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Abstract

We show that the tensor product of a high-rate globally list recoverable code is (approxi-
mately) locally list recoverable. List recovery has been a useful building block in the design of list
decodable codes, and our motivation is to use the tensor construction as such a building block.
In particular, instantiating this construction with known constructions of high-rate globally list
recoverable codes, and using appropriate transformations, we obtain the first capacity-achieving
locally list decodable codes (over a large constant size alphabet), and the first capacity-achieving
globally list decodable codes with nearly linear time list decoding algorithms. Our techniques
are inspired by an approach of Gopalan, Guruswami, and Raghavendra (SIAM Journal on Com-
puting, 2011) for list decoding tensor codes.

1 Introduction

List recovery refers to the problem of decoding error correcting codes from “soft” information.
More precisely, an error-correcting code is a map C : Σk → Σn, which maps length-k messages to
length-n codewords. The rate of C is the ratio ρ := k/n which measures the amount of redundancy
in the encoding. The relative distance δ of the code is the minimum fraction of coordinates on
which any pair of distinct codewords differ. In general, it is desirable to construct codes C so that
both the rate and the distance is large.

The code C is (α, `, L)-list recoverable if for any sequence of lists S1, . . . , Sn ⊂ Σ of size at most
` each, there are at most L messages x ∈ Σk so that C(x)i /∈ Si for at most an α fraction of the
coordinates i ∈ [n]. A special case of list recovery with lists Si of size one is called list decoding: we
refer to (α, 1, L)-list recovery as (α,L)-list decoding.

List recoverable codes were first studied in the context of list decoding and soft decoding. The
celebrated Guruswami-Sudan list decoding algorithm for Reed-Solomon codes [GS99] is in fact a list
recovery algorithm, as are several more recent list decoding algorithms for variants of Reed-Solomon
codes [GR08, GW13, Kop15, GX13]. Initially, list recoverable codes were used as stepping stones
towards constructions of list decodable codes [GI01, GI02, GI03, GI04]. Since then, list recoverable
codes have found additional applications in theoretical computer science in areas such as randomness
extractors [Tre01, TZS06, TZ04, GUV09], group testing [INR10, GNP+13], compressed sensing
[NPR12], and collision-resistant hashing [HIOS15].
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It is well known that 1 − α is the list recovery capacity, in the sense that there exist codes of
rate approaching 1−α that are (α, `, L)-list recoverable with small output list size L (independent
of the codeword length n), and on the other hand, any code of rate larger than 1 − α must have
output list size L that is exponential in n.

The focus of this paper is on local list recovery. Locality is another frequent desideratum in
coding theory. Informally, a code “exhibits locality” if information about a single coordinate xi of
a message x of C can be determined locally from only a few coordinates of a corrupted version of
C(x). Locality, and in particular the notion of local list recovery that we will define below, has been
implicit in theoretical computer science for decades. For example, local list decoding algorithms are
at the heart of algorithms in cryptography [GL89], learning theory [KM93], average-to-worst-case
reductions [Lip90], and hardness amplification [BFNW93, STV01].

The idea of local list recovery is as follows: given a message index i ∈ [k], a local list recovery
algorithm should produce a list of L possible symbols that could appear at that index. The catch
is that we require that the lists returned are consistent across indices.

Formally, a local list recovery algorithm returns a list A1, . . . , AL of randomized local algorithms.
Each of these local algorithms Aj takes a message index i ∈ [k] as input and has oracle access to
the input lists S1, . . . , Sn. The algorithm Aj then makes at most Q queries to this oracle (that is, it
sees all elements in at most Q different input lists Si), and it must return a guess for xi, where x is
a message whose encoding C(x) agrees with many of the input lists. The guarantee is that for all
such messages x—that is, for all x whose encoding C(x) agrees with all but α-fraction of the input
lists—there exists (with high probability) some Aj so that for all i, Aj(i) = xi with probability
at least 2/3. The parameter Q is called the query complexity of the local list recovery algorithm.
On our way to constructing locally list recoverable codes, we will construct approximately locally
list recoverable codes. We say that a code is approximately locally list recoverable if the local
algorithms A1, . . . , AL described above may fail to correctly decode a small constant fraction of the
message coordinates.

One reason to study local list recoverability is that list recovery is a useful building block in the
construction of list decodable codes. In particular, the problem of constructing high rate locally
list recoverable codes (of rate arbitrarily close to 1, and in particular non-decreasing as a function
of `) has been sought after for some time, because such codes would have implications in local and
global list decoding.

In this work, we show that the tensor product of a high-rate globally list recoverable code
is approximately locally list recoverable. Instantiating this with known constructions of high-
rate globally list recoverable codes, and using a few transformations, we obtain the first capacity-
achieving locally list decodable codes, as well as the first capacity-achieving globally list decodable
codes with nearly linear time list decoding algorithm. Our techniques are inspired by the list
decoding algorithm of [GGR11] for tensor codes, and our main observation is that this algorithm—
with a few tweaks—can be made local.

1.1 Results

From global to approximately-local list recovery. Our main technical contribution is show-
ing that the tensor product of a high-rate globally list recoverable code is (approximately) locally
list recoverable. Given a linear code (i.e., a linear map) C : Fk → Fn over some finite field F,
consider the tensor product code C ⊗ C : Fk×k → Fn×n; we will define the tensor product formally
in Definition 2.11, but for now, we will treat the codewords of C ⊗ C as n × n matrices with the
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constraints that the rows and columns are all codewords of the base code C.
Informally, our main result shows that if C is globally list recoverable (and of arbitrarily high

rate) then C⊗C is approximately locally list recoverable, in the sense described above, with roughly
the same parameters, and with query complexity on the order of n (the codeword length of C).
Note that the query complexity is about the square root of the codeword length of C ⊗ C which
is n2. The query complexity can be further reduced by applying the tensor product operation
iteratively. Specifically, by taking the t-th tensor power, the resulting code C⊗t of codeword length
N := nt is approximately locally list recoverable with query complexity roughly n = N1/t.

We state this main result below as Theorem 1.1, and prove it in Section 4. In the theorem
statement, one should think of all parameters δ, α, ε, L, t, and consequently also s, as constants
(or more generally, as slowly growing functions of n). In that case, Theorem 1.1 says that if C is
(α, `, L)-globally list recoverable, then the tensor product C⊗t is ε-approximately (Ω(α), `, LO(1))-
locally list recoverable with query complexity O(n) = O(N1/t).

Theorem 1.1 (From global to approximately-local). The following holds for any δ, α, ε > 0, L ≥ 1,
and s = poly(1/δ, 1/α, 1/ε, logL). Suppose that C : Fk → Fn is a linear code of relative distance δ

that is (α, `, L)-globally list recoverable. Then C⊗t : Fkt → Fnt
is ε-approximately (α · s−t2 , `, Lst
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)-
locally list recoverable with query complexity n · st2.

Basic list recovery transformations. To apply Theorem 1.1, in Section 3 we first present a
few simple, yet powerful, list recovery transformations.

In more detail, in our first “approximately-local to local” transformation (Lemma 3.1) we observe
that the “approximate” restriction can be eliminated by pre-encoding the message with a locally
decodable code C ′ before encoding it with the approximately locally list recoverable code C. This
way, instead of directly querying C (which may give the wrong answer a constant fraction of the
time), we use the outer locally decodable code C ′ to query C: this still does not use too many
queries, but now it is robust to a few errors. A similar transformation was noted in [BEAT] in the
context of local list decoding.

The second “high-rate to capacity-achieving” transformation (Lemma 3.2) relies on an expander-
based transformation of Alon, Edmunds, and Luby [AEL95, AL96]. This tranformation has been
used before in this context; in particular, as previously observed by [GI03, KMRS17, GKO+18], this
technique can transform a high-rate locally list recoverable code into a capacity-achieving locally
list recoverable code.

Finally, in our third “local to nearly-linear-time” transformation (Lemma 3.4) we observe that
locally list recoverable codes straightforwardly extend to nearly-linear time globally list recoverable
codes, simply by running the local algorithm on each coordinate.

Instantiations. To obtain our main results, we instantiate the transformations described above
with known constructions of high-rate globally list recoverable codes. As the tensor operation
inflates the output list size, we require our base code to have small (constant or very slowly growing)
output list size. We also need the base code to be linear to get a handle on the rate of the tensor
product.

In the first instantiation, Theorem 1.2 below, we just use a (non-efficient) random linear code.
This gives capacity-achieving locally list recoverable codes with query complexity nβ for any con-
stant β > 0, and with constant alphabet and output list sizes, although without an explicit con-
struction or efficient list recovery algorithm.
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Theorem 1.2. For any constants ρ ∈ [0, 1], ε, β > 0, and ` ≥ 1 there exists an infinite family of
codes {Cn}n such that the code Cn has block length n, alphabet size O(1), rate ρ, and is (1 − ρ −
ε, `, O(1))−locally list recoverable with query complexity nβ.

We prove Theorem 1.2 in Section 5.1. As a special case, this theorem gives the first capacity-
achieving locally list decodable codes with o(n) queries.

The second instantiation, Theorem 1.3 does yield efficient encoding and list recovery (in nearly-
linear time) as well as locality. It uses a modification of the algebraic geometry subcodes studied
in [GX13, GK16b] as the initial code. These latter codes have constant alphabet size, but slightly
super-constant output list size (depending on log∗ n), which means that our construction will as
well.

Theorem 1.3. For any constants ρ ∈ [0, 1], ε, β > 0, and ` ≥ 1 there exists an infinite family of
codes {Cn}n, where Cn has block length n, alphabet size O(1), rate ρ, and is (1− ρ− ε, `, L)-locally
list recoverable with query complexity nβ for L = exp exp exp(log∗ n). Moreover, Cn is encodable
and globally list recoverable in time n1+O(β).

Theorem 1.3 is proven in Section 5.2. As a special case, the above theorem gives the first
capacity-achieving globally list decodable codes with list decoding algorithm running in time o(n2).

Our final instantiation, Theorem 1.4, uses as the initial code the same algebraic geometry codes
as the previous instantiation, but in a different regime of parameters. This gives sub-polynomial
query complexity of no(1), albeit with larger alphabet and output list sizes.

Theorem 1.4. For any constants ρ ∈ [0, 1], ε > 0, and ` ≥ 1 there exists an infinite family of codes
{Cn}n, where Cn has block length n, alphabet size no(1), rate ρ, and is (1 − ρ − ε, `, no(1))-locally
list recoverable with query complexity no(1). Moreover, Cn is encodable and globally list recoverable
in time n1+o(1).

Theorem 1.4 is proven in Section 5.3, While we have not made an effort to optimize the o(1)
term in the exponent in the above theorem, we note that it is quite slowly decreasing (on the order
of 1/ log log n).

Finally, we note that our approach is modular; given as an ingredient any high-rate (efficiently)
globally list recoverable code, it yields a capacity-achieving locally (and nearly-linear time) list
recoverable code with comparable parameters. Any improvements in these ingredient codes (for
example, in the output list size of explicit linear high-rate globally list recoverable codes, which
is nearly constant but not quite constant) would translate immediately into improvements in our
constructions.

1.2 Related work

For those familiar with the area, it may be somewhat surprising that the results described above
were not known before: indeed, we know of locally list recoverable codes, and we also know of
capacity-achieving globally list recoverable codes. One might think that our result is lurking im-
plicitly in those earlier works. However, as discussed below, it turns out that it is not so straight-
forward, and existing techniques for locally or globally list recoverable codes do not seem to work
for this problem. Next we elaborate on these prior lines of work.
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Local list recovery. Local list decoding first arose outside of coding theory, motivated by appli-
cations in complexity theory. For example, the Goldreich-Levin theorem in cryptography [GL89]
and the Kushilevitz-Mansour algorithm in learning theory [KM93] can be interpreted as local list
decoding algorithms for Hadamard codes. Later, Sudan, Trevisan and Vadhan [STV01], motivated
by applications in pseudorandomness, gave an algorithm for locally list decoding Reed-Muller codes.
Similar ideas were used later for list decoding lifted codes [GK16a] and multiplicity codes [Kop15],
which can be viewed as high-rate variants of Reed-Muller codes.

As observed recently in [GKO+18], all the aforementioned local list decoding algorithms can be
used for local list recovery as well. However, all these algorithms work only up to the Johnson
bound. In the setting of list recovery, the Johnson bound implies that the rate of the code must be
at most 1/`. Thus this approach does not seem to give capacity-achieving locally list recoverable
codes or even high-rate ones, and the Johnson bound appears to be a fundamental bottleneck for
these techniques.

Global list recovery up to capacity. This line of work started with the celebrated work of
Guruswami and Rudra [GR08], showing that folded Reed-Solomon codes achieve list decoding
capacity. Since then, there has been a long line of work [Gur10, GW13, DL12, Kop15, GX12a,
GX13, GK16b, GX14], aimed at reducing the alphabet and output list sizes, and improving the
speed of the list decoding algorithm.

In many cases, the above list decoding algorithms extend also to list recovery. However, all these
algorithms are very global: they are all based on finding some interpolating polynomial, and finding
this polynomial requires querying almost all of the coordinates. Thus, it is not at all obvious how
to tweak these sorts of algorithms to obtain locally list recoverable codes.

Finally, we mention the work of [HW18], which constructed capacity-achieving list recoverable
codes based on expander graphs. While that construction is not explicitly local, it is not as
clearly global as those previously mentioned (indeed, expander codes are known to have some
locality properties [HOW15]). However, that work could only handle list recovery in the presence
of erasures—that is, the setting in which the locations of the errors are known—and adapting it to
handle errors seems like a challenging task.

Thus, even with a great deal of work on locally list recoverable codes, and on capacity-achieving
globally list recoverable codes, it was somehow unclear how to follow those lines of work to obtain
our results. Instead our work follows a different approach, based on the techniques of [GGR11] for
list decoding tensor codes.

Finally, we note that the local testing properties of tensor codes have been extensively stud-
ied [BS06, Val05, CR05, DSW06, GM12, BV09, BV15, Vid15, Mei09, Vid13]. To the best of our
knowledge, ours is the first work to explicitly study the local (list) decodability of tensor codes,
rather than local testability. 1

Subsequent work. In the follow-up work [KRSW18], involving a subset of the current authors,
it was shown that high-rate multiplicity codes (one of the high-rate variants of Reed-Muller codes)

1We note that the work [MV05] implicitly studied the local list recovery properties of the low degree extension
code (which can be viewed as a special instance of tensor codes) in the context of derandomization. The approach in
[MV05] is similar to ours, except that they considered only the special case where all the lists on axis-parallel lines
are the same, and there are no errors (which was appropriate for their application). Furthermore, that work was
interested in locality but not efficiency, and so it did not give an efficient local list recovery algorithm.
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are locally list recoverable. The main ingredient in obtaining this result was showing that high-
rate univariate multiplicity codes are globally list recoverable with constant output list size. In
contrast, prior work only obtained an output list size that is polynomial in the codeword length,
which was a main barrier for bypassing the Johnson bound for local list recovery of multivariate
multiplicity codes. In addition to this, several other modifications to the local list recovery algorithm
of [STV01, Kop15] were required in order to make it work in the high-rate regime.

As a corollary, using the basic list recovery transformations described above, the above result
gave an improvement over our main Theorems 1.3 and 1.4. In more detail, in the polynomial query
complexity regime, the result of [KRSW18] reduced the output list size L in Theorem 1.3 to a
constant. More significantly, in the sub-polynomial query complexity regime, it reduced the no(1)

term in Theorem 1.4 to ẽxp(log3/4 n). Determining the exact query complexity of capacity-achieving
locally list recoverable (or list decodable) codes remains an open problem.

1.3 Techniques

We end the introduction with a high-level overview of the proof of the “global to approximately-
local” result, Theorem 1.1. As mentioned above, this algorithm is inspired by the analysis given by
Gopalan, Guruswami, and Raghevendra in [GGR11] for the list decoding radius of tensor codes.

In more detail, in [GGR11] it is shown that the two-dimensional tensor code C⊗C is roughly as
list decodable as C is. That work was primarily focused on combinatorial results about list decoding
radius, but their analysis was algorithmic, and it is these algorithmic insights that we leverage here.
Specifically, our main contribution is to observe that their analysis for two-dimensional tensor can
be phrased in the language of approximate local list decoding, and moreover it extends also to
higher-dimensional tensor products with lower query complexity. We further observe that the
analysis straightforwardly extends to the setting of list recovery.

To understand the intuition, let us describe the algorithm just for C ⊗ C, although our final
results will require a higher tensor power C⊗t. For simplicity, additionally assume that there are
no errors, i.e., α = 0. Recall that the tensor product of a linear code C : Fk → Fn is the code
C ⊗ C : Fk×k → Fn×n whose codewords are all n × n matrices with the constraints that the rows
and columns are all codewords of the base code C.

Following [GGR11], the local list recovery algorithm A for C⊗C first chooses m random columns
of [n]× [n] for a small integer m. These each correspond to codewords in C, and A runs C’s global
list recovery algorithm on them to obtain output lists L1, . . . ,Lm, of size at most L each, on each of
these columns. Finally, for any choice of one codeword per column c1 ∈ L1, c2 ∈ L2, . . . , cm ∈ Lm,
it outputs a local algorithm A(c1,...,cm) indexed by (c1, . . . , cm). Notice that the query complexity
is mn, which is roughly the square root of the codeword length of C ⊗ C (which is n2), while the
output list size (the number of local algorithms) is Lm. We view c1, . . . , cm as “advice” that fixes
the value of the codeword on the chosen m columns.

Next we describe the local algorithm A(c1,...,cm) indexed by (c1, . . . , cm), on input (i, j) ∈ [n]× [n];
this algorithm is illustrated in Figure 1.2 Recall that A(c1,...,cm) is allowed to query the input lists at
every coordinate, and must produce a guess for the codeword value indexed by (i, j). Let v1, . . . , vm
denote the values of the codewords c1, . . . , cm on the i’th position. The algorithm A(c1,...,cm) runs
C’s global list recovery algorithm once more on the i’th row to obtain another output list L. Now

2The algorithm we describe decodes codeword symbols instead of messages symbols, but since the tensor code can
be made systematic (i.e., the message is part of the codeword) this algorithm can also decode message symbols.
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A random m columns are fixed by the advice to the local algorithm.

i

Run C’s global list recovery
algorithm on row i to get
L ⊆ C and hope that there is

a unique c ∈ L that agrees
with the advice on the m

“advice” positions.

j

Return the j’th symbol of c as a guess of the
(i, j)’th symbol of the entire codeword.

Figure 1: The local algorithm A(c1,...,cm), for C ⊗ C on input (i, j) ∈ [n]× [n]. Here, c0, . . . , cm are
“advice:” ci ∈ Li is one of L possible codewords for the i’th randomly selected column. The set of
selected columns is random, but we have show them as the first m columns for simplicity.

the algorithm chooses an arbitrary codeword c ∈ L that agrees with the advice v1, . . . , vm on the
chosen columns, if such a c exists. Finally, the j’th symbol of c is A(c1,...cm)’s guess for the (i, j)
symbol of the tensor codeword.

Now, observe that the guess for (i, j) would be correct if there is at most one codeword in L that
agrees with the advice v1, . . . , vm on the chosen columns, so no confusion arises. Assuming that
the code C has relative distance at least δ, any pair of codewords in L differ in at least δ fraction
of the coordinates. Recalling that the m columns were chosen completely at random, a Chernoff
bound, followed by a union bound over all elements in L, imply that the value on the m columns
will disambiguate any pair of codewords in L with high probability, assuming that m ≈ (logL)/δ2.

The above idea gives a code of length N that is locally list recoverable with query complexity
on the order of

√
N . This algorithm for C ⊗ C extends to C⊗t, with query complexity roughly

N1/t. The trade-off is that the output list size also grows with t. Thus, as we continue to take
tensor powers, the locality improves, while the output list size degrades; this allows for the trade-off
between locality and output list size that we obtain in Theorems 1.3 and 1.4. The algorithm can
be made to work also in the presence of errors, except that it may fail on small constant fraction of
coordinates (e.g., when a whole row is corrupted). Consequently, we only obtain an approximately
local list recovery algorithm that decodes correctly most, but not all, of the coordinates.

Organization. The rest of the paper is organized as follows. In Section 2 we set up notation and
definitions. In Section 3 we present some basic list recovery transformations (from approximately-
local to local, from high-rate to capacity-achieving, and from local to nearly-linear-time). In Section
4 we present our main transformation from global to approximately-local list recovery which proves
our Theorem 1.1. Finally, in Section 5 we instantiate our transformations with known constructions
of high-rate globally list recoverable codes, thus proving our main Theorems 1.2, 1.3, and 1.4.
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2 Preliminaries

For a prime power q we denote by Fq the finite field of q elements. For any finite alphabet Σ and
for any pair of strings x, y ∈ Σn, the relative distance between x and y is the fraction of coordinates
i ∈ [n] on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n. For a positive
integer ` we denote by

(
Σ
`

)
the collection of all subsets of Σ of size `, and for any string x ∈ Σn and

tuple S ∈
(

Σ
`

)n
we denote by dist(x, S) the fraction of coordinates i ∈ [n] for which xi /∈ Si, that

is, dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. If dist(x, S) ≤ α, we say that x is α-close to S. For a string
x ∈ Σn and a set T ⊆ [n], we use x|T ∈ Σ|T | to denote the restriction of x to the coordinates in T .
Throughout the paper, we use exp(n) to denote 2Θ(n), and whenever we use log, it is base 2, unless
noted otherwise.

2.1 Error-correcting codes

Let Σ be a finite alphabet, and k, n be positive integers (the message length and the block length,
respectively). An (error-correcting) code is an injective map C : Σk → Σn. The elements in the
domain of C are called messages, and the elements in the image of C are called codewords. We say
that C is systematic if the message is a prefix of the corresponding codeword, i.e., for every x ∈ Σk

there exists z ∈ Σn−k such that C(x) = (x, z).
If F is a finite field, and Σ is a vector space over F, we say that C is F-linear if it is a linear

transformation over F between the F-vector spaces Σk and Σn. If Σ = F and C is F-linear, we
simply say that C is linear. The generating matrix of a linear code C : Fk → Fn is a matrix G ∈ Fn×k
such that C(x) = G ·x for any x ∈ Fk. Note that a linear code can be made systematic by applying
a Gaussian elimination on the generating matrix G.

The rate of a code C : Σk → Σn is the ratio ρ := k
n . The relative distance dist(C) of C is the mini-

mum δ > 0 such that for every pair of distinct messages x, y ∈ Σk it holds that dist(C(x), C(y)) ≥ δ.
If C : Σk → Σn has relative distance δ then for any parameter α < δ/2, and for any received word
w ∈ Σn, there is at most one message x ∈ Σk which satisfies dist(C(x), w) ≤ α.

2.2 List recoverable codes

List recovery is a generalization of the standard error-correction setting where each entry wi of the
received word w is replaced with a list Si of ` possible symbols of Σ. Formally, for a parameter
α ∈ [0, 1] and integers `, L we say that a code C : Σk → Σn is (α, `, L)-list recoverable if for any
tuple S ∈

(
Σ
`

)n
there are at most L different messages x ∈ Σk so that dist(C(x), S) ≤ α. We say

that C is (α,L)-list decodable if it is (α, 1, L)-list recoverable.
For α ∈ [0, 1] let

H(α) = α log(1/α) + (1− α) log(1/(1− α))

denote the binary entropy function.
We will use the following theorem about the list recoverability of random linear codes.

Theorem 2.1 ([Gur01], Lemma 9.6). For any prime power q, integers 1 ≤ ` ≤ q and L > `,
parameters 0 ≤ α ≤ 1 and

ρ <
1

log q
·
[
(1− α) · log(q/`)−H(α)−H(`/q) · q

logq(L+ 1)

]
,
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and sufficiently large n, a random linear code C : Fkq → Fnq of rate ρ is (α, `, L)-list recoverable with
probability at least 1− exp(−n).

Corollary 2.2. For any ρ ∈ [0, 1], ε > 0, ` ≥ 1, and for sufficiently large prime power q and
integer n, a random linear code C : Fkq → Fnq of rate ρ has relative distance at least 1− ρ− ε, and

is (1− ρ− ε, `, qO(`/ε))-list recoverable, with probability at least 1− exp(−n).

Proof. The relative distance follows by the Gilbert-Varshamov bound [Gil52, Var57]. For the list
recovery properties, apply Theorem 2.1 with α = 1− ρ− ε,

q ≥ max{(1− ρ− ε)−c0(1−ρ−ε)/ε, (ρ+ ε)−c0(ρ+ε)/ε, `c0/ε},

and L = qc0`/ε for some absolute constant c0, and note that in this setting of parameters,

1

log q
·
[
(ρ+ ε) · log(q/`)−H(1− ρ− ε)−H(`/q) · q

c0`/ε

]
≥ ρ+ ε− log `

log q
− (1− ρ− ε) log(1/(1− ρ− ε))

log q
− (ρ+ ε) log(1/(ρ+ ε))

log q
−O(ε/c0)

≥ ρ+ ε−O(ε/c0).

Thus, the corollary holds for a sufficiently large constant c0.

2.3 Locally decodable codes

Intuitively, a code C is said to be locally decodable if, given a codeword C(x) that has been corrupted
by some errors, it is possible to decode any coordinate of the corresponding message x by reading
only a small part of the corrupted version of C(x). Formally, it is defined as follows.

Definition 2.3 (Locally decodable code). A code C : Σk → Σn is α-locally decodable with query
complexity Q if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [k], and also gets oracle access to a string w ∈ Σn

that is α-close to some codeword C(x).

• Query complexity: A makes at most Q queries to the oracle w.

• Output: A outputs xi with probability at least 2
3 .

Remark 2.4. By definition it holds that α < dist(C)/2. The above success probability of 2
3 can

be amplified using sequential repetition, at the cost of increasing the query complexity and running
time. Specifically, amplifying the success probability to 1 − exp(−t) requires increasing the query
complexity and running time by a multiplicative factor of O(t).

The following theorem shows the existence of high-rate locally decodable codes with sub-polynomial
query complexity of the form no(1).

Theorem 2.5 ([KMRS17], Theorem 1.3). For any constant ρ ∈ [0, 1] and ε > 0 there exist a
constant s and an infinite family of codes {Cn}n that satisfy the following.

• Cn is an F2-linear code of block length n and alphabet size 2s.
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• Cn has rate ρ and relative distance at least 1− ρ− ε.

• Cn is 1−ρ−ε
2 -locally decodable with query complexity no(1) in time no(1).

• Cn is encodable in time n1+o(1).

Remark 2.6. The encoding time is not stated explicitly in [KMRS17]. However, the construction
in [KMRS17] proceeds by first considering multiplicity codes of high-rate 1− o(1), query complex-
ity no(1), and sub-constant decoding radius n−o(1) ([KMRS17, Lemma 3.3]), and then amplifying
the decoding radius to a constant using the AEL transformation ([KMRS17, Lemma 3.2]). The
encoding time of n1+o(1) for multiplicity codes in this regime follows from [Cox18], using the choice
of parameters made in [KMRS17, Lemma 3.3], while the encoding time of n1+o(1) for the AEL
transformation can be deduced from the proof of [KMRS17, Lemma 3.2] (see also Lemma 3.2 in
the current paper that shows a similar transformation for the local list recovery setting).

Theorem 1.3 in [KMRS17] applies to locally correctable codes instead of locally decodable codes.
The difference is that for the former the local correction algorithm is required to decode codeword
coordinates as opposed to message coordinates. However, since the encoding map described above
is systematic, the local correction algorithm decodes also message coordinates (see discussion in
[KMRS17, Section 1.3]).

2.4 Locally list recoverable codes

The following definition generalizes the notion of locally decodable codes to the setting of list
recovery. In this setting the local list recovery algorithm is required to output in an implicit sense
all messages whose corresponding codewords are consistent with most of the input lists.

Definition 2.7 (Locally list recoverable code). A code C : Σk → Σn is (α, `, L)-locally list recover-
able with query complexity Q if there exists a randomized algorithm A that satisfies the following
requirements:

• Preprocessing: On input 1n, A outputs L randomized algorithms A1, . . . , AL.

• Input: Each Aj takes as input a coordinate i ∈ [k], and also gets oracle access to a tuple

S ∈
(

Σ
`

)n
.

• Query complexity: Each Aj makes at most Q queries to the oracle S.

• Output: For every codeword C(x) that is α-close to S, with probability at least 2
3 over the

randomness of A the following event happens: there exists some j ∈ [L] such that for all
i ∈ [k],

Pr
[
Aj(i) = xi

]
≥ 2

3
, (1)

where the probability is over the internal randomness of Aj .

We say that A has preprocessing time Tpre if A outputs the description of the algorithms A1, . . . , AL
in time at most Tpre, and has running time T if each Aj has running time at most T . As before, we
say that the code C is (α,L)-locally list decodable with query complexity Q if it is (α, 1, L)-locally
list recoverable with query complexity Q.
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Remark 2.8. The success probability of A can be amplified by sequentially repeating A and out-
putting the union of all output lists, at the cost of increasing the output list size and preprocessing
time. Specifically, amplifying the success probability to 1− exp(−t) requires increasing the output
list size and preprocessing time by a multiplicative factor of O(t).

Remark 2.9. In our definition of a locally list recoverable code, we are concerned with recovering
message symbols xi for i ∈ [k]. Another definition might be to recover any codeword symbol C(x)i
for i ∈ [n]. Since all of the codes we consider can be made systematic, this second definition would
be stronger than Definition 2.7. Most of our techniques work for this stronger definition as well; the
only one that does not work for this stronger definition is the reduction from approximately-local
to local (Lemma 3.1).

Finally, we define an approximate version of local list recovery. In the following definition, the
local algorithms Aj are deterministic, but each of them has to work on only a 1− ε fraction of the
coordinates i ∈ [k].

Definition 2.10 (Approximately locally list recoverable code). A code C : Σk → Σn is ε-
approximately (α, `, L)-locally list recoverable with query complexity Q if there exists a randomized
algorithm A that satisfies the following requirements:

• Preprocessing: On input 1n, A outputs L deterministic algorithms A1, . . . , AL.

• Input: Each Aj takes as input a coordinate i ∈ [k], and also gets oracle access to a tuple

S ∈
(

Σ
`

)n
.

• Query complexity: Each Aj makes at most Q queries to the oracle S.

• Output: For every codeword C(x) that is α-close to S, with probability at least 2
3 over the

randomness of A the following event happens: there exists some j ∈ [L] such that for all
i ∈ [k],

Pr
i∈[k]

[
Aj(i) = xi

]
≥ 1− ε. (2)

As in Definition 2.7, we say that A has preprocessing time Tpre if A outputs the description of the
algorithms A1, . . . , AL in time at most Tpre, and has running time T if each Aj has running time
at most T . We note that Remark 2.8 holds also for approximately locally list recoverable codes,
so we may amplify the success probability of 2/3 to exp(−t) at the cost of multiplying the list size
and pre-processing time by a factor of O(t).

2.5 Tensor codes

Our construction is based on the tensor product operation, defined as follows.

Definition 2.11 (Tensor codes). Let C1 : Fk1 → Fn1 , C2 : Fk2 → Fn2 be linear codes, and let
G1 ∈ Fn1×k1 , G2 ∈ Fn2×k2 be the generating matrices of C1, C2 respectively. Then the tensor code
C1 ⊗C2 : Fk1×k2 → Fn1×n2 is given by (C1 ⊗C2)(M) = G1 ·M ·GT2 for any k1 × k2 matrix M over
F.

Note that the codewords of C1 ⊗ C2 are n1 × n2 matrices over F whose columns belong to the
code C1 and whose rows belong to the code C2.

11



Fact 2.12. Suppose that C1 : Fk1 → Fn1, C2 : Fk2 → Fn2 are linear codes of rates ρ1, ρ2 and relative
distances δ1, δ2, respectively. Then the tensor code C1 ⊗ C2 has rate ρ1 · ρ2 and relative distance
δ1 · δ2. Moreover, if C1, C2 are encodable in times T1, T2, respectively, then C1⊗C2 is encodable in
time n1T2 + n2T1.

Proof. The rate and distance properties are well known (see e.g. [Sud01, DSW06]). The encoding
time follows since one can encode a message M ∈ Fk1×k2 by first encoding all rows of M using C2,
and then encoding all columns of the resulting matrix using C1.

For a linear code C, let C⊗1 := C and C⊗t := C ⊗ C⊗(t−1). By induction on t we have the
following.

Corollary 2.13. Suppose that C : Fk → Fn is a linear code of rate ρ and relative distance δ. Then
the tensor code C⊗t : Fkt → Fnt

has rate ρt and relative distance δt. Moreover, if C is encodable
in time T , then C⊗t is encodable in time t · nt · T .

3 Basic list recovery transformations

We begin by presenting a some basic list recovery reductions showing how to transform an approx-
imately locally list recoverable code into a locally list recoverable code (Section 3.1), then a locally
list recoverable code of high-rate into a capacity-achieving locally list recoverable code (Section
3.2), and finally a locally list recoverable code into a nearly-linear-time globally list recoverable
code (Section 3.3).

3.1 From approximately-local to local

We start with the transformation from approximately local list recovery to local list recovery. The
following lemma shows that one can pre-encode a Q-query ε-approximately locally list recoverable
code with a Q′-query ε-locally decodable code to obtain a (Q · Q′)-query locally list recoverable
code with the same parameters.

Lemma 3.1 (From approximately-local to local). Suppose that C : Σk → Σn is ε-approximately
(α, `, L)-locally list recoverable with query complexity Q, and C ′ : Σk′ → Σk is ε-locally decodable
with query complexity Q′. Then the composition C ◦ C ′ : Σk′ → Σn given by C ◦ C ′(x) = C(C ′(x))
is (α, `, L)-locally list recoverable with query complexity Q ·Q′.

Moreover, if the approximately local list recovery algorithm for C has preprocessing time Tpre and
running time T , and the local decoding algorithm for C ′ has running time T ′, then the local list
recovery algorithm for C ◦ C ′ has preprocessing time Tpre and running time T · T ′.

Proof. We recover a (1− ε)-fraction of the coordinates using the approximately local list recovery
algorithm for C, and correct the rest of the coordinates using the local decoding algorithm for C ′.

In more detail, the local list recovery algorithm for C ◦ C ′ replaces each of the local algorithms
Aj generated by the approximately local list recovery algorithm for C with a local algorithm A′j ,
operating as follows: on input i ∈ [k′], the local algorithm A′j first invokes the local decoding
algorithm A′ for C ′ on input i, and then invokes Aj on each of the queries of A′ in [k]. (See
Figure 2).

Correctness follows since Aj outputs the correct value on at least a (1− ε)-fraction of the coor-
dinates in [k], and A′ outputs the correct value with probability at least 2/3 provided that at most
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xi = ?

x ∈ Σk′

C ′
c′ = C ′(x) ∈ Σk

c′a c′b c′c

A′ uses Q′ queries to recover xi

C
C(C ′(x)) ∈ Σn

Aj uses Q
queries to
guess c′a

Aj uses Q
queries to
guess c′b

Aj uses Q
queries to
guess c′c

A′j uses Aj to obtain the Q′ guesses that A′ requires, and then runs A′

Figure 2: The local algorithm A′j used in the proof of Lemma 3.1.

an ε-fraction of the codeword coordinates are corrupted. The query complexity is Q ·Q′, because
for each of the Q′ queries that A′ would make, A′j runs a copy of Aj which makes Q queries, and
the running time is T · T ′ for the same reason. The preprocessing time is simply the preprocessing
time for C’s local list recovery algorithm.

3.2 From high-rate to capacity-achieving

Next we turn to the transformation from a locally list recoverable code of high-rate into a capacity-
achieving locally list recoverable code. To this end we use the Alon-Edmonds-Luby (AEL) distance
amplification method [AEL95, AL96]. This technique was originally used in [AEL95, AL96] to
improve error correction capabilities in the global unique decoding setting, and was later applied
also in the list decoding/recovery regime [GI02, GR08, HW18]. More recent works have shown its
usefulness for local decoding [KMRS17] local list recovery [GKO+18].

We shall use the following lemma from [GKO+18] which roughly says that given an “outer” code
C of rate approaching 1 that is locally list recoverable from a tiny fraction of errors, and a small
“inner” code C ′ that is a capacity-achieving globally list recoverable code, they can be combined
using the AEL transformation to get a new code CAEL with the following properties. On the one
hand, CAEL inherits the tradeoff between rate and error correction that C ′ enjoys; on the other
hand, CAEL does not use many more queries than C. Thus this procedure amplifies the distance
from which we can list recover without significantly worsening other parameters. For completeness,
we provide below a high-level description of the construction, and the reader is referred to [GKO+18,
Section 7] for the full proof.

Lemma 3.2 (From high-rate to capacity-achieving). [GKO+18, Lemma 5.4.] There exists an
absolute constant b0 such that the following holds for any δ, α, ε > 0 and t ≥ (δ · α · ε)−b0.

Suppose that C : (Σs)k → (Σs)n is an outer code of rate 1 − ε and relative distance δ that is
(α, `, L)-locally list recoverable with query complexity Q, and C ′ : Σs → Σt is an inner code of rate ρ
and relative distance 1−ρ−ε that is (1−ρ−ε, `′, `)-globally list recoverable. Then there exists a code
CAEL : (Σs)k → (Σt)n of rate ρ− ε and relative distance 1− ρ− 2ε that is (1− ρ− 2ε, `′, L)-locally
list recoverable with query complexity Q · poly(t).
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Suppose furthermore that C has encoding time Tenc, and the local list recovery algorithm for C
has preprocessing time Tpre and running time T , and C ′ has encoding time T ′enc and list recovery
time T ′. Then CAEL has encoding time Tenc + n · (T ′enc + poly(t, log n)), and the local list recovery
algorithm for CAEL has preprocessing time Tpre and running time T + Q · (T ′ + poly(t, log n)).
Moreover, if C and C ′ are F-linear then so is CAEL.

Remark 3.3. The definition of a locally list recoverable code in [GKO+18, Definition 2.10] is
slightly different from ours since in [GKO+18] the local list recovery algorithm is required to decode
codeword coordinates as opposed to message coordinates, and must satisfy an additional soundness
property which guarantees that with high probability, all local algorithms A1, . . . , AL compute an
actual codeword. However, the proof of the above lemma goes through without change also for our
definition of a locally list recoverable code.

Proof overview. (Included for completeness; see [GKO+18, Section 7] for a full proof). Given
a message x ∈ (Σs)k, we encode it first with the outer code C : (Σs)k → (Σs)n, and then encode
each symbol of the resulting codeword c ∈ (Σs)n using the inner code C ′ : Σs → Σt. Clearly, the
final rate would be the product of the rates of C and C ′ which is at least ρ − ε, we would like to
show that final error correction radius would also be close to that of C ′, specifically 1− ρ− 2ε.

Suppose first that we have 1 − ρ − 2ε fraction of errors which are randomly chosen. Then by a
Chernoff bound, we can say that almost all (except for at most an α fraction) the inner encodings
will have at most a 1−ρ−ε fraction of errors. Thus, we can list recover most of the inner encodings
(except for at most an α fraction). Finally, we can list recover the outer code C from an α fraction
of errors. Since we are interested in local list recovery, we only need to list recover those inner
encodings which are queried by the local list recovery algorithm for C. Thus we will not lose much
in locality, as long as the length of the inner encodings is small.

However, we need to deal with adversarial errors, not random errors, and so the analysis above
might seem useless. Indeed, adversarial errors can easily completely wipe more than α fraction
of inner encodings. To overcome this problem, we use samplers. Roughly speaking, a sampler
is an n vertex bipartite d-regular graph in which the density of any subset T of right vertices is
approximated by the value of E(v, T )/d for a uniformly random left vertex v. We will use a fully
explicit sampler that enables one to compute the list of neighbors of some given vertex in time
poly(d, log n).

We will choose the degree d of the regular bipartite graph (sampler) to be equal to the length t
of the inner code. We associate each inner encoding with a left vertex of the graph and distribute
its symbols to each of the neighbors on the right. The right vertices collect these symbols from
their neighbors and repackage them as single symbol over a larger alphabet. This will be the final
codeword which will have the same length n as C but over a slightly larger alphabet of Σt. The
property of the sampler will ensure that whenever a 1 − ρ − 2ε fraction of symbols in the final
codeword are corrupted, then after undoing the permutation of the sampler, almost all (except for
at most a tiny α fraction) the inner encodings will have at most a 1− ρ− ε fraction of errors. Now
we can proceed as we did in the analysis of random errors.

3.3 From local to nearly-linear-time

Our final basic transformation is from local list recovery to nearly-linear-time global list recovery.
We say that a code C : Σk → Σn is (α, `, L)-globally list recoverable probabilistically if there exists
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a probabilistic algorithm that on input S ∈
(

Σ
`

)n
, outputs a list of at most L messages, such that

with probability at least 2/3, the output list contains all x so that dist(C(x), S) ≤ α.

Lemma 3.4 (From local to nearly-linear-time). Suppose that C : Σk → Σn is (α, `, L)-locally
list recoverable with query complexity Q, preprocessing time Tpre, and running time T . Then C is
(α, `,O(L logL))-globally list recoverable probabilistically in time

O
(
Tpre · logL+ T · (k log k) · (L log2 L)

)
.

Proof. Suppose that C is as in the statement of the lemma. The proof outline is as follows: for
each local algorithm Aj in the output list, we run Aj on each position i ∈ [k] to obtain a message.
This gives us a list of possible messages. There are a constant number of local algorithms Aj , and
each call to a fixed Aj runs in sub-linear time. Since we call each Aj k times, the total running time
is nearly linear in k. The only subtlety is that, since the local decoding procedure is probabilistic,
we will need to amplify the probability of success to the point that we can take a union bound over
the probability of failure in each coordinate and for each message in the output list.

In more detail, first note that by Remark 2.8, we may assume that the local list recovery algorithm
A for C has failure probability at most 1/(101L), at the cost of increasing the output list size to
O(L logL) and the preprocessing time to O(Tpre · logL). By Remark 2.4, we may further assume
that each local algorithm Aj in the output list of A fails with probability at most 1/(100kL), at
the cost of increasing the running time of each Aj to O(T log(kL)).

To globally list recover C we first run the local list recovery algorithm A for C. Then for each
of the local algorithms Aj in the output list of A, we output a message that results by applying Aj
on each of the k message coordinates. It can be verified that running time and output list size of
this algorithm are as claimed.

Let S ⊆ C be the list of codewords that are α-close to the input lists. For each c ∈ S, A returns
a local algorithm Aj which corresponds to S with probability at least 1/(101 · L), so we conclude
that

|S| ≤ L ·
(

1− 1

101L

)−1

≤ 1.01 · L.

By a union bound, the probability that there is some c ∈ S so that no Aj corresponds to c is at
most

|S| · 1

101L
≤ 1.01L

101L
=

1

100
.

Next, conditioning on the event that all c ∈ S have some corresponding local algorithm Aj , we
apply a union bound over all L of these local algorithms, and all k coordinates that each of them
might decode. We conclude that the probability that the global list recovery algorithm described
above fails is at most

L · k · 1

100Lk
≤ 1

100
.

Thus, by a union bound over the two bad events, the probability that the global list recovery
algorithm fails is at most 2/100 < 1/3.
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4 From global to approximately-local list recovery

We now turn to our main transformation from global list recovery to approximately local list
recovery which proves our main Theorem 1.1. For the purposes of this section, it will be more
natural to require that the approximately local list recovery algorithm recovers codeword coordinates
as opposed to message coordinates. Formally, we assume that each local algorithm Aj receives as
input a coordinate i ∈ [n], and the requirement (2) is now replaced with the condition that

Pr
i∈[n]

[
Aj(i) = (C(x))i

]
≥ 1− ε, (3)

where the probability is over the choice of uniform random i ∈ [n]. Note that for a systematic code or
rate ρ, Condition (3) with approximability parameter ε implies Condition (2) with approximability
parameter ε/ρ. As all the codes that we will apply Theorem 1.1 to are high rate (in particular
of rate greater than 1/2), and can be made systematic, the difference between these definitions is
negligible.3

Our main result in this section is the following lemma which implies Theorem 1.1.

Lemma 4.1 (From global to approximately-local). There exists an absolute constant b0 such that
the following holds for any δ, α, ε > 0 and s ≥ (δ · α · ε)−b0, provided that ε is sufficiently small.

Suppose that C : Fk → Fn is a linear code of relative distance δ that is (α, `, L)-globally list

recoverable. Then C⊗t : Fkt → Fnt
is ε-approximately (α · s−t2 , `, Lst

2 ·logt L)-locally list recoverable
with query complexity n · (st2 logt L).

Moreover, if C can be list recovered in time poly(n), then the approximately local list recov-

ery algorithm for C⊗t has preprocessing time O
(

log(n) · st2 · logt L+ Ls
t2 ·logt L

)
and running time

poly(n) · (st2 logt L).

Lemma 4.1 follows from Lemma 4.2 below which we view as our main technical lemma. Lemma 4.2
shows that the tensor product of an approximately locally list recoverable code with a globally list
recoverable code results in an approximately locally list recoverable code with roughly the same
performance. Lemma 4.1 then follows by applying the main technical lemma iteratively.

Lemma 4.2 (Main Technical Lemma). There exist absolute constants b0 and d0 such that the
following holds for any δ′, α′, ε > 0 and s ≥ (δ′ · α′ · ε)−b0, so that ε is sufficiently small.

Suppose that C : Fk → Fn is a linear code that is ε-approximately (α, `, L)-locally list recoverable
with query complexity Q ≥ n′. Suppose that C ′ : Fk′ → Fn′ is a linear code of relative distance δ′

that is (α′, `, L′)-globally list recoverable. Then C ⊗ C ′ : Fk×k′ → Fn×n′ is (d0ε/δ
′)-approximately

(α/s, `, Ls logL′)-locally list recoverable with query complexity Q · (s logL′).
Moreover, if the approximately local list recovery algorithm for C has preprocessing time Tpre ≥

log n′ and running time T , and C ′ can be list recovered in time T ′ ≤ T , then the approximately
local list recovery algorithm for C⊗C ′ has preprocessing time Tpre · (s logL′) +Ls logL′ and running
time T · (s logL′).

3As noted in Remark 2.9, the reason that we do not consider this all-codeword-symbol definition throughout
the entire paper is that our reduction from approximately-local to local (Lemma 3.1) only works for our original
message-symbol definition.
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In Lemma 4.2, one should think of all of the “global” parameters (that is, δ′, α′, ε, L′ and s) as
constants (or as slowly growing functions of n). In that case, if we start with a code that is ε-
approximately (α, `, L)-locally list recoverable with query complexity Q, then the final code would
be O(ε)-approximately (Ω(α), `, LO(1))-locally list recoverable with query complexity O(Q).

We prove Lemma 4.2 in Section 4.1, but first we show how Lemma 4.1 follows from Lemma 4.2.

Proof of Lemma 4.1. The main idea is to start with the code C, and iteratively tensor with a new
copy of C for t− 1 times.

In more detail, let C be the globally list recoverable code guaranteed by the lemma statement. We
observe that C is also

(
ε · (δ/d0)t−1

)
-approximately (α, `, L) list recoverable with query complexity

n in time T0(n) = poly(n), and with preprocessing time P0(n) = O(max {log(n), L}), where d0 is
the constant from Lemma 4.2. Above, we have used the “trivial” approximately local list recovery
algorithm that queries all the coordinates of C and globally list recovers C.

Choose the constant b0 for the statement of Lemma 4.1 to be the same as the constant b0
guaranteed by Lemma 4.2. With this choice of b0, let

s0 = (δαε)−b0

so that the requirement in the statement of Lemma 4.1 is that s ≥ s0.
A straightforward argument by induction shows that after we have applied Lemma 4.2 i times,

we obtain a code C⊗(i+1) which is
(
ε · (δ/d0)t−1−i)-approximately (α · s−ti0 , `, Ls

ti
0 ·logi(L))-locally

list recoverable, with query complexity n · sti0 logi(L), and in time T0(n) · sti0 logi(L), and with

pre-processing time P0(n) · sti0 logi(L) + Ls
ti
0 logi(L). (Recall that T0(n) is the running time of the

algorithm for C, and P0(n) = O (max {log(n), L}) is the pre-processing time). We omit the details
of the inductive step here for readability, but for completeness they can be found in Appendix C.

Thus, we conclude that C⊗t is ε-approximately (α · s−t20 , `, Ls
t2

0 ·logt(L))-locally list recoverable

with query complexity n · s0
t2 logt(L) and in time poly(n) · s0

t2 logt(L), with pre-processing time

O
(

log(n) · sti0 logi(L) + Ls
ti
0 logi(L)

)
. In particular, for any s ≥ s0, the conclusion of Lemma 4.1

holds.

4.1 Proof of Main Technical Lemma 4.2

In this section we prove Lemma 4.2.

4.1.1 Approximate Local List Recovery Algorithm

Our goal is to find a randomized algorithm Ã that outputs a list of (deterministic) local algorithms,
and satisfies the following: For any codeword of C ⊗ C ′ that is consistent with most of the input
lists, with high probability over the randomness of Ã, one of the local algorithms in the output list
of Ã correctly computes most of the codeword coordinates.

First, as per Remark 2.8, we assume that the ε-approximately (α, `, L)-locally list recoverable
code C which we are given in the statement of the lemma has a local list recovery algorithm A with
failure probability ε, at the cost of increasing the output list size and the preprocessing time by
a factor of O(log(1/ε)). Thus, for some constant b1, we assume that A produces a list of at most
b1L log(1/ε) deterministic local algorithms, so that with probability at least 1−ε, for all codewords
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c ∈ C consistent with the input lists, there is a local algorithm in the list which correctly computes
a 1− ε fraction of the coordinates.

The algorithm Ã produces the list of local algorithms as follows. It first chooses a random subset
J = {j1, . . . , jm} ⊆ [n′] of m := b2s logL′ columns, where b2 = Θ(1/ log(1/ε)) will be chosen
later. It then runs the approximately local list recovery algorithm A for C independently m times,
one for each of the columns j1, . . . , jm. (Notice that since the input to A is just 1n, it does not
matter at this stage which column we think of running it on). Let L1, . . . ,Lm denote the lists of
local algorithms output by A in each of these runs. Finally, for every choice of local algorithms
A1 ∈ L1, . . . , Am ∈ Lm, the algorithm Ã outputs a local algorithm indexed by (A1, . . . , Am). The
formal description of the algorithm Ã appears in Algorithm 1.

Algorithm 1 The approximately local list recovery algorithm Ã for C ⊗ C ′.
function Ã

. Ã receives as input a parameter m.
Choose a random subset J = {j1, . . . , jm} ⊆ [n′] of size m.
for r = 1, . . . ,m do

Run the approximately local list recovery algorithm A for C, and let Lr be the list of
local algorithms output by A.

end for
For any choice of local algorithmsA1 ∈ L1, . . . , Am ∈ Lm, output a local algorithm A(A1,...,Am).

end function

We now describe the local algorithm A(A1,...,Am). Recall that the algorithm A(A1,...,Am) is given
as input a codeword coordinate (i, j) ∈ [n] × [n′] in the tensor product code C ⊗ C ′, is allowed to
query the input lists at every coordinate of C ⊗ C ′, and must produce a guess for the codeword
value indexed by (i, j).

To this end, the algorithm A(A1,...,Am) first uses the local algorithms A1, . . . , Am to obtain guesses
for all positions in {i} × J . Specifically, this is done by running on each column jr ∈ J the local
algorithm Ar on input i and oracle access to the column jr. Let vr be the guess for the symbol
at position (i, jr) produced by Ar. At this point we have candidate symbols (v1, . . . , vm) for all
positions in {i} × J .

Next the algorithm A(A1,...,Am) runs the global list recovery algorithm for C ′ on row i, and
chooses a codeword c′ from the output list L′ that agrees the most with the candidate symbols
(v1, . . . , vm) on J . Finally, the jth symbol of c′ is the guess of the algorithm A(A1,...,Am) for the
(i, j) symbol of the tensor codeword. The formal description of the local algorithm A(A1,...,Am) is
given in Algorithm 2.

4.1.2 Output list size, query complexity, and running time

The output list size is number of local algorithms output by Ã which is

(b1L log(1/ε))m = (b1L log(1/ε))b2s logL′ ≤ Ls logL′ ,

as long as L > 1 and ε is sufficiently small, with a choice of b2 = Θ(1/ log(1/ε)).
The local algorithm A(A1,...,Am) invokes a local algorithm Aj for C on m different columns, and

the global algorithm for C ′ on a single row. Thus, the query complexity is Q ·m + n′ which is at
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Algorithm 2 The local algorithm A(A1,...,Am) for C ⊗ C ′.
function A(A1,...,Am)((i, j) ∈ [n]× [n′])

. A(A1,...,Am) receives oracle access to a matrix of lists S ∈
(F
`

)n×n′
, and J = {j1, . . . , jr}

for r = 1, . . . ,m do
Run Ar on input i and oracle access to the jr-th column S|[n]×{jr} .
Let vr ← Ar(i).
. vr is a candidate for the symbol at position (i, jr) ∈ [n]× [n′].

end for
. At this point, we have candidate symbols (v1, . . . , vm) for every position in {i} × J .
Run the global list recovery algorithm for C ′ on the i-th row S|{i}×[n′], let L′ ⊆ Fn′ denote

the output list of codewords.
Choose a codeword c′ ∈ L′ such that c′|J is closest to (v1, . . . , vm) (breaking ties arbitrarily).
Return: c′j

end function

most
Q ·m+ n′ ≤ Q · (m+ 1) = Q ·

(
b2s logL′ + 1

)
≤ Q · s logL′,

using the assumption that Q ≥ n′ and that b2 ≤ 1/2. By same reasoning as above, we also have
that running time of the algorithm A(A1,...,Am) is

T ·m+ T ′ ≤ T · (m+ 1) = T ·
(
b2s logL′ + 1

)
≤ T · s logL′.

Finally, we bound the preprocessing time, which is the running time of the algorithm Ã. The
algorithm Ã can sample the set J in time m log n′, then runs in time Tpre ·b1 log(1/ε) ·m to generate
the m output lists of A, and finally generates all output local algorithms in time (b1L log(1/ε))m.
So the total preprocessing time is

m log n′ + Tpre · b1 log(1/ε) ·m+ (b1L log(1/ε))m

≤ (1 + b1)Tpre log(1/ε) ·m+ (b1L log(1/ε))m

= (1 + b1)Tpre log(1/ε) · (b2s logL′) + (b1L log(1/ε))b2s logL′

≤ Tpres logL′ + Ls logL′ ,

where the first inequality is by the assumption that Tpre ≥ log n′, and the second is by choosing
b2 = Θ(1/ log(1/ε)) sufficiently small. Thus, the output list size, query complexity, and running
time are all as desired.

4.1.3 Correctness

Let c̃ be a codeword of the tensor code C ⊗ C ′ that is consistent with all but an (α/s)-fraction of
the input lists. Our goal is to show that with high probability (at least 2/3) over the randomness
of Ã, there exists a local algorithm A(A1,...,Am) in the output list of Ã that correctly computes all
but a O(ε/δ′)-fraction of the coordinates of c̃.

For r = 1, . . . ,m, let Ar be the local algorithm in Lr that correctly decodes the largest number
of coordinates of c̃ on the column jr, i.e., the local algorithm Ar ∈ Lr for which the set {i ∈ [n] |
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Ar(i) = c̃i,jr} is largest (breaking ties arbitrarily). We will show that with high probability over
the randomness of Ã, the corresponding local algorithm A(A1,...,Am) correctly computes all but a
O(ε/δ′)-fraction of the coordinates of c̃.

To show the above, we claim that with high probability over the randomness of Ã, at least a
(1−O(ε/δ′))-fraction of the rows of c̃ are “good,” in the sense that the local algorithm A(A1,...,Am)

defined above will correctly decode all the coordinates of c̃ on these rows. More formally, we define
a “good row” as follows.

Definition 4.3 (Good row). A row i ∈ [n] is good (with respect to c̃, J , and A1, . . . Am) if it
satisfies the following properties:

1. The codeword c̃ is consistent with all but an α′-fraction of the input lists on row i.

2. Let L′ ⊆ Fn′ denote the list of all codewords in C ′ that are consistent with all but α′-fraction
of the input lists on row i. Then dist(L′|J) > δ′/2. That is, for any pair of distinct codewords
c′, c′′ ∈ L′ it holds that dist(c′|J , c′′|J) > δ′/2.

3. For r = 1, . . . ,m let vr := Ar(i). Then dist
(
c̃|{i}×J , (v1, . . . , vm)

)
≤ δ′/4.

Claim 4.4 below shows that the local algorithm A(A1,...,Am) succeeds in correctly decoding all the
coordinates of c̃ on a good row, while Claim 4.5 states that with probability at least 2/3 over the
randomness of Ã, at least a (1−O(ε/δ′))-fraction of the rows are good. The combination of these
two claims then implies the desired conclusion.

Claim 4.4. The local algorithm A(A1,...,Am) correctly decodes all the coordinates of c̃ on a good row.

Proof. Suppose that row i is good. By Property (1) in the definition of good, c̃ is consistent with
all but an α′-fraction of the input lists on row i, and so c′ := c̃|{i}×[n′], the restriction of c̃ to the
i-th row, belongs to L′. By Property (3) in the definition of good,

dist
(
c′|J , (v1, . . . , vm)

)
≤ δ′/4.

On the other hand, by Property (2) in the definition of good, and by the triangle inequality, for
any other codeword c′′ ∈ L′ we have

dist
(
c′′|J , (v1, . . . , vm)

)
≥ dist(c′|J , c′′|J)− dist

(
c′|J , (v1, . . . , vm)

)
> δ′/4.

Thus the local algorithm A(A1,...,Am) will choose the codeword c′ = c̃|{i}×[n′] on the i-th row, and
consequently all its decodings on the i-th row will be consistent with c̃.

Claim 4.5. With probability at least 2/3 over the randomness of Ã, at least a (1−O(ε/δ′))-fraction
of the rows are good.

For the proof of the above claim we shall also use the notion of a “good column,” which we define
below as a column jr ∈ J on which most of the coordinates of c̃ are decoded correctly by the local
algorithm Ar.

Definition 4.6 (Good column). A column jr ∈ J is good if the local algorithm Ar correctly
decodes all but an ε-fraction of the coordinates of c̃ on column jr.

20



Once more, we shall show that with high probability over the randomness of Ã, a large fraction
of the columns in J are good.

Claim 4.7. With probability at least 0.9 over the randomness of Ã, at least a (1 − O(ε))-fraction
of the columns in J are good.

Proof. We first claim that with probability at least 0.99 over the randomness of Ã, for at least a
(1 − 2ε)-fraction of the columns jr ∈ J it holds that c̃ is consistent with all but α-fraction of the
input lists on column jr. To see this note first that by assumption c̃ agrees with all but a α/s ≤ α ·ε
of the input lists, where the inequality follows from the definition of s and by taking b0 ≥ 1. Thus,
by averaging, for at least a (1− ε)-fraction of the columns j ∈ [n′] it holds that c̃ is consistent with
all but an α-fraction of the input lists on column j. By a Chernoff bound (see Theorem D.2 in the
appendix), this implies in turn that with probability at least

1− exp
(
−m · ε2

)
≥ 0.99

over the choice of J , for at least a (1−2ε)-fraction of the columns jr ∈ J it holds that c̃ is consistent
with all but an α-fraction of the input lists on column jr. In the inequalty above, we are using the
choice

m = Θ(
s logL′

log(1/ε)
= Ω

(
1

log(1/ε)

(
1

εδ′α′

)b0
logL′

)
,

along with a sufficiently large choice of the constant b0.
As noted at the beginning of the proof, we are considering an amplified version of the approximate

local list recovery algorithm A for C, so that the failure probability is at most ε. By Hoeffding’s
inequality (Theorem D.1), this implies that with probability at least 1− exp(−m · ε2) ≥ 0.99, the
algorithm A succeeds in at least (1− 2ε)-fraction of the invocations. Above, the inequality follows
as before because of the choice of s and a sufficiently large choice of b0.

By a union bound, we conclude that with probability at least 0.9 over the randomness of Ã, for
at least a (1 − 4ε)-fraction of the columns jr ∈ J it holds that both c̃ is consistent with all but
α-fraction of the input lists on column jr, and A does not fail on this column: that is, there is a
local algorithm returned by A which correctly computes at least a 1− ε fraction of the coordinates
of column jr. For such a column jr, since Ar is chosen to be the local algorithm returned by A
which correctly computes the largest fraction of coordinates of c̃ on the column jr, we conclude
that the column jr is good. All together, this shows that at least a (1− 4ε)-fraction of the columns
jr ∈ J are good.

We now proceed to the proof of Claim 4.5.

Proof of Claim 4.5. We will show that each of the three properties in the definition of a good
row holds for at least (1 − O(ε/δ′))-fraction of the rows, with probability at least 0.9 over the
randomness of Ã. Then the claim will follow by a union bound over the fraction of bad rows and
error probability of Ã.

Property (1): By assumption c̃ agrees with all but an α/s ≤ α′ · ε of the input lists, where
the inequality follows from the definition of s and an assumption that b0 ≥ 1. By an averaging
arguement, for at least a (1− ε)-fraction of the rows i ∈ [n] it holds that c̃ is consistent with all but
an α′-fraction of the input lists on row i. So at least a (1− ε)-fraction of the rows satisfy Property
(1) (regardless of the randomness of Ã).
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Property (2): By assumption, C ′ has relative distance at least δ′, and so dist(c′, c′′) ≥ δ′ for any
pair of codewords c′, c′′ ∈ L′. A Chernoff bound (Theorem D.2) then implies that with probability
at least

1− exp
(
−m · (δ′)2

)
= 1− exp

(
− b2s logL′ · (δ′)2

)
≥ 1− 0.1ε

(L′)2

over the choice of J it holds that dist(c′|J , c′′|J) > δ′/2. Above, the inequality follows by choosing
the constant b0 sufficiently large and b2 = Θ(1/ log(1/ε)). By a union bound over all (L′)2 pairs
of elements in L′, this implies in turn that dist(L′|J) > δ′/2 with probability at least 1− 0.1ε over
the choice of J . Finally, by an averaging argument we conclude that with probability at least 0.9
over the choice of J (and so also over the randomness of Ã), at least a (1− ε)-fraction of the rows
satisfy Property (2).

Property (3): By Claim 4.7, with probability at least 0.9 over the randomness of Ã, at least a
(1−O(ε))-fraction of the columns in J are good, where in a good column jr ∈ J all but an ε-fraction
of the coordinates of c̃ are decoded correctly by Ar. This implies in turn that the fraction of points
(i, jr) ∈ [n]×J on which Ar(i) 6= c̃i,jr is at most O(ε), and so at least a (1−O(ε/δ′))-fraction of the
rows i have at most (δ′/4)-fraction of entries jr ∈ J for which Ar(i) 6= c̃i,jr . Thus with probability
at least 0.9 over the randomness of Ã, at least a (1−O(ε/δ′))-fraction of the rows satisfy Property
(3).

Together, the three paragraphs above imply that at least a 1−O(ε)−O(ε)−O(ε/δ′) fraction of
the rows satisfy all three properties, which proves the claim.

5 Instantiations

We conclude by instantiating our main “global to approximately-local” transformation (Lemma
4.1), followed by the basic list recovery transformations (Lemmas 3.1, 3.2, and 3.4), with known
constructions of high-rate globally list recoverable codes to obtain capacity-achieving locally list
recoverable codes, which proves our main Theorems 1.2, 1.3, and 1.4.

5.1 Instantiating with a random linear code: Proof of Theorem 1.2

We start by instantiating our transformations with the random linear code given by Corollary 2.2,
restated below.

Corollary (Corollary 2.2, restated). For any ρ ∈ [0, 1], ε > 0, ` ≥ 1, and for sufficiently large
prime power q and integer n, a random linear code C : Fkq → Fnq of rate ρ has relative distance at

least 1− ρ− ε, and is (1− ρ− ε, `, qO(`/ε))-list recoverable, with probability at least 1− exp(−n).

Using the above corollary we obtain the following lemma which implies Theorem 1.2.

Lemma 5.1. For any constants ρ ∈ [0, 1], ε, β > 0, and ` ≥ 1 there exist integers σ, L, and an
infinite family of codes {Cn}n that satisfy the following.

• Cn is an F2-linear code of block length n and alphabet size σ.

• Cn has rate ρ and relative distance at least 1− ρ− ε.

• Cn is (1− ρ− ε, `, L)-locally list recoverable with query complexity nβ.
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Proof. The proof outline is as follows. We start with the high-rate globally list recoverable code
C given by Corollary 2.2, and use Lemma 4.1 to turn C into a high-rate approximately locally
list recoverable code C ′ by raising C to a sufficiently large tensor power. We then use Lemma 3.1
to turn C ′ into a high-rate locally list recoverable code C ′′ by pre-encoding C ′ with a high-rate
locally decodable code. Finally, we use the AEL transformation (Lemma 3.2) to turn C ′′ into a
capacity-achieving locally list recoverable code C̃.

Below, we focus in more detail on each of the codes described above.

High-rate globally list recoverable code C: The initial code C will be the high-rate globally
list recoverable code given by Corollary 2.2. Specifically, we choose the block length of C to be
nβ/2, smaller than the final desired query complexity, and the rate to be high, at least 1− εβ/16.

As we will see in a moment, the rationale for these choices is that if we raise C to the tensor
power of 2/β, Lemma 4.1 will yield a code of block length n and query complexity smaller than
nβ, with rate at least 1− ε.

Note that Corollary 2.2 guarantees the existence of a code C with this block length and rate that
has relative distance Ω(1), and is (Ω(1), `′, O(1))-globally list recoverable for any constant `′ ≥ 1,
provided that the alphabet size is a sufficiently large constant prime power, and n is sufficiently
large.

High-rate approximately locally list recoverable code C ′: Let C ′ = C⊗(2/β) be the code
obtained by taking the (2/β)-th tensor power of C. Then C ′ has block length n, and by Lemma 4.1,
it is (ε/100)-approximately (Ω(1), `′, O(1))-locally list recoverable with query complexity O(nβ/2)
for any constant ε > 0 and `′ ≥ 1. Moreover, by Corollary 2.13 C ′ has rate (1−εβ/16)2/β ≥ 1−ε/8
and relative distance Ω(1).

High-rate locally list recoverable code C ′′: We obtain C ′′ by pre-encoding C ′ with a high-rate
locally decodable code D′ that is guaranteed by Theorem 2.5. Specifically, to satisfy the conditions
of Lemma 3.1, we choose the block length of D′ to be equal to the message length of C ′ which is
(1− ε/8)n, and the decoding radius of D′ to be equal to ε/100. Since the rate of C ′′ is the product
of the rates of C ′ and D′, we also require that the rate of D′ is high, specifically 1− ε/8. Note that
Theorem 2.5 guarantees the existence of such a code D′ with query complexity no(1) for infinitely
many values of n, and for a constant alphabet size that is a power of 2. Moreover, the alphabet
size can be increased to any arbitrarily large constant by grouping together consecutive symbols
and noting that this does not effect the asymptotic behavior of the code in the parameter regime
that we are operating in.

Lemma 3.1 then implies that C ′′ is a code of block length n that is (Ω(1), `′, O(1))-locally list
recoverable with query complexity nβ/2+o(1) for any constant `′ ≥ 1. Note also that the rate of C ′′

is the product of the rates of C ′ and D′, and so is at least 1 − ε/4, while the relative distance of
C ′′ is the same as that of C ′, and so is constant Ω(1).

Capacity-achieving locally list recoverable code C̃: Finally, we obtain C̃ by applying the
AEL transformation (Lemma 3.2) with the outer code being the code C ′′ constructed so far, and
the inner code being a capacity-achieving globally list recoverable code D′′ given by Corollary 2.2.
Specifically, as we would like the final code C̃ to have rate ρ and relative distance and list recovery
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radius 1 − ρ − ε, and as C ′′ has rate 1 − ε/4, we require that D′′ has rate ρ + ε/4 and relative
distance and list recovery radius 1− ρ− ε/2.

Note that Corollary 2.2 guarantees the existence of a code D′′ as above that is (1−ρ− ε/2, `, `′)-
globally list recoverable for sufficiently large constant `′, provided that the alphabet size is a suffi-
ciently large constant prime power, and the block length is a sufficiently large constant. To satisfy
the conditions of Lemma 3.2, we further require that the block length of D′′ is a sufficiently large
constant, as required by the lemma, and that the alphabet size of C ′′ equals the domain size of D′′.

Lemma 3.2 then implies that C̃ is a code of block length n that is (1 − ρ − ε, `, O(1))-locally
list recoverable with query complexity nβ/2+o(1) � nβ. Moreover, the code C̃ has rate ρ, relative
distance at least 1− ρ− ε, and constant alphabet size.

Finally, note that all codes in the process can be taken to be F2-linear, and all transformations
preserve F2-linearity, so the final code can be guaranteed to be F2-linear as well.

5.2 Instantiating with an AG code for polynomial query complexity: Proof of
Theorem 1.3

Next we instantiate our transformations with the algebraic geometry subcodes of [GX13, GK16b]
to obtain the following lemma which implies our main Theorem 1.3.

Lemma 5.2. For any constants ρ ∈ [0, 1], ε, β > 0, and ` ≥ 1 there exist an integer σ, and an
infinite family of codes {Cn}n that satisfy the following.

• Cn is an F2-linear code of block length n and alphabet size σ.

• Cn has rate ρ and relative distance at least 1− ρ− ε.

• Cn is (1−ρ−ε, `, L)-locally list recoverable with query complexity nβ for L = exp exp exp(log∗ n)
with preprocessing time (log n)1+o(1) and running time nO(β).

• Cn is (1− ρ− ε, `, L)-globally list recoverable for L = exp exp exp(log∗ n) in time n1+O(β).

• Cn is encodable in time n1+O(β).

To prove the above lemma we use the algebraic geometry subcodes of [GX13, GK16b]. However,
we cannot quite use these codes as a black box, for two reasons. First, the analysis in [GX13] only
establishes list-decodability, rather than list recoverability. Fortunately, list recoverability follows
from exactly the same argument as list-decodability. Second, these codes are linear over a subfield,
but are not themselves linear, while our arguments require linearity over the whole alphabet.
Fortunately, we can achieve the appropriate linearity by concatenating the AG subcode with a
small high-rate globally list recoverable linear code, which exists by Corollary 2.2. We handle these
modifications to the approach of [GX13, GK16b] in Appendix A, and the final properties we need
are summarized in Theorem A.1, which we prove in the Appendix and restate below.

Theorem (Theorem A.1, restated). There exists an absolute constant b0 so that the following
holds. For any ε > 0, ` ≥ 1, q ≥ `b0/ε that is an even power of a prime4, and integer n ≥ qb0`/ε,
there exists a linear code C : Fkq → Fnq of rate 1− ε and relative distance Ω(ε2) that is (Ω(ε2), `, L)-

list recoverable for L = qq
(`/ε)·exp(log∗n)

. Moreover, C can be encoded in time poly(n, log q) and list
recovered in time poly(n,L).

4That is, q is of the form p2t for a prime p and for an integer t.
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Next we prove Lemma 5.2 based on the above theorem.

Proof of Lemma 5.2. The proof is identical to that of Lemma 5.1, replacing the initial random
linear code C given by Corollary 2.2 with the AG code given by Theorem A.1. It can be verified
that the proof of Lemma 5.1 goes through, when increasing the output list size L from constant to
exp exp exp(log∗ n).

As for the running times, note that by Theorem A.1, C can be encoded and list recovered in
time nO(β). Lemma 4.1 then implies that the approximately local list recovery algorithm for C ′

has preprocessing time (log n)1+o(1) and running time nO(β), while by Corollary 2.13, the encoding
time of C ′ is n1+O(β). Lemmas 3.1 and 3.2 imply in turn that the same holds for C ′′ and C̃, and
by Lemma 3.4, the code C̃ is also globally list recoverable in time n1+O(β).

5.3 Instantiating with an AG code for sub-polynomial query complexity: Proof
of Theorem 1.4

Our final instantiation uses once more the algebraic geometry codes given by Theorem A.1, but with
a different choice of parameters, which gives the following lemma that implies our main Theorem
1.4.

Lemma 5.3. For any constants ρ ∈ [0, 1], ε > 0, and ` ≥ 1 there exists an infinite family of codes
{Cn}n that satisfy the following.

• Cn is an F2-linear code of block length n and alphabet size no(1).

• Cn has rate ρ and relative distance at least 1− ρ− ε.

• Cn is (1−ρ−ε, `, no(1))-locally list recoverable with query complexity, preprocessing time, and
running time no(1).

• Cn is (1− ρ− ε, `, no(1))-globally list recoverable in time n1+o(1).

• Cn is encodable in time n1+o(1).

Proof. The proof is identical to that of Lemmas 5.1 and 5.2, taking β to be slightly subconstant,
specifically β := (log log n)−o(1) (where the o(1) term in the exponent is an arbitrarily slowly
decreasing function of n). As setting of parameters is slightly different from the previous lemmas,
we provide a complete proof below.

High-rate globally list recoverable code C: As in the proof of Lemma 5.1, we choose the
initial code C to be a code of block length nβ/2 = no(1) and rate 1 − εβ/16 = 1 − (log log n)−o(1).
Theorem A.1 guarantees the existence of such a code C that has relative distance (log log n)−o(1),
and is ((log log n)−o(1), `′, exp exp((log log n)o(1)))-globally list recoverable for any constant `′ ≥ 1,
provided that the alphabet size is sufficiently large even power of a prime exp((log log n)o(1)).
Moreover, C can be encoded and list recovered in time nO(β) = no(1).
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High-rate approximately locally list recoverable code C ′: As before, let C ′ be the code
obtained by taking C to a tensor power of 2/β = (log log n)o(1). Then C ′ has block length n, rate at
least 1−ε/8, relative distance exp(−(log log n)o(1)), and by Lemma 4.1, it is (ε/100)-approximately
(exp(−(log log n)o(1)), `′, no(1))-locally list recoverable with query complexity no(1) for any constants
ε > 0 and `′ ≥ 1. Moreover, the approximately local list recovery algorithm for C ′ has preprocessing
and running time no(1), while by Corollary 2.13, the encoding time of C ′ is n1+o(1).

High-rate locally list recoverable code C ′′: Once more, we obtain C ′′ by pre-encoding C ′

with a high-rate locally decodable code D′ of block length (1− ε/8)n, rate 1− ε/8, and decoding
radius ε/100. Theorem 2.5 guarantees the existence of such a code D′ with query complexity
no(1) for infinite values of n, and with constant alphabet size that is a power of 2. Moreover, the
alphabet size can be increased to exp((log log n)o(1))—the alphabet size of C ′—by grouping together
consecutive symbols, and noting that this does not effect the asymptotic behavior of the code.

Then C ′′ is a code of block length n, rate 1−ε/4, and relative distance exp(−(log log n)o(1)), and
by Lemma 3.1, it is (exp(−(log log n)o(1)), `′, no(1))-locally list recoverable with query complexity
no(1) for any constant `′ ≥ 1. Moreover, the local list recovery algorithm for C ′′ has preprocessing
and running time no(1), and since the encoding time of D′ is n1+o(1), the encoding time of C ′′ is
n1+o(1) as well.

Capacity-achieving locally list recoverable code C̃: As before, C̃ is obtained by applying
the AEL transformation (Lemma 3.2) with the outer code being the code C ′′ constructed so far,
and the inner code being a capacity-achieving globally list recoverable code D′′ of rate ρ+ ε/4 and
relative distance and list recovery radius 1− ρ− ε/2.

Corollary 2.2 guarantees the existence of code D′′ as above that is (1− ρ− ε/2, `, `′)-globally list
recoverable for sufficiently large constant `′, provided that the alphabet size is a sufficiently large
constant prime power, and the block length is a sufficiently large constant. To satisfy the conditions
of Lemma 3.2, we further require that the block length of D′′ is sufficiently large exp((log log n)o(1)),
and that the alphabet size of C ′′ is exp exp((log logn)o(1))—the domain size of D′′—which can be
achieved by grouping together consecutive symbols of C ′′.

Lemma 3.2 then implies that C̃ is a code of block length n, alphabet size no(1), rate ρ, and
relative distance 1− ρ− ε, that is (1− ρ− ε, `, no(1))-locally list recoverable with query complexity
no(1). Moreover, the local list recovery algorithm for C̃ has preprocessing and running time no(1),
and the encoding time of C̃ is n1+o(1). Finally, Lemma 3.4 implies that the code C̃ is also globally
list recoverable in time n1+o(1).

Once more we note that all codes in the process can be taken to be F2-linear, and all transfor-
mations preserve F2-linearity, so the final code can be guaranteed to be F2-linear as well.
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A List recovery of algebraic geometry codes

In this appendix, we outline how the approach of [GX13] needs to be changed in order to obtain
linear list recoverable codes. The main theorem is as follows.
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Theorem A.1. There exists an absolute constant b0 so that the following holds. For any ε > 0,
` ≥ 1, q ≥ `b0/ε that is an even power of a prime5, and integer n ≥ qb0`/ε, there exists a linear
code C : Fkq → Fnq of rate 1 − ε and relative distance Ω(ε2) that is (Ω(ε2), `, L)-list recoverable for

L = qq
(`/ε)·exp(log∗n)

. Moreover, C can be encoded in time poly(n, log q) and list recovered in time
poly(n,L).

We remark that when ε, `, q are constant the output list size L is exp exp exp(log∗ n) which is
very slowly growing (although admittedly with extremely large constants).

We follow the approach of [GX13, GK16b]. In [GX13], Guruswami and Xing show how to
construct high-rate list decodable codes over a constant alphabet, modulo a construction of explicit
subspace designs. In [GK16b], Guruswami and Kopparty gave such constructions and used them
to construct high-rate list decodable codes over constant-sized alphabets with small list sizes. We
would like to use these codes here. However, there are two things which must be modified. First,
the guarantees of [GX13, GK16b] are for list decodability, and we are after list recoverability.
Fortunately, this follows from a standard modification of the techniques that they use. Second,
the codes that they obtain are not linear, but rather are linear over a subfield of the alphabet. To
correct this, we concatenate these codes with list recoverable linear codes of a constant length. A
random linear code has this property, and since we only require them to be of constant length, we
may find such a code, and run list recovery algorithms on it, in constant time.

We begin by addressing the leap from list decodability to list recovery, and then discuss the code
concatenation step. We refer the reader to [GX13, GK16b] for the details (and, indeed, for several
definitions); here we just outline the parts which are important for list recovery. The basic outline
of the construction and the argument is as follows:

Step 1. Show that AG codes are list decodable, with large but very structured lists. We will
extend this to list recoverability with structured lists.

Step 2. Show that one can efficiently find a subcode of the AG code which will avoid this sort of
structure: this reduces the list size. This part of the argument goes through unchanged, and
will yield a list recoverable code over Fqm with small list size.

Once we have Fq-linear codes over Fmq that are list recoverable, we discuss the third step:

Step 3. The code produced is Fq-linear (rather than Fqm-linear). This was fine for [GX13, GK16b],
but we require a code which is linear over the alphabet it is defined over. To this end we
concatenate the codes above with a random linear code of length m over Fq. This will result
in an Fq-linear code over Fq that is list recoverable with small list sizes.

We briefly go through the details. First we give a short refresher/introduction to the notation.
Then we handle the three steps above, in order. We note that throughout this appendix we will
refer to Theorem and Lemma numbers in the extended version [GX12b] rather than the conference
version [GX13].

Step 0. Algebraic Geometry Codes and basic notation. Since we do not need to open up
the AG code machinery very much in order to extend the results of [GX13] to list recovery, we do
not go into great detail here, and we refer the reader to [GX13] and the references therein for the

5That is, q is of the form p2t for a prime p and for an integer t.
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technical details, and to [Sti09] for a comprehensive treatment of AG codes. However, for the ease
of exposition here (for the reader unfamiliar with AG codes), we will introduce some notation and
explain the intuitive definitions of these notions. In particular, we will use the running example of
a rational function field. We stress that this is not the final function field used; thus the intuition
should be taken as intuition only.

Let F/Fq be a function field of genus g. One example, which may be helpful to keep in mind, of
a genus 0 function field is the rational function field Fq(X)/Fq, which may be thought of as rational
functions f(X)/g(X), where f, g ∈ Fq[X] are irreducible polynomials. For the code construction,
we will use a function field of larger genus (given by the Garcia-Stichtenoth tower, as in [GX13]),
but we will use this example to intuitively define the algebraic objects that we need.

Let P∞, P1, . . . , Pn be n+ 1 distinct Fq-rational places (that is, of degree 1). Formally, these are
ideals, but they are in one-to-one correspondence with Fq ∪ {∞}, and let us think of them that
way. For each such place P , there is a map (the residue class map with respect to P ) which maps
F/Fq to Fq; we may think of this as function evaluation, and in our example of Fq(X)/Fq, if P is
a place associated with a point α ∈ Fq, then indeed this maps f(X)/g(X) to f(α)/g(α).

Let L(lP∞) be the Riemann-Roch space over Fq. Formally, this is

L(lP∞) = {h ∈ F \ {0} : νP∞(h) ≥ −l} ∪ {0} ,

where νP∞ is the discrete valuation of P∞. Informally (in our running example), this should be
thought of as the set of rational functions f(X)/g(X) so that deg(g(X)) − deg(f(X)) ≥ −l. In
particular, the number of poles of f/g is at least the number of roots, minus l. It would be tempting,
in this example, to think of these as degree ≤ l polynomials; all but at most l of the powers of X
in the numerator are “canceled” in the denominator. Of course, there are many problems with this
intuition, but it turns out that this indeed works out in some sense. In particular, it can be shown
that the dimension of this space is at least l − g + 1. When g = 0 (as in our running example), it
is exactly l + 1, the same as the dimension of the space of degree ≤ l polynomials.

More generally (whatever the genus), for any rational place P , we may write a function h ∈
Lm(lP∞) as

h =
∞∑
j=0

hjT
j , (4)

where T is a local parameter of P , and it turns out that h is uniquely determined by the first l+ 1
coefficients h0, h1, . . . , hl+1.

Now let Fm be the constant extension Fqm ·F , and let Lm(lP∞) be the corresponding Riemann-
Roch space. This has the same dimension over Fqm as L(lP∞) does over Fq. Now we consider the
algebraic geometry code defined by

C(m; l) := {(h(P1), . . . , h(Pn)) : h ∈ Lm(lP∞)} .

Following the intuition that h(Pi) denotes function evaluation, this definition looks syntactically
the same as a standard polynomial evaluation code, and should be thought of that way. This is an
Fqm-linear code over Fqm , with block length n and dimension at least l − g + 1.

Step 1. List decoding with structured lists to list recovery with structured lists. With
the preliminaries (and some basic, if possibly misleading, intuition for the reader unfamiliar with
AG codes) out of the way, we press on with the argument.
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Fix a parameter k, and consider a general AG code C(m; k+2g−1), with the notation above. (We
will fix a particular AG (sub)code later, by choosing a function field and by choosing a subcode).
Let S1, . . . , Sn ⊂ Fqm be lists of size at most ` corresponding to each coordinate. We first show
that C(m; k + 2g − 1) is (1− β, `, L)-list recoverable for some β to be chosen below, where the list
size is very large, but the list is structured. In [GX13], the approach (similar to that in [GW13]) is
as follows.

1. We will first find a low degree interpolating linear polynomial (whose coefficients live in
Riemann-Roch spaces)

Q(Y1, . . . , Ys) = A0 +A1Y + · · ·+AsYs

so that Ai ∈ Lm(DP∞) and A0 ∈ Lm((D+k+2g−1)P∞), for some parameter k to be chosen
later, for

D =

⌊
`n− k + (s− 1)g + 1

s+ 1

⌋
,

and subject to `n linear constraints over Fqm . Before we list the constraints, notice that the
number of degrees of freedom in Q is

s(D − g + 1) +D + k + g,

because the Fqm-dimension of Lm((D + k + 2g − 1)P∞) is at least D + k + g, and the Fqm-
dimension of Lm((DP∞)) is at least D−g+1. Thus, the choice of D shows that the dimension
of this space of interpolating polynomials is greater than `n. Thus, we will be able to find
such a Q that satisfies the `n following `n constraints. For each i ∈ [n] and for all y ∈ Si, we
have the constraint that

A0(Pi) +A1(Pi)y +A2(Pi)y
q + · · ·+As(Pi)y

qs−1
= 0.

2. With this polynomial Q in hand, we observe that if h ∈ Lm((k+ 2g− 1)P∞) whose encoding
has h(Pi) ∈ Si for at least βn positions i, for βn > D+k+2g−1, then Q(h, hσ, . . . , hσ

s−1
) = 0,

where hσ denotes the extension of the Frobenius automorphism α 7→ αq on Fqm to Lm(lP∞).
This proof (Lemma 4.7 in [GX12b]) remains unchanged when we pass to list recovery from
list decoding. Briefly, this agreement means that

Q(h, . . . , hσ
s−1

)(Pi) = A0(Pi) +A1(Pi)h(Pi) + · · ·+As(Pi)h(Pi)
qs−1

= 0

for at least βn values of i, and so the function Q(h, hσ, . . . , hσ
s−1

) (which lies in Lm((D +
k + 2g − 1)P∞); as per the intuition above, we are thinking of these as roughly analogous to
degree-(D + k + 2g − 1) polynomials) has at least βn ≥ D + k + 2g − 1 roots, and hence is
the zero function.

3. Thus, any element h ∈ Lm((k + 2g − 1)P∞) that agrees with at least βn lists also satisfies
Q(h, . . . , hσ

s−1
) = 0. It remains to analyze the space of these solutions, and to show that

they are nicely structured. This requires one more step, which goes through without change.
More precisely, [GX13] takes a subcode of C(m; k+2g−1); this subcode will still have a large
list size, but the list will be structured. This resulting code, denoted C(m; k + 2g − 1|Fkqm),
has dimension k. (Recall that C(m; k + 2g − 1) has dimension k + g, so we have reduced the
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dimension by g.) We refer the reader to [GX13] for the details, as they do not matter for
us. At the end of the day, the analysis of [GX13] (Lemma 4.8 in the full version [GX12b])
applies unchanged to show that the set of messages h in this new code that are solutions to
this equation lie in a structured space: more precisely, the coefficients (h0, h1, . . . , hk+2g−1)

as in (4) belong to an (s − 1,m)-ultra periodic subspace of Fm(k+2g−1)
q . For us, the precise

definition of this does not matter, as we may use the rest of [GX13] as a black box.

4. Before we move on, we summarize parameters. We have so far established that there is a
code C(m; k + 2g − 1|Fkqm) that is list recoverable up to disagreement 1 − β and with inner
list sizes `, resulting in a structured list. The requirement on β is:

βn > D + k + 2g − 1

=

⌊
`n− k + (s− 1)g + 1

s+ 1

⌋
+ k + 2g − 1,

and so it suffices to take

βn >
`n− k + (s− 1)g + 1

s+ 1
+ k + 2g − 1

=
1

s+ 1
(`n+ s(k − 1) + g(3s+ 1)) .

Again, the dimension of the code is k and the length is n. It is Fqm-linear over Fqm .

Step 2. Taking a subcode. For this step, we may follow the argument of [GX13] without
change. Briefly, to instantiate the AG code we use a function field from a Garcia-Stichtenoth
tower. The parameters of this are as follows: we choose a prime power r, and let q = r2. Then we
choose an integer e > 0. There is a function field F = Ke so that Ke has at least n = re−1(r2−r)+1
rational places, and genus ge bounded by re. This is the function field we will use. We remark
that [GX13] has to do a bit of work here to show that one can actually find a description of the
structured list efficiently, but it can be done. We plug in parameters to obtain the following Lemma,
which is analogous to Theorem 4.14 in [GX12b].

Lemma A.2. Let q be the even power of a prime, and choose `, ε > 0. There is a parameter
s = 1`/ε) so that the following holds. Let m ≥ s and let R ∈ (0, 1). Suppose that β ≥ R+ε+3/

√
q.

Then for infinitely many n (all integers of the form n = qe/2(
√
q − 1)), there is a deterministic

polynomial time construction of an Fqm-linear code C of block length n, dimension k = Rn, so
that the following holds: for any sets S1, . . . , Sn ⊆ Fqm with |Si| ≤ ` for all i, the set of messages
leading to codewords c ∈ C so that ci ∈ Si for at least βn coordinates i is contained in one of qO(mn)

possible (s − 1,m)-ultra periodic Fq-affine subspaces of Fmkq . Further, this collection of subspaces
can be described in time poly(n,m).

Proof. Our condition on β is that it is at least

`n+ s(k − 1) + ge(3s+ 1)

n(s+ 1)
≤ `n+ s(k − 1) + n(3s+ 1)/(r − 1)

n(s+ 1)
Using ge ≤ n/(r − 1)

=
`+ s(R− 1/n) + (3s+ 1)/(r − 1)

s+ 1
.

Choosing s = O(`/ε) and using the fact that r =
√
q gives the conclusion.
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With this lemma in hand, we may proceed exactly as the proof in [GX13]; indeed, it is exactly
the same code, and we exactly the same conclusion on the structure of the candidate messages. The
basic idea is to choose a subset of messages carefully via a cascaded subspace design. This ensures
that the number of legitimate messages remaining in the list is small, and further that they can be
found efficiently.

We briefly go through parameters, again referring the reader to the discussion in [GX13, GK16b]
for details. We will fix

s = O(`/ε), and m = O

(
`

ε2
· logq(`/ε)

)
. (5)

We now trace these choices through the analysis of [GX13, GX14].

Remark A.3. The reader familiar with these sorts of arguments might expect us to set m = `/ε2,
and indeed this would be sufficient if we could allow q to be sufficiently large. However, in this case,
setting m this way would result in a requirement that q ≥ `/ε2. We would like q to be independent
of ` for the next concatenation step to work (of course, the alphabet size qm must be larger than
`), and this requires us to take m slightly larger. This loss comes out in the final list size.

Without defining a cascaded subspace design, we will just mention that it is a sequence of
T subspace designs; a cascaded subspace design comes with vectors of parameters (r0, . . . , rT ),
(m0, . . . ,mT ), and (d0, . . . , dT1). For i = 1, . . . , T , the i’th subspace design in this sequence is a
(ri−1, ri)-strong subspace design in Fmi−1

q , of cardinality mi/mi−1, and dimension di−1. For our
argument all that matters is that we may find explicit cascaded subspace designs:

Theorem A.4 (Follows from Theorem 6 in [GK16b]). For all ζ ∈ (0, 1) and for all r,m with
r ≤ ζm/4, and for all prime powers q so that 2r/ζ < qζm/(2r), there exists an explicit collection of
M ≥ qΩ(ζm/r)/(2r) subspaces in Fmq , each of codimension at most ζm, which form a (r, r2/ζ)-strong
subspace design.

Remark A.5. In [GK16b], the theorem is stated for (r, r/ζ)-weak subspace designs; however, as is
noted in that work, a (A,B)-weak subspace design is also a (A,AB)-strong subspace design, which
yields our version of the theorem.

Below, we will use Theorem A.4 in order to instantiate a cascaded subspace design. The reason
we want to do this is because of Lemma 5.6 in [GX12b]:

Lemma A.6 (Lemma 5.6 in [GX12b]). Let M be a (r0, r1, . . . , rT )-cascaded subspace design with
length vector (m0,m1, . . . ,mT ). Let A be an (r,m)-ultra periodic affine subspace of FmT

q . Then the
dimension of the affine space A∩U(M) is at most rT , where U(M) denotes the canonical subspace
of M.

We have not defined a canonical subspace, and we refer the reader to [GX12b] for details; the
important thing for us is that we wish to construct a cascaded subspace design M so that rT is
small, mT is equal to mk, and so that r0 = s − 1 and m0 = m. This will allow us to choose a
subcode of the code from Lemma A.2 by restricting the space of messages to the canonical subspace
U(M), and this will be the Fq-linear code (over Fmq ) that we are after.

We may use Theorem A.4 to instantiate such a cascaded subspace design as follows (the derivation
below follows the proof of Lemma 5.7 in [GX12b]). We choose ζi = ε/2i, r0 = s−1, and ri = r2

i−1/ζi.
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We choose m0 = m and we will define mi = mi−1 · q
√
mi−1 . We will continue up to i = T , choosing

T so that mT = mk. At this point, we must deal with the detail that there may be no such T ;
to deal with this we do exactly as in the proof of Lemma 5.7 in [GX12b] and modify our last two
choices of mT−1,mT so that mT ≤ mk but is close (within an additive log2

q(km)); for our final

subspace, we will pad the mT -dimensional vectors with 0’s in order to form a subspace in Fmkq with
the same dimension. Choosing mT ≈ mk puts T = O(log∗(mk)), and an argument by induction
shows that

rT ≤
s2T 24T

ε2T−1
,

which with this choice of T implies that

rT =

(
`

ε

)2O(log∗(mk))

.

With these choices, we instantiate T subspace designs via Theorem A.4, with m ← mi, r ← ri,
and ζ ← ζi. We check that the requirements of Theorem A.4 are satisfied, beginning with the
requirement that ri ≤ ζimi/4. Since miζi grows much faster than ri as i increases, it suffices to
check this for i = 0, when we require r0 ≤ ζ0m0, or s − 1 ≤ mε/8. Our choices of m and s in (5)
satisfy this.

The next requirement is that 2ri/ζi ≤ qζimi/(2ri) for all i. Again, the right hand side grows much
faster than the left, and so we establish this for i = 0, requiring that

4(s− 1)

ε
≤ qεm/4(s−1).

With our choices of m and s, this requirement is that

`

ε2
≤ qO(logq(`/ε)),

which is true.
Thus, Theorem A.4 provides us with a cascaded subspace design with the given parameters. As

mentioned above, we may then use Lemma A.6 to choose an appropriate subcode of our AG code
from Lemma A.2. We have chosen the parameters above so that (r0,m0) = (s − 1,m), precisely
the guarantee of Lemma A.2. Thus, the final bound on the dimension of the intersection with any

affine ultra-periodic subspace (that is, with any space of potential messages) is rT ≤ (`/ε)2O(log∗(mk))
,

which gives a final bound on the dimension of the output list. Finally, we observe (as in Observation
5.5 of [GX12b]) that the dimension of the resulting subcode is at least (1−

∑
i ζi)mT = (1− ε)mk.

Thus the final code has dimension at least (1− ε)mk over Fkmq , and hence the final rate is at least
(1− ε)R. Observing that q must be at least ε−2 for the 1/

√
q term in Lemma A.2 to be absorbed

into the additive ε factor, we arrive at the following theorem.

Theorem A.7. Let q be an even power of a prime, and choose `, ε > 0, so that q ≥ ε−2. Choose
ρ ∈ (0, 1). There is an mmin = O(` logq(`/ε)/ε

2) so that the following holds for all m ≥ mmin.

For infinitely many n (all n of the form qe/2(
√
q − 1) for any integer e), there is a deterministic

polynomial time construction of an Fq-linear code C : Fρnqm → Fnqm of rate ρ and relative distance
1 − ρ − O(ε) that is (1 − ρ − ε, `, L)-list recoverable in time poly(n,L), returning a list that is
contained in a subspace over Fq of dimension at most(

`

ε

)2O(log∗(mk))

.
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We note that the distance of the code comes from the fact that it is a subcode of C(m; k+3ge−1),
which has distance at least n − (k + 2ge − 1) = n − 2ge − k + 1. In the above parameter regime,
the genus ge satisfies ge ≤ n/(r− 1) = n/(

√
q− 1) = O(εn). Thus, the relative distance of the final

code is at least (n− 2ge − k + 1)/n ≥ 1−O(ε)− ρ.

Step 3. Concatenating to obtain Fq-linear codes over Fq. Theorem A.7 gives codes over
Fqm which are Fq-linear. For our purposes, to prove Theorem A.1, we require codes over Fq which
are Fq-linear. Thus, we will concatenate these codes with random Fq-linear codes from Corollary 2.2,
and apply Lemma B.1 about the concatenation of list recoverable codes which we state and prove
in Appendix B.

In more detail, we choose parameters as follows. Let ε > 0 and let ε′ = ε/2, and choose any
integer ` and any block length N . Fix a constant c and parameters m and e which will be determined
below. Choose an even prime power q so that

q ≥ max
{
`c/ε, ε−c

}
.

Let Cin be a random q-ary linear code of rate ρin = 1− ε′ of length m/ρin. By Corollary 2.2, there
exists an Fq linear code Cin with rate ρin = 1−ε′ and block length m/ρin which is (αin, `in, Lin)-list
recoverable, for αin = ε′/2, `in = `, and Lin = q2c`/ε′ . We note that we can choose c large enough
to ensure that the hypothesis of Corollary 2.2 hold.

Let Cout be the codes from Theorem A.7, instantiated with rate ρin = 1 − ε′, ε ← ε′/2 and
` ← Lin. With these parameters, we will get a code over Fqm of length n = qe/2(

√
q − 1) which is

(αout, Lin, Lout)-list recoverable, where

Lout = expq

(
(Lin/ε

′)2O(log∗(mk))
)

= expq

(q2c`/ε′

ε′

)2O(log∗(mk))


and where
αout = 1− ρin − ε′ = ε′/2.

Let mmin be as in Theorem A.7, so that

mmin = O(Lin logq(Lin/ε
′)/(ε′)2) = O

(
qc`/ε

′
c`

(ε′)3

)
.

We will choose m so that
mmin ≤ m ≤ q ·mmin. (6)

Notice that, given the definition of mmin = O(qc`/ε
′
c`/(ε′)3), choosing m slightly larger than mmin—

as large as q ·mmin—amounts to replacing the constant c with c+ 1. Thus, the choices of m and c
(subject to (6)) will not affect the list recoverability of Cout, but they will affect the block length
of the concatenated code.

Formally, Lemma B.1 implies that the concatenated code has rate ρin · ρout = (1− ε′)2 ≥ 1− ε,
and is (αinαout, `, Lout)-list recoverable. Here, we have

αinαout = (ε′)2/4 = Ω(ε2),
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which is what is claimed in Theorem A.1. The output list size claimed in Theorem A.1 follows from
the choice of m and our guarantee on Lout. We note that the concatenated code will have message
length K = mk, and so we write log∗(mk) = log∗(K).

Finally, we choose m and e. At this point, the choice of these parameters (subject to (6)) will
not affect that list recoverability of the concatenated code, but they do control the block length of
the code and the running time of the decoding algorithm. The block length is

m

ρin
· qe/2(

√
q − 1).

In order to prove that we can come up with such codes for all sufficiently large block lengths N , as
required in the statement of Theorem A.1, we must show that for all sufficiently large N , we can
choose m satisfying (6) and e so that

N =
m

ρin
· qe/2(

√
q − 1).

That is, we want to find an integer e so that

N · (1− ε/2)

qe/2(
√
q − 1)

∈ [mmin, q ·mmin].

However, we have chosen this window for m to be large enough so that such an e exists as long as
N is sufficiently large (in terms of q, `, ε). More precisely, for some large enough constant C, we
require

N ≥ qC`/ε,

which is our choice of N0 in Theorem A.1.
Now we verify the running time of the list recovery algorithm. The outer code Cout can be list

recovered in time poly(n,Lout) by Theorem A.7. The base code can be list recovered by brute
force in time qO(m) = expq

(
O
(
q2(c+1)`/ε`/ε3

))
= poly(Lout). Lemma B.1 implies that the final

running time is poly(N,L), where L = Lout is the final list size and N is the block length of the
concatenated code.

B Concatenation of list recoverable codes

In this appendix, we prove the following lemma, which says that the concatenation of two list
recoverable codes is again list recoverable.

Lemma B.1. Let Cout : Fρout·nqs → Fnqs be an (αout, `out, Lout)-list recoverable code, with a list

recovery algorithm running in time Tout. Let Cin : Fsq → Fs/ρinq be (αin, `in, Lin)-list recoverable for

Lin = `out, with a list recovery algorithm running in time Tin. Let C : Fs·ρout·nq → Fsn/ρinq be the
code obtained from concatenating Cout with Cin: that is, each symbol of c ∈ Cout is then encoded
using Cin. Then C is (αout · αin, `in, Lout)-list recoverable in time Tout + O(n · Tin) and has rate
ρin · ρout.

Proof. For i ∈ [n] and j ∈ [s/ρin], let Si,j ⊆ Fq be a list of at most `in possible symbols for the
coordinate C(x)i,j := C(x)(i−1)·(s/ρin)+j , which is the j-th coordinate of Cin(Cout(x)i).
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Suppose that for at most a αout · αin fraction of coordinates (i, j), C(x)i,j /∈ Si,j . Then by
Markov’s inequality, for at most an αout fraction of i ∈ [n], the blocks Cin(Cout(x)i) have more
than αin fraction of the j ∈ [s/ρin] so that C(x)i,j /∈ Si,j . Thus, we may list recover each block
Cin(Cout(x)i) to obtain a list Si ⊆ Fqs of at most Lin = `out possible symbols for Cout(x)i, and the
above reasoning shows that Cout(x)i /∈ Si for at most αoutn values of i. Now we may run Cout’s list
recovery algorithm to obtain a final list of size Lout.

Finally, the claim about the rate follows from the definition of concatenation.

C Details for the proof of Lemma 4.1

In this appendix we work out the computations for the proof of Lemma 4.1.
As in the proof of that lemma, suppose by induction that we have applied Lemma 4.2 i times

in order to obtain a code C⊗(i+1) which is (ε · (δ/d0)t−1−i)-approximately (α · s−ti0 , `, Ls
ti
0 ·logi(L)))-

locally list recoverable, with query complexity n · sti0 logi(L), in time T0(n) · sti0 logi(L), and with

pre-processing time P0(n) · sti0 logi(L) + Ls
ti
0 logi(L). Then we apply Lemma 4.2 with the following

parameters. The approximately locally list recoverable code C in Lemma 4.2 is the code C⊗(i+1)

constructed so far. Thus, in the statement of Lemma 4.2 we take α← α · s−ti0 and L← Ls
ti
0 ·logi(L).

The globally list recoverable code C ′ in Lemma 4.2 is a copy of the globally list recoverable code C
guaranteed by the lemma statement. Thus, in the statement of Lemma 4.2 we take α′ ← α, δ′ ← δ,
and L′ ← L. In the statement of Lemma 4.2 we will choose s← s′ so that

s′ = s0

(
δ

d0

)−b0(t−1−i)
.

Notice that s′ does indeed satisfy the requirement of Lemma 4.2 as applied to C⊗(i+1), by our
assumption about C⊗(i+1) and our choices of α′, δ′ above. Moreover, provided that ε is sufficiently
small compared to d0, we have

s′ = s0

((
d0

δ

)b0)t−1−i

≤ 1

2
· s0

((
1

εδα

)b0)t−1−i

≤ 1

2
st0. (7)

Now we apply Lemma 4.2 to get a code C⊗(i+2) which is ε′′-approximately (α′′, `, L′′)-locally list
recoverable with the following parameters.

• The approximability parameter ε′′ is given by

ε′′ = ε

(
δ

d0

)t−1−i(d0

δ

)
= ε

(
δ

d0

)t−1−(i+1)

.

• The parameter α′′ is given by

α′′ = α · s−ti0 /(s′)

≥ α · s−ti0 s−t0

= α · s−t(i+1)
0 ,

using (7).
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• The output list size L′′ satisfies

L′′ =
(
Ls

ti
0 ·logi(L)

)s′ log(L)

≤ Lsti0 ·logi(L)·st0 log(L)

= Ls
t(i+1)
0 ·logi+1(L)

again using (7)

• The query complexity is at most

n · sti0 logi(L) · s′ log(L) ≤ sti0 logi(L) · st0 · log(L)

≤ st(i+1)
0 logi+1(L)

using (7) again. The running time obeys the same recurrence relation as the query complexity,

and so the recovery algorithm for C(i+1) also runs in time T0(n) · st(i+1)
0 logi(L).

• Finally, the preprocessing time is at most(
P0(n) · sti0 logi(L) + Ls

ti logi(L)
)
s′ log(L) + Ls

ti
0 logi(L)s′ log(L)

≤
(
P0(n) · sti0 logi(L) + Ls

ti logi(L)
)
st0 log(L) + Ls

ti
0 logi(L)

st0
2

log(L)

≤ P0(n) · st(i+1)
0 logi+1(L) + Ls

ti logi(L)st0 log(L) + L
1
2
s
t(i+1)
0 logi+1(L)

≤ P0(n) · st(i+1)
0 logi+1(L) + Ls

t(i+1)
0 logi+1(L).

Above, we used (7), along with the assumption that L > 1 and that s0 is sufficiently large
(which follows from our assumption that ε is sufficiently small).

Thus, we conclude that C⊗(i+2) is (ε·(δ/d0)t−1−(i+1))-approximately (α·s−t(i+1)
0 , `, Ls

t(i+1)
0 ·logi+1(L)))-

locally list recoverable, with query complexity at most n·st(i+1)
0 logi(L) in time T0(n)·st(i+1)

0 logi(L),

and with preprocessing time at most P0(n) · st(i+1)
0 logi+1(L) + Ls

t(i+1)
0 logi+1(L), which establishes

the inductive hypothesis for i+ 1.

By induction, we conclude that C⊗t is ε-approximately (α·s−t20 , `, Ls
t2

0 ·logt(L))-locally list-recoverable

with query complexity n · st20 logt(L) and in time T0(n) · st20 logt(L). In particular, for any s ≥ s0,
the conclusion of Lemma 4.1 holds.

D Useful concentration inequalities

We make use of the following two concentration inequalities. The first is the standard Hoeffding
bound for independent 0/1-valued random variables.

Theorem D.1 (Hoeffding’s inequality). Let X1, . . . , Xm ∈ [0, 1] be independent random variables
with mean µ. Then

P

{∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ γ
}
≤ 2 exp(−2γ2m).
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The second is a version of this inequality for random variables chosen without replacement. We
use a version found in [GGR11].

Theorem D.2 ([GGR11], Lemma 5.1). Let z1, . . . , zn ∈ [0, 1], and suppose that S ⊆ [n] is a
uniformly random set of size m. Then

P

{∣∣∣∣∣ 1

m

∑
i∈S

zi −
1

n

n∑
i=1

zi

∣∣∣∣∣ ≥ γ
}
≤ 2 exp(−2γ2m).
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