Electronic Colloquium on Computational Complexity, Report No. 103 (2017)

Parameterized Property Testing of Functions*

Ramesh Krishnan S. Pallavoort Sofya Raskhodnikovat Nithin Varma!

June 12, 2017

Abstract

We investigate the parameters in terms of which the complexity of sublinear-time algorithms
should be expressed. Our goal is to find input parameters that are tailored to the combinatorics
of the specific problem being studied and design algorithms that run faster when these parame-
ters are small. This direction enables us to surpass the (worst-case) lower bounds, expressed in
terms of the input size, for several problems. Our aim is to develop a similar level of understan-
ding of the complexity of sublinear-time algorithms to the one that was enabled by research in
parameterized complexity for classical algorithms.

Specifically, we focus on testing properties of functions. By parameterizing the query com-
plexity in terms of the size r of the image of the input function, we obtain testers for monotonicity
and convexity of functions of the form f : [n] — R with query complexity O(logr), with no de-
pendence on n. The result for monotonicity circumvents the £2(logn) lower bound by Fischer
(Inf. Comput., 2004) for this problem. We present several other parameterized testers, provi-
ding compelling evidence that expressing the query complexity of property testers in terms of
the input size is not always the best choice.

1 Introduction

In this paper, we set out to investigate the parameters in terms of which the complexity of sublinear-
time algorithms should be expressed. Our goal is to find input parameters that are tailored to the
combinatorics of the specific problem being studied and design algorithms that run faster when
these parameters are small. This direction could enable one to surpass the (worst-case) lower
bounds on the problem complexity that are usually expressed in terms of the input size. The spirit
of our study is similar to that in the field of parameterized complexity. In parameterized complexity,
the focus is on expressing the complexity of problems as a function of one or more input parameters
in order to obtain a fine-grained complexity classification, for example, of NP-hard problems. Our
aim is to develop a similar level of understanding of the complexity of sublinear-time algorithms to
the one that was enabled by research in parameterized complexity for classical algorithms.

We focus our study on the framework of property testing, introduced by Goldreich et al. [29]
and Rubinfeld and Sudan [42]. In property testing, an algorithm (an e-tester) for property P,
where P is viewed as a class of functions, is given a parameter ¢ € (0,1) as input and has oracle

*This work was supported by NSF grant CCF-1422975; the third author was also supported by Pennsylvania State
University College of Engineering Fellowship and Pennsylvania State University Graduate Fellowship.

tA preliminary version of this work appeared in the proceedings of ITCS 2017 [38].

tPennsylvania State University, rxp271@cse.psu.edu, sofya@cse.psu.edu, nithvarma@psu.edu.

ISSN 1433-8092

access to a function f. The tester has to accept with probability at least 2/3 if f belongs to the
class P, and reject with probability at least 2/3 if f is e-far from P, that is, differs from every
function in P on at least an e fraction of function values. In the context of property testing of
functions, the query complexity of a tester is usually expressed in terms of € and the size of the
domain of the input function. This works well for properties whose query complexity depends only
on the proximity parameter €. However, for other properties, it is not clear whether the domain
size is the right parameter to express their testing complexity.

Consider, for example, the widely studied problem of testing monotonicity of real-valued functi-
ons (see, e.g., [28, 23, 24, 37, 27, 25, 32, 1, 33, 2, 11, 10, 13, 16, 12, 9, 17, 18, 15, 20, 19, 36, 4, 5, 22],
and recent surveys [40, 14]). For functions over a discrete domain [n] (also called the line), mo-
notonicity testing is equivalent to testing sortedness of arrays. Algorithms for sortedness testing
have found use, for instance, in determining the “state of sortedness” of relational databases [6],
where the testing step is performed to decide on the sorting algorithms to be run on the database.
The complexity of sortedness testing (for constant €) is O(y/n) if the tester is only allowed to
make independent and uniformly random queries [27]; it is ©(logn) if the tester is allowed to make
arbitrary queries [24, 25].

From the above discussion, it might appear that one cannot make any more improvements to
the complexity of monotonicity testing over [n]. However, we argue that this is the case only when
the complexity of the problem is parameterized in terms of n, the domain size.

In this work, we ask whether better monotonicity testers can be designed by parameterizing
the query complexity in terms of the size of the image of the input function. The starting point
for our investigation is the folklore result that, for e-testing monotonicity of Boolean functions over
[n], only O(1/e) queries suffice. A slightly more general corollary of this result is that monotonicity
of functions over [n] with image size at most 2 can be e-tested with only O(1/e) queries. The
only bound for monotonicity testing (over [n]) that is expressed in terms of the image size r of the
input function is the bound of Q(logr) for nonadaptive! testers due to Blais et al. [12]. We design
an e-tester for monotonicity of functions over [n] with query complexity O((logr)/e), where 7 is
an upper bound on the size of the image of the input function. This result circumvents Fischer’s
lower bound of (logn) for this problem by focusing on a different parameter for measuring query
complexity.

The size of the image is one of the natural parameters in terms of which one can express the
complexity of property testing algorithms. In this work, we show that there are several testing
problems for which parameterizing the complexity in terms of the image size works well. Another
example where parameterization has helped in the design of efficient testers is the work of Jha and
Raskhodnikova [35] on Lipschitz testing, even though they do not view their results from this angle.
The complexity of their testers is expressed in terms of the image diameter. The image diameter
of a function f : D — R is max, yep | f(2) — f(y)|. In many situations, the image diameter is much
smaller than the domain size. We believe that all this evidence is compelling enough to make one
rethink the way in which the complexity of sublinear-time algorithms is expressed. Our paper is
a first step towards formalizing this notion and finding what we think are the right parameters to
express the complexity of some central problems in sublinear-time algorithms.

!Testers whose queries do not depend on the answers to previous queries are called nonadaptive; general testers
that do not satisfy this requirement are adaptive.

1.1 Parameters and Properties Studied in this Work

We study the dependence of complexity of monotonicity and convexity testers on the image size of
the input functions. The image of a function is defined as follows.

Definition 1.1 (Image of a function). Let f be a function defined over a finite, discrete domain D.
The image of f, denoted Im(f), is the set {f(x) : x € D} or, in other words, the set of all values
taken by f on points in D.

For the special case, when D is [n], a function f : [n] — R can also be viewed as a real-valued
array of length n. Here, Im(f) is equal to the set of distinct values in the array.

We restrict our attention to real-valued functions defined over the following domains. These are
domains for which testing monotonicity and convexity have been studied extensively.

Definition 1.2 (Hypergrid, Hypercube, Line). For x € [n]d, let z; denote the i** coordinate of
x. A hypergrid is a partial order ([n]%, <) where x < y means that x; < 1y; for all x,y € [n)* and
i € [d]. The partial order ([2]¢, <) is called a hypercube and the total order ([n], <) is called a line.

Next, we summarize some of the previous work on testing monotonicity and convexity of real-valued
functions.

Monotonicity. A function f : D +— R defined over a partial order (D, <) is monotone if f(z) <
f(y) for all z,y € D satisfying < y. Monotonicity is one of the most widely studied properties in
the field of property testing [28, 23, 24, 37, 27, 25, 32, 1, 33, 2, 11, 10, 13, 16, 12, 9, 17, 18, 15, 20,
19, 36, 4, 5, 22]. The complexity of e-testing monotonicity of functions of the form f : [n]¢ — R

is © (@) [16, 17]. For the special case of the line, the testing complexity is © (loﬁ) [24, 25].

13
For functions defined over general poset domains D, the complexity of monotonicity testing is

o (VDI/z) [27).

Convexity. For a convex set D, a function f : D +— R is convex if Va,y € D and t € [0,1],
fltz+(1—t)y) <tf(x)+ (1 —1t)f(y). For real-valued functions over [n], convexity can be e-tested
using O('°8™) queries [39]. This bound is tight (for constant ¢) for nonadaptive testers [12].

£

1.2 Our Results

In this section, we describe the key technical contributions of our work. We design efficient testers
for monotonicity over various hypergrid domains and convexity over the line. For monotonicity of
functions over the line [n], which is equivalent to the property of sortedness of arrays of length n, we
design efficient testers under two different models of input access: (i) query access and (ii) uniform
samples. Our testers are given an upper bound r on the image size of the input function, and their
complexity is parameterized in terms of r. In addition to analyzing query (sample) complexity of
our algorithms, we also analyze their running times in the model where each oracle query takes
unit time.

Sortedness testing. We present our tester for sortedness of n-element arrays (monotonicity over
the line [n]) in Section 3. The complexity of our tester is independent of n. Our tester has 1-sided
error, that is, it always accepts a function with the property. (In contrast, the general tester is said
to have 2-sided error.) We prove the following theorem.

Theorem 1.3. There exists a 1-sided error e-tester making O (10%) queries to test sortedness of

arrays with at most r distinct values. The tester runs in time O <1°§T>.

An important ingredient in our sortedness tester is a nearly optimal nonadaptive tester for this
task, presented in Section 2. Its performance is summarized in the next theorem.

Theorem 1.4. There exists a nonadaptive, 1-sided error e-tester making O (%log g) queries to
test sortedness of arrays with at most r distinct values. The tester runs in time O (% log g)

The query complexity of our nonadaptive tester matches (for constant) the Q(logr) lower bound
for nonadaptive sortedness testers in [12]. Note that for 7 > 1/e, the complexity of the nonadaptive

tester is O (10%) The tester that we design to prove Theorem 1.3 runs the nonadaptive tester for

r > 1/e and a different (adaptive) tester, presented in Section 3, for r < 1/e.

Uniform sortedness testing. The work that defined property testing [29], in addition to the
model with oracle access to the input, also considered testers that are allowed access to function
values only at points sampled uniformly and independently at random from the domain. This model
of property testing, known as uniform or sample-based testing, was further studied by Goldreich
and Ron [31], Fischer et al. [26], Berman et al. [8] and Berman et al. [7]. The query complexity of
e-testing sortedness of n-element arrays (for constant ¢) using only uniformly and independently
drawn samples is ©(y/n) [27]. We design optimal (up to the dependence on ¢) uniform testers
whose query complexity is parameterized in terms of the number or distinct elements in the input
arrays. These results can be found in Sections 5 and 6.

Theorem 1.5. There exists a 1-sided error e-tester that makes O(y\/r/€) uniform and independent
queries to test sortedness of arrays with at most r distinct values. The tester runs in time O(\/r/e).

Theorem 1.6. Testing sortedness of arrays with values in [r] requires Q(y/7) uniform queries, even
with 2-sided error.

Monotonicity testing over hypergrids. We present our tester for monotonicity of real-valued
functions over hypergrid domains in Section 4 and prove the following theorem.

Theorem 1.7. There exists a 1-sided error e-tester that makes O (glogglog 1") queries to test
monotonicity of real-valued functions f : [n]? — R over the hypergrid domain, where |Im(f)| < r.
The tester runs in time O (g log g log 7‘).

Note that our tester has a better complexity (up to log factors) than the optimal tester for mo-
notonicity of real-valued functions over the hypergrid domains that makes O (@) queries [16]
for small r. Parameterizing the complexity of testing in terms of the image size of the functions
being tested is what enables us to bypass the Q2 (dk’%) lower bound for monotonicity testing of

functions over hypergrid domains in [17].

Convexity testing over the line. Finally, in Section 7, we give a nonadaptive convexity tester
for real-valued functions over the line and prove the following theorem.

Theorem 1.8. There exists a nonadaptive, 1-sided error e-tester for convezity of functions f :
[n] — R that takes an integer r > |Im(f)| as input and makes O(1/e) queries when r < en/3 and

O (%) queries otherwise. The tester runs in time O(1/e) when r < en/3 and O <M)

1>
otherwise.

Recall that for real-valued functions over [n], the complexity of (nonadaptively) e-testing convexity
(for constant ¢) is ©(logn). Contrary to this, our tester makes only a constant number of queries
when the image size of the function is small.

1.3 Related Work

A related concept of parameterized testability of graph properties was studied by Iwama and
Yoshida [34]. The focus of their work was to design efficient algorithms for the property testing
variants of several NP-hard decision problems on graphs, by expressing their complexity in terms
of parameters that have been successfully used in the literature on parameterized algorithms. In
most of the cases, the parameters that they used are NP-hard to compute. In contrast, our goal is
to determine the right input parameters in terms of which to express the complexity of property
testers and, more generally, sublinear-time algorithms. The parameters we use are often easy to
compute or estimate and, in many situations, can be assumed to be given to the algorithm. We
also believe that the parameters that we use are tied to the intrinsic combinatorial structure of the
properties and give insights into complexity of testing them.

2 The Nonadaptive Sortedness Tester

In this section, we describe a nonadaptive, 1-sided error e-tester for sortedness of arrays containing
at most r distinct values and prove Theorem 1.4. Our tester (Algorithm 1) uses a proximity
oblivious tester (POT) for sortedness as a subroutine.

Definition 2.1 (POT, Goldreich and Ron [30]). A proximity oblivious tester for a property P is
an algorithm that has oracle access to a function f and

1. always accepts if f € P;

2. rejects with probability at least dist(f, P) if f ¢ P, where dist(f,P) is the minimum fraction
of values in f that needs to be changed, so that f € P.

Observe that a POT for P can be repeated O(1/¢) times to obtain a 1-sided error e-tester for P.
We note that Definition 2.1 is a special case of the definition of POT in [30]. Specifically, Goldreich
and Ron [30] allow the rejection probability of a POT to be a non-decreasing function of dist(f, P).
However, the special case in Definition 2.1 is sufficient for our purposes.

We now give an overview of Algorithm 1. It runs for O(1/e) iterations. In each iteration, it
first runs a POT for sortedness on a subarray B of the input array A consisting of 1+ 2r/e (nearly)
equally spaced indices. Next, it picks an index ¢ € [n] uniformly at random. It compares A[i] with
the array values of the indices closest to ¢ that were included in B. Algorithm 1 rejects if either of
these steps finds elements out of order.

At least three distinct POTs for sortedness of arrays with O(logn) query complexity are
known [24, 10, 16]. We can use any of them in Algorithm 1. Note that Algorithm 1 is not proximity

oblivious itself, as it uses the proximity parameter ¢ to determine its queries. For simplicity, we
assume throughout that 2r/e is an integer that divides n.

Algorithm 1: The Nonadaptive Sortedness Tester

input : query access to an array A of size n, an upper bound 7 on the number of distinct
values in A, and a distance parameter € € (0, 1).

1 Let B be the subarray of A consisting of the indices 1, §7, 25—:”, e (% — 1) st.n. // No
need to explicitly construct B.
2 repeat (%1 times
3 Run a POT for sortedness of arrays (e.g., from [24], [10] or [16]) on B and reject if it
rejects.
4 Query an index i from A uniformly at random.

5 Set k= | 2| +1. // Note that B[k]=A [M} and Blk+1]=A4 [@]

‘en 2r 2r
6 Query B[k| and Blk + 1].
7 Reject if (BIk], Ali], B[k + 1]) is not in sorted order.
8 Accept.

Proof of Theorem 1.4. We prove that Algorithm 1 is a nonadaptive, 1-sided error e-tester making
(@) (%logg) queries to test sortedness of arrays with at most r distinct values. Algorithm 1 is
nonadaptive, since its queries can be chosen in advance. It has 1-sided error as it always accepts
sorted arrays. Lemmas 2.2, 2.3 and 2.5 complete the proof of Theorem 1.4.]

Lemma 2.2. Algorithm 1 makes O (% log g) queries.

Proof. The query complexity of Step 3 is O(log|B|) = O(log(r/e)). Steps 4-7 make a constant
number of queries. Steps 3-7 are executed O (1/¢) times. Hence, the overall query complexity of
the tester is O (% log g) O

Recall that an array is e-far from sorted if at least an ¢ fraction of elements need to be modified
to make it sorted; otherwise, it is e-close to sorted.

Lemma 2.3. Algorithm 1, with probability at least 2/3, rejects every array that has at most r
distinct values and is e-far from sorted.

Proof. Consider an array A that has at most r distinct values and is e-far from sorted. Let B be the
subarray of A as defined in Step 1 of Algorithm 1. If B is =-far from sorted, then by the definition
of POT for sortedness, Step 3 of our tester rejects with probability at least £ in each iteration. In

the rest of the proof, we consider the case when B is =-close to sorted.

Claim 2.4. If B is =-close to sorted, then Steps 4-7 reject with probability at least = in each
iteration.
Proof. The subarray B consists of 1+ 2r/e (nearly) equally spaced indices, which partition A into

2r /e intervals of nearly the same size. Let T = {I1, I2,..., I5,/.} denote the set of these intervals.

Here, I; denotes the interval? [2% — 1] and, for £ > 1, the interval [w}ﬂ + 1..’“25—:7 —1| is

r

*We use [a..b] to denote {a,a+1,...,b—1,b} for a,b € Z,a < b.

denoted by Ij. Note that, by definition, B[k] and B[k + 1] denote the values of the elements in A
present immediately to the left and right of Iy, respectively.

An interval I is nearly-constant if B[k] = B[k + 1]. Let C; be the set of arrays with all their
values equal to t. Let A[Ij] denote the subarray of A on the indices in I. Let d(Ix) and D(I})
denote the fractional and absolute Hamming distance of A[l] from the property Cpj). Note that
d(Ix) = D(Ii)/ | Ix|-

We now prove Claim 2.4 as follows in two steps. First, we show that >, .7 D(I) > en/T7,
where Z' = {Ij, € T : I}, is nearly-constant}. Second, we show that Steps 4-7 of Algorithm 1 reject
with probability at least », .7 D(I})/n in each iteration.

Since B is £-close to sorted, there exists a set S of at most €|B|/7 indices in B whose values
can be changed to make B sorted. Note that, for r > 3, we have |S| < r/3 since |B| = 1+ 2r/e.
Consider the set of intervals Fy in Z adjacent to at least one index from S. As each index in S is
adjacent to at most two intervals, |E1| < 2r/3.

Let E5 denote the set of intervals in Z \ Ej that are not nearly-constant. For all k£ such that
I, € E5, we have B[k] < B[k + 1]. This is so because, if B[k] > B[k + 1], then I} € E; and
if B[k] = B[k + 1], then I is nearly-constant. The total number of distinct values taken by the
elements belonging to intervals in Fs is at least |E2|. But A has at most r distinct values, and
hence, |E| < r. Consequently, |Fy U Ey| < 2 417 = 5.

Consider the subarray A” of A induced by the indices in the intervals in 7\ (E1 UE2). Let Dg(A)
denote the absolute Hamming distance of the array A to the sortedness property. As Dg(A) > en,
we get Dg(A”) > en — 57 - 52 = £ Note that all the intervals in A” are nearly-constant. Hence,

2r
(Z\ (FE1U Es)) C 7' and, consequently,

3" D(Iy) = Ds(A”) > %” > 57”
I €T’

This completes the first step of the proof.
Consider a nearly-constant interval I}, € Z’ such that D(I;) > 0. As B[k] = B[k + 1], there
exists D(I) elements in I whose values are not Blk], i.e.,

{z € Ir : Alz] # BlK]}| = D(Ix).

Algorithm 1 rejects if it samples an index z € Ij, in Step 4 such that B[k]| = B[k + 1] (i.e., Iy € ')
and Alz] # B[k]. As there are }_; -7/ D(I}) such indices in A, Steps 4-7 of Algorithm 1 reject A
with probability at least > .7 D(Ix)/n. Since >, .z D(I) > en/7, the proof of Claim 2.4 is
complete. O

Hence, the probability that Steps 3-7 reject in each iteration is at least €/7. The probability that
Algorithm 1 accepts after [8/¢] iterations is at most (1 — e/ 7)8/ ® < e 8/7T < 1/3. This completes
the proof of Lemma 2.3. O

Lemma 2.5. The time complezity of Algorithm 1 is O (% log g)

Proof. Step 1 introduces notation and is not a step of the algorithm. The time complexity of Step 3
is O(log |B|) = O (log £). Steps 4-7 run in constant time. Hence, the running time of each iteration
of Steps 3-7 is O (log g) As these steps are executed O(1/¢) times, the time complexity of Steps 2-7
is O (% log g), which is also the overall time complexity of Algorithm 1. O

3 The Sortedness Tester with O (b%) Query Complexity

In this section, we describe a 1-sided error e-tester for sortedness of arrays containing at most r
distinct values and prove Theorem 1.3. The tester, described in Algorithm 2, runs the nonadaptive
tester (Algorithm 1) described in Section 2 when r > 1/e, and a different procedure, which is
described in Algorithm 2, otherwise.

Algorithm 2: The Sortedness Tester
input : query access to an array A of size n, an upper bound 7 on the number of distinct
values in A, and distance parameter ¢ € (0,1).

1 If r > 1/e, run Algorithm 1 and reject if it rejects.
2 If A[1] > A[n], reject.
3 Initialize a doubly linked list L to contain keys 1 and n.
// Define successor(i) = min{j € L:j > i}; predecessor(i) = max{j € L:j <i}.
4 while 3i,j € L such that j = successor(i) and |i — j| > 5 and A[i] < A[j] do

5 Set m = L%J and query A[m].

6 if Ai] < Alm] < A[j] then insert m into L else reject.

7 if i > 1 and Alpredecessor(i)] = A[i] = Alm] then

8 Delete ¢ from L.

9 if 7 <n and Alm] = A[j] = A[successor(j)] then
10 Delete j from L.

11 repeat (%W times

12 Sample an index z from [n] uniformly at random and query A[x].

13 if (A[predecessor(x)], Alx], A[successor(z)]) is not in sorted order then reject.

14 Accept.

Proof of Theorem 1.3. We prove that Algorithm 2 is a 1-sided error e-tester for sortedness of arrays
with at most r distinct values and that its query and time complexity are both O (%) When
r > 1/e, Algorithm 2 runs Algorithm 1 and outputs its answer. By Theorem 1.4, Algorithm 1 is
a 1-sided error e-tester with query and time complexity O (% log g) which is equal to O (%) as
r > 1/e. When r < 1/e, Algorithm 2 only rejects if it finds array elements out of order, and so, it
has 1-sided error. Lemmas 3.1, 3.2 and 3.3 complete the proof of Theorem 1.3. O

Lemma 3.1. Forr < 1/e, Algorithm 2 makes O <1ogT) queries.

£

Proof. We first bound the query complexity of Steps 4-10. Let w be the number of times Steps 4-10
are run by Algorithm 2. For k € [0..w], let Ly be the snapshot of the doubly linked list L of array
indices (initialized in Step 3) at the end of iteration k. Note that Ly = {1,n} and L,, is the list at
the end of the algorithm. Let Vi, = {v : v = A[i] for some i € Ly} be the set of all array values of
indices in Lj;. Observe that once a value v is in V}, it remains in Vj, for all k' > k. For v € V},
define successor-distance(v, Ly) = |i —successor(i)| such that A[i] = v and A[successor(i)] # v, where
successor is defined with respect to the list Ly (for v = A[n], define successor-distance(v, Ly) = 0

for all k). Consider the k' iteration of Steps 4-10 where k € [w]. In Step 4 of k" iteration, an
index ¢ € L is chosen such that successor-distance(A[i|, Ly—1) > en/2r. At the end of the iteration,
successor-distance(A[i], Lx) = successor-distance(A[i], Ly_1)/2 ignoring the errors due to rounding.
Generalizing this argument, for each iteration k € [w], there exists some v € Vi_1 \ {A[n]}, such
that successor-distance(vy, L) = successor-distance(vg, Lx_1)/2.

Fix v* € Vi, \{A[n]}. Let k1, ko, ..., kq € [w], where k1 < kg < ... < kg, be the iterations where
the choice of ¢ in Step 4 satisfies A[i] = v*. From the description of the tester, for any i € [2..q], we
have successor-distance(v*, Ly,) = successor-distance(v*, L, ,)/2. By extending this relation, we get
successor-distance(v*, Ly,) = successor-distance(v*, L,) /297!, But successor-distance(v*, Ly,) < n
and ' < successor-distance(v*, Ly,) < §*. Solving for ¢, we get

01-1 _ successor-distance(v*, Ly,) <" _ ar
successor-distance(v*, Ly,) — en/4r &’

Hence, the tester runs at most log(8r/¢) iterations where successor-distance(v*,-) is halved. Ac-
counting for all the iterations for each value in V,, \ {A[n]}, we get

w < |Vl - log(8r/e) < rlog(8r/e),

since |Vi,| < r. In each iteration, the tester makes a constant number of queries. So, the overall
query complexity of Steps 4-10 is O (r logg). The query complexity of Steps 11-13 is O(1/e).
Hence, the overall query complexity of the tester is O (% + rlog g)

Now, we prove that O (rlogZ) = O (logr) for r < 1/e. We have O (rlog%) = O (rlog %) as

13

r < 1/e. Note that the function g(z) = 17 is increasing for > 3. Hence, for r < 1/e, we

have ot < %, and hence rlog% < lofr. Therefore, the query complexity of Algorithm 2 is
logr

0 (zr). .

Lemma 3.2. Steps 2-14 of Algorithm 2, with probability at least 2/3, reject every array that has
at most r distinct values and is e-far from sorted, when r < 1/¢.

Proof. Consider an array A that has at most r distinct values and is e-far from sorted, where
r < 1/e. Algorithm 2 rejects whenever it finds elements out of order. We show that Steps 11-13
reject with probability at least 2/3, if Steps 2-10 do not find array elements out of order.
Consider the indices in the list L at the end of the while loop. Let E = {j € L : A[j] <
Alsuccessor(j)]} be the indices in L whose array values differ from that of their respective successor
in L. As A has at most r distinct values, by Pigeonhole principle, |E| < r. Each i € F satisfies
li — successor(i)| < en/2r. Define E' = {k € [n] : i < k < successor(i),i € E}. Clearly, |E'| <
5¢ - |E] < 5. Consider the subarray of A indexed by [n] \ E'. This subarray is 5-far from
sorted as A is e-far from sorted. Also, all k € [n] \ E’ satisfy predecessor(k) < k < successor(k)
and Alpredecessor(k)] = Alsuccessor(k)| (note that the definitions of predecessor and successor are
applicable to all elements in [n]). That is, for all such indices k, we know what the element A[k]
should be if A is sorted. Recall that if A[i] = A[j], then [i..j] constitutes a nearly-constant interval,
as defined in Section 2. By the proof method used in Lemma 2.3, there exists at least en/2 indices
of the form k € [n] such that Alpredecessor(k)] = A[successor(k)] and A[k] # A[successor(k)]. The

probability that Steps 12 and 13 fail to capture such an index in any of its [%W iterations is at

most ons
n

(1-¢/2)"% <1/3.

Lemma 3.3. Algorithm 2 runs in time O <logr>.

)

Proof. If r > 1/e, then Algorithm 1 is run. The time complexity of Algorithm 1 is O (% logg),
which is O (b%) forr>1/e.

For r < 1/e, Steps 2-14 are executed. The main idea of implementing Steps 4-10 efficiently is to
maintain a pointer p to the smallest index in the list L that satisfies the condition. The pointer p is
initialized to point to 1, which is present in L in the first iteration of Step 4. We repeat Steps 4-10
until the index that p points to, either no longer satisfies the while condition, or is deleted from L.
In both cases, we update p to point to the successor of the current index. In order to efficiently
implement Steps 11-13, we first copy the indices in L into an array D of size |L|. Note that D is
a sorted array. Step 13, which involves finding the successor and predecessor of a sampled index,
can then be performed by doing a binary search in D, which is a sorted array.

Steps 2 and 3 run in constant time. Since p points to the smallest index in L satisfying the

conditions of Step 4, the running time of Step 4 over all the iterations is O (10%), the query

complexity of Steps 4-10. Steps 5-10 run in time O(1), since the operations of insertion, deletion
and finding the successor and predecessor can all be done in O(1) time for the list L. Steps 4-10

are executed O (%) times (Lemma 3.1), and hence, the running time over all the iterations of
Steps 4-10 is O (lc’fr).

We now analyze the running time of Steps 11-13. The size of L is at most the query complexity
of Steps 4-10, which is O (bﬂ> Hence, copying the indices in L to the array D takes only O (logr>

£ 13

time. Since D has at most two indices per each of the (at most r) distinct values in A, a binary

£

search on D can be done in time O(logr). Thus, the overall running time of Steps 11-13 is O (bﬁ>
Hence, the overall time complexity of Algorithm 2 is O (%) O

4 The Monotonicity Tester over Hypergrids

In this section, we describe a monotonicity tester for functions over hypergrid domains and prove
Theorem 1.7. We prove the correctness of this tester using the correctness of the sortedness tester
described in Section 3, a dimension reduction theorem by Chakrabarty et al. [15] and the work
investment strategy by Berman et al. [9].

An axis-parallel line ¢ of the hypergrid [n]¢ is a set of n points that agree on all but one
coordinate. Let f|; denote the restriction of a function f to ¢. Note that f|, can be thought of as
a real-valued function over [n].

The tester iteratively samples uniformly random axis-parallel lines, runs Algorithm 2 on each
of them, and rejects if any run of Algorithm 2 rejects. We now analyze the tester and prove
Theorem 1.7.

10

Algorithm 3: The Monotonicity Tester over Hypergrids

input : query access to f : [n]? — R, an upper bound 7 on |[Im(f)|, and a distance
parameter € € (0, 1).

1 fori=1 to [SIOgt—d] do

2 repeat [1631%1 times
3 Sample a uniformly random axis-parallel line £.
4 Repeat twice: run Algorithm 2 on the array induced by f|,, with the distance

parameter set to 27¢ and the upper bound on the number of distinct elements set to
r; reject if it rejects at least once.
5 Accept.

Proof of Theorem 1.7. We prove that Algorithm 3 is a 1-sided error e-tester that makes O (g log g log r)
queries to test monotonicity of real-valued functions f : [n]? — R over the hypergrid domain, where
Im(f)| < r. Algorithm 3 has 1-sided error because Algorithm 2, which it runs as a subroutine, has
1-sided error. Lemmas 4.1 and 4.2 complete the proof of Theorem 1.7. O

Lemma 4.1. The query and time complexity of Algorithm 3 are both O (g log g log r).

Proof. The query complexity of a single execution of Step 4 during the i*" iteration of the outermost

loop (Step 1) is O(2¢logr). As Step 4 is repeated O (2‘?5) times in the 7*" iteration, the overall
query complexity of the i*® iteration of the tester is O (g log r). The outermost loop is executed

O(log g) times, and hence the query complexity of the tester is O (g log g log r). The analysis of
the time complexity is the same as that of the query complexity.]

Lemma 4.2. Algorithm 3, with probability at least 2/3, rejects every function over the hypergrid
domain which is e-far from sorted and has image size is at most r.

Proof. Let f : [n]¢ — R be e-far from monotone, with |[Im(f)| < r. Let £, 4 denote the set of all
axis-parallel lines in [n]? and d(f) denote the relative distance of f to monotonicity. We also use
dam(fle) to denote the relative distance to monotonicity of the function f|,. We have |Im(f|,)| < r
since |Im(f)| < r. We use the following dimension reduction theorem proved by Chakrabarty et
al. [15].

Theorem 4.3 (Chakrabarty et al. [15]).

dm(f)

Brcc, aldm(fle)] = 4

We note that Theorem 4.3 is a special case of the dimension reduction theorem proved in [15].
Clearly, if dap(f) > €, then, Ege g, ,[dMm(fle)] > €/4d. We use the work investment strategy due to
Berman et al. [9] to extend the monotonicity tester on the line domain to the hypergrid domain.

Theorem 4.4 (Berman et al. [9]). For a random variable X € [0,1] with E[X] > p for p < 1/2,

let p; = Pr[X > 5] and 6 € (0,1) be the desired probability of error. Let k; = 41;-;/6. Then,

[3log(1/p)]

[T a-»)h<s

i=1

11

Consider running Algorithm 3 on f. Let X = daq(f]¢), where ¢ is sampled uniformly at random
from L, 4. We apply the work investment strategy (Theorem 4.4) on X with error probability
d = 1/4. By Theorem 4.3, E[X] > ¢/4d. Thus, in Theorem 4.4, we set u = ¢/4d and k; = %
for all 7 € HB log 4?‘1”. By Theorem 4.4, With probability at least 3/4, for some i € [[3 log 4?‘1”,
we sample a line ¢ such that da(f|¢) > 27" in Step 3. Conditioned on sampling such a line,
Step 4 rejects ¢ with probability at least 8/9. Thus, given a function f that is e-far from sorted,

2

Algorithm 3 rejects f with probability at least % . % = 3, as required. This completes the proof of

Lemma 4.2. O]

Note on a nonadaptive tester for hypergrids. We can get a nonadaptive, 1-sided error e-
tester for monotonicity over hypergrids by using Algorithm 1 instead of Algorithm 2 in Step 4 of
Algorithm 3. The same analysis goes through for this case and the overall query complexity of the
tester is O (g log g log %d)

5 The Uniform Tester for Sortedness

In this section, we first describe a nonadaptive e-tester that makes O(y/7/¢) uniform and indepen-
dent queries to test sortedness of arrays containing at most r distinct values. The expected running
time of the tester is O(y/r/e). We then show how to use this tester to obtain another tester that
meets the requirements of Theorem 1.5.

Recall that a pair of indices (x,y), where z,y € [n] and x < y, is violated in an array A if
A(z) > A(y). Two indices = and y are adjacent in a sample S if there is no index z € S such that
r < z < y. Algorithm 4, uses the fact that there is a violated pair in a sample of indices if and
only if there is a violated pair consisting of adjacent indices in that sample.

The bound on the query complexity of the tester follows directly from its description. The
tester has 1-sided error as it always accepts sorted arrays. In the rest of the section, we show that
the time complexity of the tester is O(y/r/e) and that, with high probability, the tester rejects
arrays that are e-far from sorted.

Algorithm 4: The Uniform Sortedness Tester
input : query access to an array A of size n, an upper bound r on the number of distinct
values in A, and a distance parameter ¢ € (0, 1).

324/7

€

1 Sample and query { —‘ indices from A uniformly and independently at random.
2 Sort the sampled indices in increasing order using Bucket Sort [21] with [%1 buckets.

3 Reject if the sample contains a violated pair consisting of adjacent indices; else, accept.

Lemma 5.1. Algorithm /4, with probability at least 3/4, rejects every array that has at most r
distinct elements and is e-far from sorted.

Proof. Consider an array A that has at most r distinct values and is e-far from sorted. Consider
the undirected violation graph G = ([n], E) of A, where an edge {u,v} € E if (u,v) is a violated
pair. Dodis et al. [23, Lemma 7] show that if A is e-far from sorted then G has a matching M of
size at least en/2.

12

For a pair (z,y) € [n] x [n] such that z < y, we refer to z as its lower endpoint and y as its
higher endpoint. We first partition the pairs in M into r classes as follows. Let v1 < vo < -+ < v,
be the values in the range. A pair (z,y) € M such that x < y belongs to the i*" class C;, if
A(x) = v;. Note that Cy is empty. For each i € [r], let CF and C} denote the set of lower and
higher endpoints of pairs in C;, respectively. Note that |C;| = |CX| = |CH|. For each i € [r], define
the i'h lower bucket BY to consist of the smallest [|C;|/2] indices in C* and the i*" higher bucket
B to consist of the largest [|C;|/2] indices in CH. Note that ’Uie[r] B Uiep BH| > en/4.

It is easy to see that for each i € [r], every pair in BF x BI is a violated pair. Therefore, if for
some i € [r], there exist indices from both BF and B in the algorithm’s sample, there also exists
a violated pair in the sample consisting of adjacent indices, and the algorithm rejects. To bound
the probability of the former event from below, we use the following generalization of the Birthday
Paradox proved by Goldreich et al. [28, Lemma 19].

Claim 5.2 ([28, Lemma 19]). Let S1,S2...,S,,11,T>...,T, be disjoint subsets of a universe U.
For each i € [r], let p; = |S;|/|U| and q; = |T;|/|U|. Let p=">, min{p;,q;}. Then, if we uniformly
sample 8+/r/p elements from U, with probability at least 3/4, for some i € [r|, the sample will
contain at least one element from both S; and Tj.

If we set S; = BF and T; = B for each i € [r] in Claim 5.2, we have p > /4. Therefore,
a uniform sample of 324/r/e¢ points from [n], with probability at least 3/4, will have, for some
i € [r], an index from B and B}, and the algorithm will reject. This completes the proof of the
lemma. O

Lemma 5.3. The expected running time of Algorithm 4 is O(\/1/¢).

Proof. Step 1 takes only O(y/r/¢) time to run. Since the indices in the sample are drawn uniformly
and independently at random from [n], Bucket Sort sorts the sampled indices in expected time
linear in the size of the sample ([21], Chapter 8.4). Hence, Step 2 runs in expected time O(y/r/¢).
To check whether any pair of adjacent indices in the sample forms a violated pair, we just need
to make a single pass over the sorted list of indices. Thus, Step 3 also takes time O(y/r/¢). This
completes the proof of the lemma. O

Proof of Theorem 1.5. Let ¢ be a constant such that the expected running time of Algorithm 4
is at most ¢-/r/e. The tester as described in the statement of Theorem 1.5, say T', can be obtained
by running Algorithm 4 for exactly 12c-+/r /e steps and rejecting if and only if Algorithm 4 rejects.
The query complexity of T is O(y/r/e). It is easy to see that T' accepts if the array is sorted. If
the array is e-far from sorted, the tester 1T accepts if either the execution of Algorithm 4 accepts,
or its running time exceeds 12¢y/r/e. Using both Markov’s inequality and the union bound, we
can see that the probability of T" accepting in this case is at most 1/3. This completes the proof of
Theorem 1.5.

6 A Lower Bound for the Uniform Sortedness Tester

In this section, we prove that Q(y/r) uniform queries are required to test sortedness of an array
with at most r distinct values, even when one allows for 2-sided error, and prove Theorem 1.6.
The proof uses Yao’s principle [43], the version with two distributions (see, e.g., Raskhodnikova

13

and Smith [41]). We first define two hard distributions P and A on arrays with r distinct values
such that every array drawn from P is in sorted order and every array drawn from N is %—far from
sorted. We then show that, for any tester that uses o(,/r) uniform queries, the statistical difference
between tester’s views of the two distributions is small, and hence, with high probability, it cannot
distinguish between the distributions.

The statistical distance between two distributions D; and Ds, denoted by SD(Dy, D), is defined
as

Pr [xeS]— Pr [z€S]

SD(Dl,Dg) = max (D .
<D Do

SC(support(D1)Usupport(Dz2))

We write Dy =5 D2 to denote SD(D1,Ds) < 4.

Proof of Theorem 1.6. First, we define two distributions P and N on arrays of size n taking values
in the set [r], where n > 167 In 6r. Without loss of generality, we assume that r is an even number
that divides n.

The distribution P is constructed as follows. Partition an n-element array into r/2 blocks, each
of length 2n/r. For i € [r/2], set all elements in the i*® block to the same value; choose this value
to be 2i with probability 3 and 2i — 1 with probability 3.

The distribution A is constructed as follows. As before, partition an n-element array into r/2
blocks, each of length 2n/r. For i € [r/2], the value at each index in the 7" block is set to either
(2 — 1) or 2¢ uniformly and independently at random.

Note that every array drawn from P is in sorted order. We will show that, with high probability,

1

an array drawn from N is 3-far from sorted.

Lemma 6.1. Let E denote the event that an array chosen according to N s %-far from sorted.

Then,

5
Pr|E]| > -.
B >

Proof. Consider an array A chosen according to N. Consider the i** block of A for some i € [r/2].
Let Y5; denote the number of elements with value 2¢ in the first half of this block and Ys;_1 denote
the number of elements with value (2i — 1) in the second half of the block. As the size of each
half of the block is n/r, and the value at each index is assigned either (2i — 1) or 2¢ uniformly and
independently at random,

n
E[Yy] = E[Ys_1] = o

By a Chernoff bound, for all i € 5],

n n 1 n
P{Y-<—}:P{Y-_<—]:P Yo 1< [1-= (—)
I Yo; = Ar T(Yo—1 > Ay r 2i—1 > 9 o

n
< exp (‘@)
1

< —.
6r

If Ya; > n/4r and Ys;_1 > n/4r, then at least n/4r elements in i*" block need to be changed to
make it sorted, as all the indices with value 2i in the first half or all the indices with value 2i — 1

14

in the last half need to be changed. By the union bound,

Prv

/(522 < mpe) <d
j=1

T r

With probability at least 5/6, we have Ya; > n/4r and Ys;_1 > n/4r for all ¢ € [r/2]. This implies
that at least n/4r elements need to be changed in each of the /2 blocks to make them all sorted.

Hence, with probability at least 5/6, the array A is %—far from sorted. 0

Denote the conditional distribution A |z by NV, where E denotes the event that an array chosen

according to N is %—far from sorted. Any instance sampled according to A is %—far from sorted. The

statistical distance SD(/\A/' , ') can be bounded using the following lemma proven by Raskhodnikova
and Smith [41].

Lemma 6.2 ([41, Claim 4]). Let E be an event that happens with probability at least 1 — ¢ under
the distribution D. Then, D ~g D|g, where §' = X5 — 1.

Applying Lemma 6.2 to A" and N, we get N R /5 N.

Consider any %—tester for sortedness that makes g queries where ¢ < /r/5. Define P-view to
be the distribution of values at the ¢ locations queried by the tester in an array sampled according
to P. Similarly, define N-view and N-view. Next, we show that it is hard to distinguish P-view
from N-view.

Lemma 6.3. 1
SD(P-view, N -view) < 3

Proof. Let F' denote the event that at least 2 out of the tester’s ¢ uniform samples from an array
A are from the same block. An upper bound on the probability of this event can be obtained using
the following lemma.

Lemma 6.4 (Bellare and Rogaway [3]). Consider q balls and N bins, where each ball is assigned

uniformly and independently at random to one of the bins. The probability that there exists a pair

; . q(g—1
of balls assigned to the same bin is at most =55~

By Lemma 6.4, we get Pr[F]| < ala=1) - % = % Then, by Lemma 6.2,

2-r/2
P-view 1 /o4 P-view|s; (1)
N-view A1 /24 ji\f—view|f. (2)

Since N &, /5 N , the definition of statistical difference implies that
N-view =~ 5 N-view. (3)
It remains to show that P-view| = N -view|z. Let = be an index in the i*" block, for some

i € [r/2].Then Pr[Alz] = (2i —1)] = Pr[A[z] = 2i] = 1/2 irrespective of whether A < P or A + N.
If F holds, then at most 1 index from each block is sampled by the tester. By the definition of P

15

and N ; for any two indices from different blocks, the values assigned to them are independent of
each other. Hence, P-view|z = N-view|s. By (1)-(3),
1 1 1

1
-vi -vi < — . — —.
SD(P-view, N -view) 21 + 21 + 5 < 3

This completes the proof of Lemma 6.3. O

By Yao’s principle [43], as stated in [41, Claim 5], for ¢ < +/r/5, it is hard for any %—tester
using ¢ uniform queries to distinguish P from A. Thus, uniform testers for sortedness of arrays

with values in [r] require (/7)) queries. This completes the proof of Theorem 1.6. O

7 Testing Convexity

In this section, we describe a nonadaptive tester for convexity of functions f : [n] — R and prove
Theorem 1.8. Recall that a function f : [n] — R is convex if f(i) — f(i — 1) < f(i +1) — f(i) for
1 < i < n. Our convexity tester is Algorithm 5. It uses the nonadaptive convexity tester of Parnas
et al. [39] as a black box.

Algorithm 5: The Convexity Tester

input : query access to f : [n] — R, an upper bound r on |Im(f)|, and a distance
parameter € € (0,1).

if r> % then

Run the e-tester for convexity by Parnas et al. [39] on f and reject if it rejects.
else

Let M« [r+1,...,n—r].

Sample {%W indices from M uniformly and independently at random.

Reject if f restricted to those indices is not constant.
Accept.

[y

[S, SV M

The query complexity of our tester is O(1/¢) when r < en/3, as is evident from its description.
In the other case, n < 3r/e, our tester runs the tester of [39], which makes O(logn/e) queries.
Substituting the upper bound on n, we get the query complexity bound claimed in Theorem 1.8.
The arguments for the bounds on the time complexity are the same as that for the query complexity.

Given a function f : [n] — R and a set S C [n], let fs denote the restriction of f to the
indices in S whenever S # (). To prove the correctness of our tester, we first prove the following
characterization of convex functions with image size at most 7.

Claim 7.1. If f : [n] — R is convex and |Im(f)| <, then far for M = [r+ 1.n — 7] is a constant
function.

Proof. We can assume that r < n/2, for otherwise, M = (). Assume for the sake of contradiction
that there exists points z,z + 1 € M such that fy(x) # fayr(x +1). If far(z) < far(z + 1), then
f has to be monotonically increasing on the domain restricted to [z + 1,...,n|, which has more
than r elements in it as * < n —r + 1. By the pigeonhole principle, this results in a contradiction,
as Im(f)| < r. If far(x) > far(z + 1), then f has to be monotonically decreasing on the set

16

[1,...,2 + 1], which has more than r elements in it since x > r. By the pigeonhole principle, this
also leads to a contradiction, as [Im(f)| < r. Hence, f can take only one value on M and therefore,
far is a constant function. O

We will now show that the tester accepts every function that is convex and rejects with proba-
bility at least 2/3, every function that is e-far from convex.

Lemma 7.2. Consider a function f : [n] — R. Algorithm 5, on input r > |Im(f)| and €, accepts
if [is convex and rejects, with probability at least 2/3, if f is e-far from convex.

Proof. If v > &, Algorithm 5 runs the tester for convexity by [39], and so the correctness follows
from their analysis.

Consider the case where r < en/3. It follows from Claim 7.1 that Algorithm 5 accepts f if it
is convex. Now assume that f is e-far from convex. It remains to prove that fys is £/3-far from
being a constant function, where M = [r + 1,...,n — r]. Assume for the sake of contradiction
that fys is £/3-close to constant. We will construct a convex function g : [n] — R such that g
is e-close to f and satisfies |Im(g)| < 7. This will give us the required contradiction. Let the
constant function closest to fy; be h, where h(z) = ¢ for every x € M. The function g is then
defined as a constant function taking the value ¢ on all points in [n]. Since the Hamming distance
of fyr from h is at most en/3, the total Hamming distance of f from g is at most en/3 + 2r < en.

This contradicts the fact that f is e-far from convex. Hence, fps is £-far from being a constant

-
function. The probability that 4/¢ samples fail to detect that fys is £/3-far from constant is at
most (1 —/3)¢ < exp(—4/3) < 1/3. O
References

[1] Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity
testing in higher dimension. Inf. Comput., 204(11):1704-1717, 2006.

[2] Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidimen-
sional bin-packing problems. Inf. Comput., 196(1):42-56, 2005.

[3] Mihir Bellare and Phillip Rogaway. Lecture notes on modern cryptography, 2005. URL:
https://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf.

[4] Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on the hyper-
cube. Theory of Computing, 11:403-412, 2015.

[56] Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 1021-1032, 2016.

[6] Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and Carl Staelin.
Detecting and exploiting near-sortedness for efficient relational query evaluation. In Database
Theory - ICDT 2011, 14th International Conference, Uppsala, Sweden, March 21-24, 2011,
Proceedings, pages 256-267, 2011.

17

[7]

Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. The power and limitations of
uniform samples in testing properties of figures. In 36th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2016, December
18-15, 2016, Chennai, India, pages 45:1-45:14, 2016.

Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. In 32nd International Symposium on Computational Geometry,
SoCG 2016, June 14-18, 2016, Boston, MA, USA, pages 17:1-17:15, 2016.

Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. L,-testing. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
164-173, 2014.

Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380-1425, 2012.

Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communica-
tion complexity. Computational Complexity, 21(2):311-358, 2012.

Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing pro-
perties of functions over hypergrid domains. In IEEE 29th Conference on Computational
Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 309-320, 2014.

Jop Briét, Sourav Chakraborty, David Garcia-Soriano, and Arie Matsliah. Monotonicity tes-
ting and shortest-path routing on the cube. Combinatorica, 32(1):35-53, 2012.

Deeparnab Chakrabarty. Monotonicity testing. In FEncyclopedia of Algorithms, pages 1352—
1356. Springer, 2016.

Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing on
product distributions: Optimal testers for bounded derivative properties. In Proceedings of
the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 18091828, 2015.

Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 419-428, 2013.

Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453-464, 2014.

Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean functions
over the hypercube. SIAM J. Comput., 45(2):461-472, 2016.

Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n'/2 non-adaptive queries. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC ’15, pages 519-528, New York, NY, USA,
2015.

18

[20]

[21]

22]

[23]

[24]

[25]

[26]

Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for monoto-
nicity testing. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 286295, 2014.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-
resilient property testing. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 91:1-91:15, 2016.

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM-APPROX’99,
Berkeley, CA, USA, August 8-11, 1999, Proceedings, pages 97-108, 1999.

Funda Ergiin, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. Syst. Sci., 60(3):717-751, 2000.

Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107—
116, 2004.

Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity for sample-based
testing and multi-testing scalability. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1163-1182,
2015.

Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and Alex
Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings on 3/th An-
nual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 474-483, 2002.

Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301-337, 2000.

Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653-750, 1998.

Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM J. Comput., 40(2):534—
566, 2011.

Oded Goldreich and Dana Ron. On sample-based testers. TOCT, 8(2):7, 2016.

Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107-1138, 2007.

Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44-67, 2008.

Kazuo Iwama and Yuichi Yoshida. Parameterized testability. In Innovations in Theoretical
Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 201/, pages 507-516, 2014.

19

[35] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700-731, 2013.

[36] Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean isoperimetric
type theorems. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 52—-58, 2015.

[37] Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A, 94(2):399—
404, 2001.

[38] Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized pro-
perty testing of functions. In 8th Innovations in Theoretical Computer Science, ITCS’17,
Berkeley, CA, USA, January 9-11, 2017.

[39] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodularity.
SIAM J. Comput., 32(5):1158 1184, 2003.

[40] Sofya Raskhodnikova. Testing if an array is sorted. In Encyclopedia of Algorithms, pages
2219-2222. Springer, 2016.

[41] Sofya Raskhodnikova and Adam D. Smith. A note on adaptivity in testing properties of boun-
ded degree graphs. FElectronic Colloquium on Computational Complexity (ECCC), 13(089),
2006.

[42] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252-271, 1996.

[43] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complex-
ity (extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222-227, 1977.

20

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

