
On the doubly-efficient interactive proof systems of GKR

Oded Goldreich∗

June 8, 2017

Abstract

We present a somewhat simpler variant of the doubly-efficient interactive proof systems of
Goldwasser, Kalai, and Rothblum (JACM, 2015). Recall that these proof systems apply to log-
space uniform sets in NC (or, more generally, to inputs that are acceptable by log-space uniform
bounded-depth circuits, where the number of rounds in the proof system is linearly related to the
depth of the circuit). Our simplification is in the handling of the log-space uniformity condition.
Rather than having the prover provide the verifier with bits of the encoding of the circuit and
establish their correctness, we employ the proof system to a highly regular universal circuit that
constructs and evaluates the log-space uniform circuit in question.

Contents

1 Overview 1

2 The main module 2

3 Evaluating φ̂i 5

4 Details 7
4.1 Applying the sum-check protocol to Eq. (3) . 7
4.2 The highly uniform circuits in use . 7

Acknowledgements 9

References 9

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 101 (2017)

1 Overview

Loosely speaking, doubly-efficient interactive proof systems are interactive proof systems in which
the prescribed prover runs in polynomial-time, whereas the prescribed verifier runs in almost-linear-
time.1 We stress that the soundness condition of these systems is information theoretic; that is, it
refers to all possible cheating strategies (and not only to feasible ones (as in argument systems)).

The notion of a doubly-efficient interactive proof systems was first defined by Goldwasser, Kalai,
and Rothblum [1], who presented such systems for any set in log-space uniform NC. We mention
that the recent result of Reingold, Rothblum, and Rothblum [4] provides (constant-round) doubly-
efficient interactive proof systems for any set in SC.2 Our focus, however, is on the prior result of
Goldwasser, Kalai, and Rothblum [1]. We provide an (alternative) exposition of their result, which
asserts the following –

Theorem 1 (doubly-efficient interactive proof systems for log-space uniform NC): Let d : N→ N
and A be an algorithm of logarithmic space complexity that on input 1n outputs a Boolean circuit
Cn : {0, 1}n → {0, 1} of bounded fan-in and depth d(n). Then, the set S = {x : C|x|(x)=1} has an
interactive proof system with poly(log n) · d(n) rounds in which the prescribed prover strategy runs
in polynomial-time while the verifier runs in Õ(n+ d(n))-time.

(We note that the number of rounds is actually O(log n) · d(n), but our simplified proof only yield
a bound of O(log n)2 · d(n).)3

The core of the proof system asserted in Theorem 1 is an iterative process in which a claim
about the values of the gates that are at distance i− 1 from the output gate is reduced to a claim
about the values of the gates at distance i. (All claims refer to the computation of C|x|(x).) Hence,
in d(n) iterations, the claim regarding the value of the output gate is reduced to a claim regarding
the values of the bits of the inputs, whereas this claim can be verified in almost linear time.

The aforementioned claims refer to the values of specified locations in corresponding encodings
(of the string describing all the gate-values at a certain layer of the circuit). Specifically, the
encoding used is the low degree extension of the said string (viewed as a function), and the claims
are claims about the evaluations of these polynomials at specific points.

The different codewords (or polynomials) are related via the structure of the circuit, and so
(as usual) this structure is represented by a function that describes the adjacency relation (among
the gates) of the circuit. We consider a low degree extension of this function, and the problem is
allowing the verifier to evaluate this polynomial in almost-linear (in n) time. Here is where the
uniformity condition comes into play.

Goldwasser, Kalai, and Rothblum used the uniformity condition in order to construct an in-
teractive proof system by which the evaluation of this low degree polynomial is outsourced to the
prover (who proves the validity of the provided answer) [1]. We present an alternative approach:
We consider a “universal” circuit that, on input x ∈ {0, 1}n, first constructs the log-space uniform
circuit Cn, and next emulates the computation of Cn(x). We apply the aforementioned interactive

1Such proof systems were called interactive proofs for muggles [1] and interactive proofs for delegating computa-

tion [4]. Here, we interpret the term “almost linear (in n)” as having the form Õ(n), whereas a wider interpretation
refers to having the form n1+o(1).

2The result of [4] actually provides an interactive proof for any set in TiSp(poly, s) such that the prescribed prover

strategy runs in polynomial-time while the verifier runs in (Õ(n) + poly(s(n)) · nα)-time, for any α > 0.
3The first (resp., second) expression omits an additive term of O(logn)2 (resp., O(logn)2), which is immaterial in

the typical case where d ≥ logn.

1

process to this universal circuit rather than to Cn, with the benefit being that this universal circuit
is much more uniform than Cn. Consequently, a low degree extension4 of the adjacency relation of
that (universal) circuit can be evaluated in poly(log n)-time. We stress that the universal circuit
preserves the complexities of Cn upto our level of interest; that is, the universal circuit has depth
poly(log n) · d(n) and size poly(n).

Organization. The main module of the interactive proof system asserted in Theorem 1 is pre-
sented in Section 2, while avoiding the problem of evaluating the low degree extension of the function
that represents the adjacency relation of the circuit. Coping with this computational problem is
the contents of Section 3. Additional details regarding Sections 2 and 3 are presented in Section 4
(see Sections 4.1 and 4.2, resp.).

2 The main module

For simplicity (and w.l.o.g.), we assume that Cn has fan-in two and uses only NAND-gates. Viewing
this gates as operating in GF(2), we have NAND(a, b) = 1− (a · b).

By augmenting the circuit with gates that are fed by no gate (and feed no gate), we can present
the circuit as having d(n) + 1 layers of gates such that each layer has exactly k(n) = poly(n) gates,
where (by convention) gates that are fed nothing always evaluate to 0. As usual, the gates at layer
i are only fed by gates at layer i+ 1, and the leaves (at layer d(n)) are input-variables or constants.
Furthermore, we may assume that, for j ∈ [n], the jth leaf is fed by the jth input-variable, and all
other leaves are fed by the constant 0. (The output is produced at the first gate of layer zero.)

The high level protocol. On input x ∈ {0, 1}n, the presecribed prover computes the values of
all layers. Letting d = d(n) and k = k(n), we denote the values at the ith layer by αi ∈ {0, 1}k;
in particular, αd = x0k−n and α0 = Cn(x)0k−1. For a sufficiently large finite field, denoted F , we
let H ⊂ F be a fixed set of size approximately log n and m = log|H| k = (log k)/ log |H| such that
k = |H|m. Viewing each αi as a function from Hm to {0, 1}, the prover encodes αi using its low
degree extension α̂i : Fm → F ; that is,

α̂i(z1, ..., zm) =
∑

σ1,...,σm∈H
EQ(z1 · · · zm, σ1 · · ·σm) · αi(σ1, ..., σm) (1)

where EQ is a low degree extention of the function that tests equality overHm (e.g., EQ(z1 · · · zm, σ1 · · ·σm) =∏
i∈[m]

∏
β∈H′(zi − σi + β)/β, where H ′ = {β′ − β′′ : β′, β′′ ∈ H} \ {0}). Hence, proving that x ∈ S

is equivalent to proving that α̂0(1
m) = 1, where 1m ∈ Hm corresponds to the fixed (e.g., first)

location of the output gate in the zero layer.
This proof is conducted in d(n) iterations, where in each iteration a multi-round interactive

protocol is employed. Specifically, in ith iteration, the correctness of the claim α̂i−1(ri−1) = vi−1,
where ri−1 ∈ Fm and vi−1 ∈ F are known to both parties, is reduced (via the interactive protocol)
to the claim α̂i(ri) = vi, where ri ∈ Fm and vi ∈ F are determined (by this protocol) such that
both parties get these values. We stress that, with the exception of i = d, the α̂i’s are not known
(or given) to the verifier; still, the claims made at the beginning (and at the end) of each iteration

4Actually, we use a low degree polynomial that agrees with the function; this low degree polynomial may have
higher degree than the standarsd low degree extension.

2

are well defined (i.e., they refer to the low degree extension of the values at certain layers of the
circuit in a computation of the circuit on input x ∈ {0, 1}n).

After the last iteration, the verifier is left with a claim of the form α̂d(rd) = vd, which it can
verify using Eq. (1) and its knowledge of αd = x0k−n. Actually, some care is required here too, since
the verifier needs to operate in time Õ(n) (rather than in time Õ(k), where k = |H|m = poly(n)).
For example, associating [n] with Hm′ ≡ Hm′1m−m

′
, we use the fact that for every σ1, ..., σm ∈ H

it holds that αd(σ1, ..., σm) = xσ1···σm′ if σm−m′+1 · · ·σm = 1m−m
′

and αd(σ1, ..., σm) = 0 otherwise.
Hence,

α̂d(z1, ..., zm) =
∑

σ1,...,σm∈H
EQ(z1 · · · zm, σ1 · · ·σm) · αd(σ1, ..., σm)

=
∑

σ1,...,σm′∈H
EQ(z1 · · · zm, σ1 · · ·σm′1m−m

′
) · αd(σ1, ..., σm′1m−m

′
).

where αd(σ1, ..., σm′1
m−m′) equals the bit of x in location σ1 · · ·σm′ ∈ Hm′ ≡ [n].

A single iteration. The core of the iterative proof is the interactive protocol that is performed
in each iteration. This protocol is based on the relation between subsequent αi’s, which is based
on the structure of the circuit. Specifically, recall that the ith iteration reduces a claim regarding
α̂i−1 to a claim regarding α̂i, where these polynomials encode the values of neighboring layers in
the circuit. To describe the relation between such neighboring layers, we consider the adjacency
relation of the circuit. Actually, we let φi : Hm ×Hm ×Hm → {0, 1} represent the feeding relation
between the ith and (i− 1)st layer of the circuit such that φi(u, v, w) = 1 if and only if the gate in
location u ∈ Hm in layer i− 1 is fed by the gates in locations v and w in layer i. Hence, for every
u ∈ Hm, we have

αi−1(u) =
∑

v,w∈Hm

φi(u, v, w) · (1− αi(v) · αi(w)) (2)

Recall that, by Eq. (1), we have α̂i−1(z) =
∑

u∈Hm EQ(z, u) ·αi−1(u). Combining this with Eq. (2),

while letting φ̂i : F3m → F denote the low degree extension of φi, we have

α̂i−1(z) =
∑

u,v,w∈Hm

EQ(z, u) · φ̂i(u, v, w) · (1− α̂i(v) · α̂i(w)). (3)

For any fixed point ri−1 ∈ Fm, the expression at the r.h.s of Eq. (3) can be written as
∑

u,v,w∈Hm pri−1(u, v, w),

where pri−1(z′, z′′, z′′′)
def
= EQ(ri−1, z

′) · φ̂i(z′, z′′, z′′′) · (1− α̂i(z′′) · α̂i(z′′′)) is a low degree polynomial.
Applying the sum-check protocol to Eq. (3) allows to reduce a claim regarding the value of α̂i−1 at
a specific point ri−1 ∈ Fm to a claim regarding the value of the polynomial pri−1 at a random point
(r′, r′′, r′′′) in F 3m (for details see Section 4.1). This is not quite what we aimed for but it is close
enough, since the verifier can easily evaluate EQ at any point. However, there are two problems:

1. The verifier needs to be able to evaluate φ̂i in Õ(n)-time. The definition of φ̂i does imply
that evaluating φ̂i reduces to |H|3m = k3 evaluations of φi, but n ≤ k = poly(n) which may
be much larger than n. Hence, evaluating φ̂i in Õ(n)-time is not obvious.

2. After evaluating EQ and φ̂i, the verifier is left with a residual claim that refers to two evalua-
tions of α̂i rather than to a single one.

3

The second problem is handled by augmenting the protocol such that the prover provides the value
of α̂i at both points (i.e., at r′′ and r′′′) as well as on the line that connects these points, and is
asked to prove the correctness of the value at a random point on this line. That is, if the prover
claims that α̂i(r

′′) = v′′ and α̂i(r
′′′) = v′′′, then it also provides a low degree univariate polynomial

p′ such that p′(z) = α̂i((1 − z)r′′ + zr′′′), which satisfies that p′(0) = v′′ and p′(1) = v′′′, and the
verifier selects a random r ∈ F and sends it to the prover. The claim to be proved in the next
iteration is that the value of α̂i at ri = (1− r)r′′ + rr′′′ equals vr = p′(r). Hence, the full protocol
that is run in iteration i is as follows.

Construction 2 (reducing a claim about α̂i−1 to a claim about α̂i): For known ri−1 ∈ Fm and
vi−1 ∈ F , the entry claim is α̂i−1(ri−1) = vi−1. The parties proceed as follows.

1. Applying the sum-check protocol to the entry claim, when expanded according to Eq. (3),
determines r′, r′′, r′′′ ∈ Fm and a value v ∈ F such that the residual claim for verification is

EQ(ri−1, r
′) · φ̂i(r′, r′′, r′′′) · (1− α̂i(r′′) · α̂i(r′′′)) = v. (4)

2. The prover sends a univariate polynomial p′ of degree (|H| − 1) ·m such that p′(z) = α̂i((1−
z)r′′ + zr′′′).

3. The verifier checks whether v equals

EQ(ri−1, r
′) · φ̂i(r′, r′′, r′′′) · (1− p′(0) · p′(1)) (5)

and continues only if equality holds (otherwise it rejects).

Note that this requires evaluating EQ and φ̂i.

4. The verifier selects a random r ∈ F , and sends it to the prover. Both parties set ri =
(1− r)r′′ + rr′′′ and vr = p′(r).

The exit claim is α̂i(ri) = vi.

The prescribes prover strategy in Construction 2 can be implemented in poly(n)-time. Assum-
ing that φ̂i can be evaluated in poly(log n)-time, the verifier’s strategy in Construction 2 can
be implemented in poly(log n)-time, provided that log |F| ≤ poly(log n) (whereas we will use
|F| = poly(log n)). One can readily verify that if the entry claim is correct, then the exit claim is
correct, whereas if the entry claim is false, then with probability at least 1 − O(|H| ·m/|F|) the
exit claim is false.

We are still left with the problem of evaluating φ̂i in poly(log n)-time. Actually, in Section 3
we present a solution to a relaxed version of this problem, in which φ̂i is replaced by an arbitrary
polynomial of degree at mostD that agrees with φi onHm. Before turning to Section 3, we note that
the foregoing analysis remains valid, except that the error probability grows from O(|H| ·m)/|F|
to O(D + |H| ·m)/|F|.

4

3 Evaluating φ̂i

The general problem that we face is evaluating the low degree extension of a function φ : Hm →
{0, 1} that is computable in O(log n) space, where |H|m = poly(n). (In our setting we are interested
in φi’s, which range over H3m, which can be treated as slices of a single φ : H3m+1 → {0, 1} such
that φi(z) = φ(i, z), where i ∈ [m] is viewed as an element of H.)5 This problem is solved in [1]
by using an auxiliary multi-round interactive protocol, but here we bypass it by making several
observations.

Recall that the function φ that we deal with here describes the structure of arbitrary log-space
uniform circuits. The first observation is that we may use instead a function that describes the
structure of a highly-uniform universal circuit. For starters, consider a universal circuit Un that,
given a description of a poly(n)-sized circuit Cn : {0, 1}n → {0, 1} of depth d = d(n) and an input
x ∈ {0, 1}n, computes Cn(x); that is, Un(〈Cn〉, x) = Cn(x). By using a suitable description, we
may get a highly uniform circuit Un of poly(n)-size and depth O(log n) · d(n). The idea is applying
the main module to Un rather than to Cn.

The problem with the foregoing idea is that after the last iteration (i.e., the last application
of Construction 2), the verifier needs to evaluate the low degree extension of the input to the
circuit, whereas in our application the input to Un consists of both 〈Cn〉 and x, which means that
the verifier needs to compute 〈Cn〉. By the log-space uniformity condition, this can be done in
poly(n)-time, but we wish the verifier to perform this step in Õ(n)-time. So, instead, we consider
a modified universal circuit U ′n, which is tailored to the log-space algorithm A that constructs the
circuit family {Cn}. On input x ∈ {0, 1}n, the circuit U ′n first constructs Cn (see details below),
and then computes Un(〈Cn〉, x). Now, applying the main module to U ′n rather than to Un, the
verifier only need to construct a low degree extension of x (as in the case that we use Cn itself).

Turning to the construction of Cn by U ′n, following [1], we use the observation that log-space
uniform circuits (here {Cn}n∈N) can be constructed by an highly uniform NC circuit. This obser-
vation relies on the standard construction of NC circuits for log-space computation, a construction
that is based on constructing the digraph of instantaneous configurations of the computation of a
log-space machine (on a fixed input) and raising it to a power larger than its dimension (by repeated
squaring). For details see Section 4.2. Recalling that Un is also highly uniform (see Section 4.2 for
details) and combining these two constructions, we obtain a highly uniform construction of U ′n.

So far, we avoided specifying what we meant by a highly uniform circuit. A notion that
suffices for our purposes is presented now. Considering circuits of size s(n) = poly(n) and letting
` = 3 log s(n), we consider the predicate φ : {0, 1}` → {0, 1} that describes the adjacency relation
of the circuit. We say that the circuit is highly uniform if φ can be computed by poly(`)-sized
formula that can be constructed in poly(`)-time. The reader may verify that the NC circuits that
we used above (for constructing the log-space uniform circuits Cn) are highly uniform; in fact, they
are even “more uniform” than that. Likewise for the circuit Un, and consequently for U ′n. Hence,
the predicate φ : {0, 1}` → {0, 1} that describes the adjacency relation of U ′n can be computed by
a poly(log n)-size formula that can be constructed in poly(log n)-time. Viewing φ as ranging over
Hm, where m = `/ log |H|, the following result implies that there exists a low degree polynomial
over Fm that agrees with φ on Hm and can be evaluated in poly(log n)-time.6

5Recall that m = O(logn)/ log logn < |H| ≈ logn. For simplicity of notation, we write φ : Hm → {0, 1} rather
than φ : H3m+1 → {0, 1}.

6Recall that |H| ≈ logn.

5

Theorem 3 (evaluating a low degree polynomial that agrees with a highly uniform Boolean cir-
cuit): For φ : Hm → {0, 1}, where H ≡ {0, 1}`′, let φ′ : {0, 1}m`′ → {0, 1} be the corresponding
Boolean function that views elements of H as `′-bit long strings. Suppose that φ′ is highly uniform;
that is, φ′ can be computed by formula of size s′ = poly(m`′) that can be constructed in poly(s′)-
time. Then, there exists a polynomial Φ̂ : Fm → F of degree poly(s′) · |H| that agrees with φ on
Hm and can be evaluated in poly(`)-time, where ` = log |H|m, provided that |H| = poly(m).

We stress that the polynomial Φ̂ : Fm → F is not the (canonical) low degree extension of φ (or
φ′); such a low degree extention has degree m · |H| (or m`′ · |H|) and exists regardless of the size
of the formula φ. In contrast, the polynomial Φ̂ is derived from the formula computing φ′, and
its degree bound is derived from the depth of φ′. (As stated above, we apply Theorem 3 to the
function φ : H3m+1 → {0, 1} that describes the relation between gates in a circuit as in Section 2,
where φi(z) = φ(i, z) for every i ∈ [m] ⊂ H.)

Proof: Associating H with {0, 1}`′ , we first consider the computation of the jth bit in the binary
representation of z ∈ H. Denote by Hj the set of elements in H that are represented by `′-bit
strings in which the jth position holds the value 1. Observe that, for every z ∈ H, it holds that the
expression

∑
a∈Hj

∏
b∈H\{a}(z − b)/(a− b) (with arithmetic of the field F) equals 1 if z ∈ Hj (i.e.,

the jth bit of z is 1) and equals 0 otherwise (i.e., if the jth bit of z is zero).
Next, consider the poly(`)-size formula that computes φ′ : {0, 1}` → {0, 1}, where ` = m`′.

Then, for z1, ..., zm ∈ H, it holds that

φ(z1, ..., zm) = φ′(zi,1, ..., zi,`′ , ..., zm,1, ..., zm,`′), (6)

where zi,j ←
∑

a∈Hj EQ(zi, a) ∈ {0, 1} (and EQ : F × F → F is a low degree extension of the

function that tests equality over H; i.e., EQ(z, a) =
∏
b∈H\{a}(z − b)/(a − b)). Now, construct an

arithmetic circuit Φ̂ (which is actually a formula) that computes a polynomial that agrees with
φ on Hm by mimicing the Boolean formula φ′. Specifically, the input gate zi,j is replaced by the
formula

∑
a∈Hj EQ(zi, a), and the NAND of the Boolean subformulae φ′1 and φ′2 is replaced by a gate

that computes 1−Φ̂1 ·Φ̂2, where Φ̂1 and Φ̂2 are the corresponding arithmetic subformulae. (Indeed,
we may assume, w.l.o.g., that φ′ uses only NAND-gates, and that its depth is O(log s′).)

Note that the degree of the resulting polynomial Φ̂ is upper-bounded by poly(s′) · |H|, where
the |H| factor is due to the computation of the zi,j ’s and the poly(s′) is exponential in the depth of

the formula φ′ (which, w.l.o.g., is logarithmic in its size). To see that Φ̂ equals φ on Hm, note that
when evaluated on input in Hm each of the zi,j ’s is assigned a Boolean value, whereas the residual
subformula preserves Boolean values. Hence, the value of φ on a point in Hm is given by the value
of φ′ on the corresponding bit string (per Eq. (6)), which in turn equals the value of Φ̂ on this bit
string.

Wrapping-up. As stated above, we modify Construction 2 by replacing the polynomials φ̂i by
the polynomial Φ̂ (i.e., replacing φ̂i(·) by Φ̂(i, ·) where φ̂i : F3m → F and where Φ̂i : F1+3m → F).
Doing so provides an efficient implementation of Step 3 of Construction 2, whereas the soundness
error grows from d(n) · O(|H| ·m/|F|) to d(n) · O((m+ poly(s′) · |H|) · |H|/|F|), where s′ is as in
Theorem 3. Hence, we need to guarantee that O((m + poly(s′)) · |H|2/|F|) = o(1/d(n)), where
s′ = poly(m log |H|) is an upper bound on the size of the formula φ′ that we use. (Note that

6

s′ ≥ 3m log |H| definitely holds, whereas s′ = O(m log |H|) may actually suffice.) Recalling that
|H| ≈ log n and m < log n, it suffices to have |F| = ω(d(n) · poly(log n)), which implies that
|F| = poly(|H|) · d(n) suffices. This completes the proof of Theorem 1, modulo some details
provided in Section 4.

4 Details

In this section we provide some tedious details, which some readers may find quite straightforward.

4.1 Applying the sum-check protocol to Eq. (3)

Here we detail how the sum-check protocol is used to reduce the claim regarding the value of
α̂i at a given point ri−1 to a claim regarding α̂i−1. Towards this goal, we define a polynomial
pri−1 : F3m → F such that

pri−1(z′, z′′, z′′′) = EQ(ri−1, z
′) · φ̂i(z′, z′′, z′′) · (1− α̂i(z′′) · α̂i(z′′′)). (7)

Recall that the claim that we wish to verify is α̂i−1(ri−1) = vi−1. Expanding α̂i−1 according to
Eq. (3) and using Eq. (7), we have

α̂i−1(ri−1) =
∑

u,v,w∈Hm

pri−1(u, v, w). (8)

Using 3m rounds of interaction, the sum-check protocol reduces the claim that the r.h.s of Eq. (8)
equals vi−1 to a claim regarding the value of pri−1 at a random point (r′, r′′, r′′′) ∈ F3m. This is
captured by Step 1 of Construction 2.

4.2 The highly uniform circuits in use

Here we detail the construction of the universal circuit U ′n, which combines a construction of NC
circuits for constructing log-space uniform circuits and a construction of the universal circuit Un.
The point that we wish to establish here is that both these constructions are highly uniform (in the
sense that the adjacency relation function describing each of these two poly(n)-sized circuit can be
computed by a poly(log n)-size formula that can be computed in poly(log n)-time).

We start with the highly uniform construction of NC circuits for constructing log-space uniform
circuits, denoted {Cn}n∈N. Recall that this construction relies on the standard construction of NC
circuits for log-space computations, a construction that is based on constructing the digraph of
instantaneous configurations of the computation of a log-space machine (on a fixed input) and
raising it to a power larger than its dimension (by repeated squaring). In our case, the input (i.e.,
1n) is actually used only to determine the space bound, and so we can ignore it. However, we should
note that the said log-space computation produces many output bits (which describe the circuit
Cn, rather than a single decision bit). Without loss of generality, we can incorporate the index of
the next bit to be produced in the instantaneous configuration (since the log-space machine can
maintain a corresponding counter).

7

Constructing the digraph of instantaneous configurations. Observe that the digraph that
represents the consecutive configurations in the foregoing log-space computation can be constructed
very easily (i.e., by a highly uniform NC circuit); that is, the pair (γ, γ′) ∈ {0, 1}2·O(logn) is an edge
in that digraph if and only if the log-space machine moves from the instantaneous configuration
represented by γ to the configuration represented by γ′ in a single step. Note that we actually
consider an NC circuit that has no input and always produces this digraph as its output. The
output gate that corresponds to the entry (γ, γ′) in the adjacency matrix representing this digraph
is 1 if and only if the pair (γ, γ′) satisfies a very simple relation that is only slightly more complex
than testing equality.7 Hence, the value of the entry (γ, γ′) in the matrix can be determined in
poly(log n)-time as a function of γ and γ′. It follows that the circuit that produces this matrix,
which consists merely of computing the constants 0 and 1 and feeding them to the poly(n)-many
output bits, is highly uniform; that is, its adjacency relation can be expressed a formula of size
O(log n) that can be constructed in time poly(logn).

This yields a highly uniform poly(n)-by-poly(n) matrixM that when raised to the power poly(n)
yields the desired bits; that is, the value of the ith output bit (i.e., the ith bit in the description of
Cn) equals the value of the entry (si, fi) in the resulting matrix (i.e., of Mpoly(n)), where si denotes
the initial configuration that is used for producing the ith bit and fi denotes the final configuration
that actually produces this bit. As we show next, there exists a highly uniform NC circuit for
raising a given poly(n)-by-poly(n) matrix to the power poly(n) (by repeated squaring), since the
inner product of poly(n)-bit long vectors has a highly uniform NC circuit.

Constructing circuits for matrix multiplication. We now detail the highly uniform NC
circuit used to compute matrix multiplication. Let A and B be n-by-n matrices, then the (i, j)th

bit in their product is given by
∑

k∈[n]Ai,kBk,j . Hence, we first use n3 gates such that the gate index
by (i, j, k) computes Ai,kBk,j , which means that this gate is fed by inputs with indices (1, i, k) and
(2, k, j), and then we use n2 trees of n−1 addition-gates for computing each n-way sum. Specifically,
the sum that corresponds to index (i, j) is computed by gates that are indexed by (i, j, α), where
α ∈ {0, 1}≤logn, such that the gate indexed by (i, j, α) is fed by the gates indexed (i, j, α0) and
(i, j, α1). Hence, the description of the adjacency relation of this circuit is very simple; for example,
for gates that correspond to the n-way sums, we can use

φ((i, j, α), (i′, j′, α′), (i′′, j′′, α′′)) = EQ(ij, i′j′) ∧ EQ(ij, i′′j′′) ∧ EQ(α0, α′) ∧ EQ(α1, α′′).

Constructing the universal circuit Un. Recall that, for fixed depth d = d(n) and size s = s(n),
the circuit Un is given a description of a circuit Cn (of depth d and size s) and a string x ∈ {0, 1}n,
and is supposed to output Cn(x). The circuit Un emulates the computation of Cn in a layer-by-layer
manner. Specifically, Un computes the value of the jth gate in layer i in the emulated computation
of Cn (on x), denoted vi,j , as a function of the description of the circuit Cn and the two adequate
values of gates in layer i+ 1. In particular, vd,j is the jth bit of x if j ≤ n and equals 0 otherwise,

7Specifically, recall that γ represents the contents of the work-space as well as the finite state of the machine and
the location of its head (on the work-tape). The bits of γ′ should equal the corresponding bits of γ, except for the bit
at the head’s location and the bits encoding the finite state that change according to a finite function. (The location
of the head on the work-tape is indicated by the corresponding location of a special symbol in γ.) Hence, the value
of the entry (γ, γ′) can be determined as a conjunction of O(logn) conditions, where each of these conditions refers
to a constant number of bits.

8

and for every i ∈ [d] and j ∈ [s],

vi−1,j =
∨

k′,k′′∈[s]

(c(i−1,j),(i,k′),(i,k′′) ∧ NAND(vi,k′ , vi,k′′)),

where c(i−1,j),(i,k′),(i,k′′) is a bit in the description of Cn that indicates whether or not the (i−1, j)th

gate is fed by gates indexed the (i, k′) and (i, k′′). Again, the description of the adjacency relation
of this circuit is very simple.

Acknowledgements

We are grateful to Guy Rothblum for many useful discussions regarding the Goldwasser-Kalai-
Rothblum proof system.

References

[1] Shafi Goldwasser, Yael Tauman Kalai, Guy N. Rothblum. Delegating Computation: Interactive
Proofs for Muggles. Journal of the ACM, Vol. 62(4), Art. 27:1-27:64, 2015. Extended abstract
in 40th STOC, pages 113–122, 2008.

[2] Shafi Goldwasser, Silvio Micali and Charles Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985. Earlier versions date to 1982.

[3] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for in-
teractive proof systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992. Extended
abstract in 31st FOCS, 1990.

[4] Omer Reingold, Guy N. Rothblum, Ron D. Rothblum. Constant-round interactive proofs for
delegating computation. In 48th ACM Symposium on the Theory of Computing, pages 49–62,
2016.

[5] Adi Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992.
Preliminary version in 31st FOCS, 1990.

9

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

