m and the committer

will sample another challenge r
$← {0, 1}m independently. In order to commit to message M , the

committer and receiver run secure two-party computation for F
(
(r,M), ch

)
. The committer will

also prove, via the ZK argument, that he correctly computed the output of the functionality.
Note that a malicious receiver, running in time T and participating in only a single execution,

will have probability at most 2−m of guessing the committer's challenge r. Thus, the commitment
will still be computationally hiding against such a receiver.

On the other hand, an extractor that interacts with the committer super-polynomially many
times, will have a good probability of obtaining at least one �extracting� transcript where ch = r,
and will thus �nd M after only slightly more than T ′ = 2m attempts. We must also ensure that

5It turns out that two round secure two-party computation with indistinguishability-based security, together with
two-round zero-knowledge with super-polynomial simulation(SPS), will su�ce. If uniform reductions are required,
the two-round SPS ZK can be replaced with two-round strong WI [JKKR17] at the cost of requiring private coins.
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the distribution over messages M output by the extractor is indistinguishable from the actual
distribution of committed messages. We will exploit the security of two-party computation protocol
against semi-honest senders, and additional complexity leveraging to ensure that the distribution of
values committed by the committer cannot change between extracting transcripts and transcripts
that don't allow extraction.

Finally, note that in this construction, the honest receiver is only required to verify the ZK
argument (which will be public coin) � and doesn't actually need to observe the output of the two-
party computation protocol. Thus, such a receiver can sample uniformly random coins to compute
his message for the two-party computation protocol.

This completes an informal description of our extractable commitment, and we have the following
(informal) theorem:

Informal Theorem 1. Let n denote the security parameter. Assume sub-exponential security of
DDH, together with sub-exponentially hard one-way permutations and sub-exponential ZAPs. Then
there exists a statistically binding two-round public-coin extractable commitment scheme, that is
hiding against malicious receivers running in time T and extractable in time T ′ � T .

For technical reasons, our actual construction of extractable commitments is a slight variant
of the scheme outlined above. This construction is described in Section 5, Figure 3. In fact, this
type of extractable commitment is the main technical tool that we will use to obtain our results on
non-malleable commitments.

2.2 Two-Message Non-Malleable Commitments w.r.t. Commitment

2.2.1 Model

Our main result is the construction of a public-coin bounded-concurrent two-message non-malleable
commitment scheme with respect to commitment, assuming sub-exponentially hard ZAPs, sub-
exponential one-way permutations, and sub-exponential hardness of DDH. We also get a private
coin construction assuming only sub-exponential DDH or QR or N th residuosity.

Very roughly, non-malleability requires that a man-in-the-middle adversary participating in two
executions, acting as a receiver interacting with an honest committer in a �left� execution, and
acting as committer interacting with an honest receiver in a �right� execution, is unable to commit
to a message m̃ on the right, that is nontrivially related to the message m committed by the honest
committer on the left.

We require non-malleability against both synchronous and asynchronous adversaries. A syn-
chronous MIM adversary observes an honest receiver message on the right, and then generate its
own (malicious) receiver message for the left execution. Then, on obtaining an honestly generated
left commitment, it generates a (malicious) right commitment. An asynchronous adversary is one
that completes the entire left commitment, before generating its own right commitment. Typi-
cally (and this will especially be true in our situation), it is more di�cult to prove security against
synchronous adversaries than against asynchronous adversaries.

In this paper, we consider a setting where parties have identities or tags, typically in [2n] and
only require non-malleability to hold when the tag used by the adversary is di�erent from the tag
used by an honest party. We note that this can be compiled in a standard way (using one-time
signatures) to a notion without tags that requires the MIM's committed message to be independent
from that of the honest committer, unless the MIM copies the entire left transcript [DDN91].

We now discuss a basic scheme, secure in a restricted setting where there are only two tags in
the system, and the MIM's tag is guaranteed to be di�erent from the honest committer's tag.
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tag 0 tag 1

C1
com(m)−−−−−−−−→ R1 C2

ch
↼−−−−−−−−−−−−−−⇁
ext-com(m′)

R2

Tcom-breakable TExt-extractable
TExt-hiding Thid-hiding

We have: TExt � Tcom � Thid.

Figure 1: A scheme for two tags

2.2.2 A basic scheme for two tags

The impossibility in [Pas13] is stated for the setting of just two tags, therefore overcoming it using
sub-exponential assumptions is already non-trivial. As stated in the introduction, this will require
us to exploit the gap between the number of executions available to the MIM versus those available
to the reduction.

Recall that we achieved two-round extractable commitments with Thid � TExt, that is secure
against malicious receivers running in time Thid, while extractable by extractors running in time
TExt � Thid. Having achieved such an extractable commitment scheme, we obtain a non-malleable
commitment scheme for just two tags in the following way.

Let us �rst consider a one-sided non-malleable commitment: Suppose there are two tags 0 and
1. Then a one-sided non-malleable commitment would guarantee that the commitment with tag 1
cannot depend on a commitment with tag 0, but it would potentially enable arbitrary malleability
in the other direction. Pass and Wee [PW] demonstrated how to obtain a one-sided non-malleable
commitment in this setting, based on sub-exponential assumptions.

We now illustrate how the gap between extraction and hiding of our two-round extractable
commitment scheme can be used to enable two-sided non-malleable commitments, by appropriately
leveraging hardness to exploit this gap. We use a two-round extractable commitment ext-com with
security parameter n, that is extractable in time TExt and hiding against adversaries running in time
Thid � TExt. We also make use of a non-interactive commitment com leveraged so that it is hiding
against adversaries running in time TExt, and trivially breakable in time Tcom. We set parameters
such that Thid � Tcom � TExt. Then consider the following protocol:

◦ If tag = 0, commit to the message m using the non-interactive commitment scheme com.

◦ If tag = 1, commit to the message m using the extractable commitment scheme ext-com.

This scheme is represented in Figure 1. We consider two representative settings, one where the
man-in-the-middle (MIM) is the receiver on the left, and the committer on the right (thus, R1 = C2),
and second, where the MIM is the receiver on the right, and committer on the left (thus, R2 = C1).

First, we consider the case where an honest committer uses tag 0 to commit to message m, while
the MIM uses tag 1. A challenger against the hiding of the non-interactive commitment com, can
obtain com(0) or com(m) externally, and then exploit the extractability of ext-com that is being
used by the MIM, to extract the value committed by the MIM, in time TExt.

However, the non-interactive commitment is hiding against adversaries running in time TExt.
Thus, if the MIM's commitment is related to m, such a challenger can break hiding of com, by
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extracting the value committed by theMIM, which contradicts the TExt-hiding of the non-interactive
commitment.

Next, let us consider the complementary case where an honest committer uses tag 1 to commit
to message m, while the MIM uses 0. A challenger against the hiding of the extractable commitment
ext-com, can obtain ext-com(0) or ext-com(m) externally, and then break com that is being used by
the MIM, via brute-force to extract the value committed by the MIM, in time Tcom.

However, ext-com is hiding against adversaries running in time Thid � Tcom. Thus, if the
MIM's commitment is related to m, such a challenger can break hiding of ext-com, by breaking the
commitment of the MIM using com, and extracting the value committed, in time only Tcom � Thid,
contradicting the hiding of ext-com. We must now extend the above construction for two tags,
all the way to tags in [2n]. Pass and Wee [PW] noted that assuming sub-exponential hardness, it
is possible to obtain O( logn

log logn) levels of hardness. Thus, simple complexity leveraging, even if it

could be used in some way, would not help us directly go beyond O( logn
log logn) tags. As a �rst step,

we describe how the construction above can be extended to a constant number of tags.

2.2.3 A construction for constant number of tags

Note that the 2-tag construction relied on extractability of ext-com to achieve non-malleability
when the adversary uses tag = 1. Implicit in the description above, was a crucial reliance on the
non-interactivity of the other (non-extractable) commitment.

Indeed, a problem arises when using ext-com on both sides: the extractor that extracts from
the MIM on the right, naturally needs to rewind the MIM. This may result in the MIM implicitly
rewinding the honest committer, possibly causing extraction even from the honest committer. If the
honest commitment is non-interactive, this is not a problem because it is possible to send the same
externally obtained string to the MIM, every time the honest committer interaction is rewound. In
other words, there is no rewinding allowed in the left interaction. However, if the honest interaction
consists of two rounds, then the initial challenge of the MIM to the honest committer may change,
and require a new response on the left from the honest committer. How should we simulate this
response?

Let us illustrate this issue more concretely: A natural way of extending our 2-tag construction
to a constant number of tags is illustrated in Figure 2, with parameters of various extractable
commitment schemes adjusted (via leveraging, like in Figure 1) to ensure that:

1. For every pair of tags tag > tag′, the commitment for tag is hiding with respect to the time
it takes to brute-force break the commitment for tag′.

2. The commitment associated with each tag is extractable in time less than the time with
respect to which hiding is guaranteed all the tags: thus when tag < tag′ we will extract the
commitment for tag′ while trying to rely on the hiding of tag.

In the �gure, by T -breakable, we always mean that the underlying commitment in ext-com is
breakable using brute-force in time T .

We recall (from the two-tag case) that an extractor has two possible strategies, depending
on whether the honest tag is larger or smaller than the MIM's tag. If the MIM's tag is smaller
than the honest tag, then it is possible to argue non-malleability by breaking (via brute-force) the
commitment generated by the MIM. This part of the argument goes through exactly as in the
two-tag case.

However, the proof runs into the subtle issue mentioned above when the MIM's tag is larger than
the honest tag. In this case, the reduction must run the extractor on the commitment generated by
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tag = 1 tag = 2 tag = 3 tag = 4

C1
com(m)−−−−−−−−→ R1C2

ch2↼−−−−−−−−−−−−−−−−⇁
ext-com2(m′)

R2C3
ch3↼−−−−−−−−−−−−−−−−⇁

ext-com3(m′′)
R3C4

ch4↼−−−−−−−−−−−−−−−−−−⇁
ext-com4(m′′′)

R4

TExt-extractable TExt-extractable TExt-extractable
T1-hiding T2-hiding T3-hiding T4-hiding
T ′1-breakable T ′2-breakable T ′3-breakable

We have: T4 � (T ′1, T
′
2, T

′
3), T3 � (T ′2, T

′
1), T2 � T ′1.

Figure 2: An illustrative natural (but incomplete) extension to four tags

the MIM. However, every time the MIM is rewound by the extractor (using di�erent challenges for
the ext-com), the MIM may generate its own fresh challenges for the honest commitment. Therefore,
while extracting from the MIM, we may end up inadvertently also be extracting from the honest
commitment � which would not let us achieve any contradictions. Recall that the entire point of this
experiment was to extract from the man-in-the-middle while preserving hiding in the commitment
generated by the honest committer.

Our Solution. Our main idea to solve this problem is as follows: We set our parameters in such
a way that we can �modulate� the extractability of the commitment scheme. In other words, when
the MIM's tag is larger than the honest tag, the MIM's commitment will be extractable in time
TExt,tag′ that is much smaller than the time taken to extract from the honest commitment TExt,tag.

In a nutshell, we will set challenge spaces (for extraction) so that, when the MIM's tag is larger
than the honest tag, the MIM's challenge space is also exponentially larger than the honest challenge
space. This is accomplished, in particular, just by setting the length of ch corresponding to tag, to
be (tag × p(n)), where p(n) is some �xed (small) polynomial in the security parameter n.

Not only this, we will in fact require that the honest commitment corresponding to tag be hiding
even under TExt,tag′ attempts to extract from it. This will be achieved by leveraging the advantage
of the adversaries in SPS ZK and secure two-party computation appropriately. We will still be
careful so that time taken for any extraction will be much smaller than the time required to break
hiding of any of the commitments. The �exibility of our construction of extractable commitments
ensures that we can set parameters appropriately.

Bounded-Concurrent Security. We also prove a stronger security guarantee about the scheme
outlined above, that is, we consider a setting where the MIM participates in `(n) sessions with
honest receiver(s) in which he acts as malicious committer, while obtaining a single commitment
from an honest committer. We require that the joint distribution of the view and value committed
by the MIM is unrelated to the message committed by the honest committer6.

We prove `(n)-bounded-concurrent non-malleability of the scheme described above for polyno-
mial `(n)� m, where m denotes the length of the challenge string ch for extraction. We need to set
parameters appropriately for bounds `(n). To ensure `(n)-bounded non-malleability, in the sessions

6This notion is called one-many non-malleability (with a bounded number of right executions), and implies many-
many non-malleability [PR05b, LPV].
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where MIM commits to messages, we require an an extractor that extracts the joint distribution of
messages committed by the MIM committer.

However, upon careful observation, our extraction strategy turns out to have the following
problem: The extractor extracts the value from some �rare� transcripts, and when theMIM generates
multiple transcripts simultaneously, the rare transcripts that the extractor is able to extract from,
may not occur simultaneously at all. We therefore need to modify the extraction strategy to keep
running until it succeeds in simultaneously extracting from all of the MIM's transcripts. Note that
this only happens when the extractor is able to guess all the challenges generated by the MIM in
all its commitment sessions.

In order for such an extractor to contradict non-malleability, we need to set the parameters large
enough so that hiding of the challenge commitment holds even against adversaries running in time
T , where T is the time taken to extract from all the MIM's sessions simultaneously. This helps
prove bounded-concurrent non-malleability.

Our techniques for handling a constant number of tags as well as bounded-concurrent non-
malleability are novel and very speci�c to our construction. Next, we bootstrap a (sub-exponentially
secure) non-malleable commitment scheme for just 4 tags into a scheme for all tags, in a way that
only requires two rounds, and preserves bounded-concurrent non-malleability. Before this, we will
review a new technical tool that will help in our two-round tag ampli�cation scheme.

2.2.4 Two-round ZK with Strong Superpolynomial Simulation

Standard constructions of two round zero-knowledge arguments with superpolynomial simulation
can be described as follows: the veri�er generates a challenge that is hard to invert by adversaries
running in time T , then the prover proves (via a ZAP) that either the statement being proven is in
the language, or that he knows the inverse of the challenge used by the veri�er. This ZAP is such
that the witness used by the prover can be extracted (via brute-force) in time T ′ � T . Naturally,
this restricts the argument to be zero-knowledge against veri�ers that run in time Tzk � T ′ � T .

Thus, if a prover generates an accepting proof for a false statement, the ZAP can be broken
in time T ′ to invert the challenge, leading to a contradiction. On the other hand, there exists a
simulator that runs in time TSim � T to invert the receiver's challenge and simulate the proof
(alternatively, such a simulator can non-uniformly obtain the inverse of the receiver's challenge).
Thus, we have TSim � Tzk.

The notion of Zero-Knowledge with Strong Superpolynomial Simulation (SPSS-ZK) was de�ned
by [Pas03] as ZK with super-polynomial simulation, such that TSim � Tzk. At �rst glance such a
primitive may seem impossible to realize7, but let us revisit the construction of SPS ZK described
above, through the lens of non-malleability.

In order to ensure soundness, what we actually require is that a cheating prover, be unable to
�maul� the challenge sent by the veri�er, into a witness for his own ZAP. A simple way to do this
is to use complexity leveraging to get one-sided non-malleability, which is what the construction
described above achieves.

However, this constrains T ′ � T , which in turn constrains TSim � Tzk. We would like to look
for a di�erent way of achieving non-malleability, which potentially allows T ′ � T . In other words,
we would like a more e�cient way of extracting the witness from the NIWI than directly breaking it

7We thank Rafael Pass for pointing out that in fact, this primitive was proved impossible to realize via black-
box reductions to sub-exponential assumptions in [CLMP12]. However, just like the impossibility in [Pas16], the
impossibility in [CLMP12] also no longer holds when the reduction is allowed to interact with the adversary in
superpolynomially many sessions
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via brute force. This is exactly the kind of non-malleability that is supported our basic construction
of two-sided non-malleable commitments for two tags from Section 2.2.2.

Speci�cally, we will just let the veri�er use a non-interactive non-malleable commitment cor-
responding to tag = 0, whereas the prover will use a two-message non-malleable (extractable)
commitment corresponding to tag = 1. We can now set parameters such that T � T ′, which allows
TSim � Tzk. On the other hand, in order to ensure soundness, we rely on the extractability of the
prover's commitment in time TExt � T .

We will use this primitive in the next subsection, while performing tag ampli�cation while
preserving bounded-concurrent non-malleability. We also believe that this primitive may be of
independent interest. The construction and analysis can be found in Section 5.2.

2.2.5 Two-round tag ampli�cation from 4 tags

While tag ampli�cation has been extensively studied in the non-malleability literature (e.g. [DDN91,
LP09, Wee10, Goy11]), no previous work applied to the case of 2-round protocols. We give the �rst
tag ampli�cation technique, for non-malleable commitments with respect to commitment, that
requires just two rounds and only 4 tags to begin with, and only makes standard sub-exponential
assumptions. In fact, we are able to amplify tags in by bootstrapping from a bounded-concurrent
non-malleable commitment scheme for 4 tags to a bounded-concurrent non-malleable commitment
scheme for all tags. Apart from being an important ingredient of our construction, this result may
be of independent interest.

To build our tag ampli�cation mechanism for 2-round protocols, we use some ideas from previous
constructions [DDN91, LP09, Wee10, Goy11], while introducing new ideas to keep the protocol at
two rounds, and to minimize the number of tags that we bootstrap from.

Let us begin by recalling some ideas from previous work. Suppose we had a non-malleable
commitment scheme for tags in [2n]. The popular DDN [DDN91] encoding suggests a method
of breaking a large tag T j (say, in [2n]) into n small tags tj1, t

j
2, . . . t

j
n, such that for two di�erent

large tags T 1 6= T 2, there exists at least one index i such that t2i 6∈ {t11, t12, . . . t1n}. As in other
tag ampli�cation schemes [Wee10, LP], we will recursively apply an encoding with the property
speci�ed above. However, we would also like to be able to begin with as few tags as possible. To
accomplish this, we �rst observe that a di�erent encoding also achieves the same e�ect as DDN,
but with better e�ciency.

Suppose we had a scheme for tags in [n]. We will directly obtain a scheme for tags in

[(
n
n/2

)]
.

Let the tag T ∈
[(

n
n/2

)]
itself denote a subset of [n] of size n/2. Let t1, t2, . . . tn/2 denote the

elements in T . These will now represent the small tags using which the committer must generate
commitments. Note that this also satis�es the property that, given T 6= T ′, at least one of the small
tags in the set generated by T ′, di�ers from every single tag in the set generated by T , since no
two sets of n/2 elements in [n] can dominate the other. This property is su�cient for the rest of

our proof to go through. Furthermore, this allows us to begin with just 4 tags and obtain

(
4
2

)
= 6

tags, and keep amplifying repeatedly thereafter.
Given the property of the encoding scheme, we consider the following construction: To commit

to a value with large tag T , commit to the value multiple times with small tags t1, t2, . . . tn that
correspond to an appropriate encoding of T . Simultaneously, provide a 2-round ZK argument that
all commitments are to the same value. We require the proof to be ZK against adversaries running
in time T , where T is the time required to brute-force break (all components of) the underlying
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non-malleable commitment scheme for small tags.
In order to prove `(n)-bounded-concurrent non-malleability of the resulting scheme, we will focus

on the index ij in the MIM's jth commitment, for j ∈ `(n), such that the tag t̃ij 6∈ {t11, t12, . . . t1n}. In
the real interaction, by soundness of the ZK argument, the value committed by the MIM is identical
to the value committed using t̃ij . Thus, it su�ces to argue that this value is generated independent
of the honest committer's value. Because the argument is ZK against adversaries running in time
T (that is, Tzk � T ), where T is the time required to brute-force break (all components of) the
non-malleable commitment with t̃i,j , the value committed remains indistinguishable even when a
challenger generates the honest commitment by simulating the ZK argument.

Next, it is possible to switch commitments using tags t11, t
1
2, . . . t

1
n one by one, while the joint dis-

tribution of the values committed using tag t̃ij does not change, because of `(n)-bounded concurrent
non-malleability of the underlying commitment scheme. Note that here we are running in super-
polynomial time TSim, so we require non-malleability to hold even against TSim-time adversaries. By
our constraint on the ZK property of the argument, we will end up requiring that TSim � Tzk. This
is exactly where our two-round SPSS ZK helps.

We note that this ampli�cation can be applied recursively, several times, until non-malleability
is obtained for all tags in [2n]. The resulting protocol for tags in [2n] still only uses poly(n) com-
mitments with small tags. Furthermore, at each recursion, the ZK argument we use will require
stronger parameters. However, since the tag space grows exponentially, starting with a constant
number of tags, recursion only needs to be applied O(log∗ n) times. Thus, we only require O(log∗ n)
levels of security for the ZK and for the non-malleable commitments, which can be obtained based
on sub-exponential hardness, as was also shown by Pass and Wee [PW]. Apart from minor techni-
cal modi�cations to ensure that the resulting protocol remains e�cient, this is essentially how we
construct non-malleable commitments for larger tags. Our construction is formally described and
proved in Section 6, and we have the following informal theorem.

Informal Theorem 2. Assume sub-exponential security of DDH, together with sub-exponentially
hard one-way permutations and sub-exponential ZAPs. Then there exists a constant bounded-
concurrent statistically binding two-round public-coin non-malleable commitment scheme with re-
spect to commitment.

2.2.6 Instantiating the primitives

Throughout the discussion above, we assumed some idealized 2-round primitives, most notably a
2-round ZK argument, and 2-round secure two party computation. We note that almost everywhere
above (except when SPSS ZK is explicitly stated), the 2-round ZK argument can be instantiated with
the work of Pass [Pas03] that builds 2-round public coin super-polynomial simulation ZK arguments.
At the same time, however, it turns out that some of our proofs only need a distinguisher-dependent
notion of simulation called weak ZK. Recently, a construction of such weak ZK arguments (albeit
with private coins) was given in [JKKR17], and by using this recent construction we also enjoy the
ability to instantiate this 2-round weak ZK argument from any of the subexponential assumptions
given in the set Y referenced in our informal theorem statements above. We note that the same
construction also satis�es ZK with super-polynomial simulation.

Obtaining 2-round secure two-party computation is simpler: We can use 2-round OT, secure
against malicious receivers, together with garbled circuits to implement this; OT security guarantees
hiding of the receiver input against semi-honest senders. We additionally rely on leveraging to
ensure that the sender input is chosen independently of the receiver input. To argue sender input-
indistinguishability, we require a way to extract the OT receiver's choice bits, so that we can invoke
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the security of the garbled circuit scheme. Since we only require an indistinguishability-based
guarantee, we could simply rely on non-uniformity to extract the OT receiver's choice bits and
obtain a reduction to the security of garbled circuits. Another option is to adapt the proof strategy
in [JKKR17] to provide distinguisher-based polynomial extraction of the OT choice bits that su�ce
in the circumstances where we need sender input-indistinguishability.

2.3 One Round Non-Malleable Commitments w.r.t. Opening, with Simultane-
ous Messages

Reordering Non-Malleable Commitments. We note that the two-message commitment schemes
described so far indeed required the committer to generate a message depending on the receiver's
challenge message. As such, compressing the protocol into a single round appears to be a di�cult
task. At the very least, we would like to force the committer to be bound to his message by the
end of the �rst round.

We observe that the extractable commitments described in Section 2.1 can be deconstructed into
two sub-protocols that occur in parallel: one sub-protocol (which we will call the commitment sub-
protocol) is used to generate the actual commitment, and the other sub-protocol (which we will call
the extraction sub-protocol) consists of the two-party computation together with proof of correct
computation. The extraction sub-protocol is carried out purely to assist the extractor. Furthermore,
the sub-protocol that generates the commitment can be made completely non-interactive by using
a non-interactive statistically binding commitment based on injective one-way functions.

Moreover, the relative ordering of messages between these sub-protocols can be arbitrarily altered
without a�ecting security. More speci�cally, we can reorder the extractable commitment, into the
following di�erent (still, two-round) extractable commitment in the simultaneous exchange model:
In the �rst round of simultaneous exchange, the committer sends the commitment sub-protocol,
whereas the receiver sends the �rst message of the extraction sub-protocol. In the second round
of simultaneous exchange, the committer responds to the receiver's message for the extraction sub-
protocol. This reordered scheme satis�es the same extraction properties as the previously considered
scheme. In fact, in the simultaneous exchange model, this reordered scheme has an additional
property: the committer is bound to his message by the end of the �rst round.

The non-malleable commitment scheme described previously can be similarly reordered, as we
illustrate in more detail in Section 7. At this point, we have a two round non-malleable commitment
scheme NM− Com, with respect to commitment, in the simultaneous exchange model, that is
binding in the �rst round.

Non-Malleability with respect to Opening. We de�ne non-malleability with respect to open-
ing by requiring that the joint distribution of the view (including both the commit and opening
phase) and the value committed by the MIM remain indistinguishable between real and simulated
executions. Of course, in the real experiment, the MIM obtains the honest committer's opening once
the commit phase is over, and therefore, the simulator is also given the honest committer's opening.
This de�nition is similar to several previously considered de�nitions, with the main exception being
that it allows super-polynomial simulation (this restriction is because of the two-round setting). In
particular, our de�nition implies the recent indistinguishability-based de�nition in [GKS16]. We
refer the reader to Section 4.2 for more details.

The natural next step, after obtaining a non-malleable commitment scheme in the simultaneous
message model, that is binding in the �rst round, is to try and push the second message of the non-
malleable commitment into the opening phase, and send this message together with an opening.
However, we must ensure that the scheme is binding, and also that a man-in-the-middle is unable
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to create arbitrary malleations after obtaining an opening. In order to achieve this, we will again
use SPSS ZK in a crucial way.

We accomplish this by setting up the opening phase in a speci�c way, additionally making use
of an SPSS ZK argument, with low TSim (lower than other parameters of the NM− Com) and
high Tzk (higher than other parameters of the NM− Com). The receiver sends the �rst message of
the SPSS ZK argument in the �rst round, together with the �rst receiver message of NM− Com.
Simultaneously, the committer sends the �rst round commitment message of NM− Com. This
marks the end of the commitment phase.

In order to open, the committer sends the second message of the commitment NM− Com,
together with the message committed (but not the randomness), and an SPSS ZK argument that
the message opened actually corresponds to the committed value. Why is this construction secure?

We consider a simple sequence of hybrid experiments: In the �rst hybrid, the challenger starts
simulating the SPSS ZK argument (of opening), and since Tzk is higher than the parameters of
NM− Com, we note that the value committed by the NM− Com (jointly with the overall view
of the MIM in the commitment and opening phases) remains indistinguishable. Next, the chal-
lenger changes the value of the NM− Com from committing to the honest committer's message to
committing to 0, while still opening to M and simulating Tzk. Because the NM− Com scheme is
non-malleable against adversaries running in time TSim, the joint distribution of the value commit-
ted by the MIM and the view of the MIM (including the opening phase) remain indistinguishable.
This is exactly the simulated experiment.

In particular, since the simulator does not have access to the honest committer's message in
the commitment phase, and yet must open to this message in the opening phase, the simulator is
required to equivocate in some way. Naturally, the commitment is required to be (computationally)
binding in the real execution. However, since the joint distribution of the view and committed value
remain indistinguishable between the real and simulated worlds � this means that the MIM remains
computationally bound to his committed value even while the simulator equivocates.

This property ends up being useful from an application point of view, as can be observed in our
construction of two round multi-party coin tossing. The multi-party coin tossing protocol, formally
described in Section 7.3 is simple to construct: it only requires each party to (non-malleably)
commit to a random input in the �rst round, and then open this commitment in the second round.
Naturally, this protocol is round optimal.

We also obtain fully concurrent two round non-malleable commitments with respect to commit-
ment in the simultaneous message setting (where the MIM can participate as malicious committer
and malicious receiver in an unbounded number of sessions), full details of which are provided
in Appendix A. We use these to obtain fully concurrent one-round non-malleable commitments
with respect to opening in the simultaneous exchange setting. These protocols make a more cen-
tral use of SPSS ZK, in fact they work by �rst modifying the SPSS ZK to obtain a variant of
simulation soundness, and then using techniques similar to those of [LPV09] to obtain concurrent
non-malleability. We believe that our round-optimal non-malleable protocols will �nd several other
interesting applications, to low-round secure computation. We conclude with the following informal
theorem.

Informal Theorem 3. Assume sub-exponential security of DDH, together with sub-exponentially
hard one-way permutations and sub-exponential ZAPs. Then there exists a fully concurrent sta-
tistically binding two-round public-coin non-malleable commitment scheme with respect to commit-
ment, in the simultaneous exchange model. Furthermore, there exists a one round fully concurrent
statistically binding public-coin non-malleable commitment scheme with respect to opening, in the
simultaneous exchange model.
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3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. We will typically use
n to denote the security parameter. We will say that T1(n) � T2(n) if T1(n) > T2(n) · nc for all
constants c. When we say (sub-exponentially secure) one-way permutations exist, in fact it su�ces
to assume a family of (sub-exponentially secure) onto one-way functions where the speci�cation of
the function is public coin. We note that we only require this assumption to obtain public-coin
variants of our protocols.

3.1 ZK With Super-polynomial Simulation.

We will use two message ZK arguments with super-polynomial simulation (SPS) [Pas04].

De�nition 1 (Two Message (TSim, Tzk, δzk)-ZK Arguments With Super-polynomial Simulation).
We say that an interactive proof (or argument) 〈P, V 〉 for the language L ∈ NP, with the witness
relation RL, is (TSim, Tzk, δzk)-simulatable if for every Tzk-time machine V ∗ exists a probabilistic
simulator S with running time bounded by TSim such that the following two ensembles are Tzk, δzk)-
computationally indistinguishable (when the distinguishing gap is a function in n = |x|):

◦ {(〈P (y), V ∗(z)〉(x))}z∈{0,1}∗,x∈L for arbitrary y ∈ RL(x)

◦ {S(x, z)}z∈{0,1}∗,x∈L

That is, for every probabilistic algorithm D running in time polynomial in the length of its �rst input,
every polynomial p, all su�ciently long x ∈ L, all y ∈ RL(x) and all auxiliary inputs z ∈ {0, 1}∗ it
holds that

Pr[D(x, z, (〈P (y), V ∗(z)〉(x)) = 1]− Pr[D(x, z, S(x, z)) = 1] < δzk(n)

De�nition 2. We say that a two-message (TSim, Tzk, δzk)-SPS ZK argument satis�es non-uniform
simulation (for delayed statements) if we can write the simulator S = (S1,S2) where S1(V ∗(z)),
which outputs σ, runs in TSim-time, but where S2(x, z, σ), which outputs the simulated view of the
veri�er V ∗, runs in only polynomial time.

3.2 Special Two-Party Computation

De�nition 3 (Special Two-Party Computation). Special two-message two-party secure computation
involves a protocol Π between a sender S with input x, and receiver R with input y, who obtains the
output f(x, y). The �rst message is sent by R as a function of y and receiver's randomness rR, and
we will denote this message by τ1 = 2PCR(1n, y; rR). The second message is sent by S as a function
of (τ1, x, rS), which we will denote by τ2 = 2PCS(τ1, x; rS). We will denote by ViewR(x) the tuple
(x, τ1, τ2) where τ1 is generated by R, and τ2 is generated by S with uniform randomness rS.

We will require the following properties:

◦ (Perfect) Correctness: For all x, y, and honest S and R, we have that the output obtained
by R equals f(x, y).

◦ Receiver Input-Hiding against T -time Senders:
For any T -time distinguisher D, for all y1, y2, over the random choice of rR:

|Pr[D(2PCR(1n, y1; rR)) = 1]− Pr[D(2PCR(1n, y2; rR)) = 1]| ≤ 1/T.

17



◦ Sender Input-Indistinguishability against T ′-time Receivers:
There exists a constant c > 0 such that for large enough n, and for any T ′-time malicious
receiver R∗, and T ′-time distinguisher D that obtains the view of the receiver, for all f and

all distributions (X1,X2) such that for any y, if over random choice of x1
$←X1 and x2

$←X2,
we have Pr[f(x1, y) = f(x2, y)] ≥ 1 − ε(n), then following is true when S and R∗ run Π for
f :

|Pr[D(ViewR∗(x1)) = 1]− Pr[D(View∗R(x2)) = 1]| ≤ (ε(n) + 1/T ′) · nc.

De�nition 4 (T ′-Oblivious Special Two-Party Computation). A special two-message two-party se-
cure computation protocol Π is said to have the T ′-obliviousness property if the following holds.
There exists a procedure oSamp(1n) such that for any T ′-time distinguisher D, we have Pr[D(r′ ←
oSamp(1n; rO)) = 1|rO

$← {0, 1}∗] − Pr[D(2PCR(1n, y; rR)) = 1|(y, rR)
$← {0, 1}∗] ≤ 1/T ′. Further-

more, there exists an e�cient algorithm Explain such that oSamp(1n;Explain(2PCR(1n, y; rR))) =
2PCR(1n, y; rR) for all values of y, rR for su�ciently large n.

Remark 1. Since we only require indistinguishability-based security, secure two-message two party
computation with super-polynomial simulation, where the receiver's message can be obliviously sam-
pled, already implies this de�nition. This can be directly constructed [BGI+17] using oblivious trans-
fer and garbled circuits, where OT is secure against malicious receivers [NP01, HK12]. The security
reduction can also be made uniform via the techniques of [JKKR17]. Our protocols can be instanti-
ated with any special two-party computation satisfying the required properties. Finally, we note that
the oblivious sampling property is only required to ensure that the resulting protocol is public coin.

4 De�nitions

We de�ne a T -time machine as a non-uniform Turing Machine that runs in time at most T . All hon-
est parties in de�nitions below are by default uniform interactive Turing Machines, unless otherwise
speci�ed.

4.1 Non-Malleability w.r.t. Commitment

Throughout this paper, we will use n to denote the security parameter, and negl(n) to denote any
function that is asymptotically smaller than 1

poly(n) for any polynomial poly(·). We will use PPT
to describe a probabilistic polynomial time machine. We will also use the words �rounds� and
�messages� interchangeably.

We follow the de�nition of non-malleable commitments introduced by Pass and Rosen [PR05b]
and further re�ned by Lin et al [LPV] and Goyal [Goy11] (which in turn build on the original de�ni-
tion of [DDN91]). In the real interaction, there is a man-in-the-middle adversary MIM interacting
with a committer C (where C commits to value v) in the left session, and interacting with receiver R
in the right session. Prior to the interaction, the value v is given to C as local input. MIM receives
an auxiliary input z, which might contain a-priori information about v. Then the commit phase is
executed. Let MIM〈C,R〉(value, z) denote a random variable that describes the value ṽal committed
by the MIM in the right session, jointly with the view of the MIM in the full experiment. In the
simulated experiment, a PPT simulator S directly interacts with the MIM. Let Sim〈C,R〉(1

n, z) de-

note the random variable describing the value ṽal committed to by S and the output view of S. If
the tags in the left and right interaction are equal, the value ṽal committed in the right interaction,
is de�ned to be ⊥ in both experiments.
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Concurrent non-malleable commitment schemes consider a setting where the MIM interacts with
committers in polynomially many (a-priori unbounded) left sessions, and interacts with receiver(s)
in upto `(n) right sessions. If any of the tags (in any right session) are equal to any of the tags
in any left session, we set the value committed by the MIM to ⊥ for that session. The we let
MIM〈C,R〉(value, z)

many denote the joint distribution of all the values committed by the MIM in all
right sessions, together with the view of the MIM in the full experiment, and Sim〈C,R〉(1

n, z)many

denotes the joint distribution of all the values committed by the simulator S (with access to the
MIM) in all right sessions together with the view.

De�nition 5 (Non-malleable Commitments w.r.t. Commitment). A commitment scheme 〈C,R〉
is said to be non-malleable if for every PPT MIM, there exists a PPT simulator S such that the
following ensembles are computationally indistinguishable:

{MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

De�nition 6 (`(n)-Concurrent Non-malleable Commitments w.r.t. Commitment). A commitment
scheme 〈C,R〉 is said to be `(n)-concurrent non-malleable if for every PPT MIM, there exists a PPT
simulator S such that the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(value, z)
many}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1n, z)many}n∈N,v∈{0,1}n,z∈{0,1}∗

We say that a commitment scheme is fully concurrent, with respect to commitment, if it is
concurrent for any a-priori unbounded polynomial `(n).

4.2 Non-Malleability w.r.t. Opening

We also consider a strong notion of non-malleability w.r.t. opening, where we consider a super-
polynomial time simulator S that interacts with the MIM. We will only consider non-malleability
w.r.t. opening for a special type of commitments, that we call semi-statistically binding commit-
ments, which we now de�ne.

De�nition 7 (Semi-Statistically Binding Commitments). We call a commitment scheme semi-
statistically binding if upon completion of the commitment phase, the commitment can be opened
in two modes: the �rst mode is statistically binding and the second mode is computationally bind-
ing against PPT committers. Naturally, the binding property requires that for any commitment
transcript, the values opened (by any malicious PPT committer) in both modes are identical with
overwhelming probability over the choice of transcripts. The value �committed� will refer to the value
that is determined by the statistically binding mode.

In actual applications, we will always use the semi-statistically binding commitment scheme
in computationally binding mode. The statistically binding mode will only be considered for the
purpose of security de�nitions, speci�cally, to de�ne a notion of correctness of the committed value.
We now proceed to our de�nition of non-malleability w.r.t. opening.

In the real interaction, there is a man-in-the-middle adversaryMIM interacting with a committer
C (where C commits to value v) in the left session, and interacting with receiverR in the right session.
Prior to the interaction, the value v is given to C as local input. MIM receives an auxiliary input z,
which might contain a-priori information about v. Then, the commitment and decommitment
phase is executed. Whenever the MIM provides an invalid opening, his opening is de�ned to be ⊥.

We consider semi-statistically binding commitments (that are always opened in computationally
binding mode) and we de�ne the value committed as the value that is determined by the statis-
tically binding mode. However, if the MIM fails to provide a valid opening in any execution, the
value committed is replaced with ⊥ for the given execution.
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Let MIM〈C,R〉,open(value, z) denote a random variable that describes the value ṽal committed
by the MIM in the right session, jointly with the view of the MIM in the full experiment (this view
includes the opening of the honest committer and the MIM). We note that the MIM could also
potentially be equivocating, which is why we include the joint distribution of the committed and
opened value.

In the simulated experiment, the super-polynomial time simulator S directly interacts with the
MIM. S obtains the value v only after the commit phase is over. Let Sim〈C,R〉,open(1n, z) denote the

random variable describing the value ṽal committed to by S (that is, the value corresponding to
the statistically binding mode) and the output view of S.

If the tags in the left and right interaction are equal, or if the MIM fails to open, the value ṽal
committed in the right interaction, is set to ⊥ in the above experiments.

De�nition 8 (Non-malleable Commitments w.r.t. Opening). A commitment scheme 〈C,R〉 is said
to be non-malleable with respect to opening if for every PPT MIM, there exists a PPT simulator S
such that the following ensembles are computationally indistinguishable:

{MIM〈C,R〉,open(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉,open(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

Concurrent non-malleable commitments with respect to opening naturally generalize the above
to a setting where the MIM interacts with committers in polynomially many (a-priori unbounded)
left sessions, and interacts with receiver(s) in upto `(n) for some polynomial `(·)) right sessions. If
any of the tags (in any right session) are equal to any of the tags in any left session, or if the MIM
doesn't provide a valid opening in any session, we set the value committed by the MIM to ⊥ for that
session. The we let MIMmany

〈C,R〉,open(value, z) denote the joint distribution of all the values committed
by the MIM in all right sessions, together with the view of the MIM in the full experiment, and
Simmany

〈C,R〉,open(1n, z) denotes the joint distribution of all the values committed by the simulator S
(with access to the MIM) in all right sessions together with the view. In this case, the simulator S
obtains all the values for the honest executions after the commit phase is over.

De�nition 9 (`(n)-Concurrent Non-malleable Commitments w.r.t. Opening). A commitment
scheme 〈C,R〉 is said to be `(n)-concurrent non-malleable with respect to opening if for every PPT
MIM, there exists a PPT simulator S such that the following ensembles are computationally indis-
tinguishable:

{MIMmany
〈C,R〉,open(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim

many
〈C,R〉,open(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

We say that a commitment scheme is fully concurrent, with respect to opening, if it is concurrent
for any a-priori unbounded polynomial `(n).We give some additional remarks about the above
de�nitions:

◦ Computational Binding for the MIM even in the Simulated Execution. In De�ni-
tion 8 and De�nition 9, we require that the joint distribution of the view (including the MIM's
opening) and value committed by the MIM (for the statistically binding mode) be indistin-
guishable between the real and ideal(simulated) executions. Note that in the real world, by
the computational binding property of the scheme, the MIM's committed and opened values
are identical. Therefore, if the committed and opened values are not identical in the ideal
world, the two distributions described above are distinguishable. Thus, we have that even
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though the simulator may be equivocating in the ideal world, the MIM's commitment still
remains binding8.

◦ Comparison with Prior De�nitions. De�nition 8 is similar to several previously consid-
ered de�nitions of non-malleability with respect to opening, [PR05a, PR05b, OPV09, GKS16],
except that it allows super-polynomial simulation. Also, some prior de�nitions did not take
into account the joint distribution of the view and value opened, and unlike ours, did not
compose well.

In particular, De�nition 8 implies the weaker (indistinguishability-based) de�nition of non-
malleability with respect to opening given in [GKS16]. The de�nition in [GKS16] is especially
suited to the uni-directional setting, where a simulation-based de�nition such as De�nition 8
is impossible to achieve. They prove that for all messages m0,m1, the joint distribution of
the view (excluding the honest opening) and value opened by a man-in-the-middle remains
indistinguishable between the following two experiments: one, where the honest committer
commits and opens to message m0, and the second where an honest committer commits and
opens to message m1. In order to account for situations where a man-in-the-middle adversary
adaptively chooses to abort based on whether the opening was to m0 or m1, [GKS16] allow
an (unbounded) replacer to replace openings where the man-in-the-middle aborts with valid
openings. Our de�nition can be directly seen to imply this de�nition, where the replacer
strategy is as follows: run the simulator twice, providing openings both with respect to m0

and m1. By the binding property described in the previous bullet, the two openings of the
MIM will not be di�erent, with overwhelming probability. Thus, the replacer simply outputs
any valid opened value produced by the MIM, or ⊥ if the MIM aborts in both cases.

◦ Using Non-Malleable Commitments w.r.t. Opening According to De�nition 8.
De�nition 8 is extremely versatile from the point of view of utility. Unlike some prior de�ni-
tions of non-malleability with respect to opening, our de�nition allows for composability. Our
simulation-based de�nition of one-one non-malleability implies one-many non-malleability, by
a direct hybrid argument over the honest commitments, similar to the case of non-malleability
with respect to commitment [LPV]. Furthermore, in fact, De�nition 8 implies that even the
value committed by the MIM � not just the value opened � does not change between executions
in which the MIM provides a valid opening. This captures the strengthened intuition that as
long as the MIM is able to provide a valid opening, the value committed by the MIM doesn't
change between executions.

These features help use non-malleable commitments with respect to opening satisfying Def-
inition 8, to obtain low round protocols such as two-round multi-party coin tossing: In the
�rst round, all parties commit to random coins via a non-malleable commitment with respect
to opening. In the second round, parties open their committed coins and output the XOR of
the coins of all parties. Prior to our work, such a two-round coin �ipping scheme, where both
parties obtain the same shared output, was not known even for the case of two parties. See
Section 7.3 for the construction and proof of security.

8This property turns out to be important to achieve non-malleability. Indeed, if we only required that the value
opened by the MIM (possibly, jointly with the view of the MIM) remain indistinguishable between real and simulated
worlds, then the MIM could potentially be freely equivocating its own commitment when the simulator equivocates.
Such de�nition would say nothing about non-malleability in the real (non-simulated) execution: and will be vacuously
satis�ed by any equivocal commitment scheme.
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4.3 Extractable Commitments

We �rst (re)de�ne commitment schemes while introducing some useful notation. Let n denote the
security parameter.

De�nition 10 (Commitment Scheme). A commitment scheme 〈C,R〉 is a two-phase protocol be-
tween a committer C and a receiver R. At the beginning of the protocol, C obtains input m. Next,
C and R execute the Commit phase. At the end of the Commit phase, R outputs 0 or 1.

An execution of the Commit phase between (C,R) with committer inputm is denoted by 〈C,R〉(m).
The view of the receiver (including its coins and the transcript) at the end of this phase is denoted
by ViewR (〈C,R〉(m)).

Next, only if R outputs 1 in the Commit phase, C and R possibly engage in another interactive
Decommit phase, at the end of which R outputs ⊥ or a message m̃. A commitment scheme should
satisfy two security properties:

◦ (T, δ)-Hiding. For every message M ∈ {0, 1}p, for every probabilistic T -time receiver R∗,
every honest committer C, and every T -time distinguisher D that obtains the view of the
receiver,

Pr[D (ViewR∗ (〈C,R∗〉(M))) = 1]− Pr[D (ViewR∗ (〈C,R∗〉(0n))) = 1] ≤ δ(n)

◦ Statistical Binding. There exists an (unbounded) extractor EIdeal such that the following
holds: for every unbounded committer C∗, let τ be the transcript generated by the interaction
〈C∗,R〉(·) in the Commit phase. Then EIdeal(τ) outputs m̃Ideal such that the following holds:
After C∗ and R complete the Decommit phase, the probability that R outputs any value that
is not ⊥ or m̃Ideal is negligible.

De�nition 11 ((T , T ′, TC , δ)-Extractable Commitment Scheme). We say that a statistically bind-
ing, Thid-hiding commitment scheme is (T , T ′, TC , δ)-extractable if there exists a T -time uniform
oracle machine EReal such that the following holds against all TC-time adversarial committers C∗:
Ideal World. In the ideal world, there is a sampling procedure Samp with black-box access to C∗ that
samples a committer view ViewIdeal, which includes the committer's random coins and the transcript
〈C∗,R〉(·), together with some auxiliary output aux generated by the committer C∗, using uniform
random coins for the committer and receiver. Let EIdeal be the extractor for the transcript of ViewIdeal

that outputs ⊥ for any transcript not accepted by the veri�er, and otherwise outputs the message
embedded in the commitment guaranteed by statistical binding. Let m̃Ideal denote the message output
by EIdeal. The output of the ideal world ExpIdeal equals the joint distribution (ViewIdeal, m̃Ideal).
Real World. EReal obtains input committer views, denoted by random variable ViewReal via black-
box access to C∗, using uniform random coins for the committer and the receiver. The view ViewReal

consists of the committer's random coins and the transcript 〈C∗,R〉(·), together with some auxiliary
output aux generated by the committer C∗. EC∗Real outputs (ViewReal, m̃Real). Let τReal denote the
transcript from ViewReal, and let ExpReal = (ViewReal, m̃Real) be the output of the real world.

Then, we require that two conditions hold:

◦ Correctness:

Pr[EIdeal(τReal) = m̃Real] = 1− δ(n)

◦ T ′-Indistinguishability: For all T ′-time distinguishers D,∣∣Pr[D(ExpIdeal) = 1]− Pr[D(ExpReal) = 1]
∣∣ ≤ δ(n)
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Remark 2. In this paper, we will also consider commitment schemes with simultaneous messages,
that is, schemes where the committer and receiver simultaneously send messages to each other in
the same round. The messages for any round can only depend on messages sent in previous rounds,
and we only consider security against rushing adversaries, that wait for all honest messages being
sent in a round before generating their own message for the same round.

4.4 ZK with Super-polynomial Strong Simulation

We now de�ne zero-knowledge with strong simulation. Our de�nition is a variant of the de�nition
proposed by [Pas03].

De�nition 12 ((TΠ, TSim, Tzk, TL, δzk)-SPSS Zero Knowledge Arguments). We call an interactive
protocol between a PPT prover P with input (x,w) ∈ RL for some language L, and PPT veri�er V
with input x, denoted by 〈P, V 〉(x,w), a super-polynomial strong simulation (SPSS) zero-knowledge
argument if it satis�es the following properties and TΠ � TSim � Tzk � TL:

◦ Completeness. For every (x,w) ∈ RL, Pr[V outputs 1|〈P, V 〉(x,w)] ≥ 1 − negl(n), where
the probability is over the random coins of P and V .

◦ TΠ-Adaptive-Soundness. For any language L that can be decided in time at most TL, every
x, every z ∈ {0, 1}∗, and every poly-non-uniform prover P ∗ running in time at most TΠ that
chooses x adaptively after observing veri�er message, Pr[〈P ∗(z), V 〉(x) = 1 ∧ x 6∈ L] ≤
negl(n), where the probability is over the random coins of V.

◦ TSim, Tzk, δzk-Zero Knowledge. There exists a (uniform) simulator S that runs in time
TSim, such that for every x, every non-uniform Tzk-veri�er V

∗ with advice z, and every Tzk-
distinguisher D: |Pr[D(x, z,ViewV ∗ [〈P, V ∗(z)〉(x,w)]) = 1] −Pr[D(x, z,SV ∗(x, z)) = 1]

∣∣ ≤ δzk(n)

4.5 Secure Computation

We will �rst de�ne multi-party simulatable coin-tossing (with super-polynomial simulation), as
well as pseudorandom multi-party coin tossing. The de�nition of simulatable coin tossing will
follow [KOS03], except allowing for a super-polynomial time simulator.

De�nition 13 (Multi-party Simulatable Coin-Tossing with Super-polynomial Time Simulation [KOS03]).
An N -party protocol prot (for N = poly(n)), is a simulatable coin-�ipping protocol if it is an
(n− 1)-secure protocol (with super-polynomial time simulation) realizing the coin-�ipping function-
ality. That is, there exists some time bound T and a T -time simulator S such that for every PPT
adversary A corrupting at most (n − 1) parties, that the (output of the) following experiments
REAL(1n, 1λ) and IDEAL(1n, 1λ) are indistinguishable. Here we parse the result of running protocol
prot with an adversary A (denoted by REAL(1n, 1λ)) as a pair (c,ViewA) where c ∈ {0, 1}λ ∪{⊥} is
the outcome and ViewA is the view of the adversary A.

◦ Experiment REAL(1n, 1λ):

1. (c,ViewA)← REALprot,A(1n, 1λ)

2. Output (c,ViewA)

◦ Experiment IDEAL(1n, 1λ):

1. c′ ← {0, 1}λ
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2. c̃,ViewS ← SA(c′, 1n, 1λ)

3. If c̃ = c′,⊥ then output (c̃,ViewS)

4. Else output fail

De�nition 14 (Multi-party Pseudorandom Coin-Tossing). An N -party protocol prot (for N =
poly(n)), is a pseudorandom coin-�ipping protocol if it is a protocol where every party obtains output
c (or the adversary aborts), and the following is true. For any adversary A, we let C∗A denote the
distribution of c generated in REAL(1n, 1λ) (where c = ⊥ when the adversary aborts), we have for
any PPT distinguisher D that obtains auxiliary input z,

|Pr[D(r
$←{0, 1}λ, z) = 1]− Pr[D(c

$←C∗A, z) = 1]| ≤ Pr[A aborts] + negl(n)

5 Extractable Commitments

5.1 Construction

We describe our two-round extractable commitment scheme in Figure 3, where n denotes the security
parameter. We use the following primitives:

◦ Let com = com1, com2 denote a two-message statistically binding commitment scheme (which
can be constructed from one-way functions). This commitment must be (Tcom, δcom)-hiding
(this notation means that any Tcom-time machine has advantage at most δcom in breaking the
hiding of the commitment scheme).

◦ Let Π1,Π2 denote the messages of a two-round zero-knowledge argument with super-polynomial
time simulation (SPS-ZK), with non-uniform simulation (for delayed statements). This ar-
gument must be sound against adversaries running in time TΠ, except with probability δΠ.
Brute-force extraction of the witness from the argument should be possible in time Twext.
Zero-knowledge should hold such that adversaries running in time Tzk have advantage at most
δzk. Finally, the running time of the simulator is TSim. Known constructions of SPS-ZK allow
us to set these parameters as long as Tzk � Twext � TΠ � TSim.

◦ Let (S,R) be a special two-message two-party computation protocol for a function f that we
will de�ne in Figure 3. We require that the protocol achieve receiver input-hiding such that
malicious receivers running in time TMalR have advantage at most δMalR, and we require that
the protocol achieves sender input-indistinguishability such that malicious senders running in
time TMalS have advantage at most δMalS. We will set these parameters so that TMalR � TMalS,
which is a setting of parameters supported by known protocols.

Parameter Setting. The parameters m and p denote the challenge space and the length of
message being committed respectively, and will be set according to our applications. For this
section, it is useful, but not necessary, to assume that m = p = n.

We can set our parameters in any way so that 2m � (Tzk, TMalR, Tcom)� Twext � (TΠ, TMalS)�
TSim.

We will now prove the following main theorem.

Theorem 1. Assuming sub-exponentially hard DDH, sub-exponential one-way permutations and
sub-exponential ZAPs, the scheme in Figure 3 is an extractable commitment scheme according to
De�nition 11.
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Function f : The 2-party function f(x, y) is de�ned as follows. Parse y = ch. Parse x =
(b,M, r̃, r′). If b = 0, output ⊥. If b = 1, then check if r′ = ch. If so, output (M, r̃).
Otherwise, output ⊥.
Language L: We de�ne L = {(com1, τ1, c, τ2) : ∃r′, r̃,M,R : c = com2(m, r̃, com1), τ2 =
2PCS(τ1, x = (1,M, r̃, r′);R)}.
Committer Input: Message M ∈ {0, 1}p.
Commit Stage: Receiver Message.

◦ Pick challenge string ch
$←{0, 1}m.

◦ Compute τ1 = 2PCR(1n, ch).

◦ Compute Π1 as �rst message of Π for language L, com1 as �rst message of com, and
send ĉh = (τ1,Π1, com1) to the committer C.

Committer Message.

◦ Sample randomness r̃
$←{0, 1}N , and output c = com2(M ; r̃).

◦ Compute r′
$← {0, 1}m. Sample randomness R of length su�cient to compute τ2 =

2PCS(τ1, x = (1,M, r̃, r′);R).

◦ Generate Π2 as the second message of Π, proving that (com1, τ1, c, τ2) ∈ L.

◦ Send (c, τ2,Π2) to the receiver.

Veri�cation. The receiver accepts the commitment if and only if Π2 veri�es.
Reveal Stage: The committer reveals randomness r̃ to the receiver. The receiver accepts
the decommitment to message M if and only if c = com(m, r̃).

Figure 3: Two-Round Extractable Commitments

Lemma 1. The scheme in Figure 3 is statistically binding.

Proof. This follows from statistical binding of the underlying commitment scheme com.

Lemma 2. The scheme in Figure 3 satis�es (Thid, δhid)-hiding if: Thid � Tzk, TMalR, Tcom, and
2m � TMalR, and δhid � 2−m, δzk, δcom.

Proof. Suppose, for sake of contradiction, that there exist messages M0 6= M1, and malicious Thid-
time receiver R∗ and Thid-time distinguisher D, such that:

Pr[D (ViewR∗ (〈C,R∗〉(M0))) = 1]− Pr[D (ViewR∗ (〈C,R∗〉(M1))) = 1] > δhid(n)

We �rst consider a hybrid experiment Hybrid1 where the committer uses messageM0, but instead
of generating the message Π2 using knowledge of the witness for the statement (com1, τ1, c, τ2) ∈ L,
it executes the SPS ZK simulator to produce this statement. After this the experiment Hybrid1

outputs the view of the receiver R∗.
We now argue that

Claim 1.
Pr[D (ViewR∗ (〈C,R∗〉(M0))) = 1]− Pr[D (Hybrid1) = 1] ≤ δzk(n)
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Proof of Claim. Suppose not. First, non-uniformly �x the �rst message of the receiver R∗, and the
output of the SPS ZK simulator S1(Π1) = σ, in order to maximize the distinguishing advantage
of D. Now, suppose we obtain Π2 as honestly generated using the prover's algorithm � this yields
ViewR∗ (〈C,R∗〉(M0)). On the other hand, if we obtain Π2 as the output of the (polynomial-time)
simulator S2, then this yields Hybrid1. By invoking the SPS ZK property, and because Thid � Tzk,
the claim follows.

Observe that in Hybrid1, because of ZK simulation, no secrets are needed to compute Π2.
We next consider a hybrid experiment Hybrid2 that works the same as Hybrid1, except that

the committer computes τ2 = 2PCS(τ1, x = (0, 0p, 0N , 0m);R) instead of τ2 = 2PCS(τ1, x =
(1,M0, r̃, r

′);R).
We now argue that

Claim 2. There exists a constant c > 0 such that

Pr[D (Hybrid1) = 1]− Pr[D (Hybrid2)) = 1] ≤ 2−m · nc

Proof of Claim. Fix any y ∈ {0, 1}m. Now, let X1 be the distribution that always outputs x =

(0, 0p, 0N , 0m). Let X2 be the distribution that outputs x = (1,M0, r̃, r
′) where r̃

$← {0, 1}n and

r′
$←{0, 1}m. Then it follows immediately that

Pr[f(X1, y) = f(X2, y)] = 1− 2−m

As in the proof of the previous claim, non-uniformly �x the �rst message of the receiver R∗, and
the output of the SPS ZK simulator S1(Π1) = σ, in order to maximize the distinguishing advantage
of D. Recall again that the running time of the simulator S2 is polynomial-time. Now, suppose we
obtain τ2 = 2PCS(τ1, x = (0, 0p, 0N , 0m)) � this yields Hybrid2. On the other hand, if we obtain
τ2 = 2PCS(τ1, x = (1,M0, r̃, r

′)), then this yields Hybrid1.
By invoking the Sender Input-Indistinguishability property of the Special Two-Party Computa-

tion protocol, and because Thid � TMalR and 2m � TMalR, the claim follows.

Now observe that the only dependence onM0 in Hybrid2 is in the computation of the commitment
c = com2(M0), and no steps in Hybrid2 depend on the randomness used to generate this commitment.

Thus, we de�ne a hybrid experiment Hybrid3 that works the same as Hybrid2, except that the
committer computes c = com2(M1) instead of c = com2(M0) as in Hybrid2. We now have:

Claim 3.
Pr[D (Hybrid2) = 1]− Pr[D (Hybrid3)) = 1] ≤ δcom(n)

Proof of Claim. As in the proof of the previous claims, non-uniformly �x the �rst message of the
receiver R∗, and the output of the SPS ZK simulator S1(Π1) = σ, in order to maximize the
distinguishing advantage of D. Recall again that the running time of the simulator S2 is polynomial-
time. The claim then follows immediately from the de�nition of (Tcom, δcom)-hiding and the fact
that Tcom � Thid.

The lemma follows by carrying out the hybrid steps in reverse order with the message �xed to
M1.

Lemma 3. The scheme in Figure 3 is a (TExt, T
′
Ext, TC , δExt)-extractable commitment scheme, where

TExt = 2m · poly(n) · (1/δExt) · TC , and (T ′Ext, TC , Twext)� (TMalS, TΠ), and δExt � 2mδMalS.
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Proof. We begin by describing the extractor. The running time of the extractor (as an oracle
machine) will be TExt = 2m · (1/δExt) · log(1/δExt) ·m · nc for some constant c > 0. Here δExt will be
the extraction error; for most of our applications it will su�ce to set δExt ≤ negl(n). The extractor
proceeds as follows:

◦ Execute the following once. If Veri�cation fails, output the view of the malicious sender
and output ⊥ as the extracted value. Otherwise, repeat the following up to 2m · (1/δExt) ·
log(1/δExt) · m · n4 times, until success. We call an individual performance of the following
steps a trial :

1. Choose ch
$← {0, 1}m. Compute τ1 = 2PCR(1n, ch;R′) using uniform randomness R′.

Carry out the rest of the steps needed to compute the honest receiver's �rst message.

2. Query the malicious sender C∗ with this message, and obtain the sender's response
(c, τ2,Π2).

3. Verify the proof Π2. As written above, if this is the �rst attempt, if veri�cation fails,
the experiment will not continue. However, if this is not the �rst attempt, we consider
this a failure and move on to the next iteration. If veri�cation succeeds, use R′ and τ2

to compute the output of the special two-party computation.

4. If the output is ⊥, the extractor considers this a failure and moves on to the next attempt.

5. If the output is (M∗, r̃), then the extractor considers this a success, and outputs the view
of the malicious sender together with the message M∗ (for some applications, we also
require the extractor to output r̃). (Note that the extractor does not bother to check if
c = com2(M∗, r̃). Looking ahead, it will rely on the soundness of the ZK argument to
ensure that this happens often enough.)

We now analyze our extraction. We consider two cases:

◦ Case 1. Suppose Pr[(C∗,R) aborts] > 1 − δExt. In this case, observe that the extractor
also outputs aborting views with ⊥ as the extracted message with probability greater than
1 − δExt, as would happen in the Ideal experiment. Therefore, we have both correctness and
indistinguishability.

◦ Case 2. Suppose Pr[(C∗,R) aborts] ≤ 1− δExt.
Note that below, we will give the analysis conditioned on a non-aborting trial being output
by the extractor. The general case will follow for correctness because the probability of a
non-aborting trial exceeds δExt.

We �rst argue correctness, then we will argue indistinguishability.

We have that the probability of seeing at least one non-aborting view is at least 1 − ( δExt
n2·2m )

after q = (1/δExt) · log(1/δExt) · m · n3 independent trials, by a Cherno� bound. Since the
extractor performs q · 2m · n trials, by a union bound, except with probability 1− δExt/n, the
extractor obtains at least 2m · n non-aborting views with independently chosen ch.

Now we prove the following claim:

Claim 4. In any individual trial, conditioned on the trial not aborting, the probability that the
output of the special two-party computation is not ⊥ is at least 2−m(1−δ), where δ = δExt ·negl
and δExt � 2mδMalS.
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Proof of Claim. Suppose not. Recall that the special two-party computation produces a non-
⊥ output when the r′ chosen by the committer is equal to the ch chosen by the extractor
in the trial. By soundness of Π, then, we have that the probability that r′ = ch is below
2−m(1 − δ) + δΠ, where r

′ is obtained by running the witness extractor for Π, and ch is the
challenge chosen in the extraction trial.

We will use this to contradict the Receiver Input-Hiding Security of the Special Two-Party
Computation protocol. To do so, we describe our reduction algorithm Â and distinguisher D̂
for the Receiver-Input Hiding Security game.

The reduction Â simply chooses two challenges ch1, ch2
$← {0, 1}m at random, and creates

auxiliary information consisting of these two challenges.

Now, our distinguisher D̂ will obtain as input either τ1 = 2PCR(1n, ch = ch1; rR) or τ1 =
2PCR(1n, ch = ch2; rR). The distinguisher now does the following:

� It generates the �rst message of the SPS ZK system Π1 and the �rst message of the
commitment com1 honestly.

� It then runs the malicious sender C∗ on the message (τ1,Π1, com1), obtaining the view
View of the sender.

� If the proof message Π2 within View does not verify, the distinguisher aborts.

� It then runs the ZK witness extraction procedure to obtain (r′,M) from the proof message
Π2 within View. If the witness extraction fails (which can happen with probability δΠ),
the distinguisher aborts and outputs ⊥.

� If r′ = ch1, it outputs 1. Otherwise, it aborts and outputs ⊥.

Let us now analyze the probability that D̂ outputs 1 in the two cases of ch = ch1 and
ch = ch2. If ch = ch1, then by assumption, we have that, conditioned on a non-aborting trial,
Pr[D̂ = 1|ch = ch1] < 2−m(1− δ) + 2δΠ. On the other hand, if ch = ch2, then no information
about ch1 is given to the distinguisher D. Therefore, conditioned on a non-aborting trial,
Pr[D̂ = 1|ch = ch2] ≥ 2−m − δΠ. This is a contradiction, if |3δΠ − 2−m · δ| > δMalS. In
particular, we have a contradiction if 2−mδ � δMalS and δΠ � δMalS. Note that we also used
(TMalS, TΠ)� (Twext, TC), where TC is the running time of the committer.

Correctness then follows from a Cherno� bound and the facts that 2mδΠ � 2−m and 2m/TMalS �
2−m.

Now we proceed to the proof that the extraction produces views and extracted messages that are
indistinguishable from views and extracted messages drawn from the real distribution. Note that
below, we will give the analysis conditioned on a non-aborting trial being output by the extractor.
The general case will follow simply because the aborting views output by the extractor are identically
distributed to aborting views output in the Ideal experiment, and therefore no distinguisher can gain
an advantage on seeing aborting views. Let's suppose that there is a distinguisher that distinguishes
between the Real and Ideal experiments for extraction. In other words, we have a TC-time committer
C∗ and distinguisher D such that:∣∣Pr[D(ExpIdeal) = 1]− Pr[D(ExpReal) = 1]

∣∣ > δExt(n)

Without loss of generality, we can assume that there exists a probability p such that:

Pr[D(ExpIdeal) = 1] = p− δ
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and
Pr[D(ExpReal) = 1] = p

where δ > δExt(n) (if δ < −δExt(n), we can �ip the output of the distinguisher).
We will use this distinguisher to contradict the Receiver Input-Hiding Security of the Special

Two-Party Computation protocol. To do so, we �rst describe our reduction algorithm Â and dis-
tinguisher D̂ for the Receiver-Input Hiding Security game.

The reduction Â simply chooses two challenges ch1, ch2
$←{0, 1}m at random, and creates aux-

iliary information consisting of these two challenges.
Now, our distinguisher D̂ will obtain as input either τ1 = 2PCR(1n, ch = ch1; rR) or τ1 =

2PCR(1n, ch = ch2; rR). In a nutshell, D̂ will extract (via brute-force) the underlying committed
value, and feed this to distinguisher D together with the view. However, since receiver input-hiding
holds even against D̂ that breaks hiding of the commitment scheme, we will get a contradiction.

The distinguisher now does the following:

◦ It generates the �rst message of the SPS ZK system Π1 and the �rst message of the commit-
ment com1 honestly.

◦ It then runs the malicious sender C∗ on the message (τ1,Π1, com1), obtaining the view View
of the sender.

◦ If the proof message Π2 within View does not verify, the distinguisher aborts.

◦ It then runs the ZK witness extraction procedure to obtain (r′,M) from the commitment
message within View. If the witness extraction fails (which can happen with probability δΠ),
the distinguisher aborts and outputs ⊥.

◦ If r′ = ch1, it outputs D(View,M). Otherwise, it aborts and outputs ⊥.

Now, we analyze two cases.
Suppose ch = ch1. Observe that if r′ = ch1, then by correctness of extraction, this is the

distribution that corresponds to the output of ExpReal. In this case, conditioned on a non-aborting
run, by Claim 4, we have that Pr[r′ = ch1|ch = ch1] ≥ 2−m(1 − δExt · negl). Thus, Pr[D̂ = 1|ch =
ch1] ≥ p · 2−m(1− δExt · negl)− δΠ.

Suppose ch = ch2. Observe that this is the distribution that corresponds to the output of ExpIdeal.
In this case, no information about ch1 is given to the adversary. Thus, conditioned on a non-aborting
run, we have that Pr[r′ = ch1|ch = ch2] ≤ 2−m. Thus, Pr[D̂ = 1|ch = ch2] ≤ (p− δ) · (2−m) + δΠ.

As long as 2−mδExt � δMalS, and δΠ � δExt, and (TC , T
′
Ext, Twext) � (TMalS, TΠ), we reach a

contradiction, and the lemma follows.

Remark 3 (Uniform Reduction for Hiding). The SPS ZK used in the construction can be replaced by
two-message delayed-input strong WI [JKKR17] in order to obtain a uniform reduction that proves
hiding of the extractable commitment, however then the protocol no longer remains public-coin.

Remark 4 (Public Coins). Assuming that Π is public-coin, and that 2PC is a T ′-oblivious special
two-party computation protocol, the receiver can use oSamp to sample uniformly random coins in
order to generate the �rst message for 2PC. This results in the protocol in Figure 3 being public
coin.
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5.1.1 Modi�ed Extractable Commitment

We remark that the extractable commitment scheme speci�ed above, can be modi�ed so that the
commitment com is a non-interactive, statistically binding commitment (that can be based on
injective one-way functions).

If required, the SPS ZK can also be replaced with SPSS ZK (described in the next section,
Section 5.2)9. Replacing SPS ZK with SPSS ZK in the construction of extractable commitments,
would yield a uniform simulation strategy that runs in time TSim (which is superpolynomial, yet less
than all other parameters in the system) for proving hiding of the commitment scheme. Essentially
the same proof of extraction goes through for , except that witness extraction from the ZK argument
is performed using the extractable commitment that is within the SPSS ZK argument.

These modi�cations are not necessary for Section 6, but will be used in Section 7.

5.2 SPSS Zero Knowledge from Extractable Commitments

Our SPSS ZK protocol is described in Figure 4. We let n denote the security parameter.
We assume the existence of a two-round extractable commitment scheme, according to De�ni-

tion 11, that is (Thid, δhid)-hiding and (TExt, T
′
Ext, TC , δExt)-extractable, where TC � TExt, TExt �

Thid � T ′Ext, and δExt = negl(n). We denote its messages by ext-com1, ext-com2(m; r).
We also assume the existence of a two-round witness-indistinguishable proof, denoted by zap

such that adversaries running in time Twi have advantage at most δwi.
Finally, we assume the existence of a non-interactive commitment scheme com. The public-coin

version of our protocol assumes a non-interactive commitment scheme from one-way permutations,
such that every string corresponds to a valid commitment. We only describe the public-coin version
for simplicity. The private coin version can be obtained by replacing the commitment sent by the
receiver with two commitments, along with a NIWI proof that one of the two is well-formed. We
assume that com is hard to invert by adversaries running in time Thid−com, and can be broken (via
brute-force) in time Tcom, where Thid−com � Tcom.

It is straightforward to observe (by correctness of the zap) that the protocol satis�es correctness.
We prove the following theorems about soundness and ZK properties of the protocol. We will
leverage parameters so that TΠ � TSim � Tzk � TL in the following theorems, which will imply
SPSS ZK. We prove the following two theorems.

Theorem 2 (TΠ-Adaptive-Soundness). For any language L that can be decided in time at most TL,
every x, every z ∈ {0, 1}∗, and every poly-non-uniform prover P ∗ running in time at most TΠ that
chooses x adaptively after observing veri�er message, Pr[〈P ∗(z), V 〉(x) = 1 ∧ x 6∈ L] ≤ negl(n),
where the probability is over the random coins of V; assuming that (TΠ · TExt) � Thid−com, and
TL � T ′Ext.

Proof. Suppose there exists a TΠ-time prover P ∗ that chooses x 6∈ L in the last round, and over the
random choice of x 6∈ L, Pr[〈P ∗(z), V 〉(x) = 1] > 1

poly(n) .
Then, consider reduction R to the hiding of com, which obtains com for the �rst message

externally (as a commitment toM , whereM is either r1
$←{0, 1} or r2

$←{0, 1}) and then constructs
committer C∗ using the malicious prover, with the receiver and sender messages for ext-com and
with the rest of the proof transcript as auxiliary information aux.

9We point out that SPSS ZK itself makes use of an extractable commitment. This means that SPS ZK is used to
build ext-com1, which will be used to construct SPSS ZK, which in turn would be used to construct ext-com2.
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Prover Input: Instance x, witness w such that R(x,w) = 1.
Veri�er Input: Instance x.

1. Veri�er V sends e1 = ext-com1, e
′
1 = ext-com′1 to V , together with c = com(s; r) for

s
$←{0, 1}n, r $←{0, 1}∗ and zap1.

2. Veri�er V picks s′
$← {0, 1}n, (r′, s̃) $← {0, 1}∗, computes e2 = ext-com2(s′; r′) and e′2 =

ext-com′2(w; r′′). It also computes zap2 proving:

∃w, r′′ such that w is a witness for x ∈ L ∧ e′2 = ext-com′2(w; r′′)OR

∃(s′, r′, r) such that e2 = ext-com2(s′; r′) ∧ c = com(s′; r).

It then sends (e2, zap2) to P .

3. Veri�cation. The veri�er accepts (outputs 1) if and only if zap veri�es.

Figure 4: Two Round SPSS ZK Arguments

Since, with probability at least 1
poly(n) , the TΠ-time prover P ∗ outputs an accepting transcript

for x 6∈ L, by soundness of the zap, we have that with probability at least 1
poly(n) , P

∗ generates an

extractable commitment to s′ = M .
R runs the extractor for ext-com on C∗ � this takes time at most TΠ · TExt. The extractor

outputs (aux,ViewP , P ) that is indistinguishable except with negligible advantage (by TExt-time
distinguishers) from the joint distribution of the view and value generated by the prover in ext-com
in a random execution.

Since T ′Ext = TL, this also implies that with probability at least 1
poly(n) , the transcripts indeed

have x 6∈ L (as otherwise a TL-time distinguisher would distinguish the real extracted values from
ideal extracted values), thus the value output by the extractor is identical to M with signi�cant
probability.

This gives the reduction R non-negligible advantage in guessing the external challenge commit-
ment com. Since (TΠ · TExt) � Thid−com, this is a contradiction to the hiding of the commitment
scheme com.

Theorem 3 ((Tzk, δzk)-Zero-Knowledge). There exists a simulator S that runs in time TSim such
that for every x, every Tzk veri�er V ∗ and every Tzk distinguisher D,∣∣∣Pr[D(x, z,ViewV ∗ [〈P, V ∗(z)〉(x,w)]) = 1]− Pr[D(x, z,SV ∗(x, z)) = 1]

∣∣∣ ≤ δzk(n)

assuming that Tcom ≤ TSim � Tzk � Thid, Tzk � Twi, δhid ≥ δzk, δzap ≥ δzk.

Proof. The simulator Sim works as follows: it runs in time Tcom to break (via brute-force) the string
c and extract randomness (s, r). It then generates the prover message by picking randomness r′,
generating e2 = ext-com2(s; r′), and generating zap2 using (s, r, r′) as witness. Thus, the running
time of the simulator, TSim ≥ Tcom.

In order to prove zero-knowledge, we consider the following hybrids.
Hybrid0 : This corresponds to an honest execution where the prover uses the witness to compute

the ZK argument.
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Hybrid1 : In this hybrid, the simulator runs in time Tcom to break (via brute-force) the string
c and extract randomness (s, r). It then generates the prover message by picking randomness r′,
generating e2 = ext-com2(s; r′), but still generates zap2 using the real witness w for x ∈ L. Here,
the running time of the simulator is Tcom � Thid. By (Thid, δhid)-hiding of the ext-com, this hybrid
is indistinguishable from Hybrid0 with advantage at most δhid against Thid-time distinguishers.

Hybrid2 : This hybrid corresponds to the simulator strategy, which is the same as Hybrid1, except
that the simulator generates zap2 using (s, r, r′) as witness. Here, the running time of the simulator
is Tcom � Twi. By (Twi, δwi)-witness indistinguishability of the zap, this hybrid is indistinguishable
from Hybrid1 with advantage at most δwi against Twi-time distinguishers.

This proves that no Tzk-time veri�er V ∗ and distinguisher D that distinguish the real view from
the simulated view with advantage better than δwi, if Tzk � Twi and Tzk � Thid.

We note that this construction of SPSS ZK allows us to set parameters such that Twext � TΠ �
TSim � Tzk � TL, where Twext is the time taken to extract the distribution of witnesses by extracting
from the extractable commitment. Furthermore, we can use this SPSS ZK safely with any languages
that can be decided in some a-priori bounded time, by setting TL to be large enough. For the rest
of this paper, while using SPSS ZK, we will assume that TL is always set large enough.

6 Non-malleable Commitments

6.1 Non-Malleable Commitments for Two Tags

We begin by describing the �rst (simpler) construction of non-malleable commitments for two tags.
Here, in addition to the assumptions required for extractable commitments, we assume the

existence of a non-interactive statistically binding commitment scheme, with security parameter
κ, that can be broken (via brute-force) in time 2κ, and whose security holds against adversaries
running in time 2κ

ε
for some ε > 0. Such a scheme exists assuming sub-exponential injective one-way

functions. We set parameters for the protocol as follows.

◦ If tag = 0, we will use the extractable commitment scheme from Figure 3 which satis�es
De�nition 11 that has:

� Security parameter n

� Hiding against malicious receivers running in time at most 2n
ε · poly(n) for constant ε

� An extractor that runs in time 22m(n) for m(n) = nε
3

2

◦ If tag = 1, we will use a non-interactive statistically binding commitment scheme that has:

� Security parameter ñ = nε: thus can be broken via brute-force in time 2ñ

� Hiding against malicious receivers running in time at most 2ñ
ε · poly(n) for constant ε

Statistical binding and computational hiding of the scheme follow from the statistical binding
and computational hiding properties of the underlying extractable commitment scheme.

We will now sketch the proof of non-malleability (for intuition). Formal proofs can be found
in Section 6.2. We let tag denote the tag used by an honest committer, participating in the left
execution, and let tag′ 6= tag denote the tag used by the MIM participating in a right execution of
the protocol. We only discuss the synchronous case here, since extractability makes the proof trivial
in the asynchronous setting.

The simulator strategy is as follows: the simulator Sim generates c an honest commitment to 0,
and outputs the transcript generated by the man-in-the-middle MIM on input this commitment c.
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Proof Sketch: Non-malleability when tag = 0, tag′ = 1. Our parameters are carefully aligned
so that in this situation, the commitment scheme for tag = 0 is hiding against malicious receivers
running in time at most 2n

ε · poly(n) (thus such receivers have advantage at most negl(n)). On the
other hand, the commitment scheme for tag = 1 can be broken via brute-force in time at most 2n

ε
.

Thus, we consider a reduction R that obtains (externally) for tag = 0, a string c which is a
commitment to msg, where msg is either M or 0, and runs the (PPT) MIM to obtain the view
ViewMIM generated by the MIM. R then runs in time at most 2n

ε
to extract (via brute-force) the

value valMIM committed by the MIM in ViewMIM. Then, if there exists a PPT distinguisher D such
that:

Pr[D(ViewReal, valReal) = 1]− Pr[D(ViewIdeal, valIdeal) = 1] ≥ negl(n),

R just echoes the output of D such that:

Pr[D = 1|msg = M ]− Pr[D = 1|msg = 0] ≥ negl(n)

Since the running time of R is at most 2n
ε · poly(n), this contradicts hiding of the commitment

scheme for tag = 0.

Proof Sketch: Non-malleability when tag = 1, tag′ = 0. Our parameters are carefully aligned
so that in this situation, the commitment scheme for tag = 1 is hiding against malicious receivers

running in time at most 2n
ε2 · poly(n) (thus such receivers have advantage at most negl(n)). On the

other hand, the commitment scheme for tag = 1 is extractable via an extractor that runs in time

at most 2n
ε3

.
Then, we consider the following reduction R, that obtains (externally) for tag = 1, a string

c which is a commitment to msg, where msg is either M or 0, and uses the MIM to construct
committer C∗ that on input receiver message, runs the MIM, with auxiliary input c, and outputs
the commitment generated by the MIM together with auxiliary information c.

R then runs the extractor in time at most 2n
ε3

on the (PPT) committer C∗ to obtain output
(ViewMIM, valMIM) that includes c as the commitment generated with tag = 1. We remark that it is
important that extraction from MIM can be done using the single externally obtained challenge as
auxiliary input c.

Then, if there exists a PPT distinguisher D such that:

Pr[D(ViewMIM, valMIM) = 1|msg = M ]− Pr[D(ViewMIM, valMIM) = 1|msg = 0] ≥ negl(n),

R just echoes the output of D such that:

Pr[D = 1|msg = M ]− Pr[D = 1|msg = 0] ≥ negl(n)

Since the running time of R is at most 2n
ε3 · poly(n), this contradicts hiding of the commitment

scheme for tag = 1.

6.2 Non-Malleable Commitments for Four Tags

We now describe and formally prove security of a construction of non-malleable commitments for
four tags.

Besides the assumptions required for extractable commitments, we assume the existence of a
non-interactive statistically binding commitment scheme, with security parameter κ, whose security
holds against adversaries running in time 2κ

ε
for some ε > 0. Such a scheme exists assuming

sub-exponential injective one-way permutations. We set parameters for the protocol as follows.
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1. If tag ∈ [1, 3], we will use the extractable commitment scheme from Figure 3 which
satis�es De�nition 11 and has:

◦ Security parameter ntag = nε
tag
,mtag = tag · nε100 .

◦ Can be broken via brute-force in time 2ntag .

◦ (2ntag
ε·poly(n), 2−mtag · nc)- hiding against malicious receivers, for some c, ε.

◦ An extractor that runs in time 2mtag · nc for some c.

2. If tag = 4, we will use a non-interactive statistically binding commitment scheme that
has:

◦ Security parameter n4 = nε
4
,m4 = 4 · nε100 .

◦ Can be broken via brute-force in time 2n4 .

◦ (2n4
ε · poly(n), 2−m4 · nc)- hiding against malicious receivers, for some c, ε.

Figure 5: Non-malleable Commitments for Four Tags

Lemma 4. The commitment scheme in Figure 5 is statistically binding and computationally hiding.

Proof. The statistical binding and computational hiding properties (against PPT adversaries) follow
from the statistical binding and computational hiding of the underlying extractable commitment
scheme (for tag ∈ [1, 3]) or non-interactive commitment scheme (for tag = 4).

Theorem 4. The scheme in Figure 5 is a non-malleable commitment scheme according to De�ni-
tion 5, for 4 tags.

Proof. We let tag denote the tag used by an honest committer, participating in the left execution,
and let tag′ 6= tag denote the tag used by the MIM participating in a right execution of the protocol.
We only discuss the synchronous case here, which is strictly harder to prove than the asynchronous
case (extractability makes the proof trivial in the latter case).

Let viewReal(M) denote the view and valReal(M) denote the value committed by the MIM in the
real execution when the honest committer generates a commitment to some message M in the real
world.

The simulator Sim generates an honest commitment to 0 with randomness r, and outputs the
view generated by theMIM on input the honest commitment to 0. This corresponds to the simulated
view in the ideal world. Let viewIdeal denote the view and valIdeal denote the value committed by
the MIM in the ideal execution in the ideal world.

Then for anyM and any PPT distinguisher D that obtains input the view and value committed
by the MIM, we will show that: Pr[D(viewReal(M), valReal(M)) = 1]−Pr[D(viewIdeal, valIdeal) = 1] ≤
negl(n)

The rest of our analysis is split into two cases.

Case I: Non-malleability when tag < tag′. Our parameters are carefully aligned such that

the commitment scheme for tag is (2n
εtag+1

· poly(n), 2−mtag · nc)-hiding against malicious receivers,

while the commitment scheme for tag′ can be broken (via brute-force) in time 2n
εtag
′

to extract
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the underlying committed message. Thus, the proof of non-malleability of this case follows from a
complexity leveraging argument.

We consider a reduction R that obtains a commitment c with tag from an external challenger,
to either M or to 0, and R will use MIM and the non-malleability distinguisher D, to break hiding
of the commitment scheme for tag as described below.
R runs the PPT MIM, with the left commitment substituted by the externally obtained chal-

lenge, and obtains the view ViewMIM generated by the MIM. R then runs in time at most 2n
εtag
′

to
extract (via brute-force) the value committed in the commitment generated by the MIM in ViewMIM.
Then, if there exists a PPT distinguisher D such that:

Then, if there exists a PPT distinguisher D such that:

Pr[D(ViewReal(M), valReal(M)) = 1]− Pr[D(ViewIdeal, valIdeal) = 1] ≥ 1

poly(n)
,

R just echoes the output of D such that:

Pr[D = 1|msg = M ]− Pr[D = 1|msg = 0] ≥ 1

poly(n)

Since tag′ ≥ tag + 1, the running time of R is at most 2n
εtag
′

· poly(n) ≤ 2n
εtag+1

· poly(n), R can

use D and the MIM to break (2n
εtag+1

·poly(n), 2−mtag ·nc)-hiding of the commitment scheme for tag.
This proves that the joint distribution of the view and value committed by the MIM is indistin-

guishable in the real and ideal worlds, in the case when tag < tag′.

Case II: Non-malleability when tag > tag′. Our parameters are carefully aligned such that the

commitment scheme for tag is (2n
εtag+1

·poly(n), 2−mtag ·nc)-hiding against malicious receivers, while
commitment scheme for tag′ is extractable via an extractor that runs in time at most 2mtag′ · nc′ .
Thus, the proof of non-malleability of this case follows from extractability of the commitment scheme
for tag′.

We will describe the reduction R that proves non-malleability, but we �rst describe an interme-
diate committer C∗ on which R will run the extractor of the extractable commitment scheme.

The intermediate committer C∗. We use the MIM to construct committer C∗ that does the
following. C∗ on input a receiver message for tag′, runs the MIM. If the MIM generates a receiver
message corresponding to tag, C∗ queries the reduction R to obtain an external commitment for tag,
corresponding to the receiver message generated by the MIM. On input this external commitment,
the MIM outputs its own commitment for tag′. C∗ then outputs the commitment generated by the
MIM corresponding to tag′ as ViewC∗ , and as auxiliary information auxC∗ , it outputs the commitment
for tag.

The reduction R. Next, consider a reduction R against (2n
εtag+1

· poly(n), 2−mtag · nc)-hiding of
the commitment scheme for tag. R runs the extractor on malicious committer C∗, while answering
the queries of C∗. The extractor runs in time at most 2mtag′ · nc′ , and thus C∗ may make at most
2mtag′ · nc′ queries to R. R responds to these queries by invoking the challenger for the hiding of
the commitment scheme for tag, everytime a query is issued.

Finally, the extractor outputs a (View′,Value′, aux′)

35



Then, if there exists a PPT distinguisher D such that:

Pr[D(ViewReal(M), valReal(M)) = 1]− Pr[D(ViewIdeal, valIdeal) = 1] ≥ 1

poly(n)
,

R just echoes the output of D on input the joint distribution (View′, aux′,Value′).

The challenger. This challenger sample b
$← {0, 1}, and if b = 0, it sets msg = 0, else it sets

msg = M . Then on input a (malicious) receiver message outputs a commitment (using fresh
randomness) tomsg. It repeats this 2mtag′ ·nc′ times, thereby providing the receiver 2mtag′ ·nc′ di�erent
commitments to the same msg. Since the commitment scheme for tag is (2n

εtag+1

· poly(n), 2−mtag ·
nc)-hiding, a simple hybrid argument accross all commitments provided by the challenger implies

that no malicious receiver running in time at most 2n
εtag+1

· poly(n) has advantage better than

(2mtag′ · nc′) · (2−mtag · nc) = 2mtag′−mtag · nc′−c ≤ 2n
ε100 · nc−c′ .

Putting things together. Note that the joint distribution (ViewC∗ , auxC∗ ,ValueC∗) is exactly the
distribution (ViewReal(M), valReal(M)) i� b = 1. And, the joint distribution (ViewC∗ , auxC∗ ,ValueC∗)
is exactly the distribution (ViewIdeal, valIdeal) i� b = 0.

Thus, the PPT distinguisher D is such that:

Pr[D(ViewC∗ , auxC∗ ,ValueC∗ |b = 1) = 1]− Pr[D(ViewC∗ , auxC∗ ,ValueC∗ |b = 0) = 1] ≥ 1

poly(n)

By correctness of extraction, we also have that the joint distribution (View′,Value′, aux′) is
indistinguishable (such that all PPT distinguishers have at most negl(n) distinguishing advantage)
from the joint distribution (ViewC∗ ,ValueC∗ , auxC∗).

Thus, the PPT distinguisher D is such that:

Pr[D(View′, aux′,Value′|b = 1) = 1]− Pr[D(View′, aux′,Value′|b = 0) = 1] ≥ 1

poly(n)

Therefore, R runs in time at most 2mtag′ ·nc′ � 2n
εtag+1

·poly(n) to generate the joint distribution
(View′, aux′,Value′), and then echoes the output of D on input this distribution, we have that:

Pr[R = 1|b = 1]− Pr[R = 1|b = 0] ≥ 1

poly(n)
.

This is a contradiction to the fact that no malicious receiver running in time at most 2n
εtag+1

·
poly(n) has advantage better than 2n

ε100 · nc−c′ in guessing the bit b.
This proves that the joint distribution of the view and value committed by the MIM is indistin-

guishable in the real and ideal worlds, even in the case when tag > tag′.
We reiterate that even though we rely on a sub-exponential time reduction, our �nal simulator

is only polynomial time, and speci�cally, generates the required transcript by honestly committing
to 0 corresponding to tag.
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6.3 Bounded-Concurrent Non-malleability for Four Tags

In this section, we describe how to extend the previous scheme to obtain bounded concurrent non-
malleability for four tags.

Let `(n) be a polynomial that denotes an upper bound on the number of sessions in which the
MIM participates as committer. It will su�ce to show one-many non-malleability, that is, we will
consider the setting where the MIM interacts with the honest committer in only one execution, and
generates at most `(n) commitments to honest receiver(s). This already implies many-many non-
malleability even when the MIM interacts with honest committer(s) in an unbounded polynomial
number of executions, and generates at most `(n) commitments to honest receiver(s).

We consider the same scheme as Figure 5, except that we set mtag = tag · `(n)tag · nε100 . For

this section, we assume that `(n)4 � nε
100

, but we can change parameters such that `(n)4 is small
enough. 10

Theorem 5. The scheme in Figure 5, with mtag = tag · `(n) · nε100 , is an `(n)-bounded-concurrent
non-malleable commitment scheme according to De�nition 6.

Proof. In this case, the MIM participates in `(n) right sessions, and we let {tag′1, tag′2, . . . tag′`(n)
denote the set of tags used by the man-in-the-middle in all these right sessions. We also assume,
w.l.o.g., that tag 6∈ {tag′1, tag′2, . . . tag′`(n)}.

Then, we let Ssmall denote the subset of right sessions such that tag′i < tag i� i ∈ Ssmall. And we
let Sbig denote the subset of right sessions such that tag′i > tag i� i ∈ Sbig.

Our parameters are carefully aligned such that the commitment scheme for tag is (2n
εtag+1

·
poly(n), 2−mtag ·nc)-hiding against malicious receivers. On the other hand, the commitment schemes
for tag′ ∈ Ssmall are extractable via an extractor that runs in time at most 2mtag′ · nc′ . And the

commitment schemes for tag′ ∈ Sbig can be broken (via brute-force) in time 2n
εtag
′

to extract the
underlying committed message.

Thus, the reduction strategy will be to run the extractors for the extractable commitment
schemes in parallel, for sessions where tag′ ∈ Ssmall. On the other hand, the reduction extracts the
committed value value brute-force, from sessions where tag′ ∈ Sbig. Note that the reduction must
extract the joint distribution of values committed by the MIM together with the joint view, while
trying to contradict hiding of comtag using an MIM that succesfully carries out a malleation attack.

Unfortunately the extraction strategy for the extractable commitments, when executed on one
committer generating a single commitment with respect to some tag, outputs some commitment
transcript together with the underlying committed value. Thus, executing the extraction strategy
separately on all right sessions where tag′ ∈ Ssmall is not guaranteed to extract the joint distribution
of values committed by the MIM (and may potentially be extracting values for di�erent tag′ from
di�erent executions).

However, it is easy to observe that the extraction strategy in Section 5 can be extended, to
run in time 2K(n), where K(n) = Σi∈Ssmall

mtag′i
≤ `(n)mtag−1, to simultaneously extract the values

committed in all the MIM's right sessions corresponding to tag′ ∈ Ssmall. The extended extractor
simply waits for a situation where all of the MIM's commitment transcripts for tag′ ∈ Ssmall get
extracted together. The reduction then uses this extended extraction strategy to jointly extract

10Our later tag ampli�cation procedures require roughly O(log∗ n) levels of hardness above 2m, and therefore

impose a stricter bound on `(n). In general, we can handle any `(n) ≤ O(nε
T

), where T are the number of levels
of tag ampli�cation. In order to achieve non-malleability for all tags in [2n], we would end up requiring T = log∗ n

(see Section 6.4), thus we require `(n) ≤ O(nε
(log∗ n)

). On the other hand, for any constant number of tags, we can
handle any a-priori �xed polynomial `(n), by suitably increasing other parameters in the scheme.
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all values from sessions where tag′ ∈ Ssmall in time at most 2`(n)·mtag−1 � 2mtag . It simultaneously
extracts the joint distribution of values committed by the MIM in sessions where tag′ ∈ Sbig,

thereby using a successful MIM to contradict (2n
εtag+1

·poly(n), 2−mtag ·nc)-hiding of the commitment
scheme.

Remark 5. We note that the resulting bounded-concurrent scheme can easily be made non-malleable
against adversaries running in time T̃ , where 2mtag � T̃ � Thid for all mtag, by setting parameters

so that T̃ · 2mtag � Thid, where Thid refers to the hiding parameters of commitments.

6.4 Round-Preserving Tag Ampli�cation

In this section, we present a round-preserving ampli�cation technique that helps bootstrap any `(n)-
bounded-concurrent non-malleable commitment scheme for 4 tags into an `(n)-bounded-concurrent
non-malleable commitments for all tags/identitites in [2n].

We now describe a compiler from a two-round non-malleable commitment scheme denoted by

com1,tag, com2,tag(m; r) for tags in [t], into a non-malleable commitment scheme for tags in [

(
t
t/2

)
].

We assume that the input two-round non-malleable commitment scheme comtag(m; r) for tags
in [t] can be broken (via brute-force) in time at most T (In other words, T = 2n where n is the
maximum security parameter out of the security parameters of all components of the non-malleable
commitment for tag ∈ [t].) We also assume the existence of two-message SPSS ZK for delayed-input
statements, such that Tzk � T � Tsim. Finally, we require the underlying two-round non-malleable
commitment scheme com1,tag, com2,tag(m; r) for tags in [t] to be non-malleable against adversaries
running in time Tsim. In particular, this also means that the ZK arguments used in the input
two-round non-malleable commitment scheme com1,tag, com2,tag(m; r) are sound against adversaries
running in time Tsim.

Then the compiler in Figure 6 gives a two round scheme that is `(n)-bounded-concurrent non-

malleable for tags in [T ], where T =

(
t
t/2

)
. This compiler can be applied iteratively (log∗ n) times,

starting with a scheme for 4 tags, to obtain a scheme for tag ∈ [2n]. The resulting scheme can easily
be made to have polynomial running time and polynomial communication complexity.

Claim 1. The protocol in Figure 6 is a statistically binding, computationally hiding commitment.

Proof. Statistical binding of the protocol in Figure 6 follows directly from the statistical binding
property of the underlying commitment scheme. Computational hiding follows by the hiding of the
underlying commitments, and the SPS ZK property of Π, via a sequence of hybrids.

In order to prove computational hiding, we consider the following series of hybrid experiments:
Hybrid0 : The output of this hybrid is the receiver's view when the committer sends a commitment
to message M .

Hybrid1 : The output of this hybrid is the receiver's view when the challenger sends a commit-
ment to message M the same way as Hybrid0, except that it sends a simulated SPSS ZK argument.
The view is indistinguishable from Hybrid0 by the simulation security of the SPSS ZK argument.

Hybrid2 : In this hybrid, the challenger proceeds the same way as Hybrid1 except that it gener-
ates c1 = com2,s1(0; r1). The view is indistinguishable from Hybrid1 by the hiding of the underlying
commitment coms1 . The challenger proceeds the same way across Hybrid3, . . .Hybridt/2+1, replacing
ci = com2,si(0; ri) for i ∈ [t/2].
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Language L: We de�ne L = {{ci, comsi}i∈[t/2] : ∃M, ri : ci = comsi(M ; ri)}.

Committer Input: Message M ∈ {0, 1}p, tag tag ∈ [1, T ], where T =

(
t
t/2

)
.

Receiver Input: Tag tag.

Commit Stage:

1. Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith

element in set T, for i = tag. Let this element be denoted by (s1, . . . st/2).

2. Receiver Message. Send Π1 as the �rst message of Π for language L, and com1,s for
s ∈ [s1, s2, . . . st/2] as the �rst messages of the non-malleable commitment scheme for
small tags.

3. Committer Message. For i ∈ [t/2], sample randomness ri
$← {0, 1}∗ and send ci =

com2,si(M ; ri) to R. Also, send Π2 proving that:

{ci, comsi}i∈[t/2] ∈ L

4. The receiver accepts the commitment if Π veri�es and all t/2 commitments are accept-
ing.

Reveal Stage: The committer reveals randomness r1, r2, . . . rt/2 to the receiver. The receiver
veri�es that all the commitments were correctly decommitted.

Figure 6: Round-Preserving Tag Ampli�cation

Hybridt/2+1 : In this hybrid, the challenger generates ci = com2,si(0; ri) for i ∈ [t/2], while simulating
the SPSS ZK proof. The view is indistinguishable from Hybrid2 by the hiding of the underlying
commitments.

Hybridt/2+2 : In this hybrid, the challenger generates ci = com2,si(0; ri) for i ∈ [t/2] and then
general the SPSS ZK argument honestly. The view is indistinguishable from Hybridt/2+1 by the
simulation security of the SPSS ZK argument.
This hybrid also represents an honestly generated commitment to 0, thus, we have that a commit-
ment to m is computationally indistinguishable from a commitment to 0.

We have the following main theorem for tag ampli�cation.

Theorem 6. Assuming the existence of (sub-exponentially secure) two-round SPSS ZK for delayed-
input statements, there exists a compiler that compiles a (sub-exponentially secure) bounded-concurrent
non-malleable commitment scheme for tag ∈ [4], into a bounded-concurrent non-malleable commit-
ment scheme for tag ∈ [2n].

This theorem is implied by the following lemma for tag ampli�cation, Lemma 5, which proves
that the compiler obtains a bounded-concurrent non-malleable commitment scheme for tag ∈

[

(
t
t/2

)
] on input a bounded-concurrent non-malleable commitment scheme for tag ∈ [t]. The
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smallest tag t such that T =

(
t
t/2

)
> t, is t = 4, where T = 6.

Thus, starting at t = 4, we repeatedly use the protocol in Figure 6 to amplify tags, each time
choosing a large enough security parameter for the outer SPSS ZK proof.

This parameter is chosen, such that Tzk � Tbreak−com, where Tbreak−com is the time required to
break (via brute force) all internal commitments (via brute-force). Furthermore, since TL � Tzk �
Tbreak−com, we have that the language can be decided in time at most TL, thus soundness holds.

We will also need that the underlying non-malleable commitment scheme is secure against ad-
versaries running in time TSim (this can be achieved by leveraging the inner commitment scheme).

Finally, Tsoundness′ � TSim where Tsoundness′ is such that all inner proofs (parts of all internal
commitments) are sound against provers running in time Tsoundness′ , and TSim is the running time of
the simulator Sim. This means that even when an outer proof is simulated, it is possible to ensure
that all inner proofs still remain sound.

Applying this compiler repeatedly requires O(log∗ n) iterations, and results in a protocol where
the committer and receiver run in time at most poly(n) in order to generate non-malleable commit-
ments for tag ∈ [2n]. Note that sub-exponential assumptions on the SPSS ZK allow us to obtain
O(log∗ n) levels of complexity leveraging [PW], by setting the parameters for the 4-tag scheme at
log2N , where N denotes the overall security parameter. We note that this does not interfere in any
way with our hardness assumptions for the 4-tag scheme, as we are only scaling down all parameters
of that scheme simultaneously.

Lemma 5. Assuming com is `(n)-concurrent non-malleable for tags in [t], the scheme in Figure 6

is such that for every `(n)-concurrent PPT MIM, and for every tag, tag′ ∈ [T ], where T =

(
t
t/2

)
tag′ 6= tag, there exists a PPT simulator S such that the following ensembles are computationally
indistinguishable:

{MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗

Proof. Suppose the MIM participates in L(n) ≤ `(n) executions on the right (that is, with honest
receiver(s)). The simulator Sim〈C,R〉(1

n, z) generates {Sim〈C,R〉(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ by picking
r

$←{0, 1}∗ and generating com(0, r) with tag tag on the left, and outputs the transcript generated,
and the view of the MIM on the right. Let tag′1, tag

′
2, . . . tag

′
L(n) denote the tags used by the MIM.

We will now prove that the joint distribution of the view and values committed by the MIM
is indistinguishable between the real and simulated executions. We consider a sequence of hybrid
experiments, starting with the real execution and proceeding towards the simulated execution,
proving that the joint distribution of the view and values committed by the MIM is indistinguishable
between consecutive hybrids.

Before proceeding with the sequence of hybrids, we note that if tag ∈ {tag′1, tag′2, . . . tag′L(n)}, the
experiment aborts � and we must only prove non-malleability when tag 6∈ {tag′1, tag′2, . . . tag′L(n)}.

Then for every j ∈ L(n), there exists at least one index i′j ∈ [t/2], such that small tag s′i′j ,j
6∈

{s1, s2, . . . st/2}, where s′i′j ,j denotes the i
′th small tag in the jth session on the right, and si denotes

the ith small tag on the left. Looking ahead, we will focus on the set of right (MIM) commitments
indexed by {i′j , j

th}j∈L(n), and extract the joint value committed in these sub-commitments, while
simulating the left (honest) commitment.

By the soundness of the proof Π, in at least 1− negl(n) of all accepting right commitment tran-
scripts, in both {MIM〈C,R〉(value, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ and {Sim〈C,R〉(1n, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ,
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the joint distribution of values {valuej}j∈L(n) committed by the MIM is identical to the joint dis-

tribution of values {valuei′j ,j}j∈L(n) where valuei′j ,j is committed in the jth session using the sub-

commitment coms′
i′
j
,j for the index i

′
j ∈ [t/2], such that small tag s′i′j

6∈ {s1, s2, . . . st/2}. Therefore,

it will su�ce to show that the joint distribution of the view of the MIM and the values comitted
using coms′

i′
j
,j for j ∈ L(n) is indistinguishable between the real and simulated worlds. We use

the random variable {MIM〈C,R〉(value, z)}i′j to denote this joint distribution in the real world, and

{Sim〈C,R〉(1n, z)}i′j to denote this joint distribution in the ideal world.

We now formally describe the hybrid experiments:

Hybrid0 : The output of this experiment is the distribution MIM〈C,R〉(value, z)i′j ,Hybrid0 of the view

and values committed by the MIM using the i′j
th commitments for j ∈ L(n), when the committer

commits to value in the real world.

Hybrid1 : In this experiment, the challenger generates a left commitment to value in the same
way as Hybrid0, except that it starts simulating the proof Π. Let MIM〈C,R〉(value, z)i′j ,Hybrid1 denote

the joint distribution of the view and the values committed using the i′j
th commitments for j ∈ L(n),

by the MIM, in this hybrid.
We consider a reduction R against the simulation security of the proof Π against Tzk-time

adversaries: R runs the simulator in time Tsim and externally obtains either a real proof or a
simulated proof, and then obtains the right transcript of the MIM. Next, it breaks (via brute
force) in time at most T · `(n) the commitments coms′

i′
j
,j and extracts the valuei′j for j ∈ L(n).

Then, if there exists a PPT distinguisher D such that:
∣∣Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid1) = 1] −

Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid0) = 1]
∣∣ ≥ 1

poly(n) R can run this PPT distinguisher on joint distribu-

tion of the transcript generated, together with the extracted values valuei′j , and echo the output in

order to distinguish the real from the simulated proof in time T ·`(n)� Tzk, which is a contradiction.

Hybrid1,1 : In this experiment, the challenger behaves the same was as Hybrid1, except that it

generates coms1(0; r) for r
$←{0, 1}∗. Let MIM〈C,R〉(value, z)i′j ,Hybrid2 denote the joint distribution of

the view and the values valuei′j committed using the i′j
th commitments, by the MIM, in this hybrid.

We consider a reduction R against the `(n)-concurrent non-malleability of com for small tags
against TSim-time adversaries. R obtains coms1(0; r) externally (while still simulating the SPS ZK
argument in time TSim). Since s′i′j

6= s1 and L(n) ≤ `(n), it obtains the joint distribution of the

view and value valuei′j for j ∈ L(n). Then, if there exists a PPT distinguisher D such that:∣∣Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid2) = 1]− Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid1) = 1]
∣∣ ≥ 1

poly(n)

R can run this PPT distinguisher on the transcript generated, together with the valuei′j , and echo the

output in order to break non-malleability of com for small tags in time Tsim, which is a contradiction.

Similarly, we have the following sequence of hybrids for ĩ ∈ [2, t/2]:

Hybrid1,̃i : In this experiment, the challenger behaves the same was as Hybrid1, except that it

generates comsj̃
(0; r) for r

$← {0, 1}∗ and j̃ ∈ [̃i]. Let MIM〈C,R〉(value, z)i′j ,Hybrid1,̃i denote the joint
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distribution of the view and the values valuei′j committed using the i′j
th commitment, by the MIM,

in this hybrid.
We consider a reduction R against the `(n)-concurrent non-malleability of com for small tags

against TSim-time adversaries. R obtains comsĩ
(0; r) externally (while still simulating the SPSS ZK

proof in time TSim). Since s′i′j
6= sĩ and L(n) ≤ `(n), R obtains the joint distribution of the view

and values valuei′j for j ∈ L(n). Then, if there exists a PPT distinguisher D such that:

∣∣Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid1,̃i) = 1]− Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid1,̃i−1
) = 1]

∣∣ ≥ 1

poly(n)

R can run this PPT distinguisher on the transcript generated, together with the values valuei′j for

j ∈ L(n), and echo the output in order to break non-malleability of com for small tags in time TSim,
which is a contradiction.

Hybrid2 : In this experiment, the challenger generates a left commitment to 0 in the same way
as Hybrid1,t/2, except that it generates the proof Π honestly. Note that this is possible because in
this hybrid, all left commitments with small tags are valid commitments to 0. Let Sim〈C,R〉(1

n, z)i′j
denote the joint distribution of the view and the values committed using the i′j

th small commitments
for j ∈ L(n), by the MIM, in this hybrid.

We consider a reduction R against the simulation security of the proof Π against Tzk ad-
versaries: it externally obtains either a real proof or a simulated proof, and then obtains the
right transcript of the MIM. Next, it breaks (via brute force) the commitments coms′

i′
j

and ex-

tracts the values valuei′j where valuei′j denotes the i′th value committed in the jth session on the

right � this takes time at most T · `(n). Then, if there exists a PPT distinguisher D such that:∣∣Pr[D(Sim〈C,R〉(1
n, z)i′j ) = 1] − Pr[D(MIM〈C,R〉(value, z)i′j ,Hybrid1,t/2) = 1]

∣∣ ≥ 1
poly(n) , R can run this

PPT distinguisher on the transcript generated, together with the values valuei′j , and echo the out-

put in order to distinguish the real from the simulated proof in time T · `(n) � Tzk, which is a
contradiction.

Thus, we have that for any PPT distinguisher D,∣∣Pr[D({MIM〈C,R〉(value, z)}) = 1]− Pr[D({Sim〈C,R〉(1n, z)} = 1]
∣∣ ≤ negl(n)

This completes the proof of the lemma.

Remark 6. We note that if the initial scheme (for 4 tags) was non-malleable against adversaries
running in time T̃ � 2m for m = maximum{mtag}tag∈[4], then the resulting scheme (after applying

the compiler) remains non-malleable against adversaries running in time T̃ if T̃ � TΠ, where TΠ

denotes the soundness parameter (which is also the weakest parameter) of the SPSS ZK. We also
note that the resulting commitment scheme (after applying this compiler), continues to have good
extraction properties, that is, Thid � TExt.

Obtaining poly(n) Communication and Computation Complexity of the Resulting Scheme
for All Tags. The �nal scheme results after O(log∗ n) applications of the above scheme, and the
computation and communication complexity grows at every iteration.

The complexity of the commitment compi at iteration i, where tags go from ni−1 → ni =(
ni−1

ni−1/2

)
, can be written as a function of the complexity compi−1 at iteration (i − 1) as follows:
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compi = ni−1 · compi−1 + compzk, where compzk denotes the complexity of the zero-knowledge argu-
ment. Unfortunately, the statement being proved by the ZK argument has complexity poly(n, compi−1),
(where n is the security parameter) thus if the protocol is executed trivially, the complexity becomes
exponential in O(log∗ n) iterations.

In order to �x this, we modify the ZK argument so that: instead of proving that all commitments
com at stage (i − 1) commit to the same value, we only prove that one of the sub-commitments
(that is, a basic commitment for tag ∈ [4] which is the leaf node) within each commitment at
stage (i − 1) commits to the same value. The resulting modi�ed statement has complexity only
poly(n) · comp0 = poly(n), thus we have that compi = ni−1 · compi−1 + poly(n). We note that this
expression converges such that the complexity of the resulting protocol after O(log∗ n) iterations is
at most complog∗ n = poly(n).

7 One Round Non-Malleable Commitments w.r.t Opening

In this section, we construct one-round concurrent non-malleable commitments with respect to
opening, in the simultaneous message model. Our main observation is that the commitment part
(com) of the NM− Com constructed in Section 6, doesn't need to depend on the receiver's message,
and can therefore be sent by the committer simultaneously with the receiver's message in the �rst
round. The remaining part of the commitment message is sent in the second round. This results in
a scheme, which requires one round of simultaneous exchange followed by another round in which
only the committer sends a message. The resulting scheme is statistically binding by the end of
the �rst round. We will begin by proving non-malleability of the resulting scheme, in the following
section.

After that, we will describe how to use SPSS ZK together and some additional complexity
leveraging to obtain a non-malleable commitment scheme that has a single round of simultaneous
exchange in the commitment phase, and then a single message in the opening phase. Very roughly,
this will be achieved by pushing the second round of the non-malleable with respect to commitment
scheme, into the opening round, while preserving non-malleability.

7.1 Reordering Two-Round Non-Malleable Commitments w.r.t. Commitment

We begin by reordering the two-round bounded-concurrent non-malleable commitment scheme from
Section 6, into a two-round commitment scheme the simultaneous message model, where the �rst
message of the scheme is statistically binding. We prove that the resulting scheme also satis�es
concurrent non-malleability with respect to commitment.

This is achieved by simply reordering the messages in the commitment schemes constructed in
Section 6.

Reordering the basic scheme In Figure 7, we describe how to reorder the basic scheme for 4
tags from Section 6.2.

Recall that the commitment scheme for 4 tags consists of either a non-interactive commitment
com, or an extractable commitment. The extractable commitment (refer Section 5.1.1) itself consists
of receiver message 2PCR(1n, ch) together with the �rst message Π1 of SPSS ZK. This message is used
for setting up the trapdoor that allows an extractor to extract the committed value. We denote this
message by tdR = (2PCR(1n, ch),Π1). The sender message consists of a non-interactive commitment
com generated by the committer, together with a committer message tdS = (τ1 = 2PCR(1n, ch),Π1).
We split the scheme for 4 tags into two parts, one part consisting of the commit message com,

43



Committer Receiver

(a)
tdR←−−−−−−−−− (Round 1)

c = com(M ;r), tdC(c,M,r,tdR)−−−−−−−−−−−−−−−−−−−−−−−→ (Round 2)

⇓ (After reordering)

(b)
c = com(M ;r)−−−−−−−−−−−−→ tdR←−−−−−−−−− (Round 1)

tdC(c,M,r,tdR)−−−−−−−−−−−−−→ (Round 2)

Figure 7: Reordering the scheme for four tags

Committer (tag) MIM (tag′) Receiver
ctag = comtag(M ;r)−−−−−−−−−−−−−−−→

tdtag′,R←−−−−−−−−
tdtag,R←−−−−−−−

ctag′ = comtag′ (M
′;r′)

−−−−−−−−−−−−−−→
tdtag,C(ctag,M,r,tdtag,R)

−−−−−−−−−−−−−−−−−−→
tdtag′,C(ctag′ ,M

′,r′,tdtag′,R)
−−−−−−−−−−−−−−−−−−−−→

Figure 8: Message scheduling for a MIM adversary in the scheme 7(b) for four tags

and the second part consisting of the trapdoor that allows for extraction. This is denoted by
tdR = (2PCS(τ1, x = (1,M, r̃, r′)),Π2), where 2PC is performed for the functionality F . Given this,
the scheme in Figure 7 (a) depicts the commitment schemes for 4 tags from Section 6.

In Figure 8, we describe the only non-trivial message scheduling for a (rushing) man-in-the-
middle adversary participating in an execution of the protocol, that will be relevant for our main
result on non-malleable commitments with respect to opening. This scheduling considers an ad-
versary that participates in the protocol in rounds, such that it obtains all honest messages for a
particular round before generating its own message. While we only illustrate the one-one setting,
this can be directly extended to the one-many setting.

We will now prove that the resulting scheme retains (bounded-concurrent) non-malleability w.r.t.
commitment, against rushing adversaries in the simultaneous message model, even when messages
are reordered according to Figure 7 (b).

Lemma 6. The one-one (resp. bounded concurrent) non-malleable commitment scheme in Figure 5,
with messages reordered according to Figure 7, remains one-one (resp. bounded concurrent) non-
malleable against a man-in-the-middle that schedules messages according to Figure 8.

Proof. In the sessions where tag < tag′, the proof of non-malleability of the scheme in Figure 5
relied on complexity leveraging such that the MIM's commitment com, can be broken (via brute
force) in time less than Thid, whereas the commitment scheme for tag is hiding against adversaries
running in time Thid. When messages are reordered according to Figure 7, exactly the same proof as
Theorem 4 and Theorem 5, Case I goes through to show that the scheme is (bounded-concurrent)
secure against an MIM that schedules messages according to Figure 8.
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In the sessions where tag > tag′, the proof of non-malleability of the scheme in Figure 5 relies on
using the extractability of all the commitments for tag′ < tag in time roughly 2m

′
tag using roughly

2m
′
tag queries: while relying on the fact that the commitment for tag is more than (2m

′
tag , 2−m

′
tag)-

hiding. Because of SPSS ZK, the proof of hiding of the commitment scheme for tag uses only
uniform simulation (with a simulator that runs in low super-polynomial time). This means that
re-ordering the honest messages so that ctag is sent before tdtag,R is generated does not a�ect hiding
of the commitment scheme. Again, essentially the same proof of non-malleability as Theorem 4 and
Theorem 5, Case II goes through to show that the scheme is secure against an MIM that schedules
messages according to Figure 8. This completes the proof of the lemma.

Tag Ampli�cation for the Reordered Scheme. Our tag ampli�cation protocol remains iden-
tical to the tag ampli�cation procedure for two-message non-malleable commitments (Figure 6),
except that the underlying commitment for small tags is now replaced with a reordered commit-
ment for small tags.

We consider an identical tag ampli�cation process as Section 6.4, such that the committer and
receiver execute multiple parallel (reordered) commitments for di�erent small tags according to
the tag encoding scheme of Section 6.4. In parallel, the committer and receiver execute a two-
message SPSS ZK argument that all commitments for small tags, commit to the same value. The
�rst message of the SPSS ZK argument is sent by the receiver in the �rst round, and the second
message is sent by the committer in the second round. For completeness, the protocol is described
in Figure 9.

We compile from a two-round reordered non-malleable commitment scheme. This scheme will
be denoted by com1,C,tag(M ; r), com1,R,tag, com2,tag for input M , randomness r and tags in [t]. We

obtain a reordered non-malleable commitment scheme for tags in [

(
t
t/2

)
]. We assume that the

input non-malleable commitment scheme comtag(m; r) for tags in [t] can be broken (via brute-force)
in time at most T (In other words, T = 2n where n is the maximum security parameter out of
the security parameters of all components of the non-malleable commitment for tag ∈ [t].) We also
assume the existence of two-message SPSS ZK for delayed-input statements, such that Tzk � T �
Tsim. Finally, we require the underlying non-malleable commitment scheme com1,tag, com2,tag(m; r)
for tags in [t] to be `(n)-concurrent non-malleable against adversaries running in time Tsim. In
particular, this also means that the ZK arguments used in the input non-malleable commitment
scheme com1,tag, com2,tag(m; r) are sound against adversaries running in time Tsim.

Then the compiler in Figure 6 gives a two round scheme that is `(n)-concurrent non-malleable for

tags in [T ], where T =

(
t
t/2

)
. Just like Section 6.4, the compiler can be applied iteratively O(log∗ n)

times, starting with a scheme for 4 tags, to obtain a scheme for tag ∈ [2n]. The resulting scheme can
easily be made to have polynomial running time and polynomial communication complexity (via a
slight modi�cation of the statement for the ZK argument, as already described in Section 6.4).

The statistical binding (by the end of the �rst round) and computational hiding properties of
the commitment scheme are obvious by inspection. Because we only rely on uniform simulation
for proof of Theorem 6, the same proof as Section 6.4 goes through. Thus, we have the following
theorem for tag ampli�cation.

Theorem 7. Assuming the existence of (sub-exponentially secure) two-round SPSS ZK for delayed-
input statements, there exists a compiler that compiles a (sub-exponentially secure) bounded-concurrent
non-malleable commitment scheme for tag ∈ [4], into a bounded-concurrent non-malleable commit-
ment scheme for tag ∈ [2n].
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Language L: We de�ne L = {{ci, comsi}i∈[t/2] : ∃M, ri : ci = comsi(M ; ri)}.

Committer Input: Message M ∈ {0, 1}p, tag tag ∈ [1, T ], where T =

(
t
t/2

)
.

Receiver Input: Tag tag.

Commit Stage:

1. Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the ith

element in set T, for i = tag. Let this element be denoted by (s1, . . . st/2).

2. First Round.
Committer Message. For i ∈ [t/2], sample randomness ri

$←{0, 1}∗ and send c1,C,i =
com1,C,si(M ; ri) to R.
Receiver Message. Send Π1 as the �rst message of Π for language L, and com1,R,si

for i ∈ [t/2] as the �rst messages of the non-malleable commitment for small tags.

3. Second Round: Committer Message. For i ∈ [t/2], send c2,i = com2,si(M ; ri) to
R. Send Π2 proving that:

{ci, comsi}i∈[t/2] ∈ L

4. The receiver accepts the commitment if Π veri�es and all t/2 commitments are accept-
ing.

Reveal Stage: The committer reveals randomness r1, r2, . . . rt/2 to the receiver. The receiver
veri�es that all the commitments were correctly decommitted.

Figure 9: Round-Preserving Tag Ampli�cation

We note that for all our schemes, security parameters can be suitably increased so that the
resulting scheme is non-malleable against sub-exponential time adversaries, subject to the total
number of sub-exponential levels remaining bounded by O(log n/ log log n).

7.2 One-Round Non-Malleable Commitments with Simultaneous Messages

In this section, we prove the following main theorem.

Theorem 8. Given a two-round commitment scheme in the simultaneous exchange model that is
(`(n)) non-malleable with respect to commitment against subexponential man-in-the-middle adver-
saries, there exists a one-round non-malleable commitment scheme in the simultaneous exchange
model that is (`(n))-concurrent non-malleable with respect to opening, according to De�nition 9,
against all PPT man-in-the-middle adversaries.

Proof. In Figure 10, we describe a compiler that given any two-round non-malleable commitment
scheme w.r.t. commitment, NM− Com, in the simultaneous exchange model, compiles it using
SPSS-ZK into a one-round non-malleable commitment scheme w.r.t. opening.

Let Π = (Π1,Π2) denote a two message SPSS ZK argument with a TSim-time simulator, that
is zero-knowledge against Tzk-time adversaries. Let com = com1,C(M ; r), com1,R(·), com2,C(M ; r)
denote a two-message `(n)-concurrent non-malleable commitment scheme with respect to commit-
ment in the simultaneous exchange model, against subexponential man-in-the-middle adversaries
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running in time Tnm, such that all parameters in the non-malleable commitment are breakable in
time Tcom. The parameters are leveraged such that TSim << Tnm, and Tzk >> Tcom.

Language L: We de�ne L = {{c, com,M} : ∃r : c = com(M ; r)}.
Committer Input: Message M ∈ {0, 1}p, tag tag ∈ [2n].
Receiver Input: Tag tag.

Commit Stage:
In one simultaneous exchange round, the committer and receiver send the following messages:

◦ Committer Message. Send com1,C(M ; r) to the receiver.

◦ Receiver Message. Send com1,R to the committer, together with Π1.

Reveal Stage:

◦ The committer sends com2,C(M ; r) to the receiver. It also reveals message M
to the receiver, and proves via Π2 that {c, com,M} ∈ L, where c denotes
(com1,C(M ; r), com1,R(·), com2,C(M ; r)).

◦ The receiver accepts if Π veri�es.

Figure 10: One-Round Non-Malleable Commitments with respect to Opening

Non-malleability with respect to opening of the scheme in Figure 10, can be proven via the
following sequence of hybrid experiments.

Hybrid0 : This hybrid denotes the joint distribution of the view of the MIM (in the commitment
and opening phases) together with the value committed (corresponding to statistical binding mode)
during the commitment phase, when the MIM interacts with an honest committer committing to
some value value. This corresponds to the distribution MIM〈C,R〉,open(value, z).

Hybrid1 : This hybrid is the same as Hybrid0, except that the SPSS ZK argument Π is simulated
(in time TSim). Since Tcom << Tzk, the joint distribution of the view and value committed by
the MIM remains indistinguishable � since the value committed can be extracted via brute force
in time Tcom, and if the joint distribution of view and value becomes distinguishable, this can be
used to violate the zero-knowledge property of the commitment scheme against Tzk-time adversaries.

Hybrid2 : This hybrid is the same as Hybrid1, except that the commitment com is generated as
a commitment to 0. On the other hand, the opening is still to message M , and the SPSS ZK proof
is still simulated, the same way as Hybrid1. Again, the challenger runs in time TSim. By hiding of the
commitment scheme com against TSim-time adversaries, the fraction of executions where the MIM
fails to provide a valid opening, as well as the joint distribution of the view and value committed
(de�ned to be ⊥) for these executions remains indistinguishable between both hybrids. Moreover,
by non-malleability of the commitment scheme com against TSim-time adversaries, conditioned on
the MIM completing a valid opening (in particular, this means the MIM sent a valid second message
for com) the joint distribution of the view (including the opening) and the value committed by the
MIM remains indistinguishable between Hybrid1 and Hybrid2.

Suppose there exists a distinguisher D that distinguishes the joint distribution of the view and
value committed between Hybrid1 and Hybrid2 (conditioned on executions where the MIM did not
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abort), then there exists a reduction R against the non-malleability of com. The reduction does
the following: It externally obtains com as either a commitment to 0 and 1, and sends this as the
honest commitment. If the MIM does not complete the commitment phase, R outputs 0. Else, if the
MIM completes the commitment phase, the reduction R obtains the value committed by the MIM,
and then runs the distinguisher D on the joint distribution of the view and value. Then, we have
that |Pr[R = 1|com was a commitment to 0] − Pr[R = 1|com was a commitment to M ]| ≥ 1

poly(n) ,
which is a contradiction. Thus, we have that the joint distribution of the view and committed value
remains indistinguishable between Hybrid2 and Hybrid3.

This hybrid corresponds to the simulated distribution, Sim〈C,R〉,open(1n, z), completing our proof
of non-malleability.

Combining Theorem 8 with (`(n)-concurrent) two-round non-malleable commitment with si-
multaneous messages described in the previous section, we obtain our main result, that is, (`(n)-
concurrent) non-malleable commitments with respect to opening, according to De�nition 8, against
all PPT man-in-the-middle adversaries. Combining Theorem 8 with fully concurrent two-round
non-malleable commitments with simultaneous messages described in Appendix A, we obtain fully
concurrent non-malleable commitments with respect to opening, according to De�nition 9, against
all PPT man-in-the-middle adversaries.

7.2.1 Non-Interactive Non-Malleable Commitments in a Special Setting

Our protocol implies non-interactive non-malleable commitments with respect to opening, in a
setting where parties are determined a-priori and have access to a broadcast channel. Moreover,
each party is aware of every other party in the system.

In this setting, the protocol of Figure 10 can be compressed further, so that party Pi while sending
its own commit message (say Ci), is also required to send receive messages Ri,j corresponding to all
other parties in the system (note that the receiver message is a random string and therefore does
not require knowledge of the tags of other parties) in the same non-interactive message.

While opening, commit message Cj , party Pj is required to provide openings with respect to all
receive messages {Ri,j}i∈[N ], that other parties have sent so far, corresponding to party Pj . Here N
denotes an upper bound on the number of parties in the system. If a party chooses not to commit
before another party opens, we no longer need to guarantee non-malleability with respect to the
opened commitment.

7.3 Two Round Multi-party Coin-Tossing

In this section, we describe a two round multi-party coin-tossing scheme that is simulatable via
super-polynomial time simulation, according to De�nition 13. In particular, this also implies two-
round multi-party pseudo-random coin tossing according to De�nition 14.

The scheme (for N parties) is described in Figure 11, and consists of each party Pi sampling
random coins rij and sending to every other party Pj , a one-round N 2-bounded concurrent non-
malleable commitment to rij . In the second round, all parties open their commitments, and output⊕

i,j∈[N ]2 rij .

Theorem 9. Assuming (`(n)-)concurrent non-malleability of the underlying non-malleable commit-
ment scheme NM− Com, the protocol in Figure 11 is a two-round multi-party coin tossing protocol
with a super-polynomial time simulator, according to De�nition 14, secure against `(n) corruptions.

Proof. We �rst describe the simulator S that forces an external (uniform random) output. S picks
an honest party in the set and simulates it (while honestly playing on behalf of all other parties),
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Let NM− Com = {NM− Com1,C ,NM− Com1,R,NM− Comopen} denote a one-round non-
malleable commitment scheme, where NM− Com1,C and NM− Com1,R denote the simulta-
neous committer and receiver messages during the commitment round, and NM− Comopen

denotes the opening message.

◦ Round I:

1. Each party Pi samples randomness rij , r̃ij
$← {0, 1}∗, and sends cij =

NM− Com1,C(rij ; r̃ij) to party Pj for all j ∈ [N ] \ {i}.
2. Each party Pi also samples randomness r̂ij and sends NM− Com1,R(r̂ij) to party
Pj for all j ∈ [N ] \ {i}.

◦ Round II:

1. Each party Pi outputs NM− Comopen(rij) for all j ∈ [N ].

◦ Output: At the end of this round, parties output
⊕

i,j∈[N ]2 rij .

Figure 11: Two Round Multi-Party Coin Tossing

whereas the adversary may be corrupting upto n − 1 parties. For simplicity, we describe the
simulation in the setting where there is a single honest party, this directly extends to simulating
any general number of honest parties, by simulating one party and using honest strategy on behalf
of all other parties.
S runs in time TSim,nmc ·poly(1/δ(n)) (where δ(n) denotes the simulation error, which can be set

to any neligible value, and TSim,nmc denotes the running time of the simulator for the non-malleable
commitments). It runs the simulation strategy Snmc for the non-malleable commitment protocol,
sending to Snmc, a random string r1 ← {0, 1}n in the opening phase. If the adversarial parties
open, S records the opened value. If not, S runs the opening phase of Snmc again with a di�erent
uniformly random chosen string r2 ← {0, 1}∗. It repeats poly(1/δ(n)) times trying with independent
uniform random ri for i ∈ [poly(1/δ(n)]. If the adversarial parties abort in all executions, S outputs
⊥. (By a simple probabilistic argument, together with the non-malleability w.r.t. opening of the
commitment scheme, this also implies that with overwhelming probability, the adversary aborts in
the real execution over the randomness of the coins of honest parties.)

Else S obtains the value v opened by the adversarial set of parties, which equals the value
committed by the adversarial set of parties during the simulated experiment (this is because the
MIM's commitment remains computationally binding even during the simulated experiment, refer
De�nition 8). On obtaining this value, S obtains external coins ext, computes r = ext ⊕ v, and
repeats the opening phase, now sending r to Snmc for the honest opening. S then outputs the
resulting transcript of the execution with Snmc opening to r.

By the computational binding property of the non-malleable (with respect to opening) scheme
in the simulated experiment, the adversary's output is either ⊥ or v, in which case the simulator
has successfully forced the output to ext = r ⊕ v.

Because ext is chosen uniformly at random, the view of the adversary remains indistinguishable
between the real and simulated worlds. Thus, non-malleability of com guarantees that the joint
distribution of the view of the MIM and value committed, is indistinguishable, from the joint dis-
tribution of the view and value committed in a real execution where the honest parties commit and
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open coins chosen uniformly at random. This completes the proof of simulatable coin tossing with
a super-polynomial simulator.

Remark 7. In spite of requiring super-polynomial time simulation, we observe that our two-round
coin-tossing protocol can be a useful component of protocols achieving standard polynomial time
simulation. For instance, we observe that our two-round coin-tossing protocol can be used to generate
a CRS for the two-round semi-malicious MPC protocol of Mukherjee and Wichs [MW16], for which
the semi-malicious simulation strategy does not itself require programmability of the CRS.

We claim that the resulting four-round protocol is secure against adversaries behaving maliciously
in the �rst two rounds, and semi-maliciously in the last two rounds, with only polynomial simulation.
The simulator for the protocol honestly generates the common random string in the �rst two rounds,
and then runs the semi-malicious simulator of [MW16] for the last two rounds.

To argue indistinguishability, consider a series of hybrid experiments, where in the �rst experi-
ment, the simulator forces the output of the coin tossing to an external CRS. Next, it switches from
behaving honestly in the last two rounds, to using the semi-malicious simulation strategy (while still
forcing the output of the coin toss, allowing the proof of semi-malicious security to go through).
Finally, it switches back the output of the coin toss to being generated honestly (while still using the
semi-malicious simulation strategy which can work with any external non-programmable CRS). As-
suming appropriate sub-exponential hardness of the two-round semi-malicious protocol of [MW16],
this yields a four-round hybrid protocol with polynomial time simulation.

More generally, to compile from the resulting hybrid protocol to full malicious security, it should
su�ce to apply techniques similar to those in [GMPP16], especially in the sub-exponential hardness
regime (that is, using non-malleable commitments, strong delayed-input witness indistinguishable
arguments of knowledge and four round delayed-input zero-knowledge arguments for input extraction
and enforcing correct output).
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A Two Round Fully-Concurrent Non-Malleable Commitments with

Simultaneous Messages

In this section, we construct two round fully-concurrent non-malleable commitments with respect
to commitment, with simultaneous messages, against synchronous adversaries. Our construction
follows via non-malleability ampli�cation techniques developed in previous work, including [LPV09,
Wee10]. We �rst construct a simulation-sound variant of our SPSS ZK protocol, and then use this
to obtain concurrent non-malleable commitments in the simultaneous exchange model.

A.1 Simulation-Sound SPSS ZK

In this section, we construct SPSS ZK that satis�es a variant of simulation soundness. We consider
a MIM that interacts with an honest prover in the left execution and generates its own argument
in the right execution for some possibly related instance: and we require that there exist a (super-
polynomial time) simulator-extractor that extracts the witness being used by the MIM to generate
the MIM's arguments, without knowing the witness for the honest interaction.

The construction of simulation-sound SPSS ZK is described in Figure 12. This is obtained
by substituting the extractable commitments in SPSS ZK (Section 5.2) with non-malleable com-
mitments. We assume the existence of a two-round non-malleable commitment scheme, that is
at least (Thid, δhid) hiding (that is, hiding such that Thid-time adversaries have advantage at most
δhid in the hiding game), and at most (TExt, T

′
Ext, δExt)-extractable, where TExt � Thid � T ′Ext, and

δExt = negl(n). This scheme is exactly the one-one version of the scheme in Section 6, except that
in the basic scheme for 4 tags, we use extractable commitments for all tags (instead of using a
non-interactive commitment for small tag = 4). We note that this scheme is non-malleable against
adversaries running in time T̃ � TExt.

We also assume the existence of a two-round witness-indistinguishable proof, denoted by zap
such that adversaries running in time Twi have advantage at most δwi. We assume that com is hard
to invert by adversaries running in time Thid−com, and can be broken (via brute-force) in time Tcom,
where Thid−com � Tcom. We will set parameters so that: TExt � Thid−com, Tcom � T̃ .

Looking ahead, the soundness parameter of the resulting simulation-sound SPSS ZK will be
such that TΠ · TExt � Thid−com, the zero-knowledge parameters will be such that: Tzk � Twi,
δhid ≥ δzk, δzap ≥ δzk, and the witness extraction parameter will be equal to TExt.

Lemma 7. The protocol in Figure 12 is a one-one simulation-sound SPSS zero knowledge argument.

Proof Sketch. One-one simulation soundness follows from the one-one non-malleability of the
NM− Com against Tcom-time adversaries, such that when the simulator, in time TSim, breaks com
and changes the commitments e2 and e′2 for the honest execution, the distribution of the MIM's
view and corresponding committed value (witness) in e′2 doesn't change.

A.2 Concurrent Two-Round Non-Malleable Commitments w.r.t. Commitment

We will now use one-one simulation-sound ZK to construct two-message non-malleable commitments
with respect to commitment, with simultaneous messages. Let Π1,tag,Π2,tag denote both messages
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Let NM− Com = (NM− Com1,NM− Com2) denote the messages of a two-round non-
malleable commitment scheme, and com denote the non-interactive commitment scheme.
Prover Input: Instance x, witness w such that R(x,w) = 1, tag tag.
Veri�er Input: Instance x.

1. Veri�er V sends e1 = NM− Com1,tag,NM− Com′1,tag to V , together with c = com(s; r)

for s
$←{0, 1}n, r $←{0, 1}∗ and zap1.

2. Veri�er V picks s′
$←{0, 1}n, (r′, s̃) $←{0, 1}∗, computes e2 = NM− Com2,tag(s′; r′), e′2 =

NM− Com′2,tag(w; r′′). It also computes zap2 proving:

∃w, r′′ such that w is a witness for x ∈ L ∧ e′2 = NM− Com′2,tag(w; r′′)OR

∃(s′, r′, r) such that e2 = NM− Com2,tag(s′; r′) ∧ c = com(s′; r).

It then sends (e2, zap2) to P .

3. Veri�cation. The veri�er accepts (outputs 1) if and only if zap veri�es.

Figure 12: Simulation-Sound SPSS ZK

of the protocol, which is simulatable in time TSim, zero-knowledge against adversaries running in
time Tzk, sound against adversaries running in time TΠ and a witness can be extracted from SPSS
ZK by brute-force in time Twext, where TΠ � TSim � Tzk � Twext. Furthermore, we require that
when a simulator in time TSim simulates the argument in the honest interaction, the MIM continues
using the right witnesses to generate his SPSS ZK.

We let com denote a non-interactive statistically binding commitment scheme that is hiding
against adversaries running in time Thid, where Thid is larger than brute-force extraction time Twext
of the simulation sound SPSS ZK. Then, our construction of concurrent two-round non-malleable
commitments w.r.t. commitment is described in Figure 13.

Lemma 8. The protocol in Figure 13 is a fully concurrent non-malleable commitment with simul-
taneous messages.

Proof Sketch. As before, we will only consider one-many non-malleability (for an unbounded number
of MIM sessions), and full concurrent non-malleability will directly follows [PR05b]. Furthermore,
the synchronous scheduling (with a rushing adversary), and will consider the following sequence of
hybrid experiments. Hybrid0 corresponds to the real execution where the honest committer commits
to messageM . We let MIM〈C,R〉(value, z) denote the joint distribution of the view and all the values
committed by the MIM in all right executions.

In Hybrid1, the challenger continues to commit to message M , but in the second round, starts
simulating the SPSS ZK proof for the honest execution. Since the commitment phase already
occured, conditioned on the �xed commit phase (and therefore the �xed committed values), the
joint distribution of the MIM's views remains indistinguishable. Thus, in this hybrid, the joint
distribution of the values committed by the MIM and the views in all right executions remains
indistinguishable from Hybrid0.

Furthermore, by the one-one simulation soundness property of SPSS ZK, even when the simulator
runs in time TSim to simulate the honest proof, the MIM continues to use the actual witness (for the
commitment) in each of his executions.
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Language L: We de�ne L = {{c, com} : ∃M, r : c = com(M ; r)}.
Committer Input: Message M ∈ {0, 1}p, tag tag ∈ [2n].
Receiver Input: Tag tag.

Commit Stage:

1. First Round.
Committer Message. Sample randomness R

$← {0, 1}∗ and send com(M ;R) to the
receiver.

Receiver Message. Send Π1,tag as the �rst message of Π for language L and tag tag.

2. Second Round: Committer Message. Send Π2,tag proving that:

{c, com} ∈ L

3. The receiver accepts the commitment if Π veri�es.

Reveal Stage: The committer reveals randomness R to the receiver. The receiver veri�es
that the commitment was correctly decommitted.

Figure 13: Two Round Fully Concurrent Non-Malleable Commitments with Simultaneous Messages

In Hybrid2, the challenger changes the commitment to message M to a commitment to 0, while
still simulating the SPSS ZK proof. Next, the challenger runs in time Twext � Thid to extract the
witness from the MIM's SPSS ZK arguments, and use this witness to extract the values committed
by the MIM (in polynomial time). If the MIM stops using correct witnesses or if the joint distri-
bution of witnesses changes, this breaks hiding of the commitment scheme. Thus, we have that
the joint distribution of the view and values committed by the MIM in all right sessions, remains
indistinguishable between Hybrid1 and Hybrid2, otherwise this would contradict the hiding of com.

Thus, the joint distribution of the view and values committed by the MIM in all his right
interactions, remains indistinguishable between the real and simulated executions. The simulator
can also generate the SPSS ZK arguments honestly, and indistinguishability of the joint distribution
follows via the same argument as indistinguishability between Hybrid0 and Hybrid1. We note that
all these arguments go through against a rushing adversary that obtains all honest messages for
some round before generating his own message for the same round. This completes the sketch of
the proof.
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