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Abstract

In this work we study interactive proofs for tractable languages. The (honest) prover should
be efficient and run in polynomial time, or in other words a “muggle”.1 The verifier should be
super-efficient and run in nearly-linear time. These proof systems can be used for delegating
computation: a server can run a computation for a client and interactively prove the correctness
of the result. The client can verify the result’s correctness in nearly-linear time (instead of
running the entire computation itself).

Previously, related questions were considered in the Holographic Proof setting by Babai,
Fortnow, Levin and Szegedy, in the argument setting under computational assumptions by
Kilian, and in the random oracle model by Micali. Our focus, however, is on the original inter-
active proof model where no assumptions are made on the computational power or adaptiveness
of dishonest provers.

Our main technical theorem gives a public coin interactive proof for any language computable
by a log-space uniform boolean circuit with depth d and input length n. The verifier runs in time
n · poly(d, log(n)) and space O(log(n)), the communication complexity is poly(d, log(n)), and
the prover runs in time poly(n). In particular, for languages computable by log-space uniform
NC (circuits of polylog(n) depth), the prover is efficient, the verifier runs in time n · polylog(n)
and space O(log(n)), and the communication complexity is polylog(n). Using this theorem we
make progress on several questions:

• We show how to construct 1-round computationally sound arguments with polylog com-
munication for any log-space uniform NC computation. The verifier runs in quasi-linear
time. This result uses a recent transformation of Kalai and Raz from public-coin interac-
tive proofs to one-round arguments. The soundness of the argument system is based on
the existence of a PIR scheme with polylog communication.

• Interactive proofs with public-coin, log-space, poly-time verifiers for all of P. This settles
an open question regarding the expressive power of proof systems with such verifiers.

• Zero-knowledge interactive proofs with communication complexity that is quasi-linear in
the witness length for anyNP language verifiable inNC , based on the existence of one-way
functions.

• Probabilistically checkable arguments (a model due to Kalai and Raz) of size polynomial
in the witness length (rather than the instance length) for any NP language verifiable in
NC , under computational assumptions.

∗An extended abstract of this work appeared in STOC 2008, this is the full version. This work was supported by
NSF grants CCF-0514167, CCF-0635297, NSF-0729011, CNS-0430336, by the RSA chair, by the Weizmann Chais
Fellows, and by a Symantec Graduate Fellowship.

1In the fiction of J.K. Rowling: a person who possesses no magical powers; from the Oxford English Dictionary.
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1 Introduction

The power of efficiently verifiable proof systems is a central question in the study of computation.
Classically, this was captured by the class NP. There, a deterministic polynomial time verification
procedure receives the proof (witness), a certificate of polynomial length, and verifies its validity.
For example, to prove that a graph contains a Hamiltonian cycle, the proof is the cycle and the
(deterministic, non-interactive, polynomial time) verification procedure verifies that it is indeed a
Hamiltonian cycle in the input graph. Interactive proof systems, introduced by [GMR89, Bab85],
extend the classic notion of proof verification by considering randomized and interactive (polynomial
time) verification procedures. The proof, rather than being written down non-interactively, is in
the form of an interactive protocol with a prover. Dishonest provers might employ an arbitrarily
malicious adaptive strategy, and soundness is still required to hold against such malicious dishonest
provers (i.e. the verifier should, with high probability over its coins, reject inputs that are not in
the language).

Prior to our work, interactive proofs were studied through the lenses of cryptography and of
complexity theory. Both these settings focus on efficient proof verification without the requirement
of efficient proof generation. In particular:

Complexity-theoretic setting. Past work has focused on studying the expressive power of
interactive proofs under various resource restrictions (e.g. verification time, space, depth, rounds
or randomness). The complexity of proving has received less attention. Indeed, since research
focused on proofs for intractable languages, the honest prover is often2 assumed to be able to
perform intractable computations in the interest of efficient verifiability. In Arthur-Merlin games,
the honest prover is accordingly named after Merlin, a computationally unbounded magician.

Cryptographic setting. In the cryptographic study of interactive proofs, most works consider
protocols where all parties must run in polynomial time. The focus remains, however, on intractable
(usually NP) languages, such as deciding quadratic-residuosity modulo a composite number. To
allow the honest prover to perform computations otherwise impossible in polynomial time, he or she
can use auxiliary secrets, e.g. the factorization of the input modulos in the quadratic residuosity
example. This model is reasonable in settings where the input is generated by the prover himself.
The prover can generate the input along with an auxiliary secret that enables him prove non-BPP
properties. However, in settings (like ours) where the input is generated by an external source, an
efficient prover does not have access to auxiliary information about the input.

Our Setting. We embark on the study of interactive proofs for tractable statements, where both
the verifier and the prover are efficient. We thus require that the honest prover to be limited to
running probabilistic polynomial-time computations. We think of the input to the interactive proof
as dictated by an outside source, possibly even by the verifier, which means that the prover has
no auxiliary information to help him in the proving task, but rather should generate the proof
efficiently.

We are motivated by applications of interactive proofs to proving the correctness of delegated
(polynomial-time) computations. A delegator sends a computation to an untrusted delegatee, and
seeks a proof that the computation was performed correctly. Here, the statement to be proved is that
the delegated computation was executed correctly (i.e. that the given output is the correct one); the

2We note that there are important exceptions to the above, e.g. the work of Beigel, Bellare, Feigenbaum and
Goldwasser [BBFG91] on competitive proof systems.
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delegator is the verifier in the interactive proof; the delegatee is the prover in the interactive proof,
who convinces the delegatee that he performed the computation correctly (and runs in polynomial
time).

Clearly, if both the prover and the verifier are efficient, then the language is tractable (in
BPP). This may seem puzzling at first glance, since usually one allows the verifier to run arbitrary
polynomial-time computations, and thus it could compute on its own whether or not the input is in
the language! This obviously is not very interesting. Indeed, we want verification to be considerably
faster than computing.

The question we ask in this work is which polynomial-time computable languages have interactive
proofs with a super-efficient verifier and an efficient prover. We emphasize that although we aim
for the honest prover to be efficient, we still require the soundness of the proof system to hold
unconditionally. Namely, we make no assumptions on the computational power of a dishonest
prover. Specifically, let L be an efficiently computable language. We seek an interactive proof
system that achieves:

• Verifier time complexity that is linear in the size of the input x and poly-logarithmic in the
size of the computation of L. More generally, we ask that the verifier run in time and space
that are considerably smaller than those required to compute the language.

• Prover time complexity that is polynomial in the size of the input.

• Communication complexity that is polylogarithmic in the size of the computation. More
generally, we ask that the communication complexity be considerably smaller than the running
time required to compute the language.

Delegating Computation. Beyond its complexity theoretic interest, the question of interactive
proofs for efficient players is motivated by real-world applications. The main application we con-
sider is delegating polynomial time computations to an untrusted party. The general setting is of
several computational devices of differing computational abilities interacting with each other over
a network. Some of these devices are computationally weak due to various resource constraints. As
a consequence there are tasks, which potentially could enlarge a device’s range of application, that
are beyond its reach. A natural solution is to delegate computations that are too expensive for one
device, to other devices which are more powerful or numerous and connected to the same network.
This approach comes up naturally in today’s and tomorrow’s computing reality as illustrated in
the following two examples.

1. Large Scale Distributed Computing. The idea of Volunteer Computing is for a server to split
large computations into small units, send these units to volunteers for processing, and reassemble the
result (via a much easier computation). The Berkeley Open Infrastructure for Network Computing
(BOINC) [And03, And04] is such a platform whose intent is to make it possible for researchers in
fields as diverse as physics, biology and mathematics to tap into the enormous processing power of
personal computers around the world. A famous project using the BOINC platform is SETI@home
[SET07, SET99], where large chunks of radio transmission data are scanned for signs of extraterres-
trial intelligence. Anyone can participate by running a free program that downloads and analyzes
radio telescope data. Thus, getting many computers to pitch into the larger task of scanning space
for the existence of extraterrestrial intelligence, and getting people interested in science at the same
time. Another example of a similar flavor is the Great Internet Mersenne Prime Search [Mer07],
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where volunteers search for Mersenne prime numbers and communicate their findings to a central
server.

2. Weak Peripheral Devices. More and more, small or cheap computational devices with
limited computational capabilities, such as cell-phones, printers, cameras, security access-cards,
music players, and sensors, are connected via networks to stronger remote computers whose help
they can use. Consider, for example, a sensor that is presented with an access-card, sends it a
random challenge, and receives a digital signature of the random challenge. The computation
required to verify the signature involves public-key operations which are too expensive both in time
and space for the sensor to run. Instead, it could interact with a remote mainframe (delegatee),
which can do the computation.

The fundamental problem that arises is: how can a delegator verify that the delegatees performed
the computation correctly, without running the computation itself? For example, in the volunteer
computing setting, an adversarial volunteer may introduce errors into the computation, by claiming
that a chunk of radio transmissions contains no signs of extraterrestrial intelligence. In the Mersenne
Prime search example, an adversary may claim that a given range of numbers does not contain a
Mersenne prime. Or in the sensor example, the communication channel between the main-frame
and the sensor may be corrupted by an adversary.

All would be well if the delegatee could provide the delegator with a proof that the computation
was performed correctly. The challenge is that for the whole idea to pay off, it is essential that the
time to verify such a proof of correctness be significantly smaller than the time needed to run the
entire computation.3 At the same time, the delegatee should not invest more than a reasonable
amount of time in this endeavor. Interactive proofs with efficient provers (the delegatees) and
super-efficient verifiers (the delegators) provide a natural solution to the problem of delegating
computation reliably. Namely, the statement to be proved is that the delegated computation was
executed correctly; the delegator is the verifier in the interactive proof; the delegatee is the prover
in the interactive proof, who convinces the delegator that he performed the computation correctly
(and runs in polynomial time).

Roadmap for Section 1. We begin with an overview and discussion of our results. Our main
result is described in Section 1.1. We further use our techniques to obtain several other results:
constructing computationally-sound one-round argument systems for any (L-uniform) NC compu-
tation, under computational assumptions (Section 1.2); Characterizing public-coin log-space inter-
active proofs (Section 1.3); Constructing low communication zero-knowledge proofs (Section 1.5);
Constructing Interactive PCPs (IPCP) and Probabilistically Checkable Arguments (PCA), improv-
ing on [KR08, KR09] (Section 1.6). We then survey subsequent related works on delegating compu-
tation, which followed the original publication of our work (Section 1.7). A high-level overview of
our techniques is given Section 1.8. We proceed in Section 2 with preliminaries. The full protocols,
proofs and technical details are presented in the subsequent sections.

1.1 Main Result

Our most general result is a public-coin interactive proof for any language computable by a family
of boolean circuits that is L-uniform (or, more generally, can be generated using a log-space Turing

3With regard to the Mersenne Prime example, we note that current methods for verifying the output of polynomial
time deterministic primality tests [AKS04] are not significantly faster than running the test itself.
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Machine).4 We view this as a relaxed notion of uniformity. In particular, it captures logarithmic
space uniform computations and uniform parallel computing classes; See the discussion following
Corollary 1.2. The communication complexity is polynomial in the depth of the computation and
poly-logarithmic (rather than polynomial) in its size; the running time of the verifier is linear in
the input length, polynomial in the depth and poly-logarithmic in its size; and the prover’s running
time is polynomial in the computation size.

Theorem 1.1. Let L be a language that can be computed by a family of O(log(S(n)))-space uniform
boolean circuits of size S(n) and depth d(n). L has an interactive proof where:

1. The prover runs in time poly(S(n)). The verifier runs in time n · poly(d(n), logS(n)) and
space O(log(S(n))). Moreover, if the verifier is given oracle access to the low-degree extension
of its input, then its running time is only poly(d(n), logS(n)).

2. The protocol has perfect completeness and soundness 1/2.5

3. The protocol is public-coin, with communication complexity d(n) · polylog(S(n)).

An overview of the proof idea is given in Section 1.8; See Section 4 (and 3) for a full proof. The
protocol in the proof of Theorem 1.1 provides a natural solution to the delegating computation
problem mentioned above. Namely, the statement to be proved is that the delegated computation
was executed correctly; the delegator is the verifier in the interactive proof ; the delegatee is the
prover in the interactive proof, who convinces the delegator that he performed the computation
correctly (and runs in polynomial time).

As a primary implication, we get that any computation with low parallel time (significantly
smaller than the computation’s total size) has a very efficient interactive proof. In particular, for
languages in L-uniform NC , we have:

Corollary 1.2. Let L be a language in L-uniform NC , i.e. computable by a family of O(log(n))-
space uniform circuits of size poly(n) and depth polylog(n). L has an interactive proof where:

1. The prover runs in time poly(n), the verifier runs in time n ·polylog(n) and space O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity polylog(n).

A natural question is how can this be done when the verifier cannot even take the circuit in
question as an additional input (it has no time to read it!). This is where the condition on the log-
space uniformity of the circuit family comes in. For such circuit families, the circuit has a “short”
implicit representation which the verifier can use without ever constructing the entire circuit. We
view log-space-uniformity as a relaxed notion of uniformity for polynomial-sized circuits (though
admittedly less relaxed than poly-time-uniformity). In particular, Corollary 1.2 applies to any
language in NL, and even to any language computable by a PRAM in poly-logarithmic parallel
time

4A circuit family is s(n)-space uniform if there exists a Turing Machine that on input 1n runs in space O(s(n))
and outputs the circuit for inputs of length n. A circuit family is L-uniform if it is log-space uniform.

5Throughout this work we focus on interactive proof systems with constant soundness. Soundness can be amplified
via parallel or sequential repetition.
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Alternatively, by modifying the model (to include an on-line and an off-line stage of computa-
tion) we also obtain results for the non-uniform setting. See Sections 1.4 and 1.8 for more details.

Comparison to Prior Work on Interactive Proofs. We emphasize that Theorem 1.1 improves
previous work on interactive proofs, including the works of Lund, Fortnow, Karloff and Nissan
[LFKN92], Shamir [Sha92], and Fortnow and Lund [FL93] in terms of the honest prover’s running
time. In particular, Corollary 1.2 gives efficient honest provers, whereas the honest provers in
previous results run in super-polynomial time (even for log-space languages). Both of the works
[LFKN92, Sha92] address complete languages for #P and for PSPACE , and thus naturally the
honest prover needs to perform non-polynomial time computation (scale-down of the protocols to
P or even to L retains the non-polynomial time provers). The work of Fortnow and Lund [FL93],
using algebraic methods extending [LFKN92, Sha92], on the other hand, does explicitly address
the question of interactive proofs for polynomial time languages and in particular NC . They show
how to improve the space complexity of the verifier, in particular achieving log-space and poly-time
verifiers for NC computations. Their protocol, however, has a non-polynomial time prover as in
[LFKN92, Sha92].

Our work puts severe restrictions on the runtime of the verifier (we also consider the space
used by the verifier). This continues a sequence of works which investigated the power of inter-
active proofs with weak verifiers, often with unbounded (honest) provers. Dwork and Stockmeyer
[DS92a, DS92b] investigated the power of finite state verifiers (with and without zero-knowledge).
Condon and Ladner [CL88], Condon and Lipton [CL89], and Condon [Con91] studied space-
bounded verifiers. Kilian [Kil88] considered zero-knowledge for space-bounded verifiers. Fortnow
and Sipser (see results in [For89]) and Fortnow and Lund [FL93] focused on public-coin restricted
space verifiers. A recent work by Goldwasser et al. [GGH+07] considers the parallel running time
of a verifier (who can still use a polynomial number of processors and communication complexity),
and shows that all of PSPACE can still be recognized by constant-depth (NC0) verifiers.

Comparison to Prior Work in Other Models. The goal of the work of Babai, Fortnow,
Lund and Szegedy [BFLS91] on Holographic Proofs for NP (i.e., PCP-proofs where the input is
assumed to be given to the verifier in an error-correcting-code format), was to extend Blum and
Kannan’s program checking model [BK95] to checking the results of executions (the combination
of software and hardware) of long computations. They show how to achieve checking time that is
poly-logarithmic in the length of the computation (on top of the time taken to convert the input
into an error correcting code format). Their proof-string has length that is polynomial in the
computation time (the verifier has random access to this proof string). However the soundness of
proofs in this PCP like model (as well as its more efficient descendants [PS94], [BGH+06], [DR06],
[Din07]) requires that the verifier/delegator either “posses” the entire PCP proof string (though
only a few of its bits are read), or somehow have a guarantee that the prover/delegatee cannot
change the PCP proof string after the verifier has started requesting bits of it. Such guarantees
seem difficult to achieve over a network as required in the delegation setting.

Kilian [Kil92, Kil95] gives an argument system for any NP computation, with communication
complexity that is polylogarithmic, and verifier runtime which is linear in the input length (up
to polylogarithmic factors). This is achieved by a constant round protocol, in which the prover
first constructs a PCP for the correctness of the computation, and then Merkle-hashes it down to
a short string and sends it to the verifier. To do this, one must assume the existence of strong

7



collision-intractable hash functions with poly-logarithmic output size.6 We emphasize, that an
argument system achieves only computational soundness (soundness with respect to a computa-
tionally bounded dishonest prover). In the interactive proof setting soundness is guaranteed against
any cheating prover.

Finally, Micali raises similar goals to ours in his work on computationally sound (CS) proofs
[Mic94]. His results are however obtained in the random oracle model. This allows him to achieve
CS-proofs for the correctness of general time computations with a nearly linear time verifier, a prover
whose runtime is polynomial in the time complexity of the computation, and a poly-log length non-
interactive (“written down” rather than interactive) proof. Alternatively viewed, Micali’s work
gets non-interactive CS-proofs under the same assumption as [Kil92], and assuming the existence
of Fiat-Shamir-hash-functions [FS86] to remove interaction. The plausibility of realizing Fiat-
Shamir-hash-functions by any explicit function ensemble has been shown to be highly questionable
[Bar01, CGH04, DNRS03, GK03].

Finally, we note that all of the above [BFLS91], [Kil92], [Kil95], [Mic94] use the full PCP
machinery, and in fact this use of PCPs is to some extent inherent [RV09]. Our results, on the
other hand, do not use the full PCP machinery. In particular, we do not use low-degree tests for
our main results.

1.2 One-Round Arguments

So far, we mostly considered interactive settings with multiple rounds. We find it very interesting
to pursue the question of delegating computation in the non-interactive or single-round setting
as well. One may envision a delegator farming out computations to a computing facility (say by
renting computer time at a super-computer facility during the night hours), where the result is
later returned via e-mail with a fully written-down “certificate” of correctness.

Thus, we further ask: for which polynomial time computations can a polynomial time prover,
after receiving a challenge from the verifier, write down a certificate of correctness that is super-
efficiently verifiable, and in particular is significantly shorter than the time of computation (other-
wise the verifier cannot even receive the certificate!). I.e. we envision a one-round protocol, where
the verifier sends the prover a (potentially private-coin) challenge, and gets back a certificate of
correctness for some claim. Micali’s CS-proofs result [Mic94] is the only solution known to this
problem, and it is in the random oracle model. We note that in the random oracle model CS proofs
are fully non-interactive: there is no need for the verifier to even send a challenge to the prover.

We address this problem. We use the protocol of Theorem 1.1 together with a transformation of
Kalai and Raz [KR09] (see below) to construct one-round arguments for any L-uniform NC com-
putation, assuming the existence of a computational private information retrieval (PIR) scheme
with poly(κ)-communication, where κ is the security parameter. We note that such a PIR scheme
exists for any κ ≥ log |DB| (where |DB| is the database size) under sub-exponential hardness of
LWE [BV11], N -th Residuosity [Lip05], [IP07], and under the Φ-Hiding Assumption [CMS99]. For
a polynomially small security parameter, such PIR schemes exist under a variety of computational
assumptions (see e.g. [KO97]). Moreover, this argument has the property that the verifier’s chal-
lenge is independent of the language or the input whose membership is being proved. This means,
for example, that the challenge can be prepared in advance and posted on the verifier’s webpage

6With standard intractability assumptions, one could get arguments of small but polynomial communication
complexity (using universal arguments [BG02]).
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(note, however, that we make no claims for soundness if the verifier uses the same challenge more
than once).

For security parameter κ, the size of the certificates is poly(κ, log n), the (honest) prover runs
in polynomial time, and the verifier runs in time n · poly(κ, log n) to verify a certificate (as in
[Mic94]). Soundness holds only against computationally bounded cheating provers (see Section 2.6
for a definition and more details about the computational assumption).

Theorem 1.3. Let L be a langauge computable by a family of O(log(S(n)))-space uniform boolean
circuits of size S(n) and depth d(n). Let κ ≥ log(S(n)) be a security parameter. Assume the
existence of a secure PIR scheme, with communication poly(κ), receiver work poly(κ), and sender
work poly(n, κ) (where n is the database size). The language L has a 1-round (private coin)
argument system with the following properties:

1. The prover runs in time poly(S(n)), the verifier runs in time n · poly(κ, d(n), log(S(n))).7

2. The protocol has perfect completeness and computational soundness 1/2 (can be made arbi-
trarily small): for any input x /∈ L and for any cheating prover running in time ≤ 2κ

3
, the

probability that the verifier accepts is ≤ 1/2.

3. The sizes of the certificate (the prover’s message) and the verifier’s challenge are poly(κ, d(n)).
The verifier’s short challenge depends only on the parameters n, d(n), and κ, and is indepen-
dent of the language L and the input x.

The idea of the proof is as follows. We apply to the protocol of Theorem 1.1 a new transformation
due to Kalai and Raz in their paper on probabilistically checkable arguments [KR09]. They use a
computational PIR scheme to transform any public-coin interactive proof into a one-round argument
system (where the verifier’s first and only message can be computed independently and ahead of
the input).

More specifically, taking κ to be a security parameter, [KR09] show how to convert any public-
coin interactive proof system (P,V) (for a language L), with communication complexity `, com-
pleteness c, and soundness s, into a one-round (two-message) argument system (P ′,V ′) (for L),
with communication complexity poly(`, κ), completeness c, and soundness s + 2−κ

2
against mali-

cious provers of size ≤ 2κ
3
. The verifier V ′ runs in time tV · poly(κ), where tV is V’s running time.

The prover P ′ runs in time tP · poly(κ, 2λ), where tP is P’s running time, and λ satisfies that each
message sent by the prover P depends only on the λ previous bits sent by V.

Note that if λ is super-logarithmic, then the resulting prover P ′ is inefficient. Fortunately, the
protocol of Theorem 1.1 has the property that λ = O(log(S(n)). Applying the transformation to
the protocol yields a 1-round computationally sound argument system, where the resulting honest
P ′ runs in time poly(S(n)). For further details, see Section 6.

Applying [KR09] to Other Interactive Proofs. We note that the transformation of [KR09]
can in principle be applied to any interactive proof for a PSPACE language (as IP=PSPACE). This
gives polynomial-communication 1-round arguments for PSPACE computations, where the verifier
runs in polynomial time, the honest prover runs in exponential time, say 2p(n) for a polynomial p(·)
(this is the time required to produce the certificate). Choosing a security parameter κ = poly(n),

7Moreover, if the verifier is given oracle access to the low-degree extension of its input, then its running time is
only poly(κ, d(n), log(S(n))).
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soundness can be made to hold against dishonest provers that run in time 2p
3(n). However, in this

case the honest prover runs in super-polynomial time. Scaling known interactive proofs (such as
[LFKN92, Sha92]) to efficiently computable languages and applying the [KR09] transformation still
results in an inefficient prover.

1.3 Public-Coin Log-Space Verifiers

Theorem 1.1 as presented above, leads to the resolution of an open problem on characterizing
public-coin interactive proofs for log-space verifiers.

The power of interactive proof systems with a log-space verifier has received significant attention
(see Condon [Con91] and Fortnow and Sipser [For89]). It was shown that any language that has a
public-coin interactive proof with a log-space verifier is in P. Fortnow and Sipser [For89] showed
that such proof systems exist for the class LOGCFL. Fortnow and Lund [FL93] improved this
result, showing such protocols for any language in NC . In fact, for the class P, [FL93] achieve

log2(n)
log log(n) -space public-coin verifiers.

We resolve this question. As a corollary of Theorem 1.1, and using the fact that languages in
P have L-uniform poly-size circuits, we show the following theorem (see Section 4.2 for details):

Corollary 1.4. Let L be a language in P, i.e. one that can be computed by a deterministic Turing
machine in time poly(n). L has an interactive proof where:

1. The prover runs in time poly(n), the verifier runs in time poly(n) and space O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity poly(n).

1.4 Non-Uniform Circuit Families

We also obtain results for non-uniform circuits. In the non-uniform setting the verifier must read
the entire circuit, which is as expensive as carrying out the computation. Thus, we separate the
verification into an off-line (non-interactive) pre-processing phase, and an on-line interactive proof
phase. In the off-line phase, before the input x is specified, the verifier is allowed to run in poly(S)
time, but retains only poly(d, log(S)) bits of information about C (where d is the depth and S is
the size of the circuit C). These bits are retained for the on-line interactive proof phase, where
the verifier gets the input x and interacts with the prover who tries to prove C(x) = 1. A similar
distinction between on-line and off-line computation for interactive proofs was made in the work of
Dwork and Stockmeyer [DS02] on provers that are resource-bounded during a protocol’s execution.
There the separation is with respect to the prover. The prover (honest or malicious) is given a
bounded amount of advice from an offline stage, and it is shown how to construct secure protocols
under the assumption that the length of advice given to a dishonest prover is bounded (the honest
prover makes do with very short advice). In our case, the (short) advice is given to the verifier.
We emphasize that the information computed in the off-line phase can only be used once, if it is
used twice (even for different inputs) then soundness is compromised.

Theorem 1.5. Let L be a language computable by a (non-uniform) circuit family C of size S(n) and
depth d(n). There exists an on-line/off-line interactive proof (P(C, x),V(x, data),Vpre(C)) for L.
This protocol has completeness 1, and soundness 1

2 (can be made arbitrarily small). The complexity
of the protocol is as follows:
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1. The (randomized) pre-processing computation Vpre(C) takes time poly(S(n)). The output
data is of length |data| = poly(d(n), log(S(n))).

2. The prover P(C, x) runs in time poly(S(n)).

3. The on-line verifier V(x, data) runs in time n ·poly(d(n), log(S(n))) and space O(log(S(n))).

4. The communication complexity of the (on-line) interactive protocol is poly(d(n), log(S(n))).

See Section 4.3 for the details.

1.5 Succinct Zero Knowledge Proofs

Aside from the primary interest (to us) of delegating computation, Theorem 1.1 above, and more
importantly the techniques used, enable us to improve previous results on communication efficient
zero-knowledge interactive proofs. The literature on zero-knowledge interactive proofs and interac-
tive arguments for NP is immense. In this setting we have an NP relation R which takes as input
an n-bit instance x and a k-bit witness w. A prover (who knows both x and w) wants to convince
a verifier (who knows only x and does not know w) in zero-knowledge that R(x,w) = 1.

Recently, attention has shifted to constructing zero knowledge interactive proofs with commu-
nication complexity that is polynomial or even linear in the length of the witness w, rather than in
R’s worst case running time, as in traditional zero-knowledge proofs [GMW91, Blu87].

Working towards this goal, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07] showed that if
one-way functions exist, then for any NP relation R that can be verified by an AC0 circuit (i.e.,
a constant-depth circuit of unbounded fan-in), there is a zero-knowledge interactive proof with
communication complexity k · poly(κ, log(n)), where κ is a security parameter. A similar result
(with slightly higher communication: poly(k, κ, log(n))) was obtained independently by Kalai and
Raz [KR08].

We improve the results of [IKOS07, KR08] significantly. We enlarge the set of languages that
have zero-knowledge proofs with communication complexity quasi-linear in the witness size, from
relations R which can be verified by AC0 circuits (constant depth) to relations R which can be
verified by NC (polylog depth) circuits. More generally, we relate the communication complexity
to the depth of the relation R:

Theorem 1.6. Assume one-way functions exist, and let κ = κ(n) ≥ log(n) be a security parameter.
Let L be an NP language whose relation R can be computed on inputs of length n with witnesses of
length k = k(n) by Boolean circuits of size poly(n) and depth d(n). Then L has a zero-knowledge
interactive proof as follows:

1. The prover runs in time poly(n) (given a witness), the verifier runs in time poly(n) and space
O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity k · poly(κ, d(n)).

In particular, for relations R in NC , the protocol of Theorem 1.6 matches the communication
complexity achieved by [IKOS07] for AC0; i.e., the communication complexity is quasi-linear in the
witness length.
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From an application point of view, enlarging the set of communication efficient protocols from
relations verifiable in AC0 to relations verifiable in NC , is significant. Many typical statements that
one wants to prove in zero knowledge involve proving the correctness of cryptographic operations,
such as “The following is the result of proper decryption” or “The following is a result of a pseudo-
random function”. Many such operations are generally not implementable in AC0 (see [LMN93]),
but can often be done in NC .

The idea behind this theorem is to use our public-coin interactive protocol from Theorem 1.1,
and carefully apply to it the (standard) transformation from public-coin interactive proofs to zero
knowledge interactive proofs of [BGG+88]. This is done using statistically binding commitments,
which can be implemented using one-way functions [Nao89, HILL99]. Details are in Section 5.

For NP languages whose relations can be verified in L-uniform NC , our zero-knowledge proof
is not only efficient in terms of its communication complexity, but also in terms of the verifier’s
running time, which is quasi-linear in the input size. We note that the works of [IKOS07, KR08]
mentioned above, on zero knowledge interactive proofs for NP languages whose relations can be
verified in AC0, do not address (nor do they achieve) improvements in the verifier’s computation
time. This is captured by the following theorem:

Theorem 1.7. Assume one-way functions exist, and let κ = κ(n) ≥ log(n) be a security parameter.
Let L be an NP language whose relation R can be computed on inputs of length n with witnesses
of length k = k(n) by a L-uniform family of boolean circuits of size poly(n) and depth d(n). Then
L has a zero-knowledge interactive proof as follows:

1. The prover runs in time poly(n) (given a witness), the verifier runs in time n · poly(k, κ, d)
and space O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity k · poly(κ, d(n)).

We note that in the setting of arguments and computational soundness, it is known by [Kil92]
how to obtain asymptotically very efficient zero-knowledge argument systems with polylogarithmic
communication complexity for all of NP. Besides the weaker soundness guarantees, those results
require assuming collision-resistant hashing (we assume only one-way functions), and use the full
PCP machinery.

1.6 Results on IPCP and PCA

Building on our interactive proofs, we show constructions, with better parameters and novel fea-
tures, of two new proof systems introduced by Kalai and Raz [KR08, KR09].

Low communication and short Interactive PCP. In [KR08] Kalai and Raz proposed the
notion of an interactive PCP (IPCP): a proof system in which a polynomial time verifier has
access to a proof-string (a la PCP) as well as an interactive prover. When an NP relation R is
implementable by a constant-depth circuit (i.e., R ∈ AC0) they show an IPCP for R with polylog
query complexity, where the proof-string is of size polynomial in the length of the witness to R
(rather than the size of R) and an interactive phase of communication complexity polylog(n). We
extend this result to NP relations implementable by poly-size circuits of depth d. Namely, we
demonstrate an IPCP with a proof-string of length polynomial in the length of the witness and
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an interactive phase of communication complexity poly(log n, d). In particular, this extends the
results of [KR08] from relations in AC0 to relations in NC . Moreover, the work of [KR08] focuses
on the communication complexity of the proof system, but not the runtime of the verifier8 (the
complexity of their verifier is proportional to the size of R). For relations in L-uniform NC , our
techniques yield IPCPs with verifier time complexity that is quasi-linear in the input and witness
sizes. See Section 7 for details and theorem statements.

PCA with Efficient Provers. Another work of Kalai and Raz [KR09] proposes a new proof
system model called probabilistically checkable argument (PCA). A PCA is a relaxation of a proba-
bilistically checkable proof (PCP): a verifier first specifies a challenge to the prover, and the proof
(PCA) is tailored to this verifier challenge. The soundness property is required to hold only com-
putationally, i.e. against bounded malicious provers. Other than these differences, the setting is
the same as that of PCPs: after specifying the challenge and receiving the proof, the probabilistic
polynomial time verifier only reads a few bits of the proof string in order to verify. A PCA is said
to be efficient if the honest prover, given a witness, runs in time poly(n).

Using the assumption that (computational) PIR schemes with polylog communication exist,
[KR09] show a transformation from any IPCP with certain properties to a short PCA. Applying
this transformation to our IPCP (the conditions of the transformation are met) yields an efficient
PCA with proof-string length poly(witness size, log n, d) and query complexity poly(log n, d) for any
language in NP whose relation can be computed by depth d and poly-size circuits. We note that
the efficiency of the prover is derived from a special property of our proof system. In particular,
previous PCAs (obtained when one starts with the IPCPs of [KR08]) require non-polynomial time
provers. See Section 8 for details and theorem statements.

1.7 Subsequent Work

Following our work, a literature spanning both theory and practice has considered the question of
delegating computations reliably. We survey the most closely related of these advancements below.
Note that there are many other results that we do not mention, which consider various different
models, or are concerned with practical efficiency.

Significant attention has been devoted to the construction of 2-message computationally sound
delegation schemes. As noted above, Kalai and Raz [KR09] give a transformation from (many-
round) Interactive Proofs to 2-message delegation schemes. Combined with our work, this gives a
2-message delegation scheme for any L-uniform NC computation, using sub-exponentially secure
PIR or Fully Homomorphic Encryption [RAD78, Gen09] (more generally, for any L-uniform circuit
of depth d, the verifier’s computational complexity grows with d).

More recently, there has been a proliferation of two-message delegation schemes. Many of these
results construct a 2-message delegation scheme forNP languages under non-falsifiable assumptions
(see Naor [Nao03]). These works include [Gro10, Lip12, BCCT12, DFH12, GLR11, GGPR13,
BCCT13]. Indeed, Gentry and Wichs [GW11] show barriers to basing the security of delegation
schemes for NP languages on falsifiable assumptions. A different series of results construct 2-
message delegation schemes in a preprocessing model, where the verifier is efficient only in the
amortized setting. These results include [GGP10, CKV10, AIK10, PRV12] (as well as several of
the works based on non-falsifiable assumptions).

8In both this work and in [KR08], the prover always runs in polynomial time.
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Very recently, Kalai, Raz and Rothblum [KRR13, KRR14] showed that no-signalling multi-
prover interactive proofs (NS MIPs) can be used to construct 2-message delegation schemes, and
leveraged this connection to construct a 2-message delegation scheme for any polynomial time
computation (more generally, for a computation that requires time t, the verifier’s computational
complexity grown polynomially with log(t)). This new scheme’s security can be based on sub-
exponentially secure PIR or Fully Homomorphic Encryption.

Another related work of [CKLR11] studies the problem of memory delegation, where even the
input is too long for the verifier to store. They propose a model where the verifier is allowed to run a
preprocessing computation on an input, and can then verify the results of subsequent computations
in sub-linear time (in particular, the verifier can delegate even the input storage). They propose
computationally sound protocols based on cryptographic assumptions.

Rothblum, Vadhan and Wigderson [RVW13] study sublinear time verification for Interactive
Proofs. In this model, called Interactive Proofs of Proximity, the verifier is allowed (sublinear-
time) query access to the input, and can verify that the input is “close” to the language (or,
alternatively, that a result is approximately correct). Unlike the setting of memory delegation,
there is no pre-processing stage, and the verifier only gets sublinear-time query access to the input
(via an oracle). In particular, most bits of the input are never read by the verifier. Building on our
work, they construct such an Interactive Proof of Proximity (with information theoretic soundness)
for any language in NC . They also propose more efficient protocols for specific languages. Gur and
Rothblum [GR13] study non-interactive (Merlin-Arthur) Proofs of Proximity.

Beyond the above works in the theory literature, several recent works have proposed and con-
structed systems for delegating computations. Cormode Mitzenmacher and Thaler [CMT12] gave
the first implementation of a delegation system, with a protocol based on our work. Other systems
based on the protocols proposed in this work include Thaler, Roberts, Mitzenmacher and Pfister
[TRMP12], Thaler [Tha13], and Vu, Setty, Blumberg and Walfish [VSBW13]. Indeed, by now there
are several different works on this topic using different underlying theoretical results. See Walfish
and Blumberg [WB13] for a survey on this line of work.

1.8 Bird’s Eye View of the Protocol

The Big Picture. In a nutshell, our goal is to reduce the verifier’s runtime to be proportional
to the depth of the circuit C being computed, rather than its size, without increasing the prover’s
runtime by too much.

To do this we use many of the ideas developed for the MIP and PCP setting, starting with
the works of [BGKW88, BFL91, BFLS91, AS98, ALM+98, FGL+96]. We apply these ideas to the
problem of proving that the computation of a (uniform) circuit C is progressing properly, without
the verifier actually performing it or even looking at the entire circuit. Applying the ideas pioneered
in the MIP/PCP setting to our setting, however, runs into immediate difficulties. The MIP/PCP
constructions require assuming that the verifier somehow has access to a committed string (usually
the string should contain a low degree extension—a high-distance encoding—of C’s computation
on the input x). This assumption is built into the PCP model, and is implicitly achieved in the
MIP model by the fact that the provers cannot communicate. Our challenge is that in our setting
we cannot assume such a commitment! Instead, we force the prover to recursively prove the values
he claims for this low-degree extension, and do this while preserving the prover’s time complexity.

Elaborating on the above, we proceed to give the idea of the proof of our main theorem. Let C
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be a depth d arithmetic circuit, i.e. the circuit C is composed of addition and multiplication gates
over the finite field GF[2] with fan-in 2. Assume, without loss of generality, that the circuit is in a
layered form, where there are as many layers as the depth of the circuit.9

In previous work, spanning both the single and multi prover models [LFKN92, Sha92, BFL91,
KR08],10 the entire computation of the underlying machine is arithmetized and turned into an
algebraic expression whose value is claimed and proved by the prover.

Departing from previous work, here we instead employ an interactive protocol that closely
follows the (parallelized) computation of C, layer by layer, from the output layer to the input layer,
numbering the layers in increasing order from the top (output) of the circuit to the bottom (input)
of the circuit.11 The verifier has no time to compute points in the low-degree extension of the
computation on x in layer i: this is the low-degree extension (a high distance encoding) of the
vector of values that the gates in the circuit’s i-th layer take on input x, and to compute it one
needs to actually evaluate C, which we want to avoid! Thus, the low-degree extension of the i-th
layer, will be instead supplied by the prover. Of course, the prover may cheat. Thus, each phase of
the protocol lets the verifier reduce verification of a single point in the low-degree extension of an
advanced step (layer) in the parallel computation, to verification of a single point in the low-degree
extension of the previous step (layer). This process is repeated iteratively (for as many layers as
the circuit has), until at the end the verification has been reduced to verifying a single point in
the low-degree extension of the first step in the computation. The first step of the computation is
simply the input layer, and the verifier can compute the low-degree extension of the input x on its
own in nearly-linear time.

Going from Layer to Layer. Given the outline above, the main remaining challenge is how to
reduce verification of a single point in the low degree extension of an i-th layer in the circuit, to
verification of a single point in the low degree extension of the “earlier” (i+ 1)-th layer.12

The main ingredient we use is a sum-check protocol (see [LFKN92]) applied to the gates of level
i. We observe that every point in the low-degree extension (LDE) of layer i is a linear combination,
or a weighted sum, of the values of that layer’s gates. Each gate in layer i is a function of the values
of two gates in layer i + 1 (because we assumed that C is a layered circuit with fan-in 2). Thus,
we can express the value of each point in the LDE of layer i as a weighted sum, over all gates g in
layer i, and over all possible gate-pairs (k, `) in layer (i + 1), of a low degree function of: (i) the
values of gates k and `, and (ii) a predicate that indicates whether gates k and ` are indeed the
“children” of gate g. Arithmetizing this entire sum of sums, we run a sum-check protocol to verify
the value of one point in the low-degree extension of layer i. To simplify matters, we assume for
now that the verifier has access to (a low-degree extension of) the predicate that says whether a
pair of gates (k, `) are the children of the gate g. Then (modulo many details) at the end of this
sum-check protocol the verifier only needs to verify the values of a pair of points in the LDE of
layer (i + 1). This is still not enough, as we need to reduce the verification of a single point in
the LDE of layer i to the verification of a single point in layer (i + 1) and not of a pair of points.
We finally use an interactive protocol to reduce verifying two points in the LDE of layer (i+ 1) to
verifying just one.

9Every circuit can be converted into this format, without increasing its depth. The size is at most squared.
10One exception is the work of Feige and Kilian on refereed games [FK97], which is in a different model.
11I.e., layer 0 is the output layer, and layer d is the input layer.
12We note that at first glance this may seem similar to a problem faced by [FK97] in their work on refereed games.

They also examine the computation step by step or layer by layer, but they do this for a sequential (exponential-time)
computation.
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We assumed for simplicity of exposition above that the verifier has access to a low degree
extension of the predicate describing arbitrary circuit gates. Thus, the (central) remaining question
is how the verifier gains access to such LDE’s of predicates that decide whether circuit gates are
connected, without looking at the entire circuit (as the circuit itself is much larger than the verifier’s
running time). This is where we use the uniformity of the circuit, described below.

The verifier’s running time in each of these phases is poly-logarithmic in the circuit size. In the
final phase, computing one point in the low-degree extension of the input requires only nearly-linear
time, independent of the rest of the circuit. Another important point is that the verifier does not
need to remember anything about earlier phases of the verification, at any point in time it only
needs to remember what is being verified about a certain point in the computation. This results
in very space-efficient verifiers. The savings in the prover’s running time comes (intuitively) from
the fact that the prover does not need to arithmetize the entire computation, but rather proves
statements about one (parallel) computation step at a time.

Utilizing Uniformity. It remains to show how the verifier can compute (a low-degree extension
of) a predicate that decides whether circuit gates are connected, without looking at the entire
circuit. To do this, we use the uniformity of the circuit. Namely, the fact that it has a very short
implicit representation. A similar problem was faced by [BFL91]: There a computation is reduced
to an (exponential) 3SAT formula, and the (polynomial-time) verifier needs to access a low-degree
extension of a function computing which variables are in a specific clause of the formula. In the
[BFL91] setting this can be done because the Cook-Levin reduction transforms even exponential-
time uniform computations into formulas where information on specific clauses can be computed
efficiently. Unfortunately, we cannot use the Cook-Levin reduction as [BFL91] and other works do,
because we need to transform uniform computations into low-depth circuits without blowing up
the input size.

To do this, we proceed in two steps. First, we examine low space computations, e.g. uniform
log-space Turing Machines (deterministic or non-deterministic). A log-space machine can be trans-
formed into a family of boolean circuits with poly-logarithmic depth and polynomial size. We show
that in this family of circuits, it is possible to compute the predicate that decides whether circuit
gates are connected in poly-logarithmic time and constant (AC0) depth. This computation can
itself be arithmetized, which allows the verifier to compute a low-degree extension of the predi-
cate in poly-logarithmic time. Thus we obtain an interactive proof with an efficient prover and
super-efficient verifier for any L or NL computation.

Still, the result above took advantage of the (strong) uniformity of very specific circuits that are
constructed from log-space Turing Machines. We want to give interactive proofs for general log-
space uniform circuits, and not only for the specific ones we can construct for log-space languages.
How then can a verifier compute even the predicate that decides whether circuit gates in a log-
space uniform circuit are connected (let alone its low degree extension)? In general, computing
this predicate might require nearly as much time as evaluating the entire circuit. We overcome this
obstacle by observing that the verifier does not have to compute this predicate on its own: it can
ask the prover to compute the predicate for it! Of course, the prover may cheat, but the verifier
can use the above interactive proof for log-space computations to force the prover to prove that
it computed the (low degree extensions of) the predicate correctly. This final protocol gives an
interactive proof for general log-space uniform circuits with low depth.

Finally, we note that even for non-uniform circuits, the only “heavy” computation that the
verifier needs to do is computing low-degree extensions of the predicate that decides whether circuit
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gates are connected. The locations at which the verifier needs to access this predicate are only a
function of its own randomness (and not of the input or the prover’s responses). This means
that even for a completely non-uniform circuit, the verifier can compute these evaluations of the
predicate’s low-degree extension off-line on its own, without knowing the input or interacting with
the prover. This off-line phase requires run-time that is proportional to the circuit size. Once
the input is specified, the verifier, who has the (poly-logarithmically many) evaluations of the
predicate’s low degree extension that it computed off-line, can run the interactive proof on-line
with the prover. The verifier will be super efficient in this on-line phase. See Section 3 and 4 for
details.

Organization of the Exposition. The full exposition of the main result (Theorem 1.1) is
organized in two phases. First, to highlight and clarify some of the new technical ideas, we present
in Section 3 a bare-bones interactive proof protocol. In this protocol (which is an abstraction),
we assume that the verifier “magically” gets access to (low-degree extensions of) the predicates
that decide whether (and how) triplets of circuit gates are connected (predicates that specify the
circuit). Given oracle access to (low degree extensions of) these predicates, we show in Theorem 3.1
an interactive proof with the parameters claimed above. This still is not an interactive proof in the
standard model, as the verifier gets these oracle functions “magically”. In Section 4 we show how to
implement the above bare-bones protocol for uniform circuits. We begin in Section 4.1 by showing
that (non-deterministic) log-space languages have low-depth polynomial-size circuits for which the
verifier can compute low-degree extensions of the predicates on its own in polylogarithmic time.
This immediately gives an interactive proof with a super-efficient verifier for NL languages, the
result is stated in that section as Theorem 4.4. We then proceed in Section 4.2 with a general result
for L-uniform circuits, another implementation of the bare-bones protocol. Here the verifier cannot
compute the predicates super-efficiently on its own. Instead, the prover computes the values of the
predicates for the verifier. Of course, the prover may cheat, but these are L computations. Thus,
we can use the interactive proofs for NL computations (of Theorem 4.4) as a sub-protocol, where
the prover proves the correctness of his answers. This gives the result of Theorem 1.1.

The remainder of the paper is devoted to applications and consequences. In Section 5 we
construct low-communication (succinct) zero-knowledge proofs. Combining our protocols with a
transformation of Kalai and Raz [KR09], we obtain one-round arguments in Section 6. Section 7
shows constructions of new and improved IPCPs. Finally, in Section 8 we present new construction
of PCAs.

2 Preliminaries

For a string x ∈ Σ∗ (where Σ is some finite alphabet) we denote by |x| the length of the string,
and by xi or x[i] the i’th symbol in the string. For a finite set S we denote by y ∈R S that y is a
uniformly distributed sample from S. For n ∈ N, we denote by [n] the set {1, 2, . . . , n}. For a finite
alphabet Γ we denote by ∆Γ the relative (or fractional) Hamming distance between strings over Γ.
That is, let x, y ∈ Γn then ∆Γ(x, y) = Pri∈R[n][x[i] 6= y[i]], where x[i], y[i] ∈ Γ. Typically, Γ will be
clear from the context, we will then drop it from the subscript.
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2.1 Turing Machines, Circuits, and Complexity Classes

We refer to Turing Machines running in time t(n) and/or space s(n), where t(·) and s(·) are
functions from natural numbers to natural number. Throughout, we implicitly assume that t(·)
and s(·) are time-constructible and space-constructible (respectively).

We assume that the reader is familiar with standard complexity classes such as NP, EXP
and NEXP. For a positive integer i ≥ 0, AC i circuits are boolean circuits (with AND, OR and
NOT gates) of size poly(n), depth O(logi n), and unbounded fan-in AND and OR gates (where n
is the length of the input). NC i circuits are boolean circuits of size poly(n) and depth O(logi n)
where the fan-in of AND and OR gates is 2. In particular, AC0 circuits are boolean circuits (with
AND, OR and NOT gates) of constant-depth, polynomial size, and unbounded fan-in AND and
OR gates. NC1 circuits are boolean circuits of fan-in 2, polynomial size and logarithmic (in the
input size) depth. NC0 circuits are similar to NC1, but have constant-depth. Note that in NC0
circuits, every output bit depends on a constant number of input bits. We use the same notations
to denote the classes of functions computable by these circuit models. AC0, NC1 and NC0 are the
classes of languages (or functions) computable (respectively) by AC0/NC1/NC0 circuits. ACi[q]
(for a prime q) are similar to AC i circuits, but augmented with mod q gates. We denote by AC the
class

⋃
i∈NAC

i, and by NC the class
⋃
i∈NNC

i. RNC i, RAC i, RNC and RAC are the (one-sided)
randomized analogs of the above classes.

Throughout, circuits may have many output bits (we specify the exact number when it is not
clear from the context). Also, often we consider uniform circuit classes. Unless we explicitly note
otherwise, circuit families are log-space uniform, i.e. each circuit in the family can be described by
a Turing machine that uses a logarithmic amount of space in the size of the circuit.

Finally, we extensively use oracle circuits: circuits that have (unit cost) access to an oracle
computing some function. We sometimes interpret this function as a string, in which case the
circuit queries an index and receives from the oracle the symbol in that location in the string.

2.2 Interactive Proofs

We give here standard definitions for interactive proof systems.

Definition 2.1. An interactive proof system for a language L with completeness c and soundness
s, is a two party game between a probabilistic polynomial-time verifier V and a computationally
unbounded prover P . The system has two stages: First, in the interaction stage, V and P are
given a common input x and they exchange messages to produce a transcript t = (V (r), P )(x) (the
entire messages exchange) where r are the internal random coins of V . Then, in the decision stage,
V decides according to x, t and r, whether to accept or reject. The following should hold:

1. (Completeness) For every x ∈ L, Prr[V (x, t, r) = accept] ≥ c, where t = (V (r), P )(x).

2. (Soundness) For every x 6∈ L and every prover P ∗, Prr[V (x, t, r) = accept] ≤ s, where
t = (V (r), P ∗)(x).

If we do not specify c and s then their respective default values are 2/3 and 1/3.

We denote by IPc,s(k) the class of languages that have an interactive proof system with
completeness c, soundness s and k rounds of interaction. It is well known that IP2/3,1/3(k) =
IP1−2−n,2−n(k) (see, e.g., [Gol99]). We denote by AM (i.e., Arthur-Merlin games) the class of
languages that have protocols with a constant number of interaction rounds.
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2.3 Low Degree Extension

Fix H to be an extension field of GF[2], and fix F to be an extension field of H (and in particular, an
extension field of GF[2]), where |F| = poly(|H|).13 We always assume (without loss of generality)
that field operations can be performed in time that is poly-logarithmic in the field size, and space
that is logarithmic in the field size. Fix an integer m ∈ N. In what follows, we define the low degree
extension of a k-element string (w0, w1, . . . , wk−1) ∈ Fk with respect to F,H,m, where k ≤ |H|m.

Fix α : Hm → {0, 1, . . . , |Hm| − 1} to be any (efficiently computable) one-to-one function. In
this paper, we take α to be the lexicographic order of Hm. We can view (w0, w1, . . . , wk−1) as a
function W : Hm → F, where

W (z)
def
=

{
wα(z) if α(z) ≤ k − 1

0 o.w.
(1)

A basic fact is that there exists a unique extension of W into a function W̃ : Fm → F (which agrees
with W on Hm: W̃ |Hm ≡ W ), such that W̃ is an m-variate polynomial of degree at most |H| − 1
in each variable. Moreover, as is formally stated in the proposition below, the function W̃ can be
expressed as

W̃ (t1, . . . , tm) =

k−1∑
i=0

β̃i(t1, . . . , tm) · wi,

where each β̃i : Fm → F is an m-variate polynomial, that depends only on the parameters H, F,
and m (and is independent of w), of size poly(|H|,m) and of degree at most |H|−1 in each variable.

The function W̃ is called the low degree extension of w = (w0, w1, . . . , wk−1) with respect to
H,F,m, and is denoted by LDEH,F,m(w).

Proposition 2.2. There exists a Turing machine that takes as input an extension field H of
GF[2],14 an extension field F of H, and an integer m. The machine runs in time poly(|H|,m) and
space O(log(|H|)+log(m)). It outputs the unique 2m-variate polynomial β̃ : Fm×Fm → F of degree
|H| − 1 in each variable (represented as an arithmetic circuit of degree |H| − 1 in each variable),
such that for every (w0, w1, . . . , wk−1) ∈ Fk with k ≤ |H|m, and for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p), (2)

where W : Hm → F is the function corresponding to (w0, w1, . . . , wk−1) as defined in Equation (1),
and W̃ : Fm → F is its low degree extension (i.e., the unique extension of W : Hm → F of degree at
most |H| − 1 in each variable).

Moreover, β̃ can be evaluated in time poly(|H|,m) and space O(log(|H|) + log(m)). Namely,
there exists a Turing machine with the above time and space bounds, that takes as input parameters
H,F,m (as above), and a pair (z, p) ∈ Fm × Fm, and outputs β̃(z, p).

The above Proposition is well-known. For completeness, we present the proof below.

13Usually, when doing low degree extensions, F is taken to be an extension field of GF[2], and H is simply a subset
of F (not necessarily a subfield). In this paper, we take H to be a subfield. However, all we actually use is the fact
that it is of size 2k for some k.

14Throughout this work, when we refer to a machine that takes as input a field, we mean the machine is given a
short (poly-logarithmic in the field size) description of the field, that permits field operations to be computed in time
that is poly-logarithmic in the field size and space that is logarithmic in the field size.
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Proof of Proposition 2.2. Consider the function β : Hm ×Hm → F defined by

β(z, p) =

{
1 if z = p

0 o.w.

Let β̃ : Fm× Fm → F be the unique extension of β, of degree at most |H| − 1 in each variable. It is
easy to see that β̃ satisfies Equation (2), since it satisfies Equation (2) for every z ∈ Hm, and it is
of degree at most |H| − 1 in each variable.

It remains to prove that β̃ can be both evaluated on an input, and generated (given (H,F,m)),
in time poly(|H) and space O(log(|H|)).

1. Let b : F × F → F be the unique bivariate polynomial of degree ≤ |H| − 1 in each variable,
such that for every t, x ∈ H,

b(t, x) =

{
1 if t = x

0 o.w.

This function is a polynomial (or arithmetic circuit) of size poly(|H). It can be both evaluated
on an input, and generated (given (H,F,m)), in time poly(|H) and space O(log(|H|)).

2. Consider the arithmetic circuit C : Fm × Fm → F defined by

C(z, p) =

m∏
j=1

b(zj , pj).

This circuit of size poly(|H|,m) and degree |H|−1 in each of its variables. It can be evaluated
on an input, and generated (given (H,F,m)), in time poly(|H|,m) and space O(log(|H|) +
log(m)).

It remains to note that C computes the function β̃, since it agrees with β on Hm ×Hm, and is
a polynomial of degree |H| − 1 in each variable.

Claim 2.3. There exists a Turing machine that takes as input an extension field H of GF[2], an
extension field F of H, an integer m, a sequence w = (w0, w1, . . . , wk−1) ∈ Fk such that k ≤ |H|m,
and a coordinate z ∈ Fm. It outputs the value W̃ (z), where W̃ is the unique low-degree extension
of w (with respect to H,F,m). The machine’s running time is |H|m · poly(|H|,m) and its space
usage is O(m · log(|H|)).

Proof of Claim 2.3. The proof is a direct corollary of Proposition 2.2. Let W : Hm → F be the
function corresponding to w, as defined in Equation (1). By Equation 2, for every z ∈ Fm,

W̃ (z) =
∑
p∈Hm

β̃(z, p) ·W (p).

By Proposition 2.2, we know that β̃ can be computed in time poly(|H|,m) and space O(log(|H|) +
log(m)). Thus, computing the entire sum (of products) can be done in time |H|m ·poly(|H|,m) and
space O(m · log(|H|)).
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In Section 4 we refer to the low-degree extension of a k-element string, where each element is a
vector. Namely, we consider the low degree extension of

w = (w0, w1, . . . , wk−1) ∈ (F`)k

with respect to F,H,m, where again k ≤ |H|m.
Similarly to what was done above for the case ` = 1, we view (w0, w1, . . . , wk−1) as a (vector

valued) function W : Hm → F` (in particular, W is again 0 on inputs whose lexicographic order is
|Hm| or more). As before, there is a unique extension of W into a function W̃ : Fm → F` which
agrees with W on Hm, and where each of the outputs is a function of degree at most |H| − 1 in
every input variable. As before, the function W̃ is called the low-degree extension of w with respect
to H,F,m and denoted (as usual) by LDEH,F,m(w).

Finally, note that W̃ can be expressed as the low degree extensions of ` standard functions
(from Hm to F), each computing one of the ` items in W ’s output. By Claim 2.3, the function
W̃ can be expressed as an arithmetic circuit over F, that can be generated and evaluated in time
|H|m · poly(|H|,m, `) and space O(log(`) +m · log(|H|)).

2.4 Low Degree Test

We next explain what a low degree test is. We note that in this work, a low degree test is used
only in Section 7, the section on interactive PCPs.

Fix a finite field F. Suppose that a verifier wishes to test whether a function π : Fm → F is
close to an m-variate polynomial of degree ≤ d (think of d as significantly smaller than |F|). We
think of a low degree test as an interactive proof for π being close to an m-variate polynomial of
degree ≤ d. This proof should be short (say, of size ≤ poly(|F|,m)). The verifier has only oracle
access to π, and is allowed to query π at only a few points (say, only one point).

For this work (specifically, for the application to interactive PCPs), we only need a low-degree
test with constant error. Thus, we could use a simple low-degree test, such as the one of Rubinfeld
and Sudan [RS96]. For the sake of convenience, we use a more powerful low-degree test (with
smaller error), due to Moshkovitz and Raz [MR08]. This low-degree test is described in Figure 1,
and is denoted by (PLDT(π), V π

LDT).

Lemma 2.4. For any m ≥ 3 and 1 ≤ d ≤ |F|, the low degree test (PLDT(π), V π
LDT) described in

Figure 1 has the following guarantees.

• Completeness: If π : Fm → F is an m-variate polynomial of total degree ≤ d then

Pr [(PLDT(π), V π
LDT) = 1] = 1

• Soundness (decoding): For every π : Fm → F and every (unbounded) interactive Turing
machine P̃ , if

Pr[(P̃ (π), V π
LDT) = 1] ≥ γ

then there exists an m-variate polynomial f : Fm → F of total degree ≤ d, such that
Prz∈Fm [π(z) = f(z)] ≥ γ − ε, where

ε
def
= 210m 8

√
md

|F|
.
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Low Degree Test for π : Fm → F

1. The verifier chooses uniformly and independently z1, z2, z3 ∈R Fm. If they are linearly
dependent then he accepts. Otherwise, he sends the prover the triplet (z1, z2, z3).

2. The prover sends η : F3 → F, which is supposedly the function π restricted to the subspace
U spanned by the vectors z1, z2, z3. Namely,

η(α1, α2, α3)
def
= π(α1z1 + α2z2 + α3z3).

3. The verifier checks that η is of degree at most d. If the check fails then the verifier rejects.
Otherwise, the verifier chooses a random point z in the subspace U , by choosing uniformly
α1, α2, α3 ∈R F and setting z = α1z1 + α2z2 + α3z3. He queries the oracle π at the point z,
and accepts if and only if

η(α1, α2, α3) = π(z).

Figure 1: Low degree test (PLDT(π), V π
LDT)

• Complexity: PLDT(π) is an interactive Turing machine, and V π
LDT is a probabilistic inter-

active Turing machine with oracle access to π : Fm → F. The prover PLDT runs in time
≤ poly(|F|m). The verifier V π

LDT runs in time ≤ poly(|F|,m) and queries the oracle π at a
single point. The communication complexity is ≤ poly(|F|,m).

We refer the reader to [MR08] for a proof of Lemma 2.4.

2.5 Interactive Sum-Check Protocol

Fix a finite field F and a subset H ⊆ F. In a sum-check protocol, a (not necessarily efficient) prover
takes as input an m-variate polynomial f : Fm → F of degree ≤ d in each variable (think of d as
significantly smaller than |F|). His goal is to convince a verifier that∑

z∈Hm

f(z) = β,

for some constant β ∈ F. The verifier only has oracle access to f , and is given the constant β ∈ F.
He is required to be efficient in both its running time and its number of oracle queries. In Figure 2,
we review the standard sum-check protocol, as it appeared for example in [LFKN92, Sha92]. We

denote this protocol by
(
PSC(f), V f

SC(β)
)

.

Lemma 2.5. Let f : Fm → F be an m-variate polynomial of degree at most d in each variable, where

d < |F|. The sum-check protocol
(
PSC(f), V f

SC(β)
)

, described in Figure 2, satisfies the following

properties.

• Completeness: If
∑

z∈Hm f(z) = β then

Pr
[(
PSC(f), V f

SC(β)
)

= 1
]

= 1.

• Soundness: If
∑

z∈Hm f(z) 6= β then for every (unbounded) interactive Turing machine P̃ ,

Pr
[(
P̃ (f), V f

SC(β)
)

= 1
]
≤ md

|F|
.
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Sum-Check Protocol for
∑

t1,...,tm∈H f(t1, . . . , tm) = β

• In the first round, P computes the univariate polynomial g1 : F→ F defined by

g1(x)
def
=

∑
t2,...,tm∈H

f(x, t2, . . . , tm),

and sends g1 to V . Then, V checks that g1 : F→ F is a univariate polynomial of degree at
most d, and that ∑

x∈H
g1(x) = β.

If not V rejects. Otherwise, V chooses a random element c1 ∈R F, and sends c1 to P .

• In the i’th round, P computes the univariate polynomial

gi(x)
def
=

∑
ti+1,...,tm∈H

f(c1, . . . , ci−1, x, ti+1, . . . , tm),

and sends gi to V . Then, V checks that gi is a univariate polynomial of degree at most d,
and that ∑

x∈H
gi(x) = gi−1(ci−1).

If not V rejects. Otherwise, V chooses a random element ci ∈R F, and sends ci to P .

• In the last round, P computes the univariate polynomial

gm(x)
def
= f(c1, . . . , cm−1, x),

and sends gm to V . Finally, V checks that gm is a univariate polynomial of degree at most
d, and that ∑

x∈H
gm(x) = gm−1(cm−1).

If not V rejects. Otherwise, V chooses a random element cm ∈R F and checks that

gm(cm) = f(c1, . . . , cm),

by querying the oracle at the point z = (c1, . . . , cm).

Figure 2: Sum-check protocol (PSC(f), V f
SC(β)) [LFKN92, Sha92]

• Complexity: PSC(f) is an interactive Turing machine, and V f
SC(β) is a probabilistic inter-

active Turing machine with oracle access to f : Fm → F. The prover PSC(f) runs in time

≤ poly(|F|m).15 The verifier V f
SC(β) runs in time ≤ poly(|F|,m) and space O(log(|F|) ·m),

and queries the oracle f at a single point. The communication complexity is ≤ poly(|F|,m),
and the total number of bits sent from the verifier to the prover is O(m · log |F|). Moreover,
this protocol is public-coin; i.e., all the messages sent by the verifier are truly random and

15Here we assume the prover’s input is a description of the function f , from which f can be computed (on any
input) in time ≤ poly(|Fm|).
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consist of the verifier’s random coin tosses.

For completeness, we include a proof of this lemma below.

Proof of Lemma 2.5: The completeness condition and the complexity condition follow imme-
diately from the protocol description. As for the soundness, let f : Fm → F be a polynomial of
degree at most d in each variable, such that

∑
z∈Hm f(z) 6= β. Assume for the sake of contradiction

that there exists a cheating prover P̃ for which

s
def
= Pr

[(
P̃ (f), V f

SC(β)
)

= 1
]
>
md

|F|
.

Recall that in the sum-check protocol the prover sends m univariate polynomials g1, . . . , gm, and
the verifier sends m − 1 random field elements c1, . . . , cm−1 ∈ F. For every i ∈ [m], let Ai denote
the event that

gi(x) =
∑

ti+1,...,tm∈H
f(c1, . . . , ci−1, x, ti+1, . . . , tm).

Let S denote the event that
(
P̃ (f), V f

SC(β)
)

= 1. Notice that Pr[S|A1 ∧ . . . ∧ Am] = 0. We will

reach a contradiction by proving that

Pr[S|A1 ∧ . . . ∧Am] ≥ s− md

|F|
.

To this end, we prove by (reverse) induction that for every j ∈ [m],

Pr[S|Aj ∧ . . . ∧Am] ≥ s− (m− j + 1)d

|F|
. (3)

For j = m,

s = Pr[S] ≤ Pr[S|¬(Am)] + Pr[S|Am] ≤ d

|F|
+ Pr[S|Am],

where the latter inequality follows from the fact that every two distinct univariate polynomials of
degree ≤ d over F agree in at most d

|F| points. Thus,

Pr[S|Am] ≥ s− d

|F|
.

Assume that Equation (3) holds for j, and we will show that it holds for j − 1.

s− (m− j + 1)d

|F|
≤Pr[S|Aj ∧ . . . ∧Am] ≤

Pr[S|¬(Aj−1) ∧Aj ∧ . . . ∧Am] + Pr[S|Aj−1 ∧Aj ∧ . . . ∧Am] ≤
d

|F|
+ Pr[S|Aj−1 ∧ . . . ∧Am],

which implies that

Pr[S|Aj−1 ∧ . . . ∧Am] ≥ s− (m− (j − 1) + 1)d

|F|
,

as desired.
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2.6 Private Information Retrieval (PIR)

A Private Information Retrieval (PIR) scheme, a concept introduced by Chor, Goldreich, Kushile-
vitz, and Sudan [CKGS98], allows a user to retrieve information from a database in a private man-
ner. Kushilevitz and Ostrovsky [KO97] were the first to construct a single-database PIR scheme
(with computational security).

More formally, the database is modeled as an N bit string x = (x1, . . . , xN ), out of which
the user retrieves the i’th bit xi, without revealing any information about the index i. A trivial
PIR scheme consists of sending the entire database to the user, thus satisfying the PIR privacy
requirement in the information-theoretic sense. A PIR scheme with communication complexity
smaller than N is said to be non-trivial.

A PIR scheme consists of three algorithms: QPIR, DPIR and RPIR. The query algorithm QPIR

takes as input a security parameter κ, the database size N , and an index i ∈ [N ] (that the user
wishes to retrieve from the database). It outputs a query q, which should be (computationally)
hiding, and reveal no information about the index i. It also outputs an additional secret s, which
will help the user to retrieve the desired element from the database. The database algorithm DPIR

takes as input a security parameter κ, the database (x1, . . . , xN ) and a query q, and outputs an
answer a. This answer enables the user to retrieve xi, by applying the retrieval algorithm RPIR,
which takes as input a security parameter κ, the database size N , an index i ∈ [N ], a corresponding
pair (q, s) obtained from the query algorithm, and the database answer a corresponding to the query
q. It outputs a value which is supposed to be the i’th value of the database.

In this paper we are interested in poly-logarithmic PIR schemes, formally defined by Cachin
et al. [CMS99], as follows.16

Definition 2.6. Let κ be the security parameter and N be the database size. Let QPIR and DPIR

be probabilistic circuits, and let RPIR be a deterministic circuit. We say that (QPIR, DPIR, RPIR)
is a poly-logarithmic private information retrieval scheme if the following conditions are satisfied:

1. (Size Restriction:) QPIR and RPIR are of size ≤ poly(κ, logN), and DPIR is of size ≤
poly(κ,N). The output of QPIR and DPIR is of size ≤ poly(κ, logN).

2. (Correctness:) ∀N , ∀κ, ∀database x = (x1, . . . , xN ) ∈ {0, 1}N , and ∀i ∈ [N ],

Pr[RPIR(κ,N, i, (q, s), a) = xi | (q, s)← QPIR(κ,N, i), a← DPIR(κ, x, q)] ≥ 1− 2−κ
3
.

3. (User Privacy:) ∀N , ∀κ, ∀i, j ∈ [N ], and ∀ (possibly non-uniform) adversary A of size at
most 2κ

3
, ∣∣Pr[A(κ,N, q) = 1 | (q, s)← QPIR(κ,N, i)]−

Pr[A(κ,N, q) = 1 | (q, s)← QPIR(κ,N, j)]
∣∣ ≤ 2−κ

3
.

3 The Bare-Bones Protocol for Delegating Computation

Our goal is constructing a protocol in which a prover, who is given a circuit C : {0, 1}n → {0, 1}
of size S and of depth d, and a string x ∈ {0, 1}n, proves to a verifier that C(x) = 0. The verifier’s

16Definition 2.6 is not worded exactly as the one in [CMS99], but was shown to be equivalent to it in [KR06].
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running time should be significantly smaller than S (the time it would take him to evaluate C(x) on
his own). At the same time, we want the prover to be efficient, running in time that is polynomial
in S.

Since we want the verifier to run in time that is smaller than the circuit size, we must utilize
the uniformity of the circuit, as discussed in Section 1.8. In this section, however, we do not focus
on this issue, and we do not directly obtain protocols for delegating computation. Rather, we
work around the circuit uniformity issue by giving the verifier oracle access to (an extension of) the
function that on input three gates outputs 1 if one gate is the addition (or the multiplication) of the
other two gates. The verifier will run in quasi-linear time given this oracle. We call this protocol a
bare-bones interactive proof protocol, it should be taken as an abstraction, meant to highlight and
clarify some of the new technical ideas in our work. It is not an interactive proof in the standard
model, since we give the verifier access to this oracle. We defer fully specifying the oracle function
to Subsection 3.1 below. For the details on how we realize the bare-bones protocol as an interactive
proof (removing the oracle), see the overview in Section 1.8 and the full Details in Section 4.

Let C : {0, 1}n → {0, 1} be a boolean circuit. We now proceed to present our first result, the
bare-bones protocol, denoted by (P1,V1), for efficiently proving that C(x) = 0. The prover and
the verifier take as input a string x ∈ {0, 1}n, and are both given oracle access to the function
F specifying C (as defined in Subsection 3.1), where F is of degree poly-logarithmic in S. In
the protocol, the verifier V1’s running time (with unit-cost oracle access to F) will be very small
(quasi-linear in the input size for the ranges of parameters we focus on), and the prover P1 will
remain efficient.

In Section 4 we show how to convert this bare-bones protocol into a standard interactive proof
without any oracles, by showing that for wide classes of uniform computations, the values of the
oracle F can be computed by the verifier (on its own or with help from the prover) in poly-
logarithmic (in S) time.

Giving the verifier (and prover) access to this oracle function F , the properties of the bare-bones
protocol for delegating computation are specified in the theorem below.

Theorem 3.1. Let C : {0, 1}n → {0, 1} be a boolean circuit with fan-in 2 of size S and depth d.
Let F be an oracle computing (an extension of) the function specifying C, as defined in Subsection
3.1, of polylog(S)-degree. Protocol (PF1 (x),VF1 (x)) has the following properties:

• Completeness: If C(x) = 0 then

Pr
[
(PF1 (x),VF1 (x)) = 1

]
= 1

• Soundness: If C(x) 6= 0 then for every (unbounded) interactive Turing machine P∗,

Pr
[
(P∗F (x),VF1 (x)) = 1

]
≤ 1

100

• Complexity: The running time of the prover P1 is poly(S). The running time of the
verifier V1 is n · poly(d, log(S)) and it uses O(log(S)) space. The communication complexity
is poly(d, log(S)).

Moreover, the following four additional properties are satisfied:

1. The protocol is public-coin.
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2. The verifier makes O(d) queries to F . Moreover, the points where the verifier queries F
are determined solely by its (public) coins, and are uniformly random.

3. Each message sent by the prover P1 depends only on the preceding O(log(S)) bits sent
by the verifier (and on the input x and oracle F).17

4. If, instead of the input x, V1 is given oracle access to the low degree extension of x (with
respect to H,F,m′ as defined in Subsection 3.1), the protocol still satisfies all claims
above. Moreover, the verifier runs in time poly(d, log(S)) and space O(log(S)). In
this case, V1 queries the low-degree extension of x at a single point, which is uniformly
random (over his coins).

The rest of this section is devoted to specifying the oracle F and then proving Theorem 3.1.
We begin in Subsection 3.1 with preliminaries, conventions, and specifications of the protocol’s
parameters, including the oracle function F . The bare-bones protocol is given in Subsection 3.2.
Finally, we prove Theorem 3.1 in Subsection 3.3.

3.1 Preliminaries

Parameters. Fix any circuit C : {0, 1}n → {0, 1}. We denote the circuit size by S, and the circuit
depth by d ≤ S. Let H be an extension field of GF[2] such that

max{d, log(S)} ≤ |H| ≤ poly(d, log(S)),

and let F be an extension field of H, where

|F| ≤ poly(|H|).

Jumping ahead, we note that the reason we require |H| ≥ max{d, log(S)} (and we don’t take, say
|H| = 2) is that for the sake of efficiency we need |H| and |F| to be polynomially related, and we
need |F| = poly(d, log(S)) for error correction.

Let m be an integer such that
S ≤ |H|m ≤ poly(S).

Let m′ ≤ m be an integer such that

n ≤ |H|m′ ≤ n · poly(d, log(S)).

And let δ ∈ N be a (degree) parameter such that

|H| − 1 ≤ δ < |F|.

Assumptions and notations. Note that any boolean (or arithmetic) circuit C : {0, 1}n → {0, 1}
can be converted into an arithmetic circuit C : Fn → F over the field F, while increasing the size
and the depth of the circuit by at most a constant factor. Indeed, throughout Section 3, we assume
(without loss of generality) that C : Fn → F is an arithmetic circuit over the field F. We also

17This fact will be used in Section 8, which uses the bare-bones protocol to construct efficient “short” probabilis-
tically checkable arguments.
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assume for simplicity that the circuit C : Fn → F is a layered arithmetic circuit of fan-in 2 (over
the gates × and + and over the field F) as follows.

A depth-d layered circuit is one where the gates are divided into (d + 1) layers. We think of
the 0 layer as the output layer (comprised of the output gate), and of the d layer as the input
layer (comprised of the input gates). For a layered circuit, wires can only connect gates in adjacent
layers, i.e. the output wire of a gate in layer i can only be the input wire for a gate in layer (i− 1).
For simplicity of notations, we assume that all the layers in C are of the same size (except for the
input layer), and we assume that the size of each layer is S.18 We note that any circuit (of size S)
can be transformed into one with exactly S gates in each level, by adding < S dummy gates (that
are the constant zero) to each layer. In particular, we add dummy gates to the output layer, so the
transformed circuit C ′ : Fn → FS satisfies that for every (x1, . . . , xn) ∈ Fn,

C ′(x1, . . . , xn) = (C(x1, . . . , xn), 0, . . . , 0).

This increases the size of the circuit by at most a quadratic factor (and does not increase its depth).
Moreover, as noted above we assume throughout that circuit is layered. We note that any

arithmetic circuit can be converted into a layered arithmetic circuit of fan-in 2, while increasing
the size of the circuit by at most a polynomial factor and increasing the depth of the circuit by at
most a factor of O(log(S)).

For each 0 ≤ i ≤ d − 1, we denote the S gates in the i’th layer of C by (gi,0, gi,1, . . . , gi,S−1),
and we denote the n gates in the d’th layer of C (i.e., the input layer) by (gd,0, gd,1, . . . , gd,n−1). For
each i ∈ [d− 1], we associate with C two functions

addi,multi : {0, 1, . . . , S − 1}3 → {0, 1},

defined by

addi(j1, j2, j3) =

{
1 if gi−1,j1 = gi,j2 + gi,j3
0 o.w.

, (4)

and

multi(j1, j2, j3) =

{
1 if gi−1,j1 = gi,j2 × gi,j3
0 o.w.

. (5)

Similarly, we associate with C two additional functions

addd,multd : {0, 1, . . . , S − 1} × {0, 1, . . . , n− 1}2 → {0, 1},

defined as in Equations (4) and (5), respectively.

We say that the functions {addi,multi}i∈[d] specify the circuit C.

For each i ∈ [d− 1], let
˜addi, ˜multi : F3m → F

18Note the discrepancy between the input layer and the other layers. For our results in Sections 3 and 4 we can
assume that the input layer is also of size S (and this will simplify the notations a bit). However, the proof of
Theorem 7.2 in Section 7 makes use of the fact that the input layer is small (of size n), whereas the other layers may
be large (of size S).
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be multivariate polynomials of degree ≤ δ in each variable, that extend the functions addi and
multi, respectively.19 Namely, the functions ˜addi and ˜multi satisfy that for every z1, z2, z3 ∈ Hm,
such that α(z1), α(z2), α(z3) ≤ S − 1 (where α : Hm → {0, 1, . . . , |H|m − 1} is the lexicographic
order),

˜addi(z1, z2, z3) = addi(α(z1), α(z2), α(z3))

and
˜multi(z1, z2, z3) = multi(α(z1), α(z2), α(z3)).

If z1, z2, z3 ∈ Hm but for one of them, say zj , it is the case that α(zj) > S − 1, then both
˜addi, ˜multi return 0. The fact that such functions ˜addi and ˜multi exist follows from the fact that
δ ≥ |H| − 1. In particular, ˜addi (resp. ˜multi) could be the low degree extension of addi (resp.
multi),

20 though we will sometimes take them to be different extensions (of slightly higher degree).

Similarly, let
˜addd, ˜multd : Fm × Fm

′ × Fm
′ → F

be multivariate polynomials of degree ≤ δ in each variable, that extend the functions addd and
multd, respectively. Namely, the functions ˜addd and ˜multd satisfy that for every z1 ∈ Hm such that
α(z1) ≤ S − 1, and for every every z2, z3 ∈ Hm′ such that α(z2), α(z3) ≤ n− 1,

˜addd(z1, z2, z3) = addd(α(z1), α(z2), α(z3))

and
˜multd(z1, z2, z3) = multd(α(z1), α(z2), α(z3)).

And if z1 ∈ Hm and z2, z3 ∈ Hm′ , but either α(z1) > S − 1, or α(z2) > n − 1, or α(z3) > n − 1,
then both ˜addd, ˜multd return 0.

We say that the functions { ˜addi, ˜multi}i∈[d] are extensions of the functions that specify the circuit

C. Note that unlike the functions {addi,multi}i∈[d] that specify C, the extensions { ˜addi, ˜multi}i∈[d]

are not uniquely determined by the circuit C. For δ > |H| − 1 there are many possible extensions
of the functions that specify the circuit C, and { ˜addi, ˜multi}i∈[d] are some such extensions. We

specify { ˜addi, ˜multi} separately in each implementation of the bare-bones protocol.
We are now ready to specify the oracle F accessed by the prover and verifier in the bare-bones

protocol. This oracle consists of the collection of functions { ˜addi, ˜multi}i∈[d]:

F = { ˜addi, ˜multi}i∈[d],

where the prover and verifier can access ˜addi or ˜multi by querying F with the proper i, a bit
specifying ˜add or ˜mult, and an input in (Fm)3 or (for i = d) in Fm × (Fm′)2.

Finally, for each 0 ≤ i ≤ d − 1 we associate a vector vi = (vi,0, . . . , vi,S−1) ∈ FS with the
i’th layer of the circuit C, and we associate a vector vd = (vd,0, . . . , vd,n−1) ∈ Fn with the d’th

19See Subsection 2.3 for a discussion on low degree extensions.
20We note that in Section 2 we only defined the low degree extension of a string (not of a function). The low degree

extension of a function f : Hm → F (for any m) can be defined analogously, as the unique function f̂ : Fm → F of
degree ≤ |H| − 1 in each variable, such that for every z ∈ Hm, f̂(z) = f(z).
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layer of the circuit C. The vector v0 is associated with the output layer of the circuit, and the
vector vd is associated with the input layer of the circuit. These vectors are functions of the input
x = (x1, . . . , xn) ∈ Fn, and are defined as follows: For each 0 ≤ i ≤ d we let vi be the vector that
consists of the values of all the gates in the i’th layer of the circuit on input x. So, the vector v0,
that corresponds to the output layer, satisfies v0 = (C(x), 0, . . . , 0) ∈ FS . Similarly, the vector vd,
that corresponds to the input layer, satisfies vd = (x1, . . . , xn) ∈ Fn.

For each 0 ≤ i ≤ d− 1, let
Ṽi : Fm → F

be the low degree extension of vi with respect to H,F,m (as defined in Subsection 2.3). Claim 2.3
implies that the function Ṽi is of degree ≤ |H| − 1 in each of its m variables, and can be computed
in time ≤ poly(|F|m) = poly(S).

Let
Ṽd : Fm

′ → F

be the low degree extension of vd with respect to H,F,m′. Claim 2.3 implies that the function Ṽd is
of of degree≤ |H|−1 in each of itsm variables, and can be computed in time≤ |H|m′ ·poly(|H|,m′) =
n · poly(d, log(S)).

3.2 The Bare-Bones Protocol

In this subsection, we present the bare-bones protocol (P1,V1) for efficiently proving that C(x) = 0.
In this protocol we give both the verifier V1 and the prover P1 oracle access to the set of functions

F = { ˜addi, ˜multi}i∈[d],

as defined in Subsection 3.1.21,22 The prover and verifier also take as input the sting x ∈ {0, 1}n.

Protocol Overview. The prover wants to prove that C(x) = 0, or equivalently, that Ṽ0(0, . . . , 0) =
0. This is done in d phases (where d is the depth of C). In the i’th phase (1 ≤ i ≤ d) the prover
reduces the task of proving that Ṽi−1(zi−1) = ri−1 to the task of proving that Ṽi(zi) = ri, where zi
is a random value determined by the protocol (and z0 = (0, . . . , 0), r0 = 0). Finally, after the d’th
phase, the verifier checks on his own that Ṽd(zd) = rd. Note that Ṽd is the low degree extension of
the input x with respect to H,F,m′. Thus, this last verification task requires computing a single
point in the low degree extension of the input x. This is the “heaviest” computation run by the
verifier, and this final computation is independent of the circuit C; it can be done in quasi-linear
time in the input length. Moreover, if the verifier is given oracle access to the low-degree extension
of x, then this only requires a single oracle call.

The Bare-Bones Protocol:

Parameters We use the parameters defined in Subsection 3.1: circuit size S, circuit depth d, input
size n, where n, d ≤ S. We also defined there the fields H,F, integers m,m′ and a degree
parameter δ.

21We note that the functions in F could have been given to the prover P1 as input (say, via their truth-tables). We
decided to give P1 oracle access to these functions only for the sake of simplicity of the exposition (and not because
of size constraints). Note also, that given oracle access to these functions, the prover P1 can reconstruct the circuit
C in time O(|C|).

22In Section 4 we show how these oracles can be realized in some specific cases (for example, if C is an L-uniform
circuit).
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The layered arithmetic circuit C : Fn → F is of fan-in 2 (over the gates + and ×), of size S
and depth d.

Input The prover and the verifier take as input a string x ∈ Fn, and are both given oracle access
to a set of functions F = { ˜addi, ˜multi}i∈[d] corresponding to C (as defined in Subsection 3.1),
where each function in F is of degree ≤ δ in each variable.

The protocol (PF1 (x),VF1 (x)) The prover needs to prove that C(x) = 0, or equivalently, that
Ṽ0(0, . . . , 0) = 0. This is done in d phases (where d is the depth of C). In the i’th phase
(1 ≤ i ≤ d) the prover reduces the task of proving that Ṽi−1(zi−1) = ri−1 to the task of proving
that Ṽi(zi) = ri, where zi is a random value determined by the protocol (and z0 = (0, . . . , 0),
r0 = 0). Finally, after the d’th phase, the verifier checks on his own that Ṽd(zd) = rd.

In what follows we describe these phases in more detail. In each phase, the communication
complexity is poly(d, logS), the running time of the prover is at most poly(S), and the running
time of the verifier is poly(d, logS).

The i’th phase (1 ≤ i ≤ d− 1). In this phase, we reduce the task of proving that

Ṽi−1(zi−1) = ri−1,

to the task of proving that
Ṽi(zi) = ri,

where zi ∈ Fm is a random value determined by the verifier, and ri is a value determined by the
protocol.

According to Proposition 2.2, for every z ∈ Fm,

Ṽi−1(z) =
∑
p∈Hm

β̃(z, p) · Ṽi−1(p)

where β̃ : Fm × Fm → F is a polynomial of size poly(|H|,m) and of degree at most |H| − 1 in each
variable, that can be computed by a Turing machine that runs in time ≤ poly(|H|,m).

Notice that for every p ∈ Hm,

Ṽi−1(p) =
∑

ω1,ω2∈Hm

˜addi(p, ω1, ω2) ·
(
Ṽi(ω1) + Ṽi(ω2)

)
+ ˜multi(p, ω1, ω2) · Ṽi(ω1) · Ṽi(ω2).

Thus, for every z ∈ Fm,

Ṽi−1(z) =
∑

p,ω1,ω2∈Hm

β̃(z, p) ·
(

˜addi(p, ω1, ω2) ·
(
Ṽi(ω1) + Ṽi(ω2)

)
+ ˜multi(p, ω1, ω2) · Ṽi(ω1) · Ṽi(ω2)

)
.

For every z ∈ Fm, let fz : (Fm)3 → F be the function defined by

fz(p, ω1, ω2)
def
= β̃(z, p) ·

(
˜addi(p, ω1, ω2) ·

(
Ṽi(ω1) + Ṽi(ω2)

)
+ ˜multi(p, ω1, ω2) · Ṽi(ω1) · Ṽi(ω2)

)
.
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Proposition 2.2, together with the definitions of ˜addi, ˜multi and Ṽi, implies that the function fz is
a 3m-variate polynomial of size ≤ poly(S) and of degree at most δ + |H| − 1 ≤ 2δ in each variable.
Note that, for every z ∈ Fm,

Ṽi−1(z) =
∑

p,ω1,ω2∈Hm

fz(p, ω1, ω2).

Thus, proving that Ṽi−1(zi−1) = ri−1 is equivalent to proving that

ri−1 =
∑

p,ω1,ω2∈Hm

fzi−1(p, ω1, ω2).

This is done by running the interactive sum-check protocol, as described in Figure 2.23

However, in order to carry out the verification task, the verifier needs to compute on his own the
function fzi−1(p, ω1, ω2), on random inputs p, ω1, ω2 ∈R Fm (chosen by the verifier). Recall that the

verifier has oracle access to the functions ˜addi and ˜multi. Moreover, according to Proposition 2.2,
computing the function β̃ requires time ≤ poly(|H|,m). So, the main computational burden in this
verification task is computing Ṽi(ω1) and Ṽi(ω2), which requires time poly(S) (and thus cannot be
computed by our computationally bounded verifier).

In the protocol, the prover P1 now sends both these values, Ṽi(ω1) and Ṽi(ω2), to the verifier.
The verifier V1 (who knows ω1 and ω2) receives two values v1, v2 and wants to verify that Ṽi(ω1) = v1

and Ṽi(ω2) = v2.
Thus, so far, using the sum-check protocol, we reduced task of proving that Ṽi−1(zi−1) = ri−1

to the task of proving that both Ṽi(ω1) = v1 and Ṽi(ω2) = v2. However, recall that our goal was
to reduce the task of proving that Ṽi−1(zi−1) = ri−1 to the task of proving a single equality of the
form Ṽi(zi) = ri. Therefore, what remains (in the i’th phase) is to reduce the task of proving two
equalities of the form Ṽi(ω1) = v1 and Ṽi(ω2) = v2 to the task of proving a single equality of the
form Ṽi(zi) = ri. This is done via the following (standard) interactive process.

1. Let t1, t2 ∈ F be two distinct fixed elements known to the prover P1 and the verifier V1. Let
γ : F → Fm be the unique line (i.e., polynomial of degree at most 1), such that for every
i ∈ {1, 2}, γ(ti) = ωi. It is well known that for any t1, t2, ω1, ω2, the conditions γ(ti) = ωi
determine γ uniquely, and that γ can be computed (by both P1 and V1) in time poly(|F|,m)
and space O(log(|F|) ·m).

2. The prover P1 sends the function Ṽi ◦ γ : F→ F to the verifier V1.

3. Upon receiving a function f : F → F from the prover (supposedly, f = Ṽi ◦ γ), the verifier
V1 checks that f is a polynomial of degree at most m · (|H| − 1), and that f(t1) = v1 and
f(t2) = v2. If these tests pass, then V1 chooses a random element t ∈ F and sends it to P1.

4. The prover and verifier continue to Phase i+ 1 with zi
def
= γ(t) and ri

def
= f(t).

23Note that in the interactive sum-check protocol the prover takes the function fz as input, whereas our prover
P1 does not take fz as input. This is not a problem since P1 can compute the function fz (as a polynomial or as a
truth-table) using his oracles, in time poly(S).
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The d’th phase. This phase is very similar to the previous phases. The only difference stems
from the fact that the d’th layer of C is smaller than its previous layers. Namely, it is of size
|H|m′ rather than size |H|m. Thus, in this phase the sum-check protocol is over p ∈ Fm and over
ω1, ω2 ∈ Hm′ . Similarly, the proceeding interactive protocol in this phase reduces the task of proving
two equalities of the form Ṽd(ω1) = v1 and Ṽd(ω2) = v2 to the task of proving a single equality of
the form Ṽd(zd) = ri, where now ω1, ω2, zd ∈ Fm′ .

The final verification. After the final verification phase, the verifier V1 needs to verify on his
own that Ṽd(zd) = rd. This amounts to computing a single point in the low-degree extension of
the input x (with respect to F,H,m′). The verifier runs this computation on its own (or, if given
oracle access to the low degree extension of the input x, the verifier queries the oracle at point zd
and verifies that the answer returned is rd).

3.3 Proof of Theorem 3.1

Completeness. The perfect completeness follows immediately from the protocol description, as
well as the perfect completeness of the sum-check protocol (see Lemma 2.5).

Soundness. For the soundness condition, fix any layered arithmetic circuit C : Fn → F, any x ∈ Fn
such that C(x) 6= 0, and any set of functions F that are low-degree extensions of the functions that
specify the circuit C (as defined in Subsection 3.1). Assume that there exists a cheating prover P∗
such that

Pr
[
(P∗F (x),VF1 (x)) = 1

]
= s.

Recall that the protocol (PF1 (x),VF1 (x)) consists of d phases. Each phase consists of a sum-check
protocol and an additional short interactive protocol. According to our notations, the sum-check
protocol requires the values of Ṽi(w1) and Ṽi(w2) for verification, and the additional interactive
protocol reduces the verification of Ṽi(w1) = v1 and Ṽi(w2) = v2 to the verification of a single
equality Ṽi(zi) = ri.

Let A denote the event that (P∗F (x),VF1 (x)) = 1. For every 0 ≤ i ≤ d, let Ti denote the event
that indeed Ṽi(zi) = ri. Thus, assuming C(x) 6= 0 is equivalent to assuming ¬(T0). Notice that

s = Pr[A] = Pr[A ∧ ¬(T0) ∧ Td] ≤Pr[∃i ∈ [d] s.t. A ∧ ¬(Ti−1) ∧ Ti] ≤
d∑
i=1

Pr[A ∧ ¬(Ti−1) ∧ Ti].

For every i ∈ [d], let Ei denote the event that indeed Ṽi(w1) = v1 and Ṽi(w2) = v2.24 Then,

Pr[A ∧ ¬(Ti−1) ∧ Ti] = Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ Ei] + Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ ¬(Ei)]

The soundness property of the interactive sum-check protocol implies that

Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ Ei] ≤ Pr[A ∧ ¬(Ti−1) ∧ Ei] ≤
3m · 2δ
|F|

≤ 6mδ

|F|
.

The fact that any two distinct univariate degree t polynomials agree on at most t points implies
that

Pr[A ∧ ¬(Ti−1) ∧ Ti ∧ ¬(Ei)] ≤ Pr[A ∧ Ti ∧ ¬(Ei)] ≤
m(|H| − 1)

|F|
≤ mδ

|F|
.

24Note that (w1, v1) and (w2, v2) depend on the phase i ∈ [d]. For the sake of simplicity, this dependence is not
captured in our notations.

33



Thus,

Pr[A ∧ ¬(Ti−1) ∧ Ti] ≤
6mδ

|F|
+
mδ

|F|
=

7mδ

|F|
.

All in all, we get that

s ≤ 7mdδ

|F|
.

Taking F such that |F| ≥ 700mdδ = poly(|H|), we get that s ≤ 1
100 as desired.

Complexity. Recall that the bare-bones protocol proceeds in d phases (where d is the depth of C).
In the i’th phase (1 ≤ i ≤ d) the prover reduces the task of proving that Ṽi−1(zi−1) = ri−1 to the
task of proving that Ṽi(zi) = ri. This is done by running a sum-check protocol and an additional
short interactive protocol.

The complexity of the i’th phase of the protocol, 1 ≤ i ≤ d, is as follows (we ignore the difference
between m and m′ that comes into play only in the d’th phase):

1. The running time of the prover P1 is poly(|Fm|) = poly(S), both in the sum-check protocol
(see Lemma 2.5) and in the proceeding interactive process.

2. The running time of the verifier V1 (with oracle access to F) is poly(|F|,m) = poly(d, log(S)),
both in the sum-check protocol (see Lemma 2.5) and in the proceeding interactive process.

The space used by V1 is O(log(|F|) · m) = O(log(S)), both in the sum-check protocol (see
Lemma 2.5) and in the proceeding interactive process. Note that the only information that
the prover and verifier need to “remember” for the next phase is the values i, zi, ri (and they
don’t need to remember any information from previous phases). This implies, in particular,
that the total space used by the verifier in all phases is only O(log(|F|) ·m) = O(log(S)), not
much larger than the space used in a single phase.

3. The sum-check protocol has communication complexity poly(|F|,m) (see Lemma 2.5), and the
proceeding interactive process has communication complexity poly(|F|). Thus, in total, each
phase has communication complexity poly(|F|,m) = poly(d, log(S)). Moreover, the verifier
V1 is public-coin, and the number of random bits it sends to the prover P1 in each phase is
O(log(|F|) ·m). This, together with the fact that the only information that the prover needs
to “remember” for the next phase is the values i, zi, ri (and does not need to remember any
information from previous phases), implies that each message sent by the prover depends only
on the preceding O(log(|F|) ·m) = O(log(S)) random bits sent by the verifier.

4. In each phase, the verifier queries each ˜addi and ˜multi only at a single location. The verifier’s
queries to ˜addi and ˜multi are determined by its (public) coin tosses in the sum-check protocol
and are thus also uniformly random (over the verifier’s coin tosses).

Finally, the verifier V1 needs to verify on his own that Ṽd(zd) = rd. This amounts to computing
a single point in the low-degree extension of the input x (with respect to F,H,m′). This can be done
(by Claim 2.3) in time n ·poly(|H|,m′) = n ·poly(d, log(S)) and space O(log(|H|) ·m′) = O(log(S)).
If the verifier has an oracle to the low degree extension of x, then this can instead be accomplished
by a single (unit cost) oracle query to point zd, a uniformly random point determined by the
verifier’s coin tosses in the d’th phase of the protocol.
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4 Interactive Proofs: Implementing the Bare-Bones Protocol

Recall that our goal is to construct a protocol in which a prover, who is given a circuit C : {0, 1}n →
{0, 1} of size S and of depth d, and a string x ∈ {0, 1}n, can prove to a verifier that C(x) = 0,
while the verifier runs in time significantly less than S, which is the time that it would take him to
evaluate C(x) on his own. We also want the verifier to use as little space as possible, continuing
the study of space-bounded verifiers.

In Section 3 we presented the bare-bones protocol, where we gave the verifier oracle access to
a set of functions F = { ˜addi, ˜multi}i∈[d], which are (extensions of) functions that define C. With
these oracles the verifier was both time efficient and space efficient. In our results, however, we
want to work in the standard model of interactive proofs, where the verifier does not have oracle
access to these functions. Thus, our goal in this section is to implement, or realize, the bare-bones
protocol in the standard model of interactive proofs.

We build on the foundations laid in the previous section to construct standard interactive proofs
for uniform languages, where the complexity of the verifier and the prover are comparable to those
in the bare-bones protocol. In particular, we provide methods for the verifier to reliably obtain the
values of { ˜addi, ˜multi}i∈[d] in a time-efficient and space-efficient manner. This section consists of
three parts:

First, in Subsection 4.1 we show how to implement the bare-bones protocol for languages in
NL; i.e., languages computable in logarithmic non-deterministic space. To prove this result, we
show that such languages have circuits of poly-size and polylog-depth, for which { ˜addi, ˜multi}i∈[d]

can be evaluated by the verifier in polylog-time and log-space (without using any non-standard
oracles).

Second, in Subsection 4.2 we use the above result on delegating NL computations, to show
how to implement the bare-bones protocol for any language in (L-uniform) NC . To this end, we
show that for such languages, there exists an interactive sub-protocol that the prover can use to
prove to the verifier the values of { ˜addi, ˜multi}i∈[d]. In these sub-protocols the verifier runs in
poly-logarithmic time and logarithmic space (and the prover runs in polynomial time). We then
implement the bare-bones protocol by replacing the verifier’s oracle calls to F with these interactive
sub-protocols, in which the prover provides the verifier with the values of functions in F and proves
their correctness. We also use this idea to obtain interactive public-coin proofs with log-space
verifiers for all of P (see Corollary 1.4).

Finally, in Subsection 4.3 we take an alternate approach that does not rely on the uniformity
of the circuit (the computation) being delegated. Instead, we split the delegation process into two
phases: an off-line (non-interactive) pre-processing phase, run (only) by the verifier before the input
x to the circuit is even specified. In this phase the verifier gets access to the entire circuit and works
in time that is polynomial in the size of the circuit. The output of the pre-processing phase is a short
data string (much shorter than the circuit size). Then, after the input x is specified, the prover
and verifier run an on-line interactive proof phase. This on-line protocol is an implementation of
the bare-bones protocol. In particular, in this on-line phase the verifier’s and the prover’s running
times, as well as the communication complexity, is as in the bare-bones protocol. This result is
formally stated in Theorem 1.5.

We begin by (briefly) reviewing the notation and conventions introduced in Section 3.

Conventions: a Recap. Throughout this section, whenever we speak of a circuit C for computing
a language or function, we follow the conventions introduced in the bare-bones protocol (Section

35



3.1). Let H be an extension field of GF[2], F an extension field of H (and thus also of GF[2]). We
always think of the circuit C (which is defined over the field GF[2]), as a layered arithmetic circuit
with fan-in 2, over the extension field F. Further, C’s gates are labeled so that gi,z denotes the z-th
gate in layer i, where we alternately treat i and z as boolean strings or values in {0, 1, . . . , d} and
{0, 1, . . . , |C| − 1} (respectively). The top (or output) layer is layer 0, the bottom (or input) layer
is layer d. We assume here that the bottom layer includes n input gates and 2 “constant” gates,
one for the constant 0 and one for the constant 1.

We define the functions addi,multi as in Section 3.1: they take as input three labels in
{0, 1, . . . , |C| − 1}, the first corresponding to a gate in layer i− 1 and the other two corresponding
to gates in layer i. The functions answer 1 if the first gate is an addition or multiplication (respec-
tively) of the other two. Note that, as in Section 3.1, addd and multd take as input three labels,
where the first label in {0, 1, . . . , |C| − 1} corresponds to a gate in layer d − 1, and the other two
labels in {0, 1, . . . , n + 1} correspond to input gates. Throughout this section we abuse notation
and do not distinguish between the functions addi,multi, as defined above, and the boolean circuits
we construct to compute them, which we also call addi,multi.

For m,m′ such that |Hm| ≥ |C| and |Hm′ | ≥ n + 2, the functions α, α′ are the functions that
take a vector in Hm (respectively Hm′) and output its lexicographic order.

As before, let ˜addi, ˜multi : (Fm)3 → F be some extensions of addi,multi (with respect to
(H,F,m,m′)). Namely, if all three of their inputs are in Hm, they translate them into three gate
labels (using α, α′), and answer as addi,multi. In particular, if the inputs are all in Hm, then the
answer is always 0 or 1. If even one of the inputs is an element of Fm that is not in Hm, ˜addi, ˜multi
output some value in F. An important property we want from these functions is that they have
low degree δ, in particular δ will be significantly smaller than |F|. Throughout this section we
abuse notation and do not distinguish between functions ˜addi, ˜multi, as described above, and the
arithmetic circuits we construct to compute them, which we also call ˜addi, ˜multi.

4.1 Interactive Proofs for NL

In this subsection we show how to implement the bare-bones protocol for any language in NL. The
full result is stated in Theorem 4.4. We proceed by first showing in Subsection 4.1.1 that languages
in NL are computable by circuits for which ˜addi, ˜multi can be evaluated in poly-logarithmic time
and logarithmic space. In Section 4.1.2 we implement the bare-bones protocol by having the verifier
replace its oracle F with these easy to evaluate ˜addi and ˜multi.

4.1.1 Circuits for NL Languages with Efficient Low Degree ˜addi, ˜multi

Overview. Our goal in this subsection is to show that every language in NL has (for every input
length) a polylog-depth and poly-size arithmetic circuit that computes it. This circuit has the
additional property that { ˜addi, ˜multi} are polylog-size arithmetic circuits that are log log-space
uniform.25 This implies, in particular, that they can be evaluated in polylog-time and log-space,
as desired. The degree of these circuits is denoted by δ, and is significantly smaller than |F|. We
do this in three steps:

25Throughout this section, when we refer to a circuit as being s(n)-space uniform we always refer (implicitly or
explicitly) to a family of circuits, one for every input length. The family is s(n)-space uniform if there exists a Turing
machine that takes as input 1n, outputs the entire circuit, and uses only O(s(n)) space. It thus also runs in time at
most 2O(s(n)).
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First, we show that every language in NL has (for every input length) a poly-size and polylog-
depth arithmetic circuit, for which addi,multi are polylog-size, log log-space uniform, constant-
depth (AC0) boolean circuits. This result is stated in Lemma 4.1. Second, we show how to compute
the low-degree extensions of α, α′ using a polylog-size, log log-space uniform and low degree (degree
|H| − 1) arithmetic circuit.26 This result is stated in Claim 4.2. Finally, we combine the two
results above, to show that every language in NL has (for every input length) a poly-size and
polylog-depth arithmetic circuit, for which ˜addi, ˜multi are polylog-size, log log-space uniform, low
degree (δ) arithmetic circuits. This is the result we need for implementing the Bare-Bones protocol
for NL computations, and it is stated in Lemma 4.3.

Step 1: Small, Uniform, Constant Depth Boolean addi,multi. We begin by showing that
every language in NL has (for each input length) a poly-size, polylog-depth circuit, for which
addi,multi are log log-space uniform, polylog-size and constant-depth (AC0) boolean circuits. We
state this result in a more general manner, for any space and time bounds.

Lemma 4.1. Let L be any language computed by a non-deterministic Turing Machine T in time
t(n) and space s(n) (we assume s(n) = Ω(log(n))). Let n be any input length.

There exists an arithmetic circuit C over GF[2] for computing L on inputs of length n. The
circuit C is of size poly(2s(n)) and depth d(n) = O(s(n) · log(t(n))) (with fan-in 2).

For all i ∈ {1, . . . , d(n)}, the circuits addi and multi are poly(s(n))-size constant depth (AC0)
circuits. These circuits can be generated by a O(log(s(n)))-space Turing machine G, that takes
(n, i, b) as input (where i ∈ {1, . . . , d(n)}, b ∈ {0, 1}). It outputs the circuit addi if b = 0, and it
outputs the circuit multi if b = 1.

Proof of Lemma 4.1.

Preliminaries. We begin with notation and preliminaries, reviewing how to translate T ’s compu-
tations into questions about the adjacency matrix of its computation graph.

We assume (without loss of generality) that the machine T has an input-tape and a single
work-tape, both over a boolean alphabet. Let Q be the (constant size) set of possible machine
states. The transition table RT of T is a (constant-size) collection of pairs of tuples:

RT ⊆ (Q× {0, 1} × {0, 1}, Q× {L,R} × {0, 1} × {L,R}).

The first tuple includes a state and two alphabet symbols (the first read by the input-tape reading
head, the second by the work-tape reading head). The second tuple includes a new machine state,
a direction to move the input-tape reading head, a new value for location just read from the work-
tape, and a direction to move the work-tape reading head. Two tuples are in the (non-deterministic)
machine’s table RT if the (non-deterministic) machine may move from the state described by the
first item in the tuple in the manner specified by the second item.

For an input x ∈ {0, 1}n, we encode a configuration of the machine as a vector c = (q, i, j, t) ∈
{0, 1}g(n), where g(n) = O(1)+log(n)+log(s(n))+s(n) = O(s(n)) is the length of the representation
of a configuration. Each configuration includes q, the machine’s internal state (O(1) bits), the
location i ∈ [n] of the input-tape reading head, the location j ∈ [s(n)] of the work-tape reading
head, and the contents t ∈ {0, 1}s(n) of the work-tape. Assume w.l.o.g. that the all 0 vector

26Recall that α : Hm → {0, 1, . . . , |H|m − 1} and α′ : Hm′
→ {0, 1, . . . , |H|m

′
− 1} are the lexicographic order

functions.
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denotes the machine’s initial configuration (we call this vector a) and that the machine has a
unique accepting configuration, encoded by the vector b (say this is the all 1’s vector).

One can view the machine’s configurations on an input x ∈ {0, 1}n as vertices of a directed
acyclic graph, where there is an edge from configuration u to configuration v if, on the input x, the
(non-deterministic) machine T can move from configuration u to configuration v. We add self-loops
to all the vertices in the graph. T accepts an input x if and only if there is a directed path from a
to b in the graph.

Let Bx denote the (0/1) adjacency matrix of this graph (with 1’s on the main diagonal denoting
the self-loops). We construct a sequence of matrices: Blog(t(n)), . . . , B1, B0. The (u, v)-th entry of

Bp is 1 iff there is a path of length at most 2log(t(n))−p from u to v in the machine’s configuration
graph, i.e. iff the machine T on input x can go from configuration u to configuration v in 2log(t(n))−p

steps or less. Otherwise the (u, v)-th entry is 0. Observe that Blog(t(n)) is simply the adjacency
matrix Bx. To compute the matrix Bp−1 from Bp, we use the fact that there is a path of length at
most 2 · ` from u to v iff there exists w such that there is a path of length at most ` from u to w
and a path of length at most ` from w to v. Using arithmetics over GF[2] we get:

Bp−1[u, v] = 1 +
∏

w∈{0,1}g(n)

(
1 +Bp[u,w] ·Bp[w, v]

)
. (6)

The question of whether T accepts an input x is equivalent to asking whether or not B0[a, b] = 1.

The Circuit C. The layered circuit C computes one after another the matrices Blog(t(n)) =
Bx, Blog(t(n)−1), . . . , B1, B0. Once C computes B0 it outputs its [a, b]-th entry. Each layer of C is
made up entirely of either addition or multiplication gates. The computation is done by layered
sub-circuits: the bottom sub-circuit, given the input x ∈ {0, 1}n, computes (in constant depth) the
adjacency matrix Bx = Blog(t(n)). There are log(t(n)) intermediate sub-circuits above the bottom
sub-circuit (numbered from top to bottom 0, . . . , log(t(n))−1), each of depth g(n)+O(1) = O(s(n))
and size poly(2s(n)). The i-th sub-circuit uses the matrix Bi+1, computed by the previous sub-
circuit, to compute Bi (this is done as specified by Equation (6)). Finally the top (0-th) sub-circuit
computes B0 and outputs its (a, b)-th entry. The depth and size of C are as claimed in the lemma
statement.

The input layer includes the n input gates as well as 2 “constant gates” labeled n, n + 1, and
holding the values 0 and 1 (respectively). Each of the other layers includes at most 23·g(n) + 2
gates. These include at most 23·g(n) “standard” gates (whose values differ between layers), and 2
“constant gates”, as in the input layer, whose values are 0 and 1. As we did for the input layer, we
label the constant gates within each layer by 23·g(n), 23·g(n) + 1 (respectively). By convention, if an
intermediate layer includes less than 23·g(n) “standard” gates, then we sometimes use shorter labels,
implicitly fixing their least significant bits to be 0 and ignoring them in the exposition below.27

Thus, each intermediate gate in the circuit is labeled as a tuple ` = (p, k, z), where p ∈
{0, 1, . . . , log(t(n))} denotes the gate’s sub-circuit, k ∈ {1, . . . g(n) +O(1)} denotes its layer within
that sub-circuit and z ∈ {0, 1, . . . ,poly(2s(n)))} is its index within that layer.

We proceed with a detailed layer-by-layer construction. As we describe each layer of the circuit
(say the (i−1)-th), we also argue that addi,multi are both log(g(n))-space uniform, poly(g(n))-size,
constant depth (AC0) circuits. The machine G will only be described after the detailed description
of the layers.

27in fact the circuits addi and multi constructed below must verify that these bits are all 0, this is easily accom-
plished.
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The Constant Gates. We begin by describing how the constant gates are computed. Then,
throughout the rest of the exposition we take for granted the fact that in each layer of the circuit,
the values of two constant gates (labeled as above) are computed correctly. For every layer i except
the layer above the input layer (the (log(t(n)), 0)-th layer): if i is a layer of multiplication gates, then
its constant gate 23·g(n) +b (computing the constant b ∈ {0, 1}) is a multiplication gate, multiplying
the gates 23·g(n) + b (computing b) and 23·g(n) + 1 (computing 1) in layer i + 1. For an addition
layer, its constant gate 23·g(n) + b is an addition gate, adding the gates 23·g(n) + b (computing b)
and 23·g(n) (computing 0) in layer i + 1. For the layer above the input layer (layer (log(t(n)), 0),
an addition layer in the construction below), its constant gate 23·g(n) + b is an addition gate of the
input layer gates: n+ b (computing b), and n (computing 0).

The output of addi,multi on the constant gates in layer i − 1 is simple to compute. It is just
a matter of checking whether the labels of the layer i gates (of size O(g(n))) are exactly equal
to what they should be. For example, for an addition layer, on input z1 = 23·g(n) + 1 (constant
value 1), addi accepts iff z2 = 23·g(n) + 1 (constant value 1) and z2 = 23·g(n) (constant value 0).
These computations can be done by poly(g(n))-size AC0 circuits (one for addition gates, one for
multiplication). Moreover, these circuits can be generated in log(g(n))-space (given n, i). In the
descriptions that follow, when we describe the circuits addi and multi, we always implicitly mean
that they first check (in AC0) whether the gate label in layer (i − 1) is of a constant gate, and if
so they run the circuits described above. It is easy to verify that this maintains the depth, size
and uniformity of the circuits described below (up to constant factors). For simplicity, we do not
explicitly note this below.

The Input Sub-Circuit. The input (or bottom) sub-circuit of C, has as its input x ∈ {0, 1}n. As
its 2g(n) · 2g(n) (“standard”) outputs it has the adjacency matrix Bx (or Blog(t(n))). The sub-circuit

has 2 layers: the input layer, with n + 2 gates, and the top layer with 22·g(n) standard addition
gates (and 2 constant gates as described above).

Let us examine the (u, v)-th entry of the matrix Bx: configuration u reads only one input bit,
say the i-th (i ∈ [n]) bit from the input x. There are only 4 possibilities (arithmetic is over GF[2]):

1. Configuration u can never go to v, regardless of xi: Bx[u, v] = 0.

2. Configuration u can always go to v, regardless of xi: Bx[u, v] = 1. Note that this also includes
the case u = v, as all vertices in the graph have self-loops.

3. Configuration u can go to v iff xi = 1: Bx[u, v] = xi.

4. Configuration u can go to v iff xi = 0: Bx[u, v] = 1 + xi.

Thus each entry of the bottom sub-circuit’s output depends on (at most) a single input bit, and
certainly this layer’s output can be computed in depth 1.

We now turn to describing the circuits addi and multi for the top layer of the input sub-
circuit (layer (log(t(n)), 0) of C). This layer has only addition gates. Thus for any query about
multiplication gates, mult(log(t(n)),1) simply answers 0. To compute whether the input gates with

labels z2, z3 ∈ [n + 2] are the children of an addition gate z1 ∈ {0, 1}2·g(n) at the top layer of the
input sub-circuit, the circuit add(log(t(n)),1) proceeds as follows:

1. Parse z1 as a pair (u, v) of machine configurations. Parse u = (q1, i1, j1, t1) and v =
(q2, i2, j2, t2). Now the question is what is the value of Bx(u, v).
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2. There are four possible cases (as above). The circuit add(log(t(n)),1) computes which of these

four cases occurs. We claim this can be done by a log(g(n))-space uniform AC0 boolean
circuit of size poly(g(n)).

First, the circuit checks whether u = v. If so, then there is a self loop at this graph entry
and we treat this gate as a Case 2 gate. Otherwise (u 6= v), the circuit first verifies that
t1 and t2 are identical everywhere except at location j1. It then checks for each possible
transition in the machine’s (constant-size) transition table RT , whether reading either or
both of the possible values of xi1 could cause configuration u to move to configuration v via
that transition. This is equivalent to checking (for each possible transition) whether either or
both possible bit values of xi1 could make the internal state q1 change to q2, the input-tape
reading head move from location i1 to i2, the work-tape reading head move from location j1
to j2, and the j1-th bit of t1 to be overwritten by that of t2. All of these conditions can be
verified by a log(g(n))-space uniform AC0 circuit of poly(g(n))-size.

3. After running this computation, add(log(t(n)),1) “knows” which of the four possibilities above
is the case for (u, v). In Case 1 neither possible value can cause the transition. In this case,
add(log(t(n)),1) accepts if and only if z2 = n and z3 = n (i.e., this gate’s value is 0 = 0 + 0).
In Case 2 both possible values can cause the transition. In this case, add(log(t(n)),1) accepts if
and only if z2 = n+ 1 and z3 = n (i.e., this gate’s value is 1 = 1 + 0). In Case 3 only xi1 = 1
causes the transition. In this case, add(log(t(n)),1) accepts if and only if z2 = i1 and z3 = n
(i.e., this gate’s value is xi1 = xi1 + 0). Finally, in Case 4 only xi1 = 0 causes the transition.
In this case, add(log(t(n)),1) accepts if and only if z2 = i1 and z3 = n + 1 (this gate’s value is
xi1 + 1).

The circuit add(log(t(n)),1) as above is a O(log g(n))-space uniform AC0 boolean circuit of size
poly(g(n)).

Intermediate Sub-Circuits. The p-th intermediate sub-circuit takes as input the 2g(n) × 2g(n)

0/1-matrix Bp+1, the output layer of the sub-circuit below it, and outputs Bp (also a 2g(n) × 2g(n)

0/1 matrix). This is done via the rule stated in Equation 6, using g(n) + 3 layers. The bottom
layer computes the 23·g(n) products of pairs of matrix entries needed to compute the large product
in Equation 6. For each such pair product Bp+1[u,w] · Bp+1[w, v], the next layer computes 1 +
Bp+1[u,w]·Bp+1[w, v]. Then, the next g(n) layers compute

∏
w∈{0,1}g(n)

(
1+Bp+1[u,w]·Bp+1[w, v]

)
.

Finally, the top layer of the sub-circuit adds 1 to each such product. It computes for each pair
(u, v) the value 1 +

∏
w∈{0,1}g(n)

(
1 +Bp+1[u,w] ·Bp+1[w, v]

)
, which is the (u, v)-th entry of Bp (by

Equation 6).
A more detailed account follows: let p ∈ {0, 1, . . . , log(t(n)) − 1} be the sub-circuit’s index

among all the intermediate sub-circuits. Let Bp+1 be the 2g(n) × 2g(n) 0/1-matrix which is the
output of the sub-circuit below this one. We label the sub-circuit’s layers top to bottom as
(p, 0), (p, 1), . . . , (p, g(n) + 2). The intermediate sub-circuits are all identical, and so we can mostly
disregard p for the rest of this exposition.

The bottom layer (layer (p, g(n)) + 2) has 23·g(n) multiplication gates, each labeled by three
configurations (u, v, w). The value of the (u, v, w)-th gate should be Bp+1[u,w] · Bp+1[w, v]. For
this layer addi is always 0, multi is easy to compute, as it accepts z1 = (u, v, w) iff z2 = (u,w) and
z3 = (w, v).

In the next layer (layer (p, g(n) + 1)), the gate labeled (u, v, w) computes the value of gate
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(u, v, w) in the bottom layer plus 1. Here multi is always 0, addi accepts z1 = (u, v, w) iff z2 =
(u, v, w) and z3 = 23·g(n) + 1 (the constant 1 gate).

For k ∈ {g(n), . . . , 1}, the (p, k)-th layer has 22·g(n)+k−1 gates, each labeled by a pair of config-
urations (u, v) and a string y ∈ {0, 1}k−1. The value of the (u, v, y)-th gate in the (p, k)-th layer is
the product of the (u, v, y◦0)-th gate and the (u, v, y◦1)-th gate in the (p, k+1)-th layer. The value
of the (u, v)-th gate at layer 2 will indeed be the product

∏
w∈{0,1}g(n)

(
1 +Bp+1[u,w] ·Bp+1[w, v]

)
,

just as required. For these layers, add(p,k) always outputs 0, as there are only multiplication gates.
mult(p,k) for z1 = (u, v, y) accepts if and only if z2 = (u, v, y ◦ 0) and z3 = (u, v, y ◦ 1); otherwise it
outputs 0.

It remains to describe the top layer (layer (p, 0)) in the sub-circuit, which has 22·g(n) gates. Gate
(u, v) in layer (p, 0) computes 1 plus the value in gate (u, v) of layer (p, 1). The value computed by
gate (u, v) in layer (p, 0) is (as required) 1 +

∏
w∈{0,1}g(n)

(
1 + Bp+1[u,w] · Bp+1[w, v]). Here multi

always outputs 0, addi accepts z1 = (u, v) iff z2 = (u, v) and z3 = 23·g(n) + 1 (the constant 1 gate).
We conclude that each layer in each of the intermediate sub-circuits has, as required, circuits

addi,multi that are O(log g(n))-space uniform AC0 boolean circuit of size poly(g(n)).

The Machine G: It remains to show that there exists a single log(g(n))-space machine G that
generates the circuit C. More precisely, it remains to argue that there exists a log(g(n))-space
machine G, that takes as input a triple (n, i, b), and outputs the circuit addi if b = 0, and the
circuit multi if b = 1. The existence of such a machine follows easily from the above constructions
of addi and multi for each layer of the circuit C. Note that since all the intermediate sub-circuits
are identical, there exists a single log(g(n))-space machine that on input (n, i, b) generates addi
or multi for each layer of these sub-circuits. The input sub-circuit (which is different from the
intermediate ones) has only two layers, for which addi and multi can be generated in log(g(n))-
space as above. Thus there exists a single log(g(n))-space machine G, such that for every layer i
in C, on input (n, i, b), G generates addi or multi as required.

Step 2: Small Low-Degree Circuits for α, α′. Recall that our goal in this section is proving
that every language in NL has circuits for which ˜addi and ˜multi are themselves small low-degree
uniform arithmetic circuits. Lemma 4.1 was the first step towards this goal. We now turn our
attention to the mappings α, α′ that map arithmetic vectors to boolean (or numerical) labels of
circuit gates. If we want to create small arithmetic circuits computing ˜addi, ˜multi, these circuits
should themselves be able to compute the mappings α and α′. We show that α, α′ can be computed
by O(log(|F|)+log(m))-space uniform, poly(|F|,m)-size arithmetic circuits (over F) of degree |H|−1.

Claim 4.2. Fix H, an extension field of GF[2], F an extension field of H, and m an integer value.
Let α : Hm → GF[2]log(|Hm|) be the function that maps a vector in Hm to its lexicographic order,
represented as a sequence of log(|Hm|) 0’s and 1’s (we can think of these as elements of GF[2] or of
its extension field F).

There exists an arithmetic circuit TH,F,m : Fm → Flog(|H|m) that computes the low degree
extension (with respect to H,F,m) of α.28 The circuit TH,F,m is of size poly(|H|) ·m and degree
|H| − 1 in each of its inputs. It can be generated (from (|H|, |F|,m)) or evaluated (on an input in
Fm) by a O(log(|F|) + log(m))-space uniform Turing machine.

28Recall that the notion of a low degree extension also applies to functions with multiple outputs, as described in
Section 2.3.
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Proof of Claim 4.2. Let α1 : H→ Flog(|H|) be the function that takes a single element of H and
maps it to its lexicographic order, represented as a sequence of log(|H|) 0’s and 1’s (elements of
GF[2] and thus also of F). Let α̃1 be the unique low-degree extension of α1.29 The circuit TH,F,m
applies α̃1 to each of its m inputs (elements of F), and outputs the concatenation of the m outputs
of α̃1. The reason that TH,F,m indeed computes the low degree extension α̃ of α, follows from the
fact that the size of H is a power of 2, which in turn follows from the fact that it is an extension
field of GF[2].

To compute the low degree extension α̃1, the circuit uses a lookup table (with |H| entries)
that contains the lexicographic order of each element in H. The lookup table and its low-degree
extension can be generated (given m,F,H), and evaluated on an input, in space O(log(|F|)) and
time poly(|H|). This follows from Proposition 2.2, and from our assumption that addition and
multiplication of field elements can be done in O(log |F|)-space. Thus, the entire circuit TH,F,m is of
size poly(|H|) ·m. It can be generated, and evaluated on an input, by a O(log(|F|) + log(m))-space
uniform Turing machine.

Step 3: Small, Uniform, Low Degree Arithmetic ˜addi, ˜multi. We are now ready to prove the
main lemma of this subsection, showing that every language in NL has (for each input length) a
poly-size and polylog-depth circuit, for which ˜addi and ˜multi are log log-space uniform, polylog-size
arithmetic circuits of degree that is significantly smaller than |F|. We state the Lemma for any
time and space bounds.

Lemma 4.3. Let L be any language computed by a non-deterministic Turing Machine T in time
t(n) and space s(n) (we assume s(n) = Ω(log(n))). Fix H to be an extension field of GF[2], and
F an extension field of H (and thus also of GF[2]) of size at most poly(s(n)). Let n be an input
length.

There exists an arithmetic circuit C over GF[2] (and thus also over F) for computing L on
inputs of length n. The circuit C is of size poly(2s(n)) and depth d(n) = O(s(n) · log(t(n))) (with
fan-in 2).

For all i ∈ {1, . . . , d(n)}, ˜addi and ˜multi are arithmetic circuits over F. All these circuits have
degree at most |H| · poly(s(n)) (independent of |F|), and size poly(s(n),m). Moreover, they can be
evaluated on an input or generated by O(log(s(n)) + log(m))-space uniform Turing machines. The
generating machine G̃ takes (n, i, b, |H|, |F|,m,m′) as input (i ∈ {1, . . . , d(n)}, b ∈ {0, 1}). If b = 0,
then G̃ outputs the circuit ˜addi. If b = 1, then G̃ outputs the circuit ˜multi.

Proof of Lemma 4.3. The circuit C is exactly the same circuit constructed in the proof of Lemma
4.1. The (arithmetic) circuits ˜addi and ˜multi take as input 3 “gate labels” in Fm. They apply the
circuit TH,F,m (from Claim 4.2), which computes the low degree extension of α, to each of these
labels. If a “gate label” was in Hm, the output should be a boolean translation: its lexicographic
order. The circuits ˜addi and ˜multi take the result of this translation, and use it as input for an
arithmetization of the boolean circuit addi or multi (respectively) from Lemma 4.1. If the original
gate labels were all in Hm, then the output should be equal to addi’s or multi’s output on their
boolean translations. A more detailed description follows.

29Again, in the past we usually worked with low degree extensions of functions that map multiple H-elements to
a single F element, whereas α1 maps a single H element to many F elements. This is a special case of a low degree
extension (where the function may have multiple outputs). All the general results and construction still hold for this
special case.

42



Let {addi,multi} be the boolean circuit families constructed in Lemma 4.1, and let G be the
machine that generates them. Transforming the boolean circuits into arithmetic circuits over F is
easily done in the (by now) standard way: AND gates become multiplication, and a gate computing
the NOT of some wire w is turned into an arithmetic gate computing the value 1−w. This does not
increase the circuit size, depth or uniformity by more than a constant factor. Since {addi,multi}
are AC0 circuits of size poly(s(n)) (independent of |F|), the resulting arithmetic circuits are of
size and degree at most poly(s(n)) (also independent of |F|). We note also that since the boolean
circuits are O(log(s(n)))-space uniform and constant-depth, they, and their arithmetized versions,
can be generated and evaluated in O(log(s(n)))-space.

Note that these new (arithmetic) circuits take as input a boolean representation of gate labels,
i.e. where each label is given as O(log(|Cn|)) “boolean” inputs that are all the 0 or the 1 field
element. The circuits ˜addi and ˜multi, on the other hand, take as input gate labels represented as
arithmetic vectors in Fm.30 Thus, what remains is to translate the arithmetic labels into boolean
ones, by running them through translation circuit TH,F,m as constructed in Claim 4.2. This adds a
(multiplicative) |H|-factor to the degree, and a poly(|F|,m) additive factor to the size. When the
inputs are all elements in H, the translation circuits output the correct (boolean, i.e. consisting of
0/1 field elements) gate labels, and the circuit (the “arithmetized” addi or multi) correctly outputs
whether or not the first gate is an addition or multiplication of the other two.

We obtain, as required, ˜addi and ˜multi that have degree |H|·poly(s(n)) (independent of |F|), and
size poly(s(n),m). Moreover, they are (again, as required), O(log(s(n)) + log(m))-space uniform:
they can be generated by running a combination of G and the machine generating TH,F,m, and can
be evaluated on an input in O(log(s(n)) + log(m)) space.

4.1.2 Realizing the Bare-Bones Protocol

Using the above construction of small, low degree and uniform circuits ˜addi and ˜multi, we can now
proceed to present our first implementation of the bare-bones protocol: a protocol for delegating
NL computations.

Recall that to implement the bare-bones protocol one must have a way for the verifier to
implement ˜addi and ˜multi oracles, whose degree is not too large. This is exactly what Lemma 4.3
provides! Namely, we now have a way for the verifier to implement the oracles in the bare-bones
protocol on its own, where it can compute the answer to each “oracle” query in poly-logarithmic
time and logarithmic space. This gives a protocol for delegating NL computations. We state this
result more generally, for given non-deterministic time and space bounds.

Theorem 4.4. Let L be a language that can be computed by a non-deterministic Turing Machine
using space s(n) and time t(n) (we assume s(n) = Ω(log(n))). L has an interactive proof (an
implementation of the bare-bones protocol) where:

1. The prover runs in time poly(2s(n)), the verifier runs in time n·poly(s(n)) and space O(s(n)).

2. The protocol has perfect completeness and soundness 1/100.

3. The protocol is public-coin, with communication complexity poly(s(n)).

30We ignore here the fact that addd(n) and multd(n) work over m′ inputs instead of m, this can be handled in a
similar manner.
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Proof of Theorem 4.4. Fix an input length n. By Lemma 4.3, the language L can be computed
by a circuit C of size poly(2s(n)) and depth d(n) = O(s2(n)). Fix H,F,m,m′ as in the bare-bones
protocol (see Subsection 3.1). Namely, H is an extension field of GF[2]) of size O(s(n)2), F is an
extension field of H of size poly(s(n)), m = O(s(n)/ log(s(n))), and m′ = O(log(n)/ log(s(n))).

The circuits ˜addi and ˜multi, constructed in Lemma 4.3, are of degree δ = poly(s(n)), and can
be generated and evaluated (over F) in time poly(s(n)) and space O(log(s(n))).

Now all that remains is to run the bare-bones protocol, replacing oracle calls to F for com-
puting { ˜addi, ˜multi} with explicit computations of ˜addi and ˜multi constructed above. From Theo-
rem 3.1 we get that the protocol has perfect completeness, and soundness 1

100 . The prover’s work is

poly(2s(n)). The verifier’s work is only n · poly(s(n)), and his space usage is O(s(n)). The protocol
is public-coin, and the communication complexity is poly(s(n)).

Plugging in the parameters for languages in NL, i.e. space O(log(n)) and time poly(n), we get
that the prover is efficient, the verifier runs in quasi-linear time, and the communication complexity
is polylog(n). This is stated formally below (the proof is immediate from Theorem 4.4):

Corollary 4.5. Let L be a language in NL, i.e. one that can be computed by a non-deterministic
Turing Machine using space O(log(n)) and time poly(n). L has an interactive proof (an implemen-
tation of the bare-bones protocol) where:

1. The prover runs in time poly(n), the verifier runs in time n ·polylog(n) and space O(log(n)).

2. The protocol has perfect completeness and soundness 1/100.

3. The protocol is public-coin, with communication complexity polylog(n).

4.2 Interactive Proofs for L-Uniform Circuits

In this subsection, we show how to implement the bare-bones protocol for any polynomial-size
circuit that is log-space uniform. The complexity of the prover is polynomial in the circuit size, the
complexity of the verifier is quasi-linear in the input length and polynomial in the circuit depth.
The communication complexity is polynomial in the circuit depth and logarithmic in the circuit
size.

This result uses Theorem 4.4 from the previous subsection for delegating NL computations.
We proceed in two steps. First we show that for log-space uniform circuits, the functions ˜addi and

˜multi, which are the unique low degree extensions of addi and multi, can themselves be computed
in log-space (with respect to appropriately chosen fields). Then, applying Theorem 4.4 (or rather
Corollary 4.5), we immediately conclude that a verifier can delegate the computation of ˜addi and

˜multi to the prover. In this delegation protocol, the prover’s work is polynomial in the circuit size,
but the verifier’s work is only poly-logarithmic in the circuit size (note that the input size of ˜addi
and ˜multi is itself only logarithmic).

So, given any log-space uniform circuit, the verifier and prover can run the bare-bones protocol.
Whenever the bare-bones verifier needs to compute the value of ˜addi or ˜multi, the prover supplies
it with the value, and proves that this value is correct by running, as a sub-protocol, the protocol
of Theorem 4.4.

We begin by showing that for log-space uniform circuits, ˜addi and ˜multi can be computed in
log-space. We state the claim for any space bounds:
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Claim 4.6. Let C = {Cn} be a family of s(n)-space uniform circuits. Fix fields H (an extension
field of GF[2]) of size O(s(n)), and F (an extension field of H) of size poly(s(n)). Take m =
O(s(n)/ log(s(n))) and m′ = O(n/ log(s(n))).

There exists an O(s(n))-space Turing machine that computes the functions ˜addi, ˜multi for the
circuit Cn (with respect to H,F,m,m′). Here we take ˜addi, ˜multi to be the unique low degree
extensions of addi,multi, of degree |H| − 1. The machine takes as input 1n,H,F,m,m′ and the
input (in Fm or Fm′) to ˜addi or ˜multi.

Proof of Claim 4.6. Fix an input length n. Every bit of the circuit Cn can be generated using
O(s(n)) space, and thus the (boolean) functions addi and multi can be evaluated using O(s(n))
space. By Claim 4.2, the function α (or α′) that converts a vector in Hm (resp. Hm′) into its
(boolean) lexicographic order can be computed in space O(log(|F|) + log(m)) = O(log(s(n))) (the
same holds for α′).

Consider the two functions that take inputs in Hm, convert them into boolean gate labels using
α, and then run addi or multi on the result. By the above, these functions can be evaluated on
inputs in Hm in space O(s(n)). Now, note that ˜addi and ˜multi are the unique low-degree extension
of these functions. Thus, by Claim 2.3, these low-degree extensions can themselves be computed
using an additional O(m · log(|F|)) = O(s(n)) bits of space. The total space needed to compute
˜addi, ˜multi is O(s(n)). Clearly, the above holds also for ˜addd, ˜multd, where d is the bottom layer

of the circuit.

We now proceed with a result about delegating the computation of languages computable by
log-space uniform circuits. This is the result claimed in Theorem 1.1 of Section 1.1.

Theorem 4.7 (Theorem 1.1 of Section 1.1, restated). Let L be a language that can be computed
by a family of O(log(S(n)))-space uniform boolean circuits of size S(n) and depth d(n). L has an
interactive proof where:

1. The prover runs in time poly(S(n)). The verifier runs in time n · poly(log(d(n), S(n))) and
space O(log(S(n))). Moreover, if the verifier is given oracle access to the low-degree extension
of its input, then its running time is only poly(log(d(n), S(n))).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity d(n) · polylog(S(n)).

Proof of Theorem 1.1. Fix an input length n. By the conditions of the theorem, on any input
length n, the language L can be computed by a O(log(S(n)))-space uniform arithmetic circuit C
over GF[2], of size S(n) and depth d(n). Assume (without loss of generality) that C has fan-in 2.

Fix H,F,m,m′ as in the bare-bones protocol (see Subsection 3.1). Namely, H is an extension
field of GF[2]) of size max{log(S(n)), d(n)}, F is an extension field of H of size poly(|H|), m =
O(log(S(n))/ log(|H|)), and m′ = O(log(n)/ log(|H|)).

We run the bare-bones protocol of Section 3, taking ˜addi and ˜multi to be the unique low-degree
extensions of addi and multi respectively (of degree |H| − 1 in each variable). The verifier in the
bare-bones protocol queries ˜addi and ˜multi at most 2d(n) times: In each phase of the protocol (or
layer of the circuit) he queries ˜addi once and queries ˜multi once. Now, when implementing the
bare-bones protocol, the prover will send the verifier the values of ˜addi and ˜multi at the points
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the verifier needs. The prover can do this, since these points are specified by the verifier’s public
coins in previous rounds. Of course, a dishonest prover may lie, so we run a separate protocol for
verifying the correctness of the ˜addi and ˜multi computations.

By Claim 4.6, since C is a log(S(n))-space uniform circuit, ˜addi and ˜multi can be computed
in O(log(S(n))) space. In turn, by Theorem 4.4, there exists an interactive proof for verifying the
correctness of each bit of ˜addi’s and ˜multi’s outputs (the output is a log(|F|)-bit string representing
an element in F). For each verifier query, we repeat this interactive proof protocol O(log(d(n)) +
log log(|F|)) times for each bit of the output, to get soundness 1

200d(n) for the entire (log(|F|)-bit)

answer. In all these invocations, by Theorem 4.4, the total prover running time is poly(S(n)), the
verifier running time is d(n) · polylog(S(n)) (recall that the input to ˜addi and ˜multi is only of size
O(log(S(n)))), and the verifier uses O(log(S(n))) total space. The probability that prover cheating
in any one of the O(d(n)) invocations goes undetected, is (by a Union bound) at most 1

100 .
So, in summary, we run the bare-bones protocol, replacing oracle calls to F for computing

{ ˜addi, ˜multi} with an interactive sub-protocol where the prover sends the verifier the value of ˜addi
or ˜multi, and then proves its correctness. From Theorem 3.1 we get that the protocol has perfect
completeness, and the total probability of a cheating prover not being detected is (by a Union
bound) 1

100 + 1
100 <

1
50 .

The prover’s work is poly(S(n)). The verifier’s work is only polylog(S(n)) · (n + d(n)), and
its space usage is O(log(S(n))). The protocol is public-coin, and its communication complexity is
d(n) · polylog(S(n)).

As an immediate consequence of Theorem 1.1 we obtain two main corollaries. The first, stated
as Corollary 1.2 in Section 1.1, gives interactive proofs for languages that are computable by L-
uniform NC circuit families (circuits families of poly-size and polylog-depth). The second corollary,
stated as Corollary 1.4 in Section 1.3, gives a public-coin interactive proofs with a log-space verifier
for every language in P. This second corollary is also immediate, using the well known fact that
languages in P have L-uniform poly-size circuits.

Finally, Theorem 1.1 also yields a new corollary for interactive proofs for languages computed
by uniform Turing Machines (rather than uniform circuits). Using the fact that a langauge that
can be computed by a Turing machine in time t(n) and space s(n) can also be computed by a
O(s(n))-space uniform circuit of size poly(t(n) · 2s(n)) and depth s2(n) we conclude that:

Corollary 4.8. Let L be a language that can be computed by a Turing Machine in time t(n) and
space s(n). L has an interactive proof where:

1. The prover runs in time poly(t(n) · 2s(n)). The verifier runs in time n · poly(s(n)) and space
poly(s(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity poly(s(n)).

It is instructive to compare Corollary 4.8 in terms of the honest prover’s running time with the
well-known IP = PSPACE theorem of [LFKN92, Sha92].

Theorem 4.9 (IP = PSPACE [LFKN92, Sha92]). Let L be a language that can be computed by
a Turing Machine in time t(n) and space s(n). L has an interactive proof where:
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1. The prover runs in time 2poly(s(n),log(t(n))). The verifier runs in time n · poly(s(n)) and space
poly(s(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity poly(s(n)).

Thus, using Theorem 1.1 (via Corollary 4.8), we actually obtain a significant reduction in the
running time of the honest prover: from 2poly(s(n)·log(t(n))) to poly(t(n) · 2s(n)). In particular for
logarithmic space (and polynomial time) computations, this gap means the difference between
efficient and inefficient (quasi-polynomial time) honest provers. A fascinating open questions is
obtaining a protocol with an honest prover that runs in time poly(t(n)) and space poly(s(n))
(while maintaining the verifier running time and communication complexity of known protocol).

4.3 Protocols for Delegating Non-Uniform Computation

So far we have focused on interactive proofs for delegating uniform computations. In the non-
uniform setting we cannot escape having the verifier read the entire circuit, so there is no hope
for the verifier’s running time to be smaller than the circuit size. As a result, in the non-uniform
setting, we do not require the entire computation of the verifier to be super-efficient. Instead, we
separate the verification into an off-line (non-interactive) pre-processing phase, which occurs before
the input is even specified, and an on-line interactive proof phase, in which the input is known to
both the prover and the verifier. We only require that the verifier be super efficient in the on-line
interactive phase. In what follows, let C be a boolean circuit family of size S(n) and depth d(n) on
inputs of length n.

In the off-line phase, before the input x is specified, the verifier is allowed to run a long
(poly(|C|)-time) randomized computation data ← Vpre(C), resulting in an output data, which
will be retained in the proceeding on-line interactive phase. The output data of the verifier’s pre-
processing computation should be significantly smaller than |C|. In our construction, data will be
of size poly(d, log(S)) (for circuits of polylog depth this is much less than |C|).

Next, after the input x is specified, the prover and verifier run an on-line interactive phase.
In this phase, the verifier V takes as input x and data (but not the circuit C). The prover P
takes as input the (entire) circuit C and the input x, and proves to the verifier that C(x) = b for
some value b. It is crucial that the prover does not know data. Moreover, data is only good for
a single invocation of the on-line protocol, and cannot be reused for multiple inputs (intuitively,
this is because during the interactive phase, the prover may learn information about data). We
make the usual completeness and (information-theoretic) soundness requirements. We require that
the verifier’s running time in the on-line phase is significantly smaller than the size of C, that the
prover is efficient, and that the communication be small.

We present such an on-line/off-line protocol for delegating the computation of non-uniform
circuits, where the size of data is polynomial in the depth of the circuit being delegated (and poly-
logarithmic in its size), and the verifier’s running time in the on-line phase is linear in the input
length and polynomial in the circuit depth (and poly-logarithmic in its size). This protocol (as
the protocols for the uniform case) is an implementation of the bare-bones protocol. The idea
is for the verifier to choose its random coins in the pre-processing phase. His oracle queries to
F = { ˜addi, ˜multi} are uniquely determined by these random coins. The verifier can thus compute
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the oracle answers in the preprocessing phase. He will then save these answers, together with the
random coins, in the data string. A formal Theorem follows:

Theorem 4.10 (Theorem 1.5 of Section 1.4, restated). Let L be a language computable by a (non-
uniform) circuit family C of size S(n) and depth d(n). There exists an on-line/off-line interactive
proof (P(C, x),V(x, data),Vpre(C)) for L. This protocol has completeness 1, and soundness 1

2 (can
be made arbitrarily small). The complexity of the protocol is as follows:

1. The (randomized) pre-processing computation Vpre(C) takes time poly(S(n)). The output
data is of length |data| = poly(d(n), log(S(n))).

2. The prover P(C, x) runs in time poly(S(n)).

3. The on-line verifier V(x, data) runs in time n ·poly(d(n), log(S(n))) and space O(log(S(n))).

4. The communication complexity of the (on-line) interactive protocol is poly(d(n), log(S(n))).

Proof of Theorem 1.5. As noted above, the protocol is another implementation of the bare-bones
protocol of Theorem 3.1. Recall, that in the bare-bones protocol, the running times of the prover
and verifier, as well as the communication complexity, are exactly as we want. The only problem is
that there the verifier is given oracle access to the functions { ˜addi, ˜multi}di=1. Here we would like
to implement these functions.

To avoid ambiguity, we think of { ˜addi, ˜multi} as the (unique) low-degree extensions of {addi,multi}.
The prover P(C, x) can implement the bare-bones protocol while simulating these oracles on his
own, since he is allowed to run in time poly(S). The verifier, on the other hand, will use the
off-line pre-processing phase to “take care” of computing the values of { ˜addi, ˜multi} that will be
needed in the on-line interactive phase. Note that these O(d) oracle queries are a function of the
poly(d · log(S)) public coins chosen by the verifier throughout the bare-bones protocol.

Thus, the pre-processing algorithm Vpre(C), chooses the poly(d · log(S)) public coins. These
immediately specify the verifier’s O(d) queries to the functions { ˜addi, ˜multi}. Then, Vpre(C) com-
putes the answers to all these queries. To do this, it computes the truth table (of size poly(S)) of
the boolean functions addi,multi, and then computes their low-degree extensions (note that this
can be done without knowing the input x). By Claim 2.3, computing the low-degree extension
takes time poly(S). Finally, Vpre(C) outputs the string data consisting of the poly(d · log(S)) ran-
dom coins it chose, as well as the O(d) oracle function values (each of size poly(d, log(S))). The
total length of the data string is thus poly(d, log(S)). In the on-line interactive phase, the verifier
V(x, data) simulates the verifier of the bare-bones protocol, while using the random coins and the
oracle answers, as specified in data.

The completeness, soundness and complexity properties of the interactive phase are inherited
directly from the bare-bones protocol for delegating computation (Theorem 3.1).

As a final note, observe that indeed once the data string is used in an interactive protocol, the
prover knows the random coins chosen in the pre-processing phase, and thus if the same data string
is used again (with this prover), even for a different input, the protocol is no longer sound.

5 Low Communication Zero-Knowledge Interactive Proofs

In this section, we construct succinct zero-knowledge proofs for many NP languages: In particular,
the communication complexity of these proofs is quasi-linear in the witness size for any language
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whose NP relation is computable by an NC circuit. We consider both the (L)-uniform setting,
and the non-uniform setting.

In the non-uniform setting, we use the bare-bones protocol (described in Subsection 3.2) to show
that (based on the existence of one-way functions) every NP language L, verifiable by a depth d
Boolean circuit, has a zero knowledge proof with communication complexity k · poly(d, κ), where k
is the witness size, and κ is the security parameter. Note that the communication complexity may
be significantly smaller than the instance size.

In the uniform setting, we show that every NP language L, verifiable by a log-space uniform
Boolean circuit of depth d, has a zero knowledge proof with communication complexity as above,
and moreover, the runtime of the verifier is very efficient: it is only linear in the input size, and
polynomial in the witness size, the circuit depth and the security parameter.

Notations. In what follows let L = {x : ∃w s.t. RL(x,w) = 1} be an NP language. We think of
the relation RL as a Boolean circuit (rather than a function). We denote by d the depth of RL, by
n = |x| the instance size, by k = |w| the witness size, and by κ the security parameter. The reader
should think of k, d, κ as functions of n.

We start by recalling formally our two theorems, starting with the theorem for the non-uniform
setting.

Theorem 5.1 (Theorem 1.6 of Section 1.5, restated). Assume one-way functions exist, and let
κ = κ(n) ≥ log(n) be a security parameter. Let L be a language in NP/poly, whose relation R
can be computed on inputs of length n with witnesses of length k = k(n) by Boolean circuits of size
poly(n) and depth d(n). Then L has a zero-knowledge interactive proof

1. The prover runs in time poly(n) (given a witness), the verifier runs in time poly(n) and space
O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity k · poly(κ, d(n)).

The theorem for the uniform setting is similar, with the additional property that the verifier is
very efficient.

Theorem 5.2 (Theorem 1.7 of Section 1.5, restated). Assume one-way functions exist, and let
κ = κ(n) ≥ log(n) be a security parameter. Let L be an NP language whose relation R can be
computed on inputs of length n with witnesses of length k = k(n) by a L-uniform family of boolean
circuits of size poly(n) and depth d(n). Then L has a zero-knowledge interactive proof

1. The prover runs in time poly(n) (given a witness), the verifier runs in time n · poly(k, κ, d)
and space O(log(n)).

2. The protocol has perfect completeness and soundness 1/2.

3. The protocol is public-coin, with communication complexity k · poly(κ, d(n)).
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Proof idea of Theorems 1.6 and 1.7. The idea is to use the bare-bones protocol of Theorem
3.1, together with the (by now) standard transformation of [BGG+88], that converts public-coin
interactive proofs into zero-knowledge ones. More specifically, we first consider the (not zero-
knowledge) interactive proof, where the prover first sends the verifier the witness w, and then
they both run the bare-bones protocol. This interactive proof is public-coin, and has the desired
complexity parameters.

Next we use the transformation of [BGG+88], to convert this protocol into a zero-knowledge
one: The prover does not send his messages in the clear, but instead commits to them. The prover
then proves using a (standard) zero-knowledge proof (e.g. that of [GMW91], though we will use a
more efficient proof), that the underlying verifier would have accepted this transcript. It may seem
that we are right back where we started, as we need again to prove a statement in zero-knowledge.
The point (and the reason we make progress) is that the bare-bones protocol guarantees that this
final statement involves only a very small verifier computation, and thus this final zero-knowledge
proof is very efficient with low communication complexity.

However, recall that in the bare-bones protocol, the verifier gets access to oracle functions
specifying the circuit. So, in order to use the bare-bones protocol, we need to implement these
oracles. In the non-uniform case we implement these oracles (as in Theorem 1.5) by having the
verifier compute the oracle answers by himself (an efficient computation). In the uniform case (as
in Theorem 1.1), we solve this by having the prover give these oracle answers to the verifier, and
prove that he computed these values correctly. Note that this computation is polynomial time, so
this does not violate zero-knowledge. We proceed with formal proofs.

Proof of Theorem 1.6: Fix a language L in NP/poly, as above. Fix a security parameter
κ = κ(n) ≤ n, and assume the existence of a (one-way) function f : {0, 1}κ → {0, 1}κ. This
implies that there exists a statistically binding and computationally hiding bit commitment scheme,
with sender work, receiver work, and communication that are all poly(κ) [Nao89, HILL99] (see
Goldreich’s book [Gol01] for the definition of a commitment scheme and for the proof method).

Our zero-knowledge interactive proof (PZK(x,w), VZK(x)) for L, makes use of the bare-bones
protocol (presented in Section 3) to prove that RL(x,w) = 1, while assuming that the bare-bones
verifier, instead of taking the pair (x,w) as input, has oracle access to the low degree extension of
(x,w), denoted by G̃ : Fm′ → F. It was shown in Theorem 3.1, that in this case the runtime of the
verifier is ≤ poly(k, d). In conclusion, in the bare-bones protocol, both the prover and the verifier
have oracle access to a set of functions F ; and the verifier, in addition, has oracle access to G̃. We
denote this bare-bones protocol by

(PF1 (x,w),VF ,G̃1 ).

According to the notation in Section 3,

F = { ˜addi, ˜multi}i∈[d],

where ˜addi, ˜multi are some (low degree) extensions of addi,multi, respectively. We take ˜addi and
˜multi to be the unique low-degree extensions of addi and multi respectively, so as to ensure that

they are uniquely defined (and can be computed in polynomial time). See Section 3 for the details.
The protocol (PZK(x,w), VZK(x)) proceeds as follows:

1. The prover PZK(x,w) first sends the verifier a bit-by-bit commitment to w.
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2. The prover PZK(x,w) and verifier VZK(x) run the bare-bones protocol (P1,V1) (see Theo-
rem 3.1) with the following difference: The prover PZK, rather than sending his messages “in
the clear”, will send commitments to all his messages. Namely, if the bare-bones protocol
consists of a transcript of the form:

(r1,m1, r2,m2, . . . , r`,m`),

then in the zero-knowledge protocol (PZK(x,w), VZK(x)), this transcript will be converted to
a transcript of the form:

(r1, com(m1), r2, com(m2), . . . , r`, com(m`)).

The prover PZK(x,w) emulates the prover P1 of the bare-bones protocol (simulating the oracle
calls to F on his own). Recall that this can be done in time poly(n). The verifier VZK(x)
emulates the verifier V1. Recall that the bare-bones protocol is public-coin, and so the verifier
VZK(x) does not need to “know” the messages m1, . . . ,m`, nor does he need to use the oracle
F (or the oracle G̃ to a low-degree extension of the input), in order to generate r1, . . . , r`.

3. By Theorem 3.1, the verifier VF ,G̃1 queries the oracle F at O(d) points, determined uniquely
by the verifier’s randomness r1, . . . , r`. Moreover, these points, as well as the oracle’s answers,
can be computed in time poly(n) given the verifier’s randomness.

Both the prover PZK(x,w) and the verifier VZK(x) compute these oracle queries, and simulate
the oracle’s answer on each of these queries. We denote the answers by v1, . . . , vO(d) ∈ F.

4. Also, according to Theorem 3.1, the verifier VF ,G̃1 queries his oracle G̃ (i.e., the low-degree
extension of the input) at a single point. This point depends only on his randomness r1, . . . , r`
(and can be computed in polynomial time given the verifier’s randomness).

Both the prover PZK(x,w) and the verifier VZK(x) compute this oracle query, denoted by
z ∈ Fm. This can be done in time poly(n).

5. According to Proposition 2.2,

G̃(z) =
∑
p∈Hm

β̃(z, p) · G̃(p).

Moreover, β̃ can be evaluated in time poly(d, log n) (with respect to the parameters chosen
by the bare-bones protocol). Denote by p1, . . . , pn ∈ Hm the n points that satisfy G̃(pi) = xi,
where x = (x1, . . . , xn). Denote by pn+1, . . . , pn+k ∈ Hm the k points that satisfy G̃(pn+i) =
wi, where w = (w1, . . . , wk).

Both the prover PZK(x,w) and the verifier VZK(x) compute the value t ,
∑n

i=1 β̃(z, pi)·G̃(pi).
This can be done in time poly(n).

6. Next, the prover and verifier run a previously known (but communication-efficient) zero
knowledge proof, say that of [CD97] or [IKOS07]. The statement being proved is that:

(com(w), r1, com(m1), . . . , r`, com(m`), v1, . . . , vO(d), t) ∈ L′, (7)
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where the language L′ is defined as follows. Equation (7) holds if the verifier VF ,G̃1 , with
randomness r1, . . . , r`, accepts the transcript

(r1,m1, . . . , r`,m`),

assuming that v1, . . . , vO(d) are the answers obtained by the oracle F , and

t+
k∑
i=1

β̃(z, pn+i) · wi

is the answer obtained by the oracle G̃, where z is the point that VF ,G̃1 queries G̃.

We use the zero knowledge proof of [CD97] (or, alternatively, an even further optimized
construction of [IKOS07]). The properties we use are that the proof has perfect completeness,
soundness 1/3 and communication that is linear in the size of the verifying circuit (and
polynomial in the security parameter κ). In our case the circuit size is k · poly(κ, d)) (see
below), and so the communication complexity is also k · poly(κ, d)).

7. The verifier VZK(x) accepts if and only if he accepts this zero-knowledge proof.

We next show that this protocol is zero-knowledge, has perfect completeness, soundness 1/2,
and communication complexity k · poly(κ, d), as desired.

The fact that this protocol is zero-knowledge follows from the fact that the underlying com-
mitment scheme is computationally hiding and from the fact that the underlying zero-knowledge
proof is indeed zero-knowledge (see [BGG+88] for details). Perfect completeness follows from the
fact that the underlying zero-knowledge proof used has perfect completeness. The fact that the
soundness is 1/2 follows (by a union bound) from the soundness of the bare-bones protocol, from
the fact that the underlying zero-knowledge proof has soundness at most 1/3, and from the fact
that the commitment scheme is statistically binding. It remains to argue that the communication
complexity is k · poly(κ, d).

To prove that the communication complexity of (PZK(x,w), VZK(x)) is k · poly(κ, d), it suffices
to prove that L′ is an NP language with a verification circuit of size k · poly(κ, d). To this end, we
consider the witness consisting of all the de-commitment values, and show that it can be verified
in time k · poly(κ, d)).

Given these de-commitment values, the value of w and m1, . . . ,m` can be computed in time
k · poly(κ, d). Moreover, given:

(w, r1,m1, . . . , r`,m`,1 , v1 . . . , vO(d), t),

checking whether VF ,G̃1 accepts the transcript (r1,m1, . . . , r`,m`), assuming that the oracle answers
of F are v1 . . . , vO(d), and given the value G̃(z), can be done in time poly(d, log n). Finally, given w
and t (the part of the low-degree extension of (x,w) at point z that depends on x), the value of the
oracle G̃ at point z can be computed in time k · poly(d, log n). So the total size of the verification
circuit is k · poly(d, κ).

Proof of Theorem 1.7: The proof of Theorem 1.7 is almost identical to the proof (and protocol)
of Theorem 1.6. The only differences are that now the circuit computing RL is uniform, and we
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want to leverage this fact to reduce the verifier’s running time. The running time of the verifier
presented in the above proof of Theorem 1.6 is as required, except for its computation of the O(d)
values of the functions ˜addi, ˜multi, which takes polynomial time in the circuit size.

However, recalling Claim 4.6, if the circuit computing RL is itself L-uniform, then ˜addi, ˜multi
can be computed in O(log(n))-space (the inputs to these functions are themselves of size O(log(n))).
We used this fact in Theorem 1.1 of Section 4 to show that the prover can simply send to the verifier
the values of ˜addi, ˜multi at the points that the verifier needs. The prover then proves that it sent the
correct values using the protocol of Theorem 4.4 (with soundness O(1/d)). The verifier’s running
time to verify the values of ˜addi, ˜multi on the desired points is only polylog(n).

We modify the above protocol of Theorem 1.6 in a similar manner. Instead of computing the
values v1, . . . , vO(d) of ˜addi, ˜multi on its own, the verifier asks the prover to send him these values
and prove that they were computed correctly. This is done after running the bare-bones protocol
(i.e. after the prover has already committed to all its messages). Note that the function value being
proven here is efficiently computable, and so zero-knowledge is not violated (the simulator can run
this computation itself). The above protocol has all the properties of the protocol in Theorem 1.6
(in particular soundness is maintained), and also the verifier’s work is n · poly(k, d, κ). We note
that by using (in the last step of the protocol) a zero-knowledge proof with a verifier whose running
time is linear in the size of the verification circuit, we can get the verifier’s running time down to
(n+ k) · poly(d, κ), the details are omitted.

6 One-Round Arguments for Delegating Computation

In this section we are concerned with the question of reducing the amount of interaction in protocols
for delegating computation. As discussed in Section 1.2, we seek to construct one round protocols,
where a verifier can issue a challenge to a polynomial-time prover, and get back a (computationally
sound) certificate of correctness for the result of a computation. In this setting, the verifier with a
Turing machine M computing a language L wants to verify that x ∈ L, but without taking the time
to run the Turing machine M on the input x (the cases of verifying that x /∈ L, and of verifying
function computations rather than language membership, can be done similarly). Towards this
end, the verifier wants to send M and x to an un-trusted prover, who will then provide a short
(non-interactive) computationally sound certificate that x ∈ L. We only allow the verifier to send
the prover (together with M and x), a single challenge message mV , that may help guarantee the
soundness of the certificate. The certificate is thus a function of the machine M , the input x,
and the verifier’s challenge mV . Ideally, the challenge mV is independent of the input x and the
language being proved, in which case the verifier can compute mV in advance (this will be the case
in the scheme we present below).

Following the exposition above, we view a system for certifying computations as a 1-round
computationally sound argument system for a language L. The verifier and prover know a machine
M computing L, and an input x. The verifier sends a challenge message mV , the prover replies
with a certificate, and the verifier accepts or rejects. Completeness is the guarantee that if x ∈ L,
the verifier should accept when it interacts with the (honest) prover. Soundness is the guarantee
that if x /∈ L, no efficient prover can make the verifier accept. The main complexity measures we
are interested in bounding are the running time of the verifier and the prover (as a function of the
complexity of computing L) and the length of the certificate and the challenge.

Our main result in this section is a system for certifying computation (a one-round argument
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system) for a language computed by a family of (L-uniform) NC circuits. The prover’s running
time is polynomial in the circuit size. The verifier’s running time is quasi-linear. The lengths of
the certificate and the verifier’s challenge are poly-logarithmic (using a poly-logarithmic security
parameter).

This result uses our interactive proof for delegating computation (Theorem 1.1), together with
a recent result of Kalai and Raz [KR09] on transforming interactive proof systems into a one-round
(two-message) computationally sound argument systems. The soundness of the certificate relies on
the privacy of a (computational) PIR scheme with poly-logarithmic communication (see Section 2.6
for a definition of PIR schemes and more details).

We first re-state the result we use from [KR09], and then present our main theorem about
certifying efficient computations.

Theorem 6.1. [KR09] Let κ ≥ log n be a security parameter. Assume the existence of a secure
PIR scheme (as defined in Definition 2.6), with communication poly(κ), receiver work poly(κ), and
sender work poly(n, κ) (where n is the database size).

Assume that there exists an interactive proof system (P,V) for proving membership in some
language L, with the following properties:

1. Completeness c, soundness s and communication complexity `.

2. Verifier running time tV and prover running time tP .

3. Each message sent by the prover depends only on the λ previous bits sent by V.

4. The verifier’s messages depend only on the verifier’s random coin tosses (and are independent
of the interaction and the input).

Then there exists a one-round (two-message) argument system (P ′,V ′) for L, with communica-
tion complexity `′ = poly(`, κ), completeness c′ ≥ c − 2−κ

2
, and soundness s′ ≤ s + 2−κ

2
against

(possibly non-uniform) provers of size ≤ 2κ. The verifier V ′ runs in time ≤ tV ·poly(κ). The prover
P ′ runs in time ≤ poly(tP , κ, 2

λ).
Moreover, the resulting one-round argument system (P ′,V ′) has the property that the first mes-

sage, sent by V ′, depends only on the random coin tosses of V ′, and is independent of the instance
x or of the language being proven.

Applying the transformation of the above theorem to our efficient interactive proofs from The-
orem 1.1, we directly obtain efficient one-round arguments for delegating computation:

Theorem 6.2 (Theorem 1.3 of Section 1.2, restated). Let L be a langauge computable by a family
of O(log(S(n)))-space uniform boolean circuits of size S(n) and depth d(n). Let κ ≥ log(S(n)) be
a security parameter. Assume the existence of a secure PIR scheme, with communication poly(κ),
receiver work poly(κ), and sender work poly(n, κ) (where n is the database size). The language L
has a 1-round (private coin) argument system with the following properties:

1. The prover runs in time poly(S(n)), the verifier runs in time n · poly(κ, d(n), log(S(n))).31

31Moreover, if the verifier is given oracle access to the low-degree extension of its input, then its running time is
only poly(κ, d(n), log(S(n))).
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2. The protocol has perfect completeness and computational soundness 1/2 (can be made arbi-
trarily small): for any input x /∈ L and for any cheating prover of size ≤ 2κ

3
, the probability

that the verifier accepts is ≤ 1/2.

3. The sizes of the certificate (the prover’s message) and the verifier’s challenge are poly(κ, d(n)).
The verifier’s message depends only on the parameters n and κ, and is independent of the
language L and the input x.

We conclude with a few Remarks:

1. Since the verifier’s challenge depends only on the parameters (and is independent of the
computation being certified), the verifier can prepare the challenge in advance, before he
knows the language or input whose membership is proved. We note, however, that a fresh
challenge must be used for every invocation of the argument system, otherwise soundness
might break down.

2. The protocol is private coins. Moreover, a certificate (which is verifier dependent) cannot be
verified without the verifier’s (private) random coins. This means that our certificates cannot
be used to convince anyone that an input is in the language, except the verifier, who knows
his private coins, and knows that they were generated randomly.

3. It is instructive to compare this result to two previous works on providing certificates for
efficient computation (i.e. for languages in P). The results of [BFLS91] give long certificates,
of size polynomial in the circuit size (even for languages in NC). Though these certificates
are efficiently probabilistically checkable. The result of Micali [Mic94] on CS Proofs, requires
the use of a random oracle, a primitive whose realization is by now notoriously questionable
(though he obtains short certificates for any efficient computation, not only for NC).

7 An Interactive PCP

In this section, we use the bare-bones protocol (described in Subsection 3.2) to construct an inter-
active PCP scheme, as introduced in [KR08]. An interactive PCP (say for membership of an input
x in a language L) is a combination of a PCP and a short interactive proof. Roughly speaking, an
interactive PCP is a proof that can be verified by reading only a small number of its bits, with the
help of a short interactive proof. We begin in Subsection 7.1 with a brief introduction to interactive
PCPs, and then present our new construction in Subsection 7.2.

7.1 Preliminaries

More precisely, let L = {x : ∃w s.t. (x,w) ∈ RL} be an NP language, described by a polynomial-
time computable relation RL. Let p, q, `, c, s be parameters as follows: p, q, ` are integers and c, s
are reals, s.t. 0 ≤ s < c ≤ 1 (informally, p is the size of the PCP string, q is the number of
queries allowed to the PCP string, ` is the communication complexity of the interactive proof, c
is the completeness parameter and s is the soundness parameter). The reader should think of the
parameters p, q, `, c, s as functions of the instance size n. An interactive PCP with parameters
(p, q, `, c, s) for membership in L is an interactive protocol between an (efficient) prover P and an
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(efficient) verifier V .32 We assume that both the prover and the verifier know the language L and
get as input an instance x of size n. The prover gets an additional input w (supposedly a witness
for the membership x ∈ L). In the first round of the protocol, the prover generates a (PCP) string
π of p bits (think of π as an encoding of the witness w). The verifier is still not allowed to access
π. The prover and the verifier then apply an interactive protocol, where the total number of bits
communicated is `. During the protocol, the verifier is allowed to access at most q bits of the string
π. After the interaction, the verifier decides whether to accept or reject the statement x ∈ L.

Definition 7.1. [KR08] A pair (P, V ) of probabilistic polynomial time interactive Turing machines
is an interactive PCP for L with parameters (p, q, `, c, s) if the requirements below hold. When such
a pair exists, we say that L ∈ IPCP(p, q, `, c, s).

For every (x,w) ∈ RL, we require that the prover P (x,w) generates a bit string π (known as the
PCP string) of size at most p(n) (where n = |x|), such that the following properties are satisfied.

• Completeness: For every (x,w) ∈ RL,

Pr[(P (x,w), V π(x)) = 1] ≥ c(n)

(where n = |x|, and the probability is over the random coin tosses of P and V ).

• Soundness: For every x /∈ L, every (unbounded) interactive Turing machine P̃ , and every
string π̃ ∈ {0, 1}∗,

Pr[(P̃ (x), V π̃(x)) = 1] ≤ s(n)

(where n = |x|, and the probability is over the random coin tosses of V ).

• Complexity: The communication complexity of the protocol (P (x,w), V π(x)) is at most
`(n), and V reads at most q(n) bits of π.

Let L = {x : ∃w s.t. (x,w) ∈ RL} be any NP language. It was shown in [KR08], that if
RL can be computed by a constant depth Boolean circuit (over the basis ∧,∨,¬,⊕) then L has an
interactive PCP with the following parameters: the length of the PCP string is polynomial in the
witness size (i.e., p = poly(|w|)), it makes only a single query to the PCP oracle (i.e., q = 1), and
it has poly-logarithmic communication complexity (i.e., ` = polylog(|x|)).

7.2 New Improved Interactive PCPs

We extend the results of [KR08]. We show that for every NP language L = {x : ∃w s.t. (x,w) ∈
RL}, if the relation RL can be computed by a polynomial size circuit of depth d, then L has an
interactive PCP with the following parameters: the length of the PCP is polynomial in d and the
witness size (i.e., p = poly(d, |w|)), it makes only a single query to the PCP oracle (i.e., q = 1),
and it has communication complexity ` = poly(d, log |x|). In particular, we match the parameters
of [KR08] (up to polynomial factors) for any RL that can be computed in NC (poly-logarithmic
depth). Moreover, our interactive PCP has the additional property that each message sent by the
prover, during the interactive phase, depends only on O(log |x|) bits sent by the verifier (and on the
input and the randomness of the prover). This property (which previous interactive PCP’s do not
have) will be used in Section 8 to construct “short” efficient probabilistically checkable arguments.

32One could also consider a model with a prover that is not necessarily efficient. Originally in [KR08] interactive
PCPs were defined with efficient provers, and we also focus on efficient provers throughout this work.
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Theorem 7.2. Let C : {0, 1}k → {0, 1} be a Boolean circuit of size S and depth d. Then, for any
ε ≥ 1/S,33 the satisfiability of C can be proven by an interactive PCP with the following parameters:
p = poly(k, d, logS, 1

ε ), q = 1, ` = poly(d, logS, 1
ε ), c = 1 and s ≤ 1

2 +O(ε).
Moreover, the interactive PCP has the following two properties:

1. The PCP string π (generated by the prover in the first round of the protocol) depends only on
the witness w ∈ {0, 1}k and the parameters S, d, ε, and not on the circuit C.

2. The interactive phase is public coin, and each message sent by the prover depends only on the
preceding O(logS) bits sent by the verifier.

The following is an immediate corollary of Theorem 7.2:

Corollary 7.3. Let L = {x : ∃w s.t. RL(x,w) = 1} be any NP language. Let n = |x| denote the
instance size, let k = |w| denote the witness size, and let d denote the circuit depth of RL. Then,
for any ε > 1/n,34

L ∈ IPCP(p, q, `, c, s),

with p = poly(k, d, 1
ε ), q = 1, ` = poly(d, log n, 1

ε ), c = 1, and s ≤ 1
2 + O(ε). Moreover, this

interactive PCP has the two additional properties stated in Theorem 7.2.

Remark. Notice that if we allow “many” queries to the PCP string then we can reduce the
soundness to be any parameter s, as follows: First omit the parameter ε in Theorem 7.2 by setting
the soundness parameter to be a constant, and then improve the soundness parameter via parallel
repetition. This will increase the query complexity to O(log 1

s ) and will increase the communication
complexity ` by a factor of O(log 1

s ).

Rather than proving Theorem 7.2 directly, as was done in [KR08], we prove a weaker version
(stated in Theorem 7.4), that allows “many” queries to the PCP string. We note that this weaker
version (Theorem 7.4) is interesting on its own, and in particular it is this weaker version that we
use in order to construct “short” efficient probabilistically checkable arguments in Section 8.

We note that in [KR08] (Section 6) it was shown how to convert an interactive PCP with many
queries into an interactive PCP with a single query, and in particular, how to get Theorem 7.2 from
Theorem 7.4. Loosely speaking, the main idea for converting a many-query interactive PCP into a
single-query one, is to have the new PCP string π′ be the low-degree extension of the original PCP
string π. Then, instead of sending all the queries to the new PCP string, the verifier will choose a
random curve (or manifold) that goes through these queries, and ask the prover in the interactive
proof for the value of π′ on this curve (or manifold). Finally, he will query its PCP string on a
single random point on this curve (or manifold) and check for consistency.

Theorem 7.4. Let C : {0, 1}k → {0, 1} be a Boolean circuit of size S and depth d. Then,
for any soundness parameter s > 2−S,35 the satisfiability of C can be proven by an interactive

33We require ε > 1/S in order to ensure that the prover runs in time poly(|C|). We could take 0 < ε < 1/S and
then the prover’s running time is polynomial in 1/ε.

34Again, we require ε > 1/n in order to ensure that the prover runs in polynomial time. We could take 0 < ε < 1/n
and then the prover’s running time is polynomial in 1/ε.

35We require s > 2−S in order to ensure that the prover and verifier run in time poly(|C|). We could take
0 < s < 2−S and then the running time would be polynomial in log 1

s
.
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PCP with the following parameters: p = poly(k, d, logS), q = poly(log d, log logS, log 1
s ), ` =

poly(d, logS, log 1
s ), completeness c = 1, and soundness s. Moreover, the interactive PCP has the

following two properties:

1. The PCP string π (generated by the prover in the first round of the protocol) depends only on
the witness w ∈ {0, 1}k and the parameters S, d, and not on the circuit C.

2. The interactive phase is public coin, and each message sent by the prover depends only on the
preceding O(logS) bits sent by the verifier.

We now proceed with a proof of Theorem 7.4, starting with a high-level overview. Suppose we
want an interactive PCP for proving that there exists a sting w ∈ {0, 1}k such that C(w) = 0,
where C : {0, 1}k → {0, 1} is a circuit as in the theorem statement.

Proof Outline. Roughly speaking, the interactive PCP consists of the following steps:

1. The PCP string π is simply the low-degree extension of the witness w.

2. Verify that π is close to a low-degree polynomial, by running a low degree test of [MR08]
(described for completeness in Subsection 2.4).

3. Verify that the string w, encoded in the oracle π, satisfies w ∈ {0, 1}k.

4. Verify that the string w, encoded in the oracle π, satisfies C(w) = 0.

We use our delegation protocol to execute Steps (3) and (4).

Comparison with the scheme of [KR08]. The interactive PCP of [KR08] also follows steps
(1)-(4) as above. The main difference between our protocol and the one in [KR08] is in the execution
of Steps (3) and (4): More specifically, we reduce the task of verifying that w ∈ {0, 1}k to the task
of verifying that g(w) = 0, where g is some arithmetic circuit of size poly(k) and depth polylog(k).
Then we prove that g(w) = 0 and that C(w) = 0 using our delegation protocol.

On the other hand, in [KR08], they first use a linear error-correcting-code to reduce the task
of verifying that w ∈ {0, 1}k to the task of verifying that g(w) = 0, where g is some arithmetic
formula of size poly(k), constant depth, and constant degree. Then they use a method due to
Razborov and Smolenski to convert (the constant depth Boolean circuit) C into an arithmetic
formula f of degree d = polylog(k). Finally, they use an “efficient sum-check protocol” for proving
that g(w) = 0 and for proving that f(w) = 0. We note that the communication complexity of
their sum-check protocol depends polynomially on the degree d, whereas in our delegation protocol
the communication complexity depends polynomially on the depth d. This is why we can get an
interactive PCP for all of NC (with polylog(k) communication complexity) while [KR08] cannot
go beyond AC0.

Proof of Theorem 7.4. In what follows, we prove Theorem 7.4 with soundness parameter
s = 11

12 . This suffices since for any s > 0, by repeating the interactive phase O(log 1
s ) times we get

an interactive PCP with the desired parameters and soundness s. We assume k ≥ logS. This is
without loss of generality since we could always increase k to be logS by adding dummy variables.
Note that this does not change the guarantees in the statement of Theorem 7.4. Consider the
following interactive PCP protocol (P, V ) for proving the satisfiability of C : {0, 1}k → {0, 1}.
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Parameters We set the parameters as follows:

1. k, S, d, where
k, d < S ≤ 2k.

2. Parameters H,F,m,m′, that together with k, S, d, are valid parameters for the bare-
bones protocol given is Section 3.2. In particular, H is an extension field of GF[2], F is
an extension field of H, and m,m′ are integers, such that

d ≤ |H| ≤ poly(d, logS),

S ≤ |H|m ≤ poly(S),

k ≤ |H|m′ ≤ poly(d, k),

and
|F| ≤ poly(|H|).

Moreover, the parameters H,F,m,m′ should satisfy the following additional properties:

(a) m′ ≥ 3.

(b) |F| ≥ m′(|H| − 1).

(c) 210m′ 8
√

(m′)2(|H|−1)
|F ≤ 1

12 .

These properties guarantee that we can apply Lemma 2.4 with respect to F, m′, and
d = m′(|H| − 1), and get ε ≤ 1

12 .

Input Both the prover and the verifier take as input a Boolean circuit

C : {0, 1}k → {0, 1}

of size S and depth d. The prover takes an additional input

w = (w0, w1 . . . , wk−1) ∈ {0, 1}k,

such that C(w) = 0.

The protocol (P (C,w), V π(C)).

1. Computing the PCP string π. The PCP string π is the low-degree-extension of w w.r.t.
the parameters H,F,m′. Namely,

π
def
= LDEH,F,m′(w0, w1 . . . , wk−1).

The verifier is given oracle access to π. Note that π : Fm′ → F is a multivariate polynomial
of degree |H| − 1 in each variable, and thus is of total degree ≤ m′ · (|H| − 1).
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2. Running the low degree test on π. The verifier V checks that π is close to an m′-variate
polynomial f : Fm′ → F that has total degree ≤ m′ · (|H| − 1). This is done by running the
low degree test (PLDT(π), V π

LDT) described in Subsection 2.4. If the test fails then the verifier
rejects.

Note that so far the protocol depends only on w and on the parameters S, d, and does not
depend on the circuit C.

3. Proving that C(w) = 0. Interpret C as a layered arithmetic circuit (of fan-in 2 over F). Let
F = { ˜addi, ˜multi}i∈[d] be a set of functions corresponding to C (as defined in Subsection 3.1),

such that for every i ∈ [d], ˜addi is the unique low degree extension of addi, and ˜multi is
the unique low degree extension of multi. Note that both the prover and the verifier of the
interactive PCP protocol can compute the functions in F on their own (in time poly(S)).

The prover and the verifier run the bare-bones protocol (PF1 (w),VF1 (w)) described in Sec-
tion 3.2 for proving that C(w) = 0 (with respect to δ = |H| − 1). The prover P (C,w) (of the
interactive PCP system) emulates PF1 (w) by computing the functions in F on his own (and
thus simulating the oracle F). The verifier V π(C) (of the interactive PCP system) emulates
VF1 (w) by computing the functions in F on his own, and using his oracle π instead of w.

Recall that according to the third (additional) property of Theorem 3.1, the verifier V1 can
run the bare-bones protocol, even if he is not given w as input, but is only given oracle
access to the low degree extension of w (with respect to H,F,m′). In this case, V1 queries
the low degree extension of w at a single random point corresponding to a field element, or
alternatively, at O(log d+ log logS) bit points (since each element in F can be represented by
O(log d+ log logS) bits). Since with high probability (assuming the low degree test passes),
the oracle π of the interactive PCP is close to the low degree extension of w (with respect
to H,F,m′), the verifier can use the oracle π of the interactive PCP as an oracle to the low
degree extension of w.

If the verifier VF1 (w) of the bare-bones protocol rejects then the verifier V π(C) of the inter-
active PCP protocol also rejects.

4. Restricting all satisfying assignments to bit strings. In order to ensure soundness, the
verifier should verify that w ∈ {0, 1}k. To this end, consider the function Ψ : Fk → F, defined
as follows:

Ψ(t1, . . . , tk)
def
=

∏
β∈F\{0}

β − k∏
i=1

 ∏
γ∈F\{0,1}

(ti − γ)

 .

Note that Ψ(t1, . . . , tk) = 0 if and only if t1, . . . , tk ∈ {0, 1}. Moreover, Ψ can be implemented
by a layered arithmetic circuit of fan-in 2 (over F), of size poly(k, |F|) ≤ poly(k, d) and of depth
≤ poly(log |F|, log k) ≤ poly(log k, log d). For the simplicity of the analysis (and without loss
of generality), we assume that Ψ is of size ≤ S.

The prover will prove that Ψ(w) = 0, as was done in Step 3.

Analysis of the protocol (P (C,w), V π(C)). The fact that π = LDEH,F,m′(w) implies that the
PCP string is of size p = |F|m′ · (log |F|) ≤ poly(k, d). Theorem 3.1 and Lemma 2.4 imply that
the protocol (P (C,w), V π(C)) has communication complexity ` = poly(d, logS) and completeness
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c = 1. Note that our protocol queries π at three points (each corresponding to a field element):
Once during the run of the low degree test (in Step 2), and once during each run of the delegation
protocol (in Step 3 and Step 4). Thus, the query complexity is q = O(log |F|) = O(log d, log logS).
We next prove that its soundness is s ≤ 11

12 .
Fix any C : {0, 1}k → {0, 1}, of size S and depth d, which is not satisfiable. Fix any unbounded

(cheating) prover P̃ , and any function π̃ : Fm′ → F. Let E denote the event that (P̃ , V π̃)(C) = 1,
and let

s
def
= Pr[E].

Assume for the sake of contradiction that s > 11
12 . According to Lemma 2.4, there exists an m′-

variate polynomial f : Fm′ → F of degree ≤ m′ · (|H| − 1) such that

Pr
z∈RFm′

[π̃(z) = f(z)] ≥ s− ε,

where ε is defined in Lemma 2.4. Let

γ
def
= Pr

z∈RFm′
[π̃(z) 6= f(z)] ≤ 1− (s− ε).

Our contradiction assumption (that s > 11
12), together with our assumption that ε ≤ 1

12 , implies
that

γ ≤ 1

6
. (8)

Define (w̃0, w̃1, . . . , w̃k−1) ∈ Fk by

w̃i
def
= f(α−1(i)),

where α : Hm′ → {0, 1, . . . , k′ − 1} (k′
def
= |H|m′) is the lexicographic order of Hm′ .

Recall that both times when emulating the verifier V1 of the bare-bones protocol, the verifier
V queries the oracle at a single random point (corresponding to a field element). Let B denote the
event that on these two points π̃ is consistent with f . Note that

Pr[¬B] ≤ 2γ ≤ 1

3
. (9)

Let A denote the event that w̃0, w̃1, . . . , w̃k−1 ∈ {0, 1}. Theorem 3.1 implies that

Pr[E|A ∧B] ≤ 1

100
,

and

Pr[E|¬A ∧B] ≤ 1

100
.

using some basic facts from probability theory, we conclude that

s = Pr[E] ≤Pr[E|B] + Pr[¬B] ≤
Pr[E|A ∧B] + Pr[E|¬A ∧B] + Pr[¬B] ≤
1

100
+

1

100
+

1

3
<

5

12
,
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contradicting our assumption that s ≥ 11
12 .

It remains to show that the two additional properties, required by the statement in Theorem 7.2,
are attained.

1. The fact that π depends only on the witness w = (w0, w1, . . . , wk−1) and on the parameters

S and d, follows immediately from the definition of π
def
= LDEH,F,m′(w0, w1, . . . , wk−1), and

from the fact that the parameters H,F,m′ depend only on the parameters S, k, d.

2. Recall that the interactive phase consists of a low degree test, and two runs of the bare-bones
protocol, one with circuit C and one with circuit Ψ.

The fact that the interactive phase is public-coin follows from the fact that both the low
degree test, and the bare-bones protocol, are public coin. The fact that each message sent by
the prover depends only on the preceding O(logS) bits sent by the verifier, follows from the
fact that in the low degree test the verifier sends a total of at most O(logS) bits, and in the
bare-bones protocol each message of the prover depends only on the preceding O(logS) bits
sent by the verifier.

8 A Probabilistically Checkable Argument

In this section, we give an efficient and short probabilistically checkable argument (PCA) system
for many NP languages. To this end, we use our interactive PCP system described in Section 7,
together with a general method given in [KR09], for converting interactive PCP systems into PCA
systems.

A probabilistically checkable argument (PCA), a notion introduced in [KR09], is a relaxation of
the notion of probabilistically checkable proof (PCP). It is defined analogously to PCP, with two
differences: (1) the verifier first specifies a challenge to the prover, and the proof (PCA) is tailored
to this verifier challenge. The soundness property is required to hold only computationally, i.e.
against bounded malicious provers. Other than these differences, the setting is the same as that
of PCPs: after specifying the challenge and receiving the proof, the probabilistic polynomial time
verifier only reads a few bits of the proof string in order to verify. A PCA is said to be efficient if
the honest prover, given a witness, runs in time poly(n).

More specifically, each PCA system is associated with three algorithms: a challenge generation
algorithm G, a proof generation algorithm P, and a verification algorithm V. It is also associated
with five parameters κ, p, q, c, s, where κ, p, q are integers and c, s are reals, s.t. 0 ≤ s < c ≤ 1.
(Informally, κ is the security parameter, p is the size of the PCA, q is the number of queries allowed
to the PCA, c is the completeness parameter and s is the soundness parameter). We think of the
parameters κ, p, q, c, s as functions of the instance size n.

Let L be anNP language, defined by L = {x : ∃w s.t. (x,w) ∈ RL}. Suppose that Alice wishes
to prove to Bob that x ∈ L. Assume that Bob applied in the past the challenge generation algorithm
G, and thus is associated with a pair of secret key and public challenge (SK,PK)← G(1κ). Bob’s
public challenge, PK, is sent to Alice. We assume that both Alice and Bob know L and that both
get as input an instance x of size n. Alice gets an additional input w (supposedly a witness for the
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membership of x ∈ L). A PCA system allows Alice to generate a string π ← P(x,w, PK) of p bits.
Bob is allowed to access at most q bits of the string π, and based on these bits he decides whether
to accept or reject the statement x ∈ L.

Definition 8.1. [KR09] A triplet (G,P,V) of probabilistic Turing machines is a PCA system for
L with parameters (κ, p, q, c, s), if the following holds:

• G is a probabilistic Turing machine that runs in time poly(κ), and V is a probabilistic oracle
machine that runs in time poly(κ, n).

• For every (x,w) ∈ RL (where |x| = n) and every (SK,PK) ← G(1κ(n)), the algorithm
P(x,w, PK) generates a bit string π of size at most p(n), and the oracle machine Vπ(x, SK,PK)
reads at most q(n) bits of π.

• Completeness: For every (x,w) ∈ RL (where |x| = n),

Pr[Vπ(x, SK,PK) = 1] ≥ c(n)

(where the probability is over (SK,PK) ← G(1κ(n)), over π ← P(x,w, PK), and over the
randomness of V).

• Soundness: For every x 6∈ L (where |x| = n), and every (possibly non-uniform) cheating
prover P̃ of size ≤ 2κ(n),

Pr[V π̃(x, SK,PK) = 1] ≤ s(n)

(where π̃ = P̃(PK), and the probability is over (SK,PK)← G(1κ(n)) and over the random-
ness of V).

Remark. Note that in Definition 8.1 we did not specify the complexity of P. We say that a PCA
system (G,P,V) is efficient if P runs in time poly(κ, n).

It was shown in [KR09], that any interactive PCP system (with certain properties) can be
transformed into a PCA system.

Theorem 8.2. [KR09] Assume the existence of a (uniform) poly-logarithmic PIR scheme.36 As-
sume that there exists an interactive PCP system (P,V) with parameters (p, q, `, c, s) for some NP
language L, with the following properties:

1. for every input x ∈ L, every auxiliary input w ∈ {0, 1}∗,37 and for every i ∈ [`], the message
sent by the (honest) prover P(x,w) in the i’th round of the protocol (P(x,w),V(x)) depends
only on the message sent by V in the i’th round of the protocol (and on x,w and the random
coin tosses of P),38 and does not depend on the messages sent by V before the i’th round.

36The definition of a (uniform) poly-logarithmic PIR scheme can be found in Section 2.6.
37As is common, we allow the prover in the interactive proof system to use an auxiliary input, supposedly a witness

for x ∈ L.
38We think of each round as consisting of a message sent by the verifier V followed by a message sent by the

prover P.
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2. Each message sent by the verifier in this phase depends only on the verifier’s random coin
tosses (and is independent of the interaction, the PCP string π, and the input x), and can be
computed in time ≤ poly(`).

Then, for any security parameter κ ≥ max{`, log n} there exists a PCA system (G′,P ′,V ′) with
parameters (κ, p′, q′, c′, s′) for the language L, where p′ = poly(p, κ), q′ = poly(q, κ), c′ ≥ c− 2−κ

2
,

and s′ ≤ s+ 2−κ
2
. The prover P ′ runs in time ≤ poly(κ, n, 2λ), where λ is the length of the longest

message sent from V to P in the interactive phase of the interactive PCP system (P,V).

Applying Theorem 8.2 to our interactive PCP system, results with a PCA system that is both
efficient and short for many NP languages, as stated in the following theorem.

Theorem 8.3. Assume the existence of a (uniform) poly-logarithmic PIR scheme. Fix any NP
language L = {x : ∃w s.t. (x,w) ∈ RL}. Let n = |x| denote the instance size, let k = |w| denote the
witness size, and let d denote the depth of RL. Then for any soundness parameter s > 2−n and for
any security parameter κ ≥ poly(d, log n, log 1

s ) there exists a PCA system for L with parameters

(κ, p′, q′, c′, s′), where p′ = poly(k, κ), q′ ≤ poly(κ), c′ ≥ 1 − 2−κ
2
, and s′ ≤ s + 2−κ

2
. Moreover,

the prover of this PCA system runs in time ≤ poly(n, κ).

Remark. Applying Theorem 8.2 to the interactive PCP systems given in [KR08], results with
inefficient PCA systems; i.e., with PCA systems where the prover runs in super polynomial time.
This follows from the fact that in these systems, the length of the longest message sent from the
verifier to the prover is of size polylog(n).
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