
Representations of Monotone Boolean Functions by
Linear Programs

Mateus de Oliveira Oliveira and Pavel Pudlák ∗

April 10, 2017

Abstract

We introduce the notion of monotone linear programming circuits (MLP circuits),
a model of computation for partial Boolean functions. Using this model, we prove the
following results.

1. MLP circuits are superpolynomially stronger than monotone Boolean circuits.

2. MLP circuits are exponentially stronger than monotone span programs.

3. MLP circuits can be used to provide monotone feasibility interpolation theorems
for Lovász-Schrijver proof systems, and for mixed Lovász-Schrijver proof systems.

4. The Lovász-Schrijver proof system cannot be polynomially simulated by the cut-
ting planes proof system. This is the first result showing a separation between
these two proof systems.

Finally, we discuss connections between the problem of proving lower bounds on
the size of MLPs and the problem of proving lower bounds on extended formulations
of polytopes.

1 Introduction

Superpolynomial lower bounds on the size of Boolean circuits computing explicit Boolean
functions have only been proved for circuits from some specific families of circuits. A promi-
nent role among these families is played by monotone Boolean circuits. Exponential lower
bounds on monotone Boolean circuits were proved already in 1985 by Razborov [26]. In
1997 Kraj́ıček discovered that lower bounds on monotone complexity of particular partial
Boolean functions can be used to prove lower bounds on resolution proofs [18]. Incidentally,
the functions used in Razborov’s lower bound were just of the form needed for resolution
lower bounds. Exponential lower bounds on resolution proofs had been proved before (co-
incidentally about at the same time as Razborov’s lower bounds). However, Kraj́ıček came

∗This project was supported by the ERC Advanced Grant 339691 (FEALORA). Mateus de O. Oliveira
also acknowledges support from the Bergen Research Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 106 (2017)

up with a new general method, the so called feasible interpolation, that potentially could
be used for other proof systems. Indeed, soon after his result, this method was used to
prove exponential lower bounds on the cutting-planes proof system [22, 15]. That lower
bound is based on a generalization of Razborov’s lower bounds to a more general monotone
computational model, the monotone real circuits. Another monotone computational model
for which superpolynomial lower bounds have been obtained is the monotone span program
model [2, 11]. An exponential lower bound on the size of monotone span programs have
been recently obtained in [7]. For a long time the best known lower bound for this model
of computation was of the order of nΩ(logn) [2]. Again, superpolynomial lower bounds on
the size of monotone span programs can be used to derive lower bounds on the degree of
Nullstellensatz proofs, as shown in [24].1

The results listed above suggest that proving lower bounds on stronger and stronger mod-
els of monotone computation may be a promising approach towards proving lower bounds
on stronger proof systems. Indeed, in his survey article [27] Razborov presents the problem
of understanding feasible interpolation for stronger systems as one of the most challenging
ones in proof complexity theory.

In this work we introduce several computational models based on the notion of monotone
linear program. In particular, we introduce the notion of monotone linear programming gate
(MLP gate). In its most basic form, an MLP gate is a partial function g : Rn → {R, ∗}
of the form g(y) = max{c · x | Ax ≤ b + By, x ≥ 0} where y is a set of input variables,
and B is a non-negative matrix. The complexity of such a gate is defined as the number
of rows plus the number of columns in the matrix A. For each assignment α ∈ Rn of the
variables y the value g(α) is the optimal value of the linear program with objective function
c · x, and constraints Ax ≤ b + Bα. The requirement that B ≥ 0 guarantees monotonicity,
i.e., that g(α) ≤ g(α′) whenever g(α) is defined and α ≤ α′. We note that the value g(α) is
considered to be undefined if the associated linear program max{c ·x | Ax ≤ b+Bα} has no
solution. In this case, we set g(α) = ∗. Other variants of MLP gates are defined in a similar
way by allowing the input variables to occur in the objective function, and by allowing the
corresponding linear programs to be minimizing or maximizing. We say that an MLP gate
is weak if the input variables occur either in the objective function or in the constraints. We
say that an MLP gate is strong if the input variables occur in both the objective function
and in the constraints.

An MLP circuit is the straightforward generalization of unbounded-fan-in monotone
Boolean circuits in which gates are MLP gates, instead of boolean gates. In Theorem 4.1 we
show that if all gates of an MLP circuit C are weak, then this circuit can be simulated by
a single weak MLP gate `C whose size is polynomial on the size of C. Since the AND and
OR gates can be faithfully simulated by weak MLP gates, we have that monotone Boolean
circuits can be polynomially simulated by weak MLP circuits (Theorem 5.1). In contrast, we
show that weak MLP gates are super-polynomially stronger than monotone Boolean circuits.
On the one hand, Razborov has shown that that any monotone Boolean circuit computing

1We note however that strong degree lower bounds for Nullstellensatz proofs can be proved using more
direct methods [3, 6, 13, 1].

2

the bipartite perfect matching function BPMn : {0, 1}n2 → {0, 1} must have size at least
nΩ(logn). On the other hand, a classical results in linear programming theory [30] can be
used to show that the same function can be computed by weak MLP gates of polynomial
size.

In [2], Babai, Gál and Wigderson showed that there is a function that can be computed
by span programs of linear size but which require superpolynomial-size monotone Boolean
circuits. Recently, Cook et al. [7] showed that there is a function that can be computed
by polynomial-size monotone Boolean circuits, but that requires exponential-size monotone
span programs over the reals. Therefore, monotone span programs (which we will abbreviate
by MSPs) and monotone Boolean circuits are incomparable in the sense that none of these
models can polynomially simulate the other. In Theorem 5.4 we show that a particular type
of weak MLP gate can polynomially simulate monotone span programs over the reals. On
the other hand, by combining the results in [7] with Theorem 5.4, we have that these weak
MLP gates are exponentially stronger than monotone span programs over reals. Therefore,
while MBCs are incomparable with MSPs, weak MLP-gates are strictly stronger than both
models of computation.

Next we turn to the problem of proving a monotone interpolation theorem for Lovász-
Schrijver proof systems [20]. Currently, size lower bounds for these systems have been
proved only with respect to tree-like proofs [21], and therefore, it seems reasonable that a
monotone interpolation theorem for this system may be a first step towards proving size
lower bounds for general LS proof systems. Towards this goal we show that MLP circuits
which are constituted by strong MLP gates can be used to provide a monotone feasible
interpolation theorem for LS proof systems. In other words, we reduce the problem of
proving superpolynomial lower bounds for the size of LS proofs, to the problem of proving
lower bounds on the size of MLP circuits with strong gates.

It is worth noting that we do not know how to collapse MLP circuits with strong gates
into a single strong gate. Nevertheless, in Theorem 6.2 we show that a single weak MLP
gate suffices in a monotone interpolation theorem for LS proofs of unsatisfiable sets of mixed
inequalities of a certain form. Here, a mixed inequality is an inequality which involve both
Boolean variables and real variables. Using this interpolation theorem together with a size
lower bound for monotone real circuits due to Fu [10], we can show that MLP-circuits cannot
be polynomially simulated by monotone real circuits (Theorem 6.10).

We show that the cutting-planes proof system cannot polynomially simulate the LS
proof system (Corollary 6.8). Understanding the mutual relation between the power of the
cutting-planes proof system and the LS proof system is a longstanding open problem in proof
complexity theory. Our result solves one direction of this mutual relation by showing that
for some unsatisfiable set of inequalities, LS proofs can be superpolynomially more concise
than cutting-planes proofs.

Monotone linear programs programs are, in a sense, generalizations of monotone Boolean
circuits and monotone span programs. The lower bounds for monotone Boolean circuits and
monotone span programs were proved by two different techniques. Therefore it will be
necessary to develop a new lower bound method for proving superpolynomial lower bounds

3

on monotone linear programs. A possible approach may be based on strengthening lower
bounds on extended formulations, which is a related, but apparently easier problem. A lower
bound on extended formulation is a lower bound on the number of inequalities needed to
define an extension of a polytope to some higher dimension. Such lower bounds have been
proven, in particular, for polytopes spanned by the 0-1 vectors representing minterms of
certain monotone Boolean functions [29, 9, 4, 5]. To prove a lower bound on the size of weak
MLP gates, it will be necessary to prove lower bounds on the size of extended formulations
for all polytopes of a certain form that separate minterms from maxterms. This is clearly
a much harder problem, but there are results on extended formulations that go in this
direction [4, 5]. However, Theorem 6.10 suggests that this will surely not be easy. It gives
an example of a monotone function such that the set of ones has only exponentially large
extended formulation, but the minterms can be separated from a large subset of maxterms
by a polynomial size dual MLP.

Acknowledgment. We would like to thank Pavel Hrubeš and Massimo Lauria for
discussion and their valuable suggestions.

2 Preliminaries

Monotone Partial Boolean Functions: A partial Boolean function is a mapping of
the form F : {0, 1}n → {0, 1, ∗}. Intuitively, the function F should be regarded as being
undefined on each point p ∈ {0, 1}n for which F (p) = ∗. The support of F , which is defined
as support(F) = F−1({0, 1}), is the set of all points p ∈ {0, 1}n for which F is defined. If p
and p′ are Boolean strings in {0, 1}n, then we write p ≥ p′ to indicate that pi ≥ p′i for each
i ∈ {1, ..., n}. We say that a partial Boolean function F : {0, 1}n → {0, 1, ∗} is monotone if
F (p) = 1 whenever p ≥ p′ and F (p′) = 1.

Linear Programs: We use the following conventions. Variables x, y, z are used to denote
real vectors, while variables p, q, r are used to denote strings of Boolean variables. A ∈ Rm×k

means that A is a real matrix with m rows and k columns. For vectors x and y, x ≤ y
means xi ≤ yi for all coordinates i; the same for matrices and Boolean strings. As an abuse
of notation, we write 0 (1) to denote vectors in which all coordinates are equal to 0 (1). For
two vectors x and y, we will denote their scalar product by x · y.

A linear program is an optimization problem of the form

max{cT · x | Ax ≤ b, x ≥ 0}, (1)

where A ∈ Rm×k, b ∈ Rm and c ∈ Rk for some m, k ∈ N. The dual of the linear program
of Equation 1 is defined as follows.

min{yT · b | ATy ≥ c, y ≥ 0}. (2)

According to the Linear Programming Duality,

4

max cT · x = min yT · b, (3)

provided that the maximum in Equation 1 and the minimum in Equation 2 exist.

3 Monotone Linear-Programming Gates

In this section we let A be a matrix in Rm×k, b be a vector in Rm, c be a vector in Rk, and B
and C be matrices in Rm×n with B ≥ 0 and C ≥ 0. Below, we define the notion of monotone
linear programming gate (MLP gate).

Definition 1 (MLP Gate) An MLP gate is a partial function ` : Rn → R ∪ {∗} whose
value at each point y ∈ Rn is specified via a monotone linear program. More precisely, we
consider the following six types of MLP gates.

max-right: `(y) = max{cT · x | Ax ≤ b+By, x ≥ 0}

min-right: `(y) = min{cT · x | Ax ≥ b+By, x ≥ 0}

max-left: `(y) = max{(c+ Cy)T · x | Ax ≤ b, x ≥ 0}

min-left: `(y) = min{(c+ Cy)T · x | Ax ≥ b, x ≥ 0}

max: `(y) = max{(c+ Cy)T · x | Ax ≤ b+By, x ≥ 0}

min: `(y) = min{(c+ Cy)T · x | Ax ≥ b+ by, x ≥ 0}

Intuitively, the variables y should be regarded as input variables, while the variables x
should be regarded as internal variables. If the linear program specifying a gate `(y) has no
solution when setting y to a particular point α ∈ Rn, then we set `(α) = ∗. In other words,
in this case we regard the value `(α) as being undefined. We note that the requirement
B ≥ 0 guarantees that the gates introduced above are monotone. More precisely, if α ≤ α′,
and both `(α) and `(α′) are well defined, then `(α) ≤ `(α′). The size |`| of an MLP gate `
is defined as the number of rows plus the number of columns in the matrix A.

The gates of type max-right, max-left, min-right and min-left are called weak
gates. Note that in these gates, the input variables y occur either only in the objective
function, or only in the constraints. The gates of type max and min are called strong
gates. The input variables in strong gates occur both in the constraints and in the objective
function.

Definition 2 (MLP-Gate Representation) We say that an MLP gate ` : Rn → R∪{∗}
represents a partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following can be observed
for each a ∈ {0, 1}n.

5

1. `(a) > 0 if F (a) = 1,

2. `(a) ≤ 0 if F (a) = 0.

3.1 Sign Representations

We say that an MLP gate ` sign-represents a partial Boolean function F : {0, 1}n → {0, 1, ∗}
if the following conditions can be verified for each a ∈ {0, 1}n.

1. `(a) > 0 if F (a) = 1.

2. `(a) < 0 if F (a) = 0.

Proposition 3.1 Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function and assume that
F can be represented by an MLP gate of type τ and size s. Then F can be sign-represented
by an MLP gate `′ of type τ and size O(s).

Proof. We will prove this proposition with respect to max-right MLP gates. The proofs
for all other types of gates is completely analogous.

Assume that F can be represented by a max-right MLP gate

`(y) = max{c · x | Ax ≤ b+By, x ≥ 0},

and let
ε = min

p∈{0,1}n
{`(p) | `(p) > 0}.

In other words, ε is the smallest positive number which is the result of evaluating ` on a
binary string. Let

`′(y) = max{c · x− x′ | x′ = ε/2, Ax ≤ b+By, x ≥ 0}.

Then we have `′(y) = `(y) − ε/2 for each y ∈ Rn. This implies that, for each y ∈ Rn, if
`(y) > 0, then `′(y) > ε/2 > 0 and if `(y) ≤ 0 then `′(y) ≤ −ε/2 < 0.

3.2 Weak vs Strong Gates

Recall that weak MLP gates are gates where input variables occur either only in the objective
function, or only in the constraints. On the other hand, strong MLP gates are gates where
input variables are allowed to occur both in the objective function and in the constraints.

The distinction between weak and strong gates is motivated by the fact that while weak
gates are only able to compute piecewise-linear monotone real functions, strong gates may
compute quadratic monotone real functions.

6

Proposition 3.2 Let ` : Rm → R ∪ {∗} be a weak MLP gate. Then the graph

{(y, `(y)) | y ∈ Rm, `(y) ∈ R}

is piecewise linear.

Proof. We show that the proposition is valid for max-right MLP gates. The proof that
it is valid for other types of weak gates is analogous. Let `(y) = max{c · x | Ax ≤ b +
By, x ≥ 0} be a max-right MLP gate. This gate can be alternatively represented as
`(y) = max{x0 | Ax ≤ b + By, x ≥ 0, x0 ≤ c · x} where x0 is a new variable. Let P be
the polyhedron on variables x, y and x0 defined by the inequalities Ax ≤ b+By, x ≥ 0 and
x0 ≤ c · x. Let P ′ be the polyhedron obtained by projecting P to the variables y and x0.
Then the graph of ` is the set S = {(y, x0) | ∀x′0 such that (y, x′0) ∈ P ′, x′0 ≤ x0}. Since S is
a union of faces of P ′, S is piecewise linear. Note however that the set S is not necessarily
convex.

On the other hand, the graph of strong gates may not be piecewise linear even for gates
with a unique input variable.

Observation 3.3 Strong MLP gates may compute functions whose graph is not piecewise
linear.

Proof. Consider the following max MLP gate ` and min MLP gate `′.

`(y) = max{y · x |x ≤ y, x ≥ 0 } `′(y) = min{y · x |x ≥ y, x ≥ 0 }. (4)

Then we have that for each y ≥ R+, `(y) = y2 = `′(y). This shows that the graphs of `
and `′ are not piecewise linear.

Proposition 3.2 and Observation 3.3 show that strong MLP gates are a strictly stronger
model than weak gates when it comes to defining monotone real functions. Therefore proving
lower bounds for the size of strong MLP gates computing some specific monotone Boolean
function F : {0, 1}n → {0, 1, ∗} may be harder than proving such lower bounds for the size
of weak MLP gates computing F . We note however that it is still conceivable that every
partial monotone Boolean function F : {0, 1}n → {0, 1, ∗} that can be represented by strong
MLP gates of size s, can be also represented by weak MLP gates of size sO(1).

3.3 Boolean Duality vs Linear-Programming Duality

In this section we clarify some relationships between linear-programing duality MLP repre-
sentations. Towards this goal, it will be convenient to define the notions of a dual of a given
type of gate. More precisely, we say that the type max is dual to min, that max-right is
dual to min-left, and that max-left is dual to min-right. If τ is a type of gate we let
τ d denote its dual type. The following observation states that MLP gates of type τ can be
simulated by MLP gates of type τ of similar complexity.

7

Observation 3.4 If a partial real monotone function f : Rn → R∪ {∗} can be specified via
an MLP gate of type τ and size s, then f can be also specified via an MLP gate of type τ d

and size O(s).

Proof. We prove the proposition with respect to max-right MLP gates. The proof for
other types of gates is analogous. Let `(y) = max{c · x | Ax ≤ b, x ≥ 0} be a max-right
MLP gate such that f(y) = `(y) for every y ∈ Rn. Consider the following min-left MLP
gate: `(y) = min{b · x | ATx ≥ c, x ≥ 0}. Then by linear programming duality, for each
α ∈ Rn, `(α) is defined if and only if `′(y) is defined and `′(y) = `(y).

We say that the types max-right and min-right are semi-dual to each other. Anal-
ogously, the types max-left and min-left are semi-dual to each other. If τ is type of
gate, we let τ sd be its semi-dual type. It is not clear whether functions that can be spec-
ified via weak gates of a given type τ may be also specified by gates of type τ sd without
a superpolynomial increase in complexity. However, we will see next that if F is a partial
Boolean function which can be represented by an MLP gate of type τ and size s, then the
Boolean-dual of F can be represented by an MLP gate of type τ sd and size O(s).

We say that a partial monotone Boolean function F : {0, 1}n → {0, 1, ∗} is dualizable if
F (¬p1, . . . ,¬pn) is well defined whenever F (p1, . . . , pn) is well defined. If F is dualizable,
then the Boolean dual of F is the partial Boolean function F d : {0, 1}n → {0, 1, ∗} which is
obtained by setting F d(p) = ∗ for each point p /∈ support(F), and by setting F d(p1, . . . , pn) :=
¬F (¬p1, . . . ,¬pn) for each p ∈ support(F).

Proposition 3.5 Let F : {0, 1}n → {0, 1, ∗} be a dualizable partial Boolean function. If F
can be represented by an MLP gate ` of type τ and size s, then F d can be represented by an
MLP gate `sd of type τ sd and size O(s).

Proof. We will show that if a function F can be represented by max-right MLP gate of
size s, then F d can be represented by a max-left MLP gate of size O(s). The proof for
other types of gates follows an analogous reasoning.

Assume that F can be represented by a max-right MLP gate `. Then by Proposition
3.1, F can be represented by a max-right gate `′ such that for each p ∈ {0, 1}n, `′(p) > 0
whenever F (p) = 1 and `′(p) < 0 whenever F (p) = 0. In other words, `′(p) sign-represents
F . Let

`′(p) = max{cT · x | Ax ≤ b+Bp, x ≥ 0}
be such gate. Then it should be clear that the function F d can be represented by the following
min-right MLP gate, where 1̄ denotes the all-ones vector.

`′′(p) = −`′(−p)

= min{−cT · x | Ax ≤ b+B(1̄− p), x ≥ 0}

= min{−cT · x | − Ax ≥ −b−B1̄ +Bp, x ≥ 0}

8

4 Monotone Linear Programming Circuits

Monotone linear programming circuits (MLP circuits) may be defined as the straightforward
generalization of unbounded fan-in monotone Boolean circuits where monotone linear pro-
gramming gates are used instead of Boolean gates. Formally, it will be convenient for us
to define MLP circuits using the notation of straight-line programs, i.e., as a sequence of
instructions of a suitable form.

Definition 3 (MLP Circuit) An MLP circuit is a sequence of instructions C = (I1, I2, ..., Ir)
where each instruction Ii has one of the following forms:

1. Ii ≡ Input(yi).

2. Ii ≡ yi ← ci, where yi is a variable and ci ∈ R.

3. Ii ≡ yi ← `i(yi1 , ..., yini
) where yi is a variable and `i(yi1 , ..., yini

) is an MLP gate with
input variables yi1 , ..., yini

such that ij < i for each j ∈ [ni].

We say that instructions of the third form are MLP instructions. We assume that the
last instruction, Ir, is an MLP instruction. We say that the variable yr, which occurs in the
left-hand side of Ir is the output variable of C. For each i such that Ii ≡ Input(yi), we say
that yi is an input variable.

Let y = (yj1 , yj2 , ..., yjn) be the input variables of C, and let a ∈ Rn be an assignment of
the variables in y, where yjl = al for each l ∈ {1, ..., n}. For each i ∈ {1, ..., r}, the value
induced by a on variable yi, which is denoted by vala(yi), is inductively defined as follows.

1. If Ii ≡ Input(yi), then vala(yi) = ai.

2. If Ii ≡ yi ← ci, then vala(yi) = ci.

3. If Ii ≡ yi ← `i(yi1 , ..., yini
), and vala(yij) ∈ R for each j ∈ {1, ..., r}, then vala(yi) =

`i(val(yi1), ..., val(yini
)). Otherwise, vala(yi) = ∗.

For each assignment a ∈ Rn of the variables input variables of C, we let C(a) = vala(yr)
be the value induced by a on the output variable of C. Intuitively, the values of the variables
yi are computed instruction after instruction. If at step i, the value of the variable yi is set
to ∗ (vala(y) = ∗), meaning that the linear program associated with the instruction Ii has
no solution, then the value ∗ is propagated until the last instruction, and the circuit will
output ∗.

Definition 4 (MLP-Circuit Representation) We say that an MLP-circuit C represents
a partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for
each a ∈ {0, 1}n.

1. C(a) > 0 if F (a) = 1.

2. C(a) ≤ 0 if F (a) = 0.

9

We say that an MLP-circuit C sharply represents F : {0, 1}m → {0, 1, ∗} if C(a) = 1
whenever F (a) = 1 and C(a) = 0 whenever F (a) = 0. We define the size of an MLP circuit
C as the sum of the sizes of MLP gates occurring in C. The next theorem states that if all
gates in an MLP circuit C are weak MLP gates with the same type τ , then this circuit can
be polynomially simulated by a single MLP gate ` of type τ .

Theorem 4.1 (From Circuits to Gates) Let C = (I1, ..., Ir) be an MLP circuit where all
gates in C are weak MLP gates of type τ . Then there is an MLP gate `C of type τ and size
O(s) such that for each a ∈ Rn for which C(a) is defined, `C(a) = C(a).

Proof. First, we will prove the theorem with respect to max-right MLP gates. Let C =
(I1, I2, ..., Ir) be an MLP circuit in which all gates are max-right MLP gates. For each
i ∈ {1, ..., r} if Ii is an MLP instruction, then we let

Ii ≡ yi ← `i(y
i) = max{ci · xi | Aixi ≤ bi +Biyi},

where yi = (yi1 , ..., yini
) are the input variables of `i and xi = (xi1, ..., x

i
ki

) are the internal
variables of `i. We let M = {i | i is an MLP instruction} be the set of all i’s such that Ii is an
MLP instruction. We let y = (yj1 , ..., yjn) be the input variables of C, and x = xi1xi2 ...xi|M|

with ij ∈M and i1 < i2 < ... < i|M | be a tuple containing all internal variables of MLP gates
occurring in C. For each i ∈ M , let Aix ≤ bi + Biy be the system of inequalities obtained
from Aixi ≤ bi + Biyi by replacing each variable yij ∈ yi which is not an input variable of
C, with the value cij if Iij ≡ yij ← cij , and with the expression cij · xij if Iij is an MLP
instruction. Now, for i ∈M , consider the following max-right MLP gate.

`i(y) = max{ci · xi | Ajx ≤ bj + Bjy, j ∈M, j ≤ i} (5)

In other words, the objective function of `i(y) is the same as the objective function of
the gate `i, but the constraints of `i(y) are formed by all inequalities Ajx ≤ bj + Bjy
corresponding to constraints of gates `j for j < i. If u is an assignment of the tuple of
variables x, then for each j ∈ M , we let uj ∈ Rkj be the assignment induced by u on the
internal variables xj = (xj1 , ..., xjki) of gate `j. Let a be an assignment of the input variables
y, and u be an assignment of the internal variables x. Then we say that the pair (a, u) is
consistent with `i if (a, u) satisfies all constraints of `i.

The following claim implies that for each a ∈ Rn such that C(a) is defined, the value
C(a) is equal to the value `r(a).

Claim 1 Let a ∈ Rn. If C(a) is defined then the following conditions are satisfied for each
i ∈M .

1. There exists an assignment u of the variables x, such that (a, u) is consistent with `i
and for each j ∈M with j ≤ i, cj · uj = vala(yj).

2. For each assignment u of the variables x, such that (a, u) is consistent with `i, and
each j ∈M with j ≤ i, cj · uj ≤ vala(yj).

10

3. `i(a) = vala(yi).

We note that if |M | = 1 then the circuit has a unique MLP gate and the claim is trivial.
Therefore, we assume that |M | ≥ 2. Let a ∈ Rn be an assignment of the input variables y
such that C(a) is defined. The proof of Claim 1 is by induction on i. In the base case, let i be
the smallest number in M . In this case, yi ← `i(y

i) is the first MLP gate occurring in C, and
therefore the gate `i(y) has precisely the same objective function and constraints as `i(y

i).
This implies that the value `i(a) is equal to the value induced by a on yi. Therefore, the claim
is valid in the base case. Now, let l be an arbitrary number in M and let i be the greatest
number in M which smaller than l. Let Il ≡ yl ← `l(y

l), where yl = (yl1 , ..., ylnl
). Then the

objective function of `l(y) is cl ·xl, and the constraints of `l(y) contain all constraints of `i(y)
together with the constraints Alx ≤ bl + Bly which are obtained from Alxl ≤ bl + Blyl by
making the substitution ylj ← clj · xlj for each j ∈ {1, ..., nl}. By the induction hypothesis,
Conditions 1, 2 and 3 are satisfied with respect to `i. Therefore by Condition 1, there is
an assignment u of x such that clj · ulj = vala(y

lj) for each j ∈ {1, ..., nl}. Now, since the
internal variables xl of gate `l do not occur occur with non-zero coefficient in the constraints
of `i, we may assume that when restricted to these variables, the assignment ul is the one
that maximizes the objective function cl ·xl of the linear program which defines `l(y

l1 , ..., ylnl)
when each variable ylj is set to clj · ulj = vala(y

lj). When assigning this particular u to the
variables x, we have that cl · xl = vala(y

l). This implies that Condition 1 is also satisfied
with respect to `l. Additionally, we have that `l(a) is at least vala(y

l). Now, by Condition
2, clj · ulj ≤ vala(ylj) for each j ∈ {1, ..., nl}. Therefore, since `l is monotone, we also
have that cl · xl ≤ vala(y

l). This implies that Condition 2 is also satisfied with respect to
`l. Additionally, this shows that `l(a) is at most vala(y

l). By combining the two bounds
obtained for `l(a), we have that `l(a) = vala(y

l). This shows that Condition 3 is also satisfied
with respect to `l.

The proof that the theorem holds for circuits consisting of min-right MLP gates is
analogous to the proof for the case of max-right MLP gates established above. If C is
a circuit containing only min-left MLP gates, then we first transform this circuit into a
circuit C ′ consisting only of max-right gates using linear program duality. In other words,
we replace each min-left MLP gate in C with an equivalent max-right MLP gate. Then
applying the proof described above, we construct a max-right MLP gate `C′(y). Once
this is done, we apply linear-programming duality one more time to convert `C′(y) into an
equivalent min-left gate. Analogously, if C is a circuit with max-left MLP gates, then
we first convert it into an equivalent circuit consisting of min-right gates, then transform
it into a single min-right MLP gate in analogy with the proof described above, and finally,
convert this gate back to an equivalent max-left MLP gate.

5 Weak MLP Gates vs Monotone Boolean Circuits

We say that an MLP gate ` sharply represents a partial Boolean function F : {0, 1}n →
{0, 1, ∗} if `(a) = 1 whenever F (a) = 1, and `(a) = 0 whenever F (a) = 0. In this section we

11

show that partial Boolean functions that can be represented by monotone Boolean circuits
of size s may also be sharply represented by weak MLP gates of size O(s). On the other
hand, we exhibit a partial function that can be represented by polynomial-size max-right
MLP gates, but which require Boolean circuits of superpolynomial size.

Theorem 5.1 Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function, and let C be a
Boolean circuit of size s representing F . Then for any weak type τ , F can be sharply repre-
sented by an MLP gate of type τ and size O(s).

Proof. The ∧ gate can be sharply represented by the following max-right and min-right
MLP gates respectively.

1. `max−right∧ (p1, p2) = max{x | x ≤ p1, x ≤ p2, x ≥ 0}.

2. `min−right∧ (p1, p2) = min{x | x ≥ p1 + p2 − 1, x ≥ 0}.

Therefore, by linear-programming duality, the ∧ gate can be sharply represented by
constant size min-left and max-left MLP gates `min−left∧ and `max−left∧ respectively.

Analogously, the ∨ gate can be sharply represented by the following max-right and
min-right MLP gates respectively.

1. `max−right∨ (p1, p2) = max{x1 + x2 | x1 ≤ p1, x2 ≤ p2, x1 + x2 ≤ 1}.

2. `min−right∨ (p1, p2) = min{x | x ≥ p1, x ≥ p2, x ≥ 0}.

Again, by linear-programming duality, the ∨ gate can also be sharply represented by
suitable min-left and max-left MLP gates `min−left∨ and `max−left∨ of constant size.

Now let C be a Boolean circuit representing F . Then for each weak type τ we can
construct an MLP circuit Cτ which sharply represents F as follows. Replace each ∧ gate of
C by the corresponding MLP gate `τ∧ of type τ , and each ∨ gate by the corresponding MLP
gate `τ∨. Then it should be clear that Cτ has size O(s), and that Cτ sharply simulates F .
Since all gates in Cτ have type τ , by Theorem 4.1, there is an MLP gate `τ of type τ and
size O(s) that sharply represents F .

Let BPM n : {0, 1}n2 → {0, 1} be the Boolean function that evaluates to 1 on an input
p ∈ {0, 1}n2

if and only if p represents a bipartite graph with a perfect matching. The next
theorem, whose proof is based on a classical result in linear programming theory (Theorem
18.1 of [30]) states that the function BPM n has small max-right MLP representations.

Theorem 5.2 The Boolean function BPMn : {0, 1}n2 → {0, 1} can be represented by a
max-right MLP gate of size nO(1).

Proof. Let I and J be subsets of [n] = {1, ..., n}, and E ⊆ [n]× [n] be a bipartite graph. We
represent a subgraph of E as a 0/1 vector with n2 coordinates, which has a 1 at position Mij

if and only if (i, j) is an edge of E. The bipartite perfect matching polytope associated with

12

E, which is denoted by P (E) is the convex-hull of all vectors M ∈ {0, 1}n2
which correspond

to a perfect matching in E. Note that if E has no perfect matching then P (E) is simply
empty. It can be shown (Schrijver [30], Theorem 18.1) that the polytope P (E) is determined
by the following system of inequalities.

System 1:

1. x ≥ 0,

2.
∑

j;(i,j)∈E xij = 1, i ∈ I,

3.
∑

i;(i,j)∈E xij = 1, j ∈ J .

In other words, if u ∈ Rn2
is a 0/1 vector representing a perfect matching in E, then all

inequalities of System 1 are satisfied if we set x = u. Conversely, each vector u ∈ Rn2
that

satisfies all inequalities in System 1 is a convex combination of 0/1 vectors corresponding to
perfect matchings in E.

Now, consider the following system of inequalities.
System 2:

1. x ≥ 0,

2.
∑

j xij = 1, i ∈ [n],

3.
∑

i xij = 1, j ∈ [n],

4. x ≤ p.

If a 0/1 vector w ∈ Rn2
represents a graph E ⊆ [n]× [n] containing a perfect matching,

then some u ≤ w represents a perfect matching in E. Therefore, by setting p = w and x = u,
all inequalities of System 2 are satisfied.

Now let w ∈ Rn2
be a 0/1 vector such that for some u ∈ Rn2

, the assignment p = w and
x = u satisfies all inequalities of System 2. For each subset A ⊆ [n], let Γ(A) = {j | wij = 1}
be the set of neighbours of A in the graph represented by w. Then, from inequalities 1-3, we
have

|Γ(A)| ≥
∑
j∈Γ(A)

∑
i∈[n]

uij ≥
∑
j∈Γ(A)

∑
i∈A

uij =
∑
i∈A

∑
j∈[n]

uij ≥ |A|. (6)

Therefore, by Hall’s marriage theorem the graph represented by w has a perfect matching.

In a celebrated result, Razborov proved a lower bound of nΩ(logn) for the size of monotone
Boolean circuits computing the function BPM n. By combining this result with Theorem 5.2,
we have the following corollary.

13

Corollary 5.3 max-right MLP gates cannot be polynomially simulated by monotone Boolean
circuits.

We note that the gap between the complexity of max-right MLP gates and the com-
plexity of Boolean formulas computing the BPM n function is even exponential, since Raz
and Wigderson have shown a linear lower-bound on the depth of monotone Boolean circuits
computing BPM n [25].

5.1 Monotone Span Programs

Monotone span programs (MSP) were introduced by Karchmer and Wigderson [17]. Such
a program, which is defined over an arbitrary field F, is specified by a vector c ∈ Fk and a
labeled matrix Aρ = (A, ρ) where A is a matrix in Fm×k, and ρ : {1, ...,m} → {p1, ..., pn, ∗}
labels rows in A with variables in pi or with the symbol ∗ (meaning that the row is unlabeled).
For an assignment p := w, let Aρ〈w〉 be the matrix obtained from A by deleting all rows labeled

with variables which are set to 0.2 A span program (Aρ, c) represents a partial Boolean
function F : {0, 1}n → {0, 1, ∗} if the following conditions are satisfied for each w ∈ {0, 1}n.

F (w) =

{
1 ⇒ ∃y, yTAρ〈w〉 = cT

0 ⇒ ¬∃y, yTAρ〈w〉 = cT
(7)

That is, if F (p) = 1 then c is a linear combination of the rows of A〈w〉, while if F (p) = 0, then
c cannot be cast as such linear combination. We define the size of a span program (Aρ, c) as
the number of rows plus the number of columns in the matrix A. The next theorem, which
will be proved in Subsection 5.2, states that functions that can be represented by small MSPs
over the reals can also be represented by small min-right MLP gates.

Theorem 5.4 Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented by
an MSP of size s over the reals, then F can be represented by a min-right MLP gate of
size O(s).

It has been recently shown that there is a family of functions GENn : {0, 1}n → {0, 1}
which can be computed by polynomial-size monotone Boolean circuits but which require
monotone span programs over the reals of size exp(nΩ(1)) [7]. On the other hand, since by
Theorem 5.1, monotone Boolean circuits can be polynomially simulated by weak MLP gates
of any type, we have that weak MLP gates of size polynomial in n can represent the function
GENn : {0, 1}n → {0, 1}. Therefore, we have the following corollary.

Corollary 5.5 Weak MLP gates cannot be polynomially simulated by monotone span pro-
grams over the reals.

2This notation is also discussed in Subsection 7.2.

14

5.2 Proof of Theorem 5.4

In this section we prove Theorem 5.4. As an intermediate step we define the notion of
nonnegative monotone span program (nonnegative-MSP). Such a nonnegative-MSP is
specified via a pair (Aρ, c)+ consisting of a labeled matrix Aρ = (A, ρ), and a vector c,
just as in the case of monotone span programs. The only difference is in the way in which
such programs are used to represent functions. We say that a nonnegative-MSP (Aρ, c)+

represents a partial Boolean function F : {0, 1}n → {0, 1, ∗} if the following conditions are
observed for each w ∈ {0, 1}n.

F (w) =

{
1 ⇒ ∃y ≥ 0, yTAρ〈w〉 = cT

0 ⇒ ¬∃y ≥ 0, yTAρ〈w〉 = cT
(8)

Note that while MSP representations are defined in terms of linear combinations of
rows of Aρ, nonnegative-MSP representations are defined in terms of nonnegative linear
combinations of rows of Aρ.

Proposition 5.6 Let F : {0, 1}n → {0, 1} be a Boolean function. If F can be represented
by an MSP of size s over the reals, then F can be represented by a nonnegative-MSP of
size O(s) over the reals.

Proof. Let Aρ = (A, ρ) be a labeled matrix over R, and let (Aρ, c) be a span program over

R. Let B =

[
A
−A

]
. In other words, for each row ai of A, the matrix B has a row ai,

and a row −ai. Now let ρ′ be the function that labels the rows of B in such a way that the
rows corresponding to ai and −ai in B are labeled with the same label as row i of A. Then
it should be clear that for each w ∈ {0, 1}n, c is equal to a linear combination of rows of

Aρ〈w〉 if and only if c is equal to a nonnegative linear combination of rows of Bρ′

〈w〉. Therefore,

(Bρ′ , c)+ is a nonnegative-MSP of size O(s) representing F .

Therefore, it is enough to show that any partial Boolean function that can be represented
via nonnegative-MSPs of size s can also be represented by min-right MLP gates of size
O(s). Consider the condition

∃y ≥ 0, yTAρ〈w〉 = cT . (9)

In other words, the formula in Equation 11 is satisfied if and only if the row vector cT is a
positive linear combination of the rows of Aρ〈w〉. Let y ≥ 0 be such a non-negative vector such

that yTAρ〈w〉 = cT . Then we have that for each x ∈ Rk (where k is the number of columns in

A), the fact that Aρ〈w〉x ≥ 0 implies that c · x ≥ 0. In particular, this is the case whenever

x ∈ (R+)k. More formally, we have the following implication.

∃y ≥ 0, yTAρ〈w〉 = cT ⇒ min{c · x | Aρ〈w〉x ≥ 0, x ≥ 0} ≥ 0. (10)

15

Now let A′x ≥ Bp be the system of inequalities obtained from Aρ〈w〉x ≥ 0 as follows. For
each i, let ai be the i-th row of A. For each i, if the i-th row of A is unlabeled, the system
A′x ≥ Bp has the inequality aix ≥ 0. On the other hand, if row i is labeled with variable pj,
then then A′x ≥ Bp has the inequality aix ≥ bi to the system A′x ≥ Bp. On the other hand,
if the i-th row of A is labeled, then which is unlabeled For each inequality aix ≥ α(pj − 1)
where α ∈ R+ is a positive number that is large enough to make the inequality irrelevant
when pj is set to 0. Then it should be clear that for each p ∈ {0, 1}n,

min{c · x | A′x ≥ Bp, x ≥ 0} = min{c · x | Aρ〈w〉x ≥ 0, x ≥ 0}. (11)

Now let `(p) = min{c · x | A′x ≥ Bp, x ≥ 0}. Then for each w ∈ {0, 1}n, we have that

F (w) =

{
1 ⇒ `(p) ≥ 0
0 ⇒ `(p) < 0.

(12)

Finally, let ε = minp∈{0,1}n{|`(p)| | `(p) < 0} be the minimum absolute value of `(p)
where the minimum is taken over all inputs p ∈ {0, 1}n which evaluate to a number strictly
less than zero, and let

`′(p) = min{c · x+ x′ | x′ = ε/2, A′x ≥ Bp, x ≥ 0}.
Then `′(p) = `(p) + ε/2 and therefore, for each w ∈ {0, 1}n, we have that

F (w) =

{
1 ⇒ `′(p) ≥ ε/2 > 0
0 ⇒ `′(p) < ε/2 < 0.

(13)

In other words, `′ is a min-right MLP representation of F .

6 Lovász-Schrijver and Cutting-Planes Proof Systems

6.1 The Lovász-Schrijver Proof System

The Lovász-Schrijver proof system is a refutation system based on the Lovász-Schrijver
method for solving integer linear programs [20]. During the past two decades several variants
(probably nonequivalent) of this system have been introduced. In this work we will be only
concerned with the basic system LS. In Lovász-Schrijver systems the domain of variables is
restricted to {0, 1}, i.e., they are Boolean variables. Given an infeasible set of inequalities Φ,
the goal is to use the axioms and rules of inference defined below to show that the inequality
0 ≥ 1 is implied by Φ.

• Axioms:

1. 0 ≤ pj ≤ 1

2. p2
i − pi = 0 (integrality).

• Rules:

16

1. Positive linear combinations of inqualities.

2. Multiplication: given a linear inequality
∑

i cipi−d ≥ 0, and a variable pj, derive

pj(
∑
i

cipi − d) ≥ 0 and (1− pj)(
∑
i

cipi − d) ≥ 0.

3. Weakening rule:

from
∑

i cipi − d ≥ 0, derive
∑

i cipi − d′ ≥ 0 for any d′ < d.

We note that positive linear combinations may involve both linear and quadratic in-
equalities, but the multiplication rule can only be applied to linear inequalities. Hence, all
inequalities occurring in a proof are at most quadratic. Axiom (2) corresponds to two in-
equalities, but it suffices to use p2

i − pi ≥ 0, since the other inequality p2
i − pi ≤ 0 follows

from Axiom (1) and Rule (2). We also observe that the inequality 1 ≥ 0 can be derived
from the axioms pi ≥ 0 and 1 − pi ≥ 0. Therefore the weakening rule can be simulated by
an application of these axioms together with linear combinations.

The LS proof system is implicationally complete. This means that if an inequality∑
i cipi − d ≥ 0 is semantically implied by an initial set of inequalities Φ, then

∑
i cipi−d ≥ 0

can be derived from Φ by the application of a sequence of LS-rules [20].
Superpolynomial lower bounds on the size of LS proofs have been obtained only in the

restricted case of tree-like proofs [21]. The problem of obtaining superpolynomial lower
bounds for the size of DAG-like LS proofs remains a tantalizing open problem in proof
complexity theory.

The LS proof system is stronger than Resolution. It can be shown that resolution proofs
can be simulated by LS proofs with just a linear blow up in size. Additionally, the Pigeonhole
principle has LS proofs of polynomial size, while this principle requires exponentially long
resolution proofs [14]. On the other hand, the relationship between the power of the LS proof
system and other well studied proof system is still elusive. For instance, previous to this work,
nothing was known about how the LS proof system relates to the cutting-planes proof system
with respect to polynomial-time simulatability. In Subsection 6.5 we will show that there is a
family of sets of inequalities which have polynomial-size DAG-like LS refutations, but which
require superpolynomial-size cutting-planes refutations. This shows that the cutting-planes
proof system cannot polynomially simulate the LS proof system. The converse problem, of
determining whether the LS proof system polynomially simulates the cutting-planes proof
system, remains open.

In this paper we will consider general (i.e., DAG-like) proofs. Thus, a sequence of in-
equalities Π is a derivation of an inequalitity

∑
i cipi − d ≥ 0 from a set of inequalities Φ if

every inequality in Π is either an element of Φ or is derived from previous ones using some
LS rule. We say that Π is a refutation of the set of inequalities Φ, if the last inequality is
−d ≥ 0 for some d > 0.

17

6.2 Feasible Interpolation

Feasible interpolation is a method that can sometimes be used to translate circuit lower
bounds into lower bounds for the size of refutations of Boolean formulas and linear inequal-
ities. Let Ψ(p, q, r) be an unsatisfiable Boolean formula which is a conjunction of formulas
Φ(p, q) and Γ(p, r) where q and r are disjoint sets of variables. Since Ψ(p, q, r) is unsatisfiable,
it must be the case that for each assignment a of the variables p, either Φ(a, q) or Γ(a, r) is
unsatisfiable, or both. Given a proof Π of unsatisfiability for Ψ(p, q, r), an interpolant is a
Boolean circuit C(p) such that for every assignment a to the variables p,

1. if C(a) = 1, then Φ(a, q) is unsatisfiable,

2. if C(a) = 0, then Γ(a, r) is unsatisfiable.

If both formulas are unsatisfiable, then C(a) can be either of the two values. Kraj́ıček
has shown that given a resolution refutation Π of a CNF formula, one can construct an
interpolant C(p) whose size is polynomial in the size of Π [18]. Kraj́ıček’s interpolation
theorem has been generalized, by himself and some other authors, to other proof systems
such as the cutting-planes proof system and the Lovász-Schrijver proof system [8].

In principle, such feasible interpolation theorems could be used to prove lower bounds
on the size of proofs if we could prove lower bounds on circuits computing some particular
functions. But since we are not able to prove essentially any lower bounds on general Boolean
circuits, feasible interpolation gives us only conditional lower bounds. For instance, the
assumption that P 6= NP ∩ coNP, an apparently weaker assumption than NP 6= coNP,
implies that certain tautologies require superpolynomial-size proofs on systems that admit
feasible interpolation.

However, in some cases, one can show that there exist monotone interpolating circuits of
polynomial size provided that all variables p appear negatively in Φ(p, q), (or positively in
Γ(p, r)). In the case of resolution proofs, such circuits are simply monotone Boolean circuits
[18, 19]. In the case of cutting-planes proofs, the interpolants are monotone real circuits [22].
Monotone real circuits are circuits with Boolean inputs and outputs, but whose gates are
allowed to be arbitrary 2-input functions over the reals. Razborov’s lower bound on the clique
function has been generalized to monotone real circuits [22, 15]. Another proof system for
which one can prove superpolynomial lower bounds using monotone feasible interpolation is
the Nullstellensatz Proof System [24]. In this proof system, the monotone interpolants are
given in terms of monotone span programs3 [24].

The results mentioned above suggest that if a proof system has the feasible interpolation
property, then it may also have monotone feasible interpolation property for a suitable kind
of monotone computation. We will show that the Lovász-Schrijver proof system has the
monotone feasible interpolation property with the interpolants computed MLP circuits with
strong gates.

3In the context of polynomial calculus, alternative methods (e.g. [1, 16]) yield stronger lower bounds
than the monotone interpolation technique.

18

6.3 Feasible Interpolation for the Lovász-Schrijver System

Let F1(q) − c1 ≥ 0, F2(q) − c2 ≥ 0, ..., Fm(q) − cm ≥ 0 be a sequence of linear inequalities
over a set of variables q. We say that a linear inequality F (q)− c ≥ 0 is obtained from this
sequence in one lift-and-project step, or simply lap-step for short, if

F (q)− c =
∑

ij αijqi(Fj(q)− cj) +∑
ij βij(1− qi)(Fj(q)− cj) +∑
j γj(Fj(q)− cj) +∑
i δi(qi − q2

i) +∑
j ξj(Fj(q)− cj)

(14)

for some αij, βij, γj, δi, ξj ≥ 0. A refutation in the LS proof system for an unsatisfiable
set of inequalities Φ(q) can naturally be regarded as a sequence L1 ≥ 0, . . . , Lm ≥ 0 of
linear inequalities where for each i ∈ {1, ...,m}, the inequality Li ≥ 0 is either in Φ(q),
or is obtained from L1 ≥ 0, ..., Li−1 ≥ 0 by the application of one lap-step. Intuitively,
inequalities involving quadratic terms, obtained as instances of the integrality axiom or by
the application of the multiplication rule, are regarded as intermediate steps towards the
derivation of new linear inequalities.

Let p, q and r be tuples of Boolean variables. We say that an unsatisfiable set of inequal-
ities Φ(p, q) ∪ Γ(p, r) is monotonically separable if the variables in p occur in inequalities of
Φ only with negative coefficients. The next theorem states that LS-proofs for monotonically
separable unsatisfiable sets of inequalities can be interpolated using MLP circuits constituted
of max MLP gates.

Theorem 6.1 Let Φ(p, q)∪Γ(p, r) be a monotonically separable unsatisfiable set of inequal-
ities, and let p = (p1, ..., pn). Let Π be an LS refutation of Φ(p, q) ∪ Γ(p, r). Then one can
construct an MLP circuit C containing only max MLP gates which represents a Boolean
function F : {0, 1}n → {0, 1} such that for each a ∈ {0, 1}n,

1. if F (a) = 1, then Φ(a, q) is unsatisfiable,

2. if F (a) = 0, then Γ(a, r) is unsatisfiable.

Additionally, the size of the circuit C is polynomial in the size of Π.

Proof. We start by recalling the idea of feasible interpolation for LS in the non-monotone case
as presented in [23]. For the sake of simplicity, we assume that the inequalities 0 ≤ qi ≤ 1
and 0 ≤ ri ≤ 1 are included in Φ and Γ.

Let

E1(p) + F1(q) +G1(r)− e1 ≥ 0, . . . , Em(p) + Fm(q) +Gm(r)− em ≥ 0 (15)

19

be the linear inequalities of an LS refutation of Φ(p, q) ∪ Γ(p, r). Since the last inequality is
a contradiction, the linear forms Em, Fm, Gm are zeros and em > 0. Let a ∈ {0, 1}n be an
assignment to variables p. Substituting a into the proof we get a refutation

F1(q) +G1(r) + E1(a)− e1 ≥ 0, . . . , Fm(q) +Gm(r) + Em(a)− em ≥ 0 (16)

of Φ(a, q)∪Γ(a, r) (note that the last inequality is −em ≥ 0 as in the proof above). Our aim
now is to split the restricted proof into two proofs

F1(q)− c1 ≥ 0, . . . , Fm(q)− cm ≥ 0 and G1(r)− d1 ≥ 0, . . . , Gm(r)− dm ≥ 0 (17)

in such a way that the first sequence is the sequence of inequalities of a refutation of Φ(a, q),
the second sequence is the sequence of inequalities of a refutation of Γ(a, r), and

cj + dj ≥ ej − Ej(a) for j ∈ {1, . . . ,m}. (18)

Since em > 0, we have that either cm > 0, or dm > 0, or both inequalities are true. Hence,
at least one of the proofs is a refutation of its initial inequalities. We now describe how such
a splitting can be constructed.

First, suppose Ej(p) + Fj(q) + Gj(r) − ej ≥ 0 is an inequality in Φ. Then Gj(r) ≡ 0.
This inequality will be split into

Fj(q) + Ej(a)− ej ≥ 0 and 0 ≥ 0. (19)

Since all coefficients in Ej are negative, ej−Ej(a) can be computed from a using a single
max MLP gate (or even by a max-left MLP gate). If Ej(p) + Fj(q) +Gj(r) ≥ ej is an
inequality in Γ, we split the inequality into

0 ≥ 0 and Gj(r) + Ej(a)− ej ≥ 0. (20)

Now suppose that Et(p) + Ft(q) + Gt(r) ≥ et follows from previous inequalities and
suppose we have already split the previous part of the proof. Substituting a into the j-th
lap-step we obtain an equality of the following form.

Ft(q) +Gt(r) + Et(a)− et =∑
ij αijai(Fj(q) +Gj(r) + Ej(a)− ej) +

∑
ij βij(1− ai)(Fj(q) +Gj(r) + Ej(a)− ej)+∑

ij α
′
ijqi(Fj(q) +Gj(r) + Ej(a)− ej) +

∑
ij β
′
ij(1− qi)(Fj(q) +Gj(r) + Ej(a)− ej)+∑

ij α
′′
ijri(Fj(q) +Gj(r) + Ej(a)− ej) +

∑
ij β
′′
ij(1− ri)(Fj(q) +Gj(r) + Ej(a)− ej)+∑

i γi(ai − a2
i)+∑

i γ
′
i(qi − q2

i) +
∑

i γ
′′
i (ri − r2

i)+∑
j δj(Fj(q) +Gj(r) + Ej(a)− ej).

(21)

20

In the sums, we have j < t and the indices i range over the sets of indices of the corre-
sponding variables p, q, r. All these linear combinations are nonnegative, i.e., the coefficients
αij, α

′
ij, α

′′
ij, βij, β

′
ij, β

′′
ij, γi,γ

′
i, γ

′′
i , and δj are nonnegative. Note that the term

∑
i γi(ai−a2

i)
is always zero, since by assumption ai ∈ {0, 1}. By setting δ′j = δj +

∑
i(αijai + βij(1− aj)),

for each j, and by noting that δ′j is non-negative, Equation 21 can be simplified as follows.

Ft(q) +Gt(r) + Et(a)− et =∑
ij α
′
ijqi(Fj(q) +Gj(r) + Ej(a)− ej) +

∑
ij β
′
ij(1− qi)(Fj(q) +Gj(r) + Ej(a)− ej)+∑

ij α
′′
ijri(Fj(q) +Gj(r) + Ej(a)− ej) +

∑
ij β
′′
ij(1− ri)(Fj(q) +Gj(r) + Ej(a)− ej)+∑

i γ
′
i(qi − q2

i) +
∑

i γ
′′
i (ri − r2

i)+∑
j δ
′
j(Fj(q) +Gj(r) + Ej(a)− ej).

(22)
By substituting −cj − dj for Ej(a) − ej in Equation 22 and rearranging terms, we have

the following equation.

Ft(q) +Gt(r) + Et(a)− et =∑
ij α
′
ijqi(Fj(q)− cj) +

∑
ij α
′′
ijri(Gj(r)− dj) +∑

ij β
′
ij(1− qi)(Fj(q)− cj) +

∑
ij β
′
ij(Gj(r)− dj)∑

ij β
′′
ij(Fj(q)− cj) +

∑
ij β
′′
ij(1− ri)(Gj(r)− dj) +∑

i γ
′
i(qi − q2

i) +
∑

i γ
′′
i (ri − r2

i) +∑
j δ
′
j(Fj(q)− cj) +

∑
j δ
′
j(Gj(r)− dj) +∑

ij α
′
ijqi(Gj(r)− dj) +

∑
ij −β′ijqi(Gj(r)− dj) +∑

ij α
′′
ijri(Fj(q)− cj) +

∑
ij −β′′ijri(Fj(q)− cj).

(23)

Note that each line in the right-hand side of Equation 23, except for the last two, splits
into a linear form involving only q variables and another linear form involving only r variables.
Let

P (q, r) =
∑

ij α
′
ijqi(Gj(r)− dj) +

∑
ij −β′ijqi(Gj(r)− dj) +∑

ij α
′′
ijri(Fj(q)− cj) +

∑
ij −β′′ijri(Fj(q)− cj).

(24)

21

be the polynomial corresponding to the two last lines of Equation 23. The key observation
is that, since the inequality Ft(q) +Gt(r) +Et(a)− et ≥ 0 is linear, all quadratic terms qirk
in the polynomial P (q, r) must cancel. Therefore, P (q, r) can be simplified to

P (q, r) =
∑

ij −α′ijqidj +
∑

ij β
′
ijqidj +∑

ij −α′′ijricj +
∑

ij β
′′
ijricj.

(25)

Additionally, since the inequality Ft(q) + Gt(r) + Et(a) − et ≥ 0 is implied by the in-
equalities Fj(q) − cj ≥ 0 and Gj(r) − dj ≥ 0 in the domain of real numbers (for j < t), it
follows from Farkas’ Lemma that the linear form Ft(q)+Gt(r)+Et(a)−et is a positive linear
combination of linear forms Fj(q)− cj and Gj(r)− dj for j < t. This implies that P (q, r) is
also a positive linear combination of Fj(q)− cj and Gj(r)− dj for j < t. In other words,

P (q, r) =
∑
j<t

ξj(Fj(q)− cj) +
∑
j<t

ξ′j(Gj(r)− dj), (26)

for some ξj, ξ
′
j ≥ 0. Thus, Equation 23 can be rewritten as follows.

Ft(q) +Gt(r) + Et(a)− et =∑
ij α
′
ijqi(Fj(q)− cj) +

∑
ij α
′′
ijri(Gj(r)− dj) +∑

ij β
′
ij(1− qi)(Fj(q)− cj) +

∑
ij β
′
ij(Gj(r)− dj) +∑

ij β
′′
ij(Fj(q)− cj) +

∑
ij β
′′
ij(1− ri)(Gj(r)− dj) +∑

i γ
′
i(qi − q2

i) +
∑

i γ
′′
i (ri − r2

i) +∑
j δ
′
j(Fj(q)− cj) +

∑
j δ
′
j(Gj(r)− dj) +∑

j ξj(Fj(q)− cj) +
∑
ξ′j(Gj(r)− dj).

(27)

Now, based on the assumption that the inequalities Fj(q) + Gj(r) + Ej(a) − ej ≥ 0,
for j < t, have been split into inequalities Fj(q) − cj ≥ 0 and Gj(r) − dj ≥ 0, our goal is
to split the inequality Ft(q) + Gt(r) + Et(a) − et ≥ 0 into inequalities Ft(q) − ct ≥ 0 and
Gt(r)− dt ≥ 0. To accomplish this goal, it is enough to find constants c′t and d′t such that

c′t + d′t ≥ et − Et(a), (28)

and such that the following equations are satisfied.

22

Ft(q)− c′t = Gt(r)− d′t =∑
ij α
′
ijqi(Fj(q)− cj) +

∑
ij α
′′
ijri(Gj(r)− dj) +∑

ij β
′
ij(1− qi)(Fj(q)− cj) +

∑
ij β
′
ij(Gj(r)− dj) +

(a)
∑

ij β
′′
ij(Fj(q)− cj) + (b)

∑
ij β
′′
ij(1− ri)(Gj(r)− dj) +∑

i γ
′
i(qi − q2

i) +
∑

i γ
′′
i (ri − r2

i) +∑
j δ
′
j(Fj(q)− cj) +

∑
j δ
′
j(Gj(r)− dj) +∑

j ξj(Fj(q)− cj) +
∑
ξ′j(Gj(r)− dj).

(29)

We note that to compute suitable c′t and d′t, it is enough to find the maximum c′t that
satisfies Equation 29.(a), and the maximum d′t that satisfies Equation 29.(b). It turns out that
computing c′t reduces to the problem of solving a linear program whose constraints can be
extracted from Equation 29.(a). Analogously, computing d′t reduces to the problem of solving
a linear program whose constraints are extracted from Equation 29.(b). We concentrate in
the process of computing c′t. The process of computing d′t is identical (and unnecessary for
the construction of the interpolant circuit).

In order to obtain an interpolant circuit constituted only of monotone gates, we will
consider the process of maximizing a constant ct satisfying the following relaxed version of
Equation 29.(a), where the new variables ηij, η

′
ij satisfy ηij ≤ cj and η′ij ≤ cj for each i and

each j < t.

Ft(q)− ct =
∑

ij α
′
ijqi(Fj(q)− ηij) +∑

ij β
′
ij(1− qi)(Fj(q)− η′ij)∑
ij β
′′
ij(Fj(q)− cj) +∑
i γ
′
i(qi − q2

i) +∑
j δ
′
j(Fj(q)− cj) +∑

j ξj(Fj(q)− cj).

(30)

23

Note that if the inequality Ft(q)− c′t ≥ 0 can be derived from inequalities Fj(q)− cj ≥ 0
(for j < t) in one lap-step, then the inequality Ft(q) − ct ≥ 0 can also be derived from
inequalities Fj(q) − cj ≥ 0 (for j < t) as follows. First, we apply the weakening rule to
obtain the inequalities Fj(q)− ηij ≥ 0, and Fj(q)− η′ij ≥ 0, and then we apply one lap-step
involving Fj(q)−cj ≥ 0, Fj(q)−ηij ≥ 0, and Fj(q)−η′ij ≥ 0. We also note that the maximum
value that ct can attain is at least as large as the maximum value that c′t can attain, since we
can always set ηij = η′ij = cj for each j < t. Therefore Ft(q)− ct ≥ 0 implies Ft(q)− c′t ≥ 0.

For each j ≤ t let Fj(q) =
∑

k fkjqk. Since the homogeneous part of the right-hand side
of Equation 30 must be equal to Ft(q), the following inequalities and equalities must be
satisfied.

ηij ≤ cj η′ij ≤ cj

fkt =
∑

ij β
′
ijfkj +

∑
ij β
′′
ijfkj +

∑
j δ
′
jfkj +

γ′k +
∑

j α
′
kjηkj +

∑
j β
′
kjη
′
kj +

∑
j ξjfkj.

(31)

Note that the equalities in Equation 31 are obtained by identifying the coefficient fkt of
the variable qk in Ft(q) with the coefficient of qk in the right-hand side of Equation 30. Now,
the process of maximizing ct such that Equation 30 is satisfied, corresponds to solving the
following maximization problem subject to the constraints given by Equation 31.

ct = max
∑
ij

α′ijcj +
∑
ij

β′ijcj +
∑
ij

β′′ijcj +
∑
j

δ′jcj +
∑
j

ξjcj. (32)

Or equivalently, by creating a variable xj for each j < t, and by setting

xj =

(
ξj + δ′j +

∑
i

(α′ij + β′ij + β′′ij)

)
, (33)

for each j < t, the maximization in Equation 32 is equivalent to the following maximiza-
tion.

ct = max
∑
j<t

cjxj. (34)

Together, Equation 31, Equation 33 and Equation 34 define a max MLP gate whose
input variables are cj for j < t, and whose internal variables are xj, ξj, ηij, η

′
ij. Note that the

input variables occur both in the constraints and in the objective function.
Now, let

E1(p) + F1(q) +G1(r)− e1 ≥ 0, . . . , Em(p) + Fm(q) +Gm(r)− em ≥ 0 (35)

be the linear inequalities occurring in a refutation for inequalities Φ(p, q) ∪ Γ(p, r). Then
we construct an interpolant circuit C as follows. For each t ∈ {1, ...,m} if Et(p) + Ft(q) +
Gt(r) − et ≥ 0 is an inequality in Φ(p, q), then we create a max MLP gate `t with inputs

24

p and output ct. For each assignment a ∈ {0, 1}n of the variables p, the gate `t computes
the value et − Et(a) as already discussed in the paragraph following Equation 19. On the
other hand, if Et(p) + Ft(q) + Gt(r) − et ≥ 0 is obtained from previous inequalities by the
application of one lap-step, then we create a max MLP gate `t with inputs p and c1, ..., ct−1

and output ct. The value of ct is computed according to the linear program4 defined by
Equation 31, Equation 33 and Equation 34. For each assignment a ∈ {0, 1}n of the variables
p, if C(a) > 0, then we have that cm > 0 and therefore Φ(a, q) is unsatisfiable. Otherwise, if
C(a) ≤ 0, then cm ≤ 0 and therefore dm > 0. This implies that Γ(a, r) is unsatisfiable.

6.4 Lovász-Schrijver Refutations of Mixed LP Problems

While proof systems for integer linear programming have been widely studied, very little is
known about proof systems for mixed linear programming. In mixed linear programming
part of variables range over integers and part of them range over reals. The Lovász-Schrijver
system can naturally be adapted for mixed linear programming by disallowing the use of
axioms and the multiplication rule for variables ranging over reals. One can easily prove
that this system is complete with respect to refutations (i.e., a family of inequalities is
unsatisfiable if and only if a contradiction is derivable).

We say that an unsatisfiable set of mixed inequalities Φ(p, q) ∪ Γ(p, r) is strongly mono-
tonically separable if p and q are tuples of Boolean variables, r is a tuple of real variables,
and variables in p occur in φ(p, q) only with negative coefficients. Next, we will show that
LS proofs for strongly monotonically separable unsatisfiable sets of mixed inequalities can be
interpolated in terms of a single max-left MLP gate (or, by linear-programming duality, a
single min-right MLP gate).

The advantage of this interpolation theorem compared with Theorem 6.1 is that while
proving lower bounds on the size of strong MLP circuits may be beyond the reach of current
methods, proving a lower bound on the size of a single weak MPL gate seems to be feasi-
ble, because this problem is closely related to lower bounds on extended formulations (see
Section 8).

Theorem 6.2 Let Φ(p, q)∪Γ(p, r) be a strongly monotonically separable unsatisfiable set of
mixed inequalities, and let p = (p1, ..., pn). Let Π be an LS-refutation of Φ(p, q)∪Γ(p, r). Then
there exists a max-left MLP gate ` that represents a Boolean function F : {0, 1}n → {0, 1}
such that for every a ∈ {0, 1}n,

1. if F (a) = 1, then Φ(a, q) is unsatisfiable, and

2. if F (a) = 0, then Γ(a, r) is unsatisfiable.

Additionally, the size of the MLP gate ` is polynomial in the size of Π.

4The internal variables xj , ξj , ηij and η′ij are distinct for each two distinct gates. Additionally, the
coefficients of the variables in this linear program can be computed in polynomial time from the full LS-
refutation of Φ(p, q) ∪ Γ(p, r).

25

Proof. It is enough to construct a circuit C consisting of max-left gates representing a
function F : {0, 1}n → {0, 1} such that for each a ∈ {0, 1}n, Φ(a, q) is unsatisfiable whenever
F (a) = 1, and Γ(a, r) is unsatisfiable whenever F (a) = 0. By Theorem 4.1, from the circuit
C, one can construct a single max-left MLP gate representing F whose size is linear in the
size of C.

The construction of C is done in a similar way to the construction of the circuit with
max MLP gates constructed in Theorem 6.1. The difference is that, by assuming that the
LS-refutation Π is mixed, the gates used in the circuit can be restricted to max-left MLP
gates, instead of max MLP gates. It is enough to observe that, since the multiplication rule,
and integrality axioms are only used for variables r, Equation 30 can be simplified to the
following equation.

Ft(q)− ct =
∑
ij

β′′ij(Fj(q)− cj) +
∑
j

δ′j(Fj(q)− cj) +
∑
j

ξj(Fj(q)− cj). (36)

From Equation 36, one can extract the following constraints, where as in Equation 31,
fkj denotes the coefficient of qk in the linear form Fj(q).

fkt =
∑
ij

β′′ijfkj +
∑
j

δ′jfkj +
∑
j

ξjfkj. (37)

Finally, the objective function given in Equation 32 is simplified to

ct = max
∑
ij

β′′ijcj +
∑
j

δ′jcj +
∑
j

ξjcj. (38)

Equivalently, by creating a variable xj for each j < t and by setting

xj = β′′ij + δ′j + ξj, (39)

the maximization in Equation 38 is equivalent to the following maximization.

ct = max
∑
j

cjxj. (40)

Together, Equation 37, Equation 39 and Equation 40 define an MLP gate with input
variables cj for j < t, and internal variables xj, ξj. Note that the input variables cj only
appear in the objective function, and not in the constraints. Therefore, this gate is a max-
left MLP gate.

The remainder of the construction of the circuit C is completely analog to the construction
in the proof of Theorem 6.1.

In the next subsection we will give a natural example of a set of inequalities of the form
used in the theorem. We will show that it has polynomial-size mixed LS-refutations, but it
requires superpolynomial-size cutting-plane refutations.

26

6.5 Cutting-Planes vs. Lovász-Schrijver Refutations and Mono-
tone Real Circuits vs MLP Gates

In this subsection we will define an unsatisfiable set of inequalities Φn(p, q)∪Γn(p, q), which
has polynomial-size LS-refutations, but which requires superpolynomial size refutations in
the cutting-planes proof system. Additionally, we define a function gn : {0, 1}n → {0, 1, ∗}
that has polynomial-size MLP representations, but which require superpolynomial size mono-
tone real circuits.

We recall that the cutting-planes proof systems is defined via the following axioms and
rules.

• Axioms:

0 ≤ pj ≤ 1.

• Rules:

1. Positive linear combinations;

2. Rounding rule: Suppose that all ci are integers. Then

from
∑

i cipi ≥ d, derive
∑

i cipi ≥ dde.

A monotone real circuit is a circuit C whose gates are monotone real functions of at
most two variables. The size of C is the number of gates in C. The following theorem can
be used to translate superpolynomial lower bounds on the size of monotone real circuits
computing certain partial Boolean functions into superpolynomial lower bounds for the size
of cutting-planes proofs.

Theorem 6.3 (Monotone Interpolation for the cutting-planes Proof System [22])
Let Φ(p, q) ∪ Γ(p, r) be a monotonically separable unsatisfiable set of inequalities, and let
p = (p1, ..., pn). Let Π be a cutting-planes refutation for Φ(p, q) ∪ Γ(p, r). Then one can
construct a monotone real circuit C such that for every a ∈ {0, 1}n,

1. if C(a) = 1 then Φ(p, q) is unsatisfiable, and

2. if C(a) = 0 then Γ(p, q) is unsatisfiable.

Additionaly the size of the circuit C is at most a constant times the size of the refutation Π.

Let Kn = {{i, j} | 1 ≤ i < j ≤ n} be the complete undirected graph with vertex set
[n] = {1, ..., n}. We say that a subgraph X ⊆ Kn is a perfect matching if the edges in
X are vertex-disjoint and each vertex i ∈ [n] belongs to some edge of X. We say that a
subgraph B ⊆ Kn is an unbalanced complete bipartite graph if there exist sets V, U ⊆ [n]
with V ∩ U = ∅, |V | > |U |, and B = {{i, j} | i ∈ V, j ∈ U}. Let W ⊆ Kn be a graph. We
let V(W) = {i | ∃j ∈ [n], {i, j} ∈ W} be the vertex set of W . For each vertex i ∈ V(W),

27

we let N (i) = {j | {i, j} ∈ W} be the set of neighbours of i in W . For a subset V ⊆ V(W),
we let N (V) =

⋃
v∈V N (v) be the set of neighbours of vertices in N (V). We say that W

is unbalanced if there exists V, U ⊆ V(W) such that N (V) ⊆ U and |V | > |U |. Note that
such an unbalanced graph W cannot contain a perfect matching X, since the existence of
such a perfect matching would imply the existence of an injective mapping from V to U .
We also note that unbalanced complete bipartite graphs are by definition a special case of
unbalanced graphs.

Razborov proved that any monotone Boolean circuit which decides whether a graph has
a perfect matching must have size at least nΩ(logn) [28]. This lower bound was generalized by
Fu to the context of monotone real circuits [10]. More precisely, Fu proved that any monotone
real circuit distinguishing graphs with a perfect matching from unbalanced complete bipartite
graphs must have size at least nΩ(logn).

Theorem 6.4 ([10]) Let F : {0, 1}(
n
2) → {0, 1, ∗} be a partial boolean function such that

for each w ∈ {0, 1}(
n
2),

• F (w) = 1 if w encodes a graph with a perfect matching.

• F (w) = 0 if w encodes an unbalanced complete bipartite graph.

Then any monotone real circuit computing F must have size at least nΩ(logn).

Since unbalanced complete bipartite graphs are a special case of unbalanced graphs,
monotone real circuits distinguishing graphs with a perfect matching from unbalanced graphs
must have size at least nΩ(logn) gates.

Corollary 6.5 Let g : {0, 1}(
n
2) → {0, 1, ∗} be a partial boolean function such that for each

w ∈ {0, 1}(
n
2),

• g(w) = 1 if w has a perfect matching.

• g(w) = 0 if w is unbalanced.

Then any monotone real circuit computing g must have size at least nΩ(logn).

Below we will define a set Ψn of unsatisfiable inequalities on variables

p = {wi,j | 1 ≤ i < j ≤ n} q = {ui, vi | i ∈ [n]} r = {xij | 1 ≤ i < j ≤ n}.

Intuitively each assignment of the variables in p defines a graph W ⊆ Kn such that {i, j} ∈ W
if and only if wij = 1. Each assignment to the variables in q defines subsets U, V ⊆ [n] where
i ∈ U if and only if ui = 1, and i ∈ V if and only if vi = 1. Finally, each assignment to
the variables in r defines a subset of edges X in such a way that {i, j} ∈ X if and only if
xij = 1. The set of inequalities Ψn would be satisfiable by an assignment α of the variables
in p,q and r if and only if α defined a graph W ⊆ Kn which contained, at the same time,
a perfect matching X and a pair of subsets of vertices V, U ⊆ V(W) certifying that W is
unbalanced. Since no such graph exists, the set Ψn is unsatisfiable.

28

Definition 5 (Unbalanced Graphs vs Perfect Matching Inequalities) Let Φn(p, q)∪
Γn(p, r) be a set of inequalities on variables p = {xij}, q = {ui, vi} and r = {xi} defined as
follows.

Inequalities in Φ(p, q): W is unbalanced.

1) uj − vi − wij + 1 ≥ 0 N (V) ⊆ U . If i ∈ V ∧ {i, j} ∈ W ⇒ j ∈ U .

2)
∑

j vj −
∑

i ui − 1 ≥ 0 |V | > |U |.

Inequalities in Γ(p, r): Existence of a perfect matching.

3) wij − xij ≥ 0 X is a subset of edges of W .

4)
∑

i,i 6=j xij − 1 = 0 X defines a perfect matching.

Note that for each j, the equalities in 4) consist of two inequalities. Note also that the
variables in wij ∈ p, which occur both in Φn(p, q) and in Γn(p, r), only occur negatively in
Φn(p, q). Therefore, Φn(p, q) ∪ Γ(p, r) is monotonically separable.

A combination of Fu’s size lower-bound for monotone real circuits (Theorem 6.4) with
the monotone interpolation theorem for cutting-planes (Theorem 6.3) was used in [10] to
show that a suitable unsatisfiable set of inequalities Ψ′n requires cutting-planes refutations of
size nΩ(logn). The next theorem states that a similar lower bound can be proved with respect
to the inequalities introduced in Definition 5.

Theorem 6.6 Let Φn(p, q) ∪ Γn(p, r) be the set of inequalities of Definition 5. Then any
cutting-planes refutation of Φn(p, q) ∪ Γn(p, r) must have size at least nΩ(logn).

Proof. If a ∈ {0, 1}n represents a graph containing a perfect matching, then Γn(a, r) is satis-
fiable, and consequently Φn(a, q) is unsatisfiable. Analogously, if a represents an unbalanced
graph, then Φn(a, q) is satisfiable and consequently, Γn(a, r) is unsatisfiable. Let Π be a refu-
tation of Φn(p, q) ∪ Γn(p, r). Then, by the interpolation theorem for monotone real circuits
(Theorem 6.3), there is a monotone real circuit C of size polynomial in the size of Π such
that C(a) = 1 if the graph represented by a has a perfect matching, and such that C(a) = 0
if the graph represented by a is an unbalanced graph. But by Corollary 6.5, any such circuit
must have size at least nΩ(logn). Therefore, the proof Π must also have size at least nΩ(logn).

On the other hand, the following theorem states that the set inequalities Φn(p, q)∪Γn(p, r)
has LS-refutations of size polynomial in n. In fact these refutations are for the case where
variables r are real, meaning that axioms and multiplication rules are never used for variables
r.

29

Theorem 6.7 Let Φn(p, q)∪Γn(p, r) be the set of inequalities of Definition 5, Then Φn(p, q)∪
Γn(p, r) has an LS-refutation of size polynomial in n.

Proof. Consider the following polynomial-size LS-refutation of Ψ(p, q, r). 5. uj−vi−xij+1 ≥

0 from 3. and 1.

6. xijuj − xijvi − x2
ij + xij ≥ 0 multiplying 5. by xij

7. xijuj − xijvi ≥ 0 applying x2
ij − xij = 0 to 6.

8.
∑

ij xijuj −
∑

ij xijvi ≥ 0 sum of 7. over every i, j with i 6= j

9.
∑

j uj
∑

i;i 6=j xij −
∑

i vi
∑

j;i 6=j xij ≥ 0 rewriting 8.

10.
∑

j uj −
∑

i vj ≥ 0 from 9. and 4.

11. −1 ≥ 0 from 2. and 10.

By combining Theorem 6.6 with Theorem 6.7 we have the following corollary separating
cutting-planes from LS proof systems.

Corollary 6.8 The cutting-planes proof system does not polynomially simulate the Lovász-
Schrijver proof system.

Previous to our work, the problem of determining whether the cutting-planes proof system
can polynomially simulate the LS-proof system had been open for almost two decades. We
note that to the best of our knowledge, the converse problem, of determining whether the
LS-proof system can polynomially simulate the cutting-planes proof system remains open.

Now let Φn(p, q) ∪ Γ′n(p, r) be the set of inequalities obtained from Φn(p, q) ∪ Γn(p, r) by
assumming that the variables r range over the reals. Then Φ(p, q) ∪ Γ′(p, r) is an natural
example of strongly monotonically separable set of mixed inequalities. Note that this set
express the property that the graph represented by p is at the same time balanced and
contains a fractional perfect matching. Clearly, there is no graph that satisfies both properties
simultaneously, and therefore Φn(p, q)∪Γ′n(p, r) is also unsatisfiable. Now, we note that the
integrality axioms and the multiplication rule are never applied with respect to variables in
r. Therefore, the proof of theorem 6.7 is also an LS proof of Φn(p, q) ∪ Γ′n(p, r).

Corollary 6.9 The unsatisfiable set of mixed inequalities Φn(p, q)∪Γ′n(p, r) has LS-refutations
of size nO(1).

By combining Corollary 6.9 with Theorem 6.2, we have that max-left MLP gates can
separate graphs with a perfect matching from unbalanced graphs superpolynomially faster
than monotone real circuits. In other words, monotone real circuits cannot polynomially
simulate max-left MLP gates. We leave open the question of whether MLP gates (of any
type) can polynomially simulate monotone real circuits.

30

Theorem 6.10 Let gn : {0, 1}(
n
2) → {0, 1, ∗} be the partial Boolean function of Corollary

6.5. Then gn can be represented by a single max-left MLP gate of size polynomial in n.

Proof. Let Φn(p, q) ∪ Γ′n(p, r) be the set of inequalities of Corollary 6.9. If a ∈ {0, 1}n
represents a graph containing a fractional perfect matching, then Γ′n(a, r) is satisfiable, and
consequently Φn(a, q) is unsatisfiable. On the other hand, if a represents an unbalanced
graph, then Φn(a, q) is satisfiable and consequently, Γ′n(a, r) is unsatisfiable.

By Theorem 6.7, Φn(p, q) ∪ Γ′n(p, r) has a mixed LS-refutation of size polynomial in n.
Therefore, by Theorem 6.2, there is a max-left MLP gate `n of size nO(1) such that for

each a ∈ {0, 1}(
n
2), `n(a) > 0 if a denotes a graph with a perfect matching, and such that

`n(a) ≤ 0 if a denotes an unbalanced graph. Therefore, ` represents gn.

7 Alternative MLP Representations

In this section we describe three alternative ways of representing monotone Boolean functions
via monotone linear programs. All these representations are polynomially equivalent to weak
MLP gates, but they are conceptually closer to certain formalisms that have been studied
in complexity theory.

7.1 Existential MLP Representations

In this section we define the notion of existential MLP representations.

Definition 6 (Existential MLP Representations) let A be a matrix in Rm×k, b be a
vector in Rm, and B be a matrix in Rm×n with B ≥ 0. Let F : {0, 1}n → {0, 1, ∗} be
a partial Boolean function. We say that the triple (A,B, b) is a max-existential MLP
representation of F if the following conditions are satisfied for each p ∈ {0, 1}n.

F (p) =

{
1 ⇒ ∃x ≥ 0, Ax ≤ b+Bp,
0 ⇒ ¬∃x ≥ 0, Ax ≤ b+Bp.

(41)

We say that (A,B, b) is a min-existential representation of F if the following conditions
are satisfied for each p ∈ {0, 1}n.

F (p) =

{
1 ⇒ ¬∃x ≥ 0, Ax ≥ b+Bp,
0 ⇒ ∃x ≥ 0, Ax ≥ b+Bp.

(42)

As in the case of MLP gates, the size of existential representations is measured as the
number of rows plus the number of columns in the matrix A. We note that the only differ-
ence between max-existential and min-existential MLP representations is that while
the former is defined in terms of inequalities Ax ≤ b + Bp, the latter is defined in terms of
inequalities Ax ≥ b+Bp. We observe that these two representations are not obviously equiv-
alent because of the requirement that B ≥ 0. Indeed, we do not know if one representation
can be transformed into the other without a superpolynomial blow up in size.

31

Lemma 7.1 Let F : {0, 1}n → {0, 1, ∗} be a partial Boolean function. Then F has a max-
existential (resp. min-existential) MLP representation of size s if and only if F can
be represented by a max-right (resp. min-right) MLP gate of size O(s).

Proof. Suppose that F can be represented by a max-right MLP gate ` of size s. Then,
by Proposition 3.1, F can be sign-represented by a max-right MLP gate `′ of size O(s).
In other words, `′(p) > 0 whenever F (p) = 1 and `′(p) < 0 whenever F (p) = 0. Let
`′(p) = max{c · x | Ax ≤ b+Bp, x ≥ 0}. Then the inequalities

Ax ≤ b+Bp, x ≥ 0, c · x ≥ 0

define a max-existential MLP representation of F .
For the converse, assume that (A,B, b) is a max-existential MLP representation of

F , and consider the function `(p) = max{−1̄ · x′ | Ax − x′ ≤ b + Bp, x ≥ 0, x′ ≥ 0}. Let
p ∈ {0, 1}n. If F (p) = 1, then the system of inequalities Ax ≤ b+ Bp is satisfiable by some
x ≥ 0, and therefore, the maximum in the definition of `(p) is attained when x′ = 0. In other
words, in this case `(p) = 0. On the other hand, if F (p) = 0, then the system Ax ≤ b+ Bp
has no solution, and the maximum in the definition of `(p) is attained when setting x′ to
a vector that has at least one strictly positive coordinate. This implies that `(p) is strictly
negative. Let ε = minp∈{0,1}n{|`(p)| | `(p) < 0} be the minimum absolute value of `(p) where
the minimum is taken over all inputs p ∈ {0, 1}n which evaluate to a number strictly less
than zero. Now consider the following max-right MLP gate.

`′(p) = max{−1̄ · x′ + x′′ | x′′ = ε/2, Ax− x′ ≤ b+Bp, x ≥ 0, x′ ≥ 0}.

Then for each p ∈ {0, 1}n, `′(p) = `(p) + ε/2. This implies that `′(p) ≥ ε/2 > 0 whenever
F (p) = 1, and that `′(p) ≤ −ε/2 < 0 whenever F (p) = 0. Therefore, `′ is a max-left MLP
representation of F .

Now, let `(y) = min{c · x | Ax ≥ b + Bp, x ≥ 0} be a min-right MLP gate that F .
Then the inequalities

Ax ≥ b+Bp, x ≥ 0, c · x ≤ 0

define a min-existential MLP representation of F .
For the converse, let (A,B, b) be a min-existential MLP representation of F , and let

`(p) = min{1̄ · x′ | Ax + x′ ≥ b + Bp, x ≥ 0, x′ ≥ 0}. If F (p) = 0, then the system
of inequalities Ax ≥ b + Bp is satisfiable by some x ≥ 0, and therefore, the minimum
is attained when setting x′ = 0. On the other hand, if F (p) = 1, then the system of
inequalities Ax ≥ b + Bp has no solution x ≥ 0, and the minimum in the definition of `(p)
is attained when setting x′ to a vector that has a strictly positive coordinate. This implies
that `(p) is strictly positive. This shows that `(p) is a min-right MLP gate representing F .

32

7.2 Representation by Labeled Matrices

When considering MLP gates or existential MLP representations the polyhedron defined
by Ax ≤ b + Bp is parameterized by the input variables p via the non-negative matrix B.
In this subsection we introduce a way of parameterizing polytopes in terms of the input
variables. In this version, some rows of the matrix A are labeled by the Boolean variables pj
and rows may have no label. Formally a labeling for a matrix A with m rows is a function
ρ : {1, ...,m} → {p1, ..., pn, ∗}. For each i ∈ {1, ...,m}, ρ(i) = pj indicates that the i-th row
is labeled with pi, while ρ(i) = ∗ indicates that the i-th row has no label. A labeled matrix is
a pair Aρ = (A, ρ) consisting of a matrix A and a labeling ρ of its rows. For each assignment
w ∈ {0, 1}n of the variables in p, we let Aρ[w] be the sub-matrix obtained from A by deleting
all rows labeled by some variable whose value was set to 1. We note that the unlabeled rows
remain in Aρ[w] for each w ∈ {0, 1}n. Analogously, we let Aρ〈w〉 be the sub-matrix obtained
from A by deleting all rows labeled by some variable whose value was set to 0. These two
notations can be straightforwardly applied to vectors by considering them as m×1 matrices.
That is, a labeled vector is a pair bρ = (b, ρ) and we write bρ[w] (resp. bρ〈w〉) to denote the

vector obtained from b by deleting coordinate i if and only if ρ(i) is a variable that receives
the value 1 (resp. 0).

Definition 7 (Labeled MLP Representations) Let F : {0, 1}n → {0, 1} be a Boolean
function. We say that a pair (Aρ, bρ) is a max-labeled MLP representation of F if for
each assignment w ∈ {0, 1}n of variables p = (p1, ..., pn),

F (w) =


1 → ∃x ≥ 0, Aρ[w]x ≤ bρ[w]

0 → ¬∃x ≥ 0, Aρ[w]x ≤ bρ[w]

(43)

We say that (Aρ, bρ) is a min-labeled MLP representation of F if for each assignment
w ∈ {0, 1}n of variables p = (p1,, pn),

F (w) =


1 → ¬∃x ≥ 0, Aρ〈w〉x ≥ bρ〈w〉

0 → ∃x ≥ 0, Aρ〈w〉x ≥ bρ〈w〉

(44)

Note that the difference between max-labeled MLP representations and min-labeled
MLP representations is that in the former, inequalities are of the form Aρ[w]x ≤ bρ[w] and the
rows that are deleted from A are those corresponding to variables which the assignment w
sets to 1, while in the latter, the inequalities are of the form Aρ〈w〉x ≥ bρ〈w〉 and the rows that
are deleted from A are those corresponding to variables which the assignment w sets to 0.

Note that the function defined by such a representation is monotone because when set-
ting variables in p to 1 rows of A and b are deleted, meaning that the number of constraints
decreases, and the possibility of finding an x that satisfies these remaining constraints in-
crease.

33

In Proposition 7.3, we will show that max-labeled MLP representations and max-
existential MLP representations can be converted into each other with only a linear in-
crease in size. Analogously, min-labeled MLP representations and min-existential MLP
representations can be converted into each other with only a linear increase in size. Before
showing that however, we show that the matrix B in existential MLP representations can
be assumed to be a 0/1 matrix with at most one 1 in each row.

Proposition 7.2 Let (A,B, b) be a max-existential (resp. min-existential) MLP rep-
resentation of a partial Boolean function F : {0, 1}n → {0, 1} of size s. Then F has a max-
existential (resp. min-existential) MLP presentation (A′, B′, b′) of size O(s) where B′

is 0/1 matrix with at most one 1 in each row.

Proof. If (A,B, b) is a max-existential MLP representation of F , then we have that for
each p ∈ {0, 1}n, ∃x,Ax ≤ b + Bp if F (p) = 1 and ¬∃x,Ax ≤ b + Bp if F (p) = 0. Now,
consider n new variables u = (u1, ..., un) and the system of inequalities

0 ≤ u ≤ 1, u ≤ p, Ax−Bu ≤ b. (45)

Then we have that for each p ∈ {0, 1}n, ∃xAx ≤ b+Bp if and only if there exists x and u such
that the inequalities in Equation 45 are satisfied. Therefore, the inequalities in Equation
45 also define a max-existential MLP representation of F . Note that that each variable
pi ∈ p occurs in at most one inequality of Equation 45, and when it does, it occurs with

coefficient 1. Therefore, Equation 45 can be rewritten as A′
[
x
u

]
≤ b′ + B′p for a suitable

vector b′ and suitable matrices A′ and B′ where B′ is a 0/1 matrix with at most one 1 in
each row.

Analogously, if (A,B, b) is a min-existential MLP representation of F , then we have
that for each p ∈ {0, 1}n, ∃x,Ax ≥ b + Bp if F (p) = 1 and ¬∃x,Ax ≥ b + Bp if F (p) = 0.
Therefore, the system of inequalities

0 ≤ u ≤ 1, u ≥ p, Ax−Bu ≥ b

defines an equivalent min-existential MLP representation of F which can be rewritten in

matrix form as A′
[
x
u

]
≥ b′ + B′p for a suitable vector b′ and suitable matrices A′ and B′

where B′ is a 0/1 matrix with at most one 1 in each row.

Proposition 7.3 Let F : {0, 1}n → {0, 1}. Then F has a max-labeled (resp. min-
labeled) MLP representation of size s if and only if F has a max-existential (resp.
min-existential) MLP representation of size O(s).

34

Proof. Let (A,B, b) be a max-existential MLP representation of F and let p = (p1, ..., pn)
be the input variables of F . By Proposition 7.2, one can assume that the matrix B is a 0/1-
matrix where each row has at most one 1. Now, we replace every inequality of the form
ai · x ≤ bi + pj with the following two inequalities:

ai · x ≤ bi with label pj.
ai · x ≤ bi + 1 without a label.

(46)

It is straightforward to check that the system of labeled inequalities obtained in this way
corresponds to a max-labeled MLP representation of F .

For the converse, let (Aρ, bρ) be a max-labeled MLP representation of F . Then just
replace each inequality ai · x ≤ bi labeled with pj, by an inequality ai · x ≤ bi + αpj where
α ∈ R is a number which is large enough to make the inequality irrelevant when pj = 1.
The system of inequalities obtained in this way corresponds to a max-existential MLP
representation of F .

Now let (A,B, b) be a min-existential MLP representation of F and let p = (p1, ..., pn)
be the input variables of F . By Proposition 7.2, one can assume that the matrix B is a
0/1-matrix where each row has at most one 1. Now, we replace every inequality of the form
ai · x ≥ bi + pj with the following two inequalities:

ai · x ≥ bi without a label.
ai · x ≥ bi + 1 with label pj.

(47)

It is straightforward to check that the system of labeled inequalities obtained in this way
corresponds to a min-labeled MLP representation of F .

For the converse, let (Aρ, bρ) be a min-labeled MLP representation of F . Then just
replace each inequality ai ·x ≥ bi labeled with pj, by an inequality ai ·x ≥ bi+α(pj−1) where
α ∈ R is a number which is large enough to make the inequality irrelevant when pj = 0.
The system of inequalities obtained in this way corresponds to a min-existential MLP
representation of F .

7.3 Representation by Zero-Sum Games

A zero-sum game is defined by a matrix A ∈ Rm×k. This game has two players: a Row
Player and a Column Player. A strategy for the Row Player is a vector u ∈ Rm, with u ≥ 0
and |u|1 = 1 (that is, a probability distribution on {1, . . . ,m}). Similarly, a strategy for the
Column Player is a vector v ∈ Rk with v ≥ 0 and |v|1 = 1 (that is, a probability distribution
on {1, . . . , k}). Such a strategy is pure if all weight is placed in a unique coordinate. Given
strategies u, v for the two players, the payoff of the game defined by A when Row Player
plays strategy u and Column Player plays strategy v is defined as uTAv. The payoff of a
strategy u for the Row Player is defined as minv u

TAv, while the payoff of a strategy v for
Column Player is defined as maxu u

TAv. We say that a strategy u is a winning strategy for

35

Row Player, if for every strategy v of Column Player we have uTAv < 0. On the other hand,
a strategy v is a winning strategy for Column Player, if for every strategy u of Row Player
we have uTAv > 0.

Let p = (p1, ..., pn) be Boolean variables. A double-labeled matrix is a triple Aρ,γ =
(A, ρ, γ) where A is a m × k real matrix, ρ : {1, ...,m} → {p1, ..., pn, ∗} is a labeling of the
rows of A and γ : {1, ..., k} → {p1, ..., pn, ∗} is a labeling of the columns of A. We say that
a row i (column j) is unlabeled if ρ(i) = ∗ (γ(j) = ∗). For each assignment w ∈ {0, 1}n of
the variables in p, we denote by Aρ,γ[w] the sub-matrix of A which is obtained by deleting rows
labeled with variables that are set to 1, and by deleting columns labeled with variables that
are set to 0 at the assignment w.

Definition 8 (Zero-Sum Representation) Let F : {0, 1}n → {0, 1} be a Boolean func-
tion on variables p = (p1, ..., pn). We say that that a double-labeled matrix Aρ,γ is a zero-sum
game representation of F if for every assignment w ∈ {0, 1}n,

F (w) =

{
1 → Column Player has a winning strategy for the game Aρ,γ[w] .

0 → Row Player has a winning strategy for the game Aρ,γ[w] .
(48)

We note that the asymmetry in the way in which rows and columns are deleted guarantees
that the function F is monotone. Intuitively, by setting a variable pi to 1, Row Player is not
anymore allowed to use the rows labeled with pi and Column Player is now allowed to use
the columns labeled with pi. Therefore the space of strategies of Row Player shrinks, while
the space of strategies of Column Player gets expanded. In this way, the payoff for Column
player is at least as large as if the variable pi were set to 0.

The next proposition states that zero-sum game representations are equivalent to max-
existential MLP representations. We believe that it is worth to consider zero-sum game
representations as a separate concept because they seem to be more amenable for the appli-
cation of lower-bound techniques based on communication complexity theory. The idea is
that the variables p may be split into two disjoint groups p′ and p′′ in such a way that rows
are only labeled with variables from p′, and columns are only labeled with variables from
p′′. This corresponds to the setting in which we want to compute a function F (p) where
the variables in p′ are in possession of Row player while variables in p′′ are in possession of
Column Player.

We note that from the point of view of expressiveness, the way in which variables are
distributed among Row Player and Column Player is irrelevant. More precisely, by making
appropriate modifications to a double-labeled matrix Aρ,γ, one can always transform a row
label into a column label, and vice versa, in such a way the resulting double-labeled matrix
Aρ

′,γ′ represents the same function. Additionally, one can always consider that each variable
labels at most one row and at most one column.

Proposition 7.4 A function F : {0, 1}n → {0, 1} has a zero-sum game representation
Aρ,γ of size s if and only if it has a max-existential MLP representation of size O(s).
Additionally, the same statement holds if we assume that either all rows, or all columns are
unlabeled, as well as if we assume that each variable labels at most one row and at most one
column.

36

Proof. Let Aρ,γ be a zero-sum game representation of size s of a function F in which no
column is labeled. In other words, γ(j) = ∗ for each column of A. Then this matrix can be
viewed as a single-labeled matrix Aρ. It should be clear that the system of inequalities

Aρ[w]x[w] ≤ 0,∑k
j=1 xj = 1

(49)

is a max-labeled MLP representation of F of size O(s). Therefore, by Proposition 7.3, F
has a max-existential MLP representation of size O(s).

For the converse, assume that F has a max-existential MLP representation of size s.
Then by Proposition 7.3, F has a max-labeled MLP representation (Aρ, b) of size O(s).
We may assume without loss of generality that the corresponding system of inequalities

Aρ ≤ bρ (50)

contains the unlabeled equality
∑

j xj = 1 (which is represented by two unlabeled inequal-
ities

∑
j xj ≤ 1 and

∑
j xj ≥ 1). This assumption will be removed later. Then by adding

appropriate multiples of the inequality
∑

j xj = 1 to each row, System 50 can be transformed
into a system of the form

(A′)ρx ≤ 0ρ∑k
j=1 xj = 1

(51)

Such that for each w ∈ {0, 1}n, the system Aρ[w] ≤ bρ[w] has a solution if and only if the system

(A′)ρ[w]x ≤ 0ρ[w],∑k
j=1 xj = 1

(52)

has a solution. Additionally, we have the following immediate claim.

Claim 2 For each w ∈ {0, 1}n, System 52 has a solution if and only if Column Player has
a strategy to get payoff ≥ 0 in the zero-sum game defined by (−A′)ρ[w].

Now let ε be a small enough positive number, and let A′′ be the matrix obtained from
by adding ε to each entry of −A′. Then we have that for each w ∈ {0, 1}n, Column Player
gets a payoff ≥ 0 in the game (−A)ρ[w] if and only if Column player gets a payoff > 0 in the

game (A′′)ρ[w]. Therefore, if we let γ be a labeling of the columns of A′′ such that γ(j) = ∗ for

every j ∈ {1, ..., k}. The double-labeled matrix (−A′)ρ,γ is a zero-sum game representation
of F .

Now assume that the equality
∑

j xj = 1 does not belong to the system of inequalities
Aρx ≤ bρ defined by the max-labeled MLP representation (Aρ, bρ). First we select a
large enough positive real number α such that for every p for which there exists a solution
x, we have

∑
j xj ≤ α. Then if we take a (dummy) variable xk+1 and add the equality

37

∑k+1
j=1 xj/α = 1, the new system has a solution if and only if the old one has. Finally, we

make a change of variables by setting yj := xj/α for each j ∈ {1, ..., k} and by setting
yj+1 := xj+1. Clearly, the new system of inequalities on variables yj has a solution if and

only if the old one has, and now the equation
∑k+1

j=1 yj = 1 belongs to the system.

Now we show that the way in which variables are distributed among Row Player and
Column Player is immaterial. Assume that pj labels some columns of Aρ,γ. Add a new row
to A which has −1 on the columns labeled with pj and 0 elsewhere. Label this new row with
pj, and remove the labels pj from the columns. Let (A′)ρ

′,γ′ be the matrix obtained by this
process. Let w be an assignment of the variables in p. If pj is set to 1, then the new added

row is not present in the matrix (A′)ρ
′,γ′

[w] , and therefore the column player is free to chose
the columns that were labeled by pj in the original matrix A. On the other hand, if pj is
set to zero, then the row player has a strategy with payoff < 0 for any strategy of Column
Player that sets non-zero weight in some column that was previously labeled by pj. Hence,
in such case, any winning strategy for Column player must put weight 0 in these columns.
A symmetric argument shows that row labels can be transformed into column labels. In this
case, the difference is that in this case we create a new column which has 1 in every row
labeled by pj. Subsequently we label this new column with pj, and remove the label pj from
the rows. Then, if pj = 1, any winning strategy for Row Player must set weight 0 on all
rows that were previously labeled by pj. Note that in either case, a unique row or column
labeled by pj is created.

8 Monotone Linear Programs and Extended Formula-

tions

A polytope is the convex hull of a nonempty finite set of vectors in Rn; in particular, a
polytope is nonempty and bounded. If a polytope P ⊆ Rn is given by a polynomial number
of inequalities5, then we can easily decide whether a vector v ∈ Rn belongs to P . An
important observation is that even if P requires an exponential number of inequalities to
be defined, we may still be able to test whether v ∈ P efficiently if we can find a polytope
R ⊆ Rn+m in a higher dimension with m = nO(1) such that P is a projection of P ′ and P ′

can be described by a polynomial number of inequalities5.
More precisely, let P ⊆ Rn be a polytope, and let P ′ ⊆ Rn+m be a polytope defined via a

system of inequalities6 A(v, y) ≤ b. Then we say that the system A(v, y) ≤ b is an extended
formulation of P if for each v ∈ Rn, v ∈ P ⇔ ∃y ∈ Rm, A(v, y) ≤ b. We define the size of such
extended formulation as the number of rows plus the number of columns in A. For instance,
it can be shown that the permutahedron polytope Pn ⊆ Rn, which is defined as the convex-
hull of all permutations of the set [n] = {1, ..., n}, requires exponentially many inequalities
to be defined. Nevertheless, Pn has extended formulations of size O(n log n) [12]. On the

5 With coefficients specified by nO(1) bits.
6For column vectors v ∈ Rn and y ∈ Rm, (v, y) denotes the column vector (v1, ..., vn, y1, ..., ym).

38

other hand, it has been shown that for some polytopes, such as the cut polytope, the TSP
polytope, etc., even extended formulations require exponentially many inequalities [9, 29].

The process of defining partial Boolean functions via linear programs is closely related,
but not equivalent, to the process of defining polytopes via extended formulations. For a
partial Boolean function F , let Ones(F), and Zeros(F) denote the set of all inputs a ∈
{0, 1}n such that F (a) = 1, and F (a) = 0 respectively. Let P 1

F denote the convex hull of
Ones(F) and P 0

F denote the convex hull of Zeros(F). Defining F via a linear program is
equivalent to finding an extended formulation of some polyhedron Q1 that contains P 1

F and
is disjoint from Zeros(F), or an extended formulation of some polyhedron Q0 that contains
P 0
F and is disjoint from Ones(F). Finding such an extended formulation for Q1 (resp. Q0)

with a small number of inequalities is clearly, a simpler task than finding a small extended
formulation for the polyhedron P 1

F (resp. P 0
F) itself. For instance, if F is the matching

function for general graphs, then F is computable by a polynomial-size Boolean circuit
(containing negation gates), and hence this function can be defined via (not necessarily
monotone) linear programs of polynomial size7. Nevertheless, the corresponding polytope
P 1
F requires extended formulations of exponential size [29].

Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. A minterm of F is a
vector v ∈ {0, 1}n such that F (v) = 1 and such that F (v′) 6= 1 for each v′ ≤ v. Intuitively,
a minterm is a minimal vector which causes F to evaluate to 1. Analogously, a maxterm
is a vector v ∈ {0, 1}n such that F (v) = 0 and F (v′) 6= 0 for each v ≥ 0. Intuitively, a
maxterm is a maximal vector that causes F to evaluate to 0. We let P̂ 1

F be the convex-hull
of minterms of F , and let P̂ 0

F be the convex-hull of maxterms of F . Let H1 be a hyperplane
containing P̂ 1

F . For each maxterm v we define the set S1
v = H1 ∩ {u | u ≤ v}. Analogously,

let H0 be an hyperplane containing P̂ 0
F . We define the set S0

v = H0 ∩ {u | u ≥ v}.

Definition 9 (Monotone Extension Complexity) Let F : {0, 1}n → {0, 1, ∗} be a par-
tial monotone Boolean function. Below we define two notions of monotone extension com-
plexity (mxc) for F .

1. We let mxc1 (F) denote the minimum size of an extended formulation for a polytope
Q1 such that

P̂ 1
F ⊆ Q1, and Q ∩

⋃
v

S1
v = ∅. (53)

2. We let mxc0 (F) denote the minimum size of an extended formulation for a polytope
Q0 such that

P̂ 0
F ⊆ Q0, and Q ∩

⋃
v

S0
v = ∅. (54)

The next theorem relates the monotone extension complexity of a partial monotone
Boolean function F to the size of existential MLP representations for F .

7Note that any function in PTIME can be defined by polynomial-size non-monotone LP programs, due
to the fact that linear programming is PTIME complete.

39

Theorem 8.1 Let F : {0, 1}n → {0, 1, ∗} be a partial monotone Boolean function. Then
mxc1 (F) is up to a constant factor equal to the minimum size of a max-existential MLP
representation of F . Analogously, the mxc0 (F) is up to a constant factor equal to the mini-
mum size of a min-existential MLP representation of F .

Proof. First, we define the sets Rn
+ = {u ∈ Rn|u ≥ 0} and Rn

− = {u ∈ Rn | u ≤ 0}.
Additionally, for sets X, Y of vectors of same dimension, let X+Y = {v+u | v ∈ X, u ∈ Y }
be the Minkowski sum of X and Y .

Let (A,B, b) be a max-existential MLP representation for F . Then for each p ∈
{0, 1}n such that F (p) = 1, there exists an y ≥ 0 such that all inequalities in the system
Ay ≤ b + Bp are satisfied. Additionally, if F (p) = 0, then no such y ≥ 0 exists. Therefore,
the system of inequalities Ay ≤ b + Bx is an extended formulation for a polytope Q1 such
that P 1

F + Rn
+ ⊆ Q1 and Q1 ∩ (Zeros(F) + Rn

−) = ∅.
For the converse, assume that the system of inequalities A(x, y) ≤ b defines an extended

formulation for a polytope Q1 such that P̂ 1
F ⊆ Q1 and Q1∩

⋃
v S

1
v = ∅. Then the inequalities

A(x, y) ≤ b, x ≤ p define a max-existential MLP representation for F .
Now, let (A,B, b) be a min-existential MLP representation for F . Then for each

p ∈ {0, 1}n such that F (p) = 0, there exists an y ≥ 0 such that all inequalities in the system
Ay ≥ b + Bp are satisfied. Additionally, if F (p) = 1, then no such y ≥ 0 exists. Therefore,
the system of inequalities Ay ≥ b + Bx is an extended formulation for a polytope Q0 such
that P 0

F + Rn
− ⊆ Q0 and Q0 ∩ (Ones(F) + Rn

+) = ∅.
For the converse, assume that the system of inequalities A(x, y) ≥ b defines an extended

formulation for a polytope Q0 such that P̂ 0
F ⊆ Q0 and Q0∩

⋃
v S

0
v = ∅. Then the inequalities

A(x, y) ≥ b, x ≥ p define a mix-existential MLP representation for F .

All monotone Boolean functions for which lower bounds have been proved have the
property that maxterms have essentially larger weight8 than minterms. When this happens,
the sets S1

v = H1 ∩ {u | u ≤ v} are simplices.

Example. Let F be the partial monotone Boolean function where minterms are k-cliques
in a graph on n vertices and maxterms are complete (k− 1)-partite graphs. Suppose k = nα

for some 0 < α < 1. Then we can set H1 is as the hyperplane consisting of all vectors of
weight

(
k
2

)
. The weight of maxterms is ≈ kn = n1+α while the weight of minterms is ≈ n2α.

A possible approach to for proving superpolynomial lower bounds on the monotone ex-
tension complexity of a function is to show that any polytope Q that separates P 1

F from⋃
v S

1
v must be close to P 1

F . If this is the case, one could then apply techniques obtained in
the context of approximate extended formulations of polytopes to prove a lower bound on
the size of such a Q1.

We note however that proving lower bounds for the size of weak MLP gates using extended
formulation techniques will not be an easy task. For instance, the polytope obtained as the
convex-hull of points corresponding to graphs with a perfect-matching can only be described

8The weight of a vector v ∈ {0, 1}n is the number of times that 1 occurs in v.

40

via extended formulations of exponential size. Nevertheless, Theorem 6.10 shows that weak
MLP gates of polynomial size can be used to separate this convex-hull from the set of points
corresponding to unbalanced graphs.

9 Conclusion

In this work we introduced several models of computation based on the notion of monotone
linear programs. In particular, we introduced the notions of weak and strong MLP gates.
We reduced the problem of proving lower bounds for the size of LS proofs to the problem
of proving lower bounds for the size of MLP circuits with strong gates, and the problem of
proving lower bounds on the size of mixed LS proofs to the problem of proving lower bounds
on the size of single weak MLP gates.

When it comes to comparing MLP gates with other models of computation, we have
shown that weak MLP gates are strictly more powerful than monotone Boolean circuits and
monotone span programs. Additionally, these gates cannot be polynomially simulated by
monotone real circuits. Finally, by combining some results mentioned above, we proved that
the cutting-planes proof system is not powerful enough to polynomially simulate the LS
proof system. This is the first result showing a separation between the power of these two
systems.

The results mentioned above indicate that the study of monotone models of computation
based on linear programming has the potential to shed new light on deep questions in
circuit complexity and in proof complexity. We note however, that when proposing a new
model of monotone computation, there is always a danger that the model is too strong. So
strong that proving size lower bounds on this model for explicit Boolean functions would
imply a major breakthrough in computational complexity. For instance, a nondeterministic
monotone circuit for a Boolean function F (p) is a monotone circuit C(p, q, r), where q and
r are strings of variables of equal length such that

F (p) = 1 ⇔ ∃q C(p, q,¬q) = 1.

Note that this is a fully syntactic definition—the form of the circuit ensures that the function
it computes is monotone. Yet this kind of circuits are equivalent to general nondeterministic
circuits.

Proposition 9.1 If a monotone function F is computed by a nondeterministic circuit of
size s, then there exists a monotone nondeterministic circuits of size O(s) that computes F

Proof. Suppose
F (p) = 1 ⇔ ∃q C(p,¬p, q,¬q) = 1,

where C is monotone. Then we can represent F as follows

F (p) = 1 ⇔ ∃q, r C(r,¬r, q,¬q) ∧
∧
i

(pi ∨ ¬ri) = 1.

41

Nevertheless, we are confident that the models we have introduced in this work do not
suffer from this excess of computational power. In particular, in Section 7 we have provided
several alternative formulations of monotone models of computation that are equivalent in
power to weak MLP gates, but which are conceptually close to notions that have been used
before to provide lower bounds for explicit functions. Additionally, in Section 8 we have
established tight connections between the problem of proving lower bounds for the size of
existential MLP representations and the problem of proving lower bounds for the extension
complexity of certain separating polytopes.

We conclude this work by stating some open problems whose solution could lead to the
development of more powerful techniques for the obtention of explicit size lower bounds for
monotone models of computation and proof systems.

1. Prove superpolynomial lower bounds for the size of weak MLP gates representing an
explicit partial function F .

2. Prove superpolynomial lower bounds for the size of MLP circuits with strong gates
representing an explicit partial function F .

3. In Subsection 3.3, we have shown that if a partial Boolean function F can be repre-
sented by a weak MLP gate of type τ and size s, then the function F d (the Boolean
dual of F) can be represented by a weak MLP gate of type τ sd and size O(s). It would
be interesting to determine whether F d can be represented by an MLP gate of type τ
of size sO(1). We note that a similar question is still open in the context of monotone
span programs. In other words, it is not known if the fact that a function F can be
represented by span programs of size s implies that F d can be represented by span
programs of size sO(1).

4. Is it possible to bound the coefficients occurring in MLP gates without increasing too
much the size of representations? More specifically, given an MLP gate ` of polynomial
size representing a function F , can one modify it in such a way that all coefficients in
the inequalities and objective function defining ` have polynomial magnitude? Note
that a similar question is open in the context of monotone span programs.

5. Is it possible to prove exponential lower bounds in nonconstructive ways? If the answer
to the previous problem is positive, such a lower bound would follow by simple counting.

6. Is there a total function F that can be represented by polynomial size MLP gates but
such that Ones(F) or Zeros(F) does not have polynomial size extended formulation?

References

[1] M. Alekhnovich and A. A. Razborov. Satisfiability, branch-width and tseitin tautologies.
In Proc. of the 43rd Symposium on Foundations of Computer Science, pages 593–603,
2002.

42

[2] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999.

[3] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák. Lower bounds on
hilbert’s nullstellensatz and propositional proofs. Proceedings of the London Mathemat-
ical Society, 3(1):1–26, 1996.

[4] G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear pro-
grams (beyond hierarchies). Mathematics of Operations Research, 40(3):756–772, 2015.

[5] M. Braverman and A. Moitra. An information complexity approach to extended for-
mulations. In Proceedings of the forty-fifth annual ACM symposium on Theory of com-
puting, pages 161–170. ACM, 2013.

[6] S. R. Buss and T. Pitassi. Good degree bounds on nullstellensatz refutations of the
induction principle. Journal of computer and system sciences, 57(2):162–171, 1998.

[7] S. A. Cook, T. Pitassi, R. Robere, and B. Rossman. Exponential lower bounds for
monotone span programs. ECCC, TR16-64.

[8] S. Dash. Exponential lower bounds on the lengths of some classes of branch-and-cut
proofs. Mathematics of Operations Research, 30(3):678–700, 2005.

[9] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. D. Wolf. Exponential lower
bounds for polytopes in combinatorial optimization. Journal of the ACM (JACM),
62(2):17, 2015.

[10] X. Fu. Lower bounds on sizes of cutting planes proofs for modular coloring principles.
Proof Complexity and Feasible Arithmetics, pages 135–148, 1998.

[11] A. Gál and P. Pudlák. A note on monotone complexity and the rank of matrices.
Information Processing Letters, 87(6):321–326, 2003.

[12] M. X. Goemans. Smallest compact formulation for the permutahedron. Mathematical
Programming, 153(1):5–11, 2015.

[13] D. Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1):613–622, 2001.

[14] A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

[15] A. Haken and S. A. Cook. An exponential lower bound for the size of monotone real
circuits. Journal of Computer and System Sciences, 58(2):326–335, 1999.

[16] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial calculus and
the gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

43

[17] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the Eighth
Annual Structure in Complexity Theory Conference (San Diego, CA, 1993), pages 102–
111. IEEE Comput. Soc. Press, Los Alamitos, CA, 1993.

[18] J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(02):457–486, 1997.

[19] J. Kraj́ıček. Interpolation and approximate semantic derivations. Mathematical Logic
Quarterly, 48(4):602–606, 2002.

[20] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

[21] T. Pitassi and N. Segerlind. Exponential lower bounds and integrality gaps for tree-like
lovasz-schrijver procedures. SIAM Journal on Computing, 41(1):128–159, 2012.

[22] P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone com-
putations. The Journal of Symbolic Logic, 62(03):981–998, 1997.

[23] P. Pudlák. On the complexity of the propositional calculus. London Mathematical
Society Lecture Note Series, pages 197–218, 1999.

[24] P. Pudlak and J. Sgall. Algebraic models of computation and interpolation for algebraic
proof systems. In Proc. of Feasible Arithmetic and Proof Complexity, DIMACS Series
in Discrete Math. and Theoretical Comp. Sci., volume 39, pages 279–295, 1998.

[25] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. Journal
of the ACM (JACM), 39(3):736–744, 1992.

[26] A. Razborov. Lower bounds for monotone complexity of boolean functions. American
Mathematical Society Translations, 147:75–84, 1990.

[27] A. Razborov. Proof complexity and beyond. ACM SIGACT News, 47(2):66–86, 2016.

[28] A. A. Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes, 37(6):485–493, 1985.

[29] T. Rothvoß. The matching polytope has exponential extension complexity. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 263–272.
ACM, 2014.

[30] A. Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

44

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

