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Abstract

The Black-Box Hypothesis, introduced by Barak et al. [BGI+12], states that any property
of boolean functions decided efficiently (e.g., in BPP) with inputs represented by circuits can
also be decided efficiently in the black-box setting, where an algorithm is given an oracle ac-
cess to the input function and an upper bound on its circuit size. If this hypothesis is true,
then P 6= NP. We focus on the consequences of the hypothesis being false, showing that (un-
der general conditions on the structure of a counterexample) it implies a non-trivial algorithm
for Circuit-SAT. More specifically, we show that if there is a property F of boolean functions
such that F has high sensitivity on some input function f of subexponential circuit complexity
(which is a sufficient condition for F being a counterexample to the Black-Box Hypothesis),
then Circuit-SAT is solvable by a subexponential-size circuit family. Moreover, if such a coun-
terexample F is symmetric, then Circuit-SAT ∈ P/poly. These results provide some evidence
towards the conjecture (made in this paper) that the Black-Box Hypothesis is false if and only
if Circuit-SAT is easy.

1 Introduction

Given access to a boolean function f : {0, 1}n → {0, 1}, how fast can we decide if f 6≡ 0? If we can
only access f as an oracle (i.e., in the “black-box” fashion), then it is well-known that one needs
time Ω(2n) for any deterministic or randomized algorithm (and time Ω(2n/2) for any quantum
algorithm). What if f is computable by some small boolean circuit C, and we are given this circuit
C (i.e., we can access f in the “white-box” fashion)? Then the question of deciding if f 6≡ 0 is
exactly the famous Circuit-SAT problem, and no nontrivial complexity lower bounds are known.

One possible approach to proving that P 6= NP is to argue that being given an actual small circuit
C computing a given boolean function f does not help much, compared to being given just oracle
access to f , and being told the size of C. This could be formalized as the Black-Box Hypothesis
(BBH) (introduced by Barak et al. [BGI+12] as “Scaled-down Rice’s Theorem” conjecture), which
can be informally stated as follows:
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If a property F of boolean functions can be decided efficiently on circuits computing
input functions, then F can also be decided efficiently in the black-box setting (that is,
given oracle access to the input function and its circuit size bound).

If this hypothesis is true, then, for F = {f : {0, 1}n → {0, 1} | f 6≡ 0}, we conclude that Circuit-SAT
cannot be solved efficiently, since there are exponential lower bounds for deciding F in the black-box
setting.

So proving the BBH is hard, as it would imply that P 6= NP. The hypothesis may well be false.
Barak et al. [BGI+12] already proved that a version of the BBH (for promise problems) is false,
assuming that one-way functions exist. Can we just disprove it then?

In this paper, we give some evidence that disproving the BBH is also hard, as it would have
nontrivial algorithmic applications for Circuit-SAT. Note that if Circuit-SAT is efficiently solvable,
then, as observed above, the Black-Box Hypothesis must be false. We conjecture that the converse
implication also holds. Thus we conjecture the following:

The BBH is false iff Circuit-SAT has a (somewhat) efficient algorithm.

We make a step towards proving this conjecture by showing that if the BBH fails in a particular
way, then Circuit-SAT can be decided by a nonuniform family of subexponential-size circuits, which
would disprove the nonuniform analogue of the Exponential-Time Hypothesis (ETH) of [IPZ01].

1.1 Our results

Before stating our results formally, let us discuss what it means for the BBH to fail. Clearly, if the
BBH fails, there is a property F that is easy in the white-box setting (say, is in BPP), but requires
superpolynomial complexity in the black-box setting. Note that for n-variate boolean functions
f of circuit complexity 2Ω(n), there can’t be any superpolynomial gap between the white-box and
black-box complexities of deciding a given property F . This is because a white-box algorithm has
to look at the input circuit, which is of size at least 2Ω(n), and the black-box algorithm can read the
entire truth-table of f , build a trivial circuit of size about 2n, and then just simulate the white-box
algorithm on it, running in overall time at most poly(2n). Thus any “magic” speed-up that we get
for a property F violating the BBH must necessarily manifest itself over “easy” inputs, boolean
n-variate functions f of circuit complexity at most 2o(n). In other words, any black-box algorithm
for F must be “slow” even if we care only about inputs f of low circuit complexity.

Recall that the sensitivity of a function F is the maximum, over all its inputs x ∈ {0, 1}N , of
the number of positions i ∈ [N ] such that F (x) 6= F (xi), where xi is x with the ith bit flipped. It
is well-known that every F with sensitivity s requires Ω(s) queries to decide by any (randomized)
black-box algorithm [Nis91]. Thus, a sufficient condition for any black-box algorithm deciding F
to be “slow” (taking time at least T ) is that F has “high” sensitivity (at least Ω(T )). In fact, the
same argument from [Nis91] actually implies that if F has a sensitive input x∗, then F requires
large query complexity even when restricted to the inputs x∗, (x∗)1, (x∗)2, . . . , (x∗)N . The latter
can be used to show (see Lemma 3.2 below) that a sufficient condition for any black-box algorithm
deciding F to be “slow” on all inputs f of subexponential circuit complexity is the following:

there exists a function f∗ : {0, 1}n → {0, 1} of circuit complexity 2o(n) such that F has
“high” sensitivity at f∗.
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An important feature of the OR function (which explains why it requires high black-box com-
plexity) is the existence of a highly sensitive input, the all-zero string. Moreover, this sensitive
input has a very low circuit complexity (as a boolean function). We show that if the BBH fails
because of a property F with similar conditions (i.e., that F has an “easy” but “highly sensitive”
input), then Circuit-SAT admits a nontrivial algorithm.

Theorem 1.1 (Main theorem: Informal version). Suppose there is a property F of n-variate boolean
functions such that

1. F is decidable in BPP in the white-box setting, but,

2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity 2Ω(n) and of circuit
complexity 2o(n) (which implies that F requires exponential time 2Ω(n) to decide in the black-
box setting, even on inputs f of circuit complexity 2o(n)).

Then Circuit-SAT for n-input circuits of size at most 2o(n) can be decided by a nonuniform family
of circuits of size 2o(n).

Intuitively, Theorem 1.1 says that if the BBH fails in a strong way for some property F ,
with an exponential gap between the white-box and the black-box complexities, so that the high
black-box complexity of F can be explained through the existence of a highly sensitive input
f∗ (of relatively low circuit complexity), then Circuit-SAT is decidable by a subexponential-time
nonuniform algorithm.

We also observe that the assumption of Theorem 1.1 holds for any property F violating the
BBH whenever F is one of the following:

• F is a symmetric function, or

• F is a subset of easy functions (i.e., F ⊆ {f | size(f) ≤ 2o(n)}).

Hence, if a counterexample to the BBH is of this kind, then Circuit-SAT is easy for nonuniform
algorithms.

Finally, for the special case of monotone properties F , we get a version of Theorem 1.1 where
it suffices to assume that a sensitive input in item (2) of Theorem 1.1 has just superpolynomial
sensitivity s > nω(1) and circuit complexity so(1) (rather than requiring an exponential sensitivity
s ≥ 2Ω(n)). More precisely, we prove the following.

Theorem 1.2 (Monotone Properties). Let F be a monotone property such that

1. F is decidable in BPP in the white-box setting, but,

2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity s ≥ nω(1) and of circuit
complexity so(1) ≥ poly(n) (which implies that F requires superpolynomial time to decide in
the black-box complexity setting, even on inputs of circuit complexity so(1)).

Then Circuit-SAT for n-input circuits of size at most 2o(n) can be decided by a nonuniform family
of circuits of size 2o(n).

We also use a “win-win” argument to show the following: If a monotone property is a coun-
terexample to the Block-box Hypothesis (with appropriate parameters), then either Circuit-SAT is
nonuniformly easy infinitely often, or BPP ⊆ NP (see Theorem 5.2).
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1.2 Related work

The Black-Box Hypothesis has its roots in a classical result of computability theory, Rice’s theorem,
which says that any non-trivial property of languages accepted by Turing machines is undecidable.
There are two ways of interpreting Rice’s theorem: (1) Given a Turing machine M , the only thing
one can do is to run it, or (2) the Halting problem is the easiest non-trivial property of languages
of Turing machines, in the sense that if any non-trivial property is decidable, then so is the Halting
problem.

The intuition that it may be hard to understand what an algorithm does by looking at the
algorithm description naturally extends to the class of non-uniform algorithms (i.e., circuits). The
focus of this paper is on the second interpretation of Rice’s theorem, with Circuit-SAT as a complex-
ity counterpart of the Halting problem. In other words, we would like to show any “non-trivial”
counterexample to the Black-Box Hypothesis implies a somewhat efficient algorithm for SAT.

There have been several attempts to scale down Rice’s theorem to the complexity-theoretic
realm, with different notions of “non-trivial” and “hard”. In Rice’s theorem, “non-trivial” means
neither F nor F̄ is empty, and “hard” = undecidable. Borchert and Stephan [BS00] pioneered a line
of research that looked at counting properties of circuits and stated an analogue of Rice’s theorem
for such properties: if a counting property is non-empty, then it is UP-hard. There, a property F is
a counting property if it only depends on the number of solutions (i.e., F is a symmetric function).
Subsequently, Hemaspaandra and Rothe [HR00] and Hemaspaandra and Thakur [HT04] improved
the hardness result, obtaining a version of Rice’s theorem with NP-hardness.

Barak et al. [BGI+12] also look at the properties of boolean functions computed by circuits,
but consider a property trivial if it can be decided by checking the circuit value on relatively few
points. That is, in their setting, the semantic property f(00 . . . 0) = f(11 . . . 1) is trivial, but
∃x f(x) = 1 is not. Their “Scaled-down Rice’s theorem” conjecture states that every property of
boolean functions f that can be computed in BPP given a circuit for f can be also computed in
comparable probabilistic polynomial time given only oracle access to f and an upper bound on its
circuit complexity. There is a clear relation to obfuscation: if it were possible to produce a circuit
for any f so garbled that access to it is not much better than the black-box access, that would prove
the conjecture. However, in the same paper they show impossibility of achieving such obfuscation.
Nonetheless, [BGI+12] is able to disprove a certain “promise” version of the conjecture, under the
assumption that one-way functions exist (using a special family of unobfuscatable circuits). The
main statement, which we will call here “the Black-Box Hypothesis”, remains open.

1.3 Our techniques

Our starting point is the isolation lemma of Valiant and Vazirani [VV86], which can be interpreted
to say that any white-box BPP algorithm deciding the property F = XOR yields a BPP algorithm
for Circuit-SAT. This can be extended to any property F computing a symmetric function, at the
expense of introducing a small (polynomial) amount of nonuniformity. The main idea is to take
advantage of the existence of a very sensitive input f for any symmetric property F . (For example,
for the case of XOR, every input f : {0, 1}n → {0, 1} has maximum sensitivity 2n. In general, every
symmetric F has a polysize input f of sensitivity at least 2n/2.)

Suppose that f : {0, 1}n → {0, 1} is such a sensitive input for the property F , and moreover,
suppose that f is computable by a small circuit Cf (say of poly(n) size). To decide if a given
circuit C on n inputs is satisfiable, we first use the Valiant-Vazirani result to get from C a new
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circuit C ′ such that C ′ is uniquely satisfiable if C is satisfiable, and C ′ is unsatisfiable otherwise.
By XORing the circuits Cf and C ′, we get a new (small) circuit that leaves f unchanged if C is
unsatisfiable, and flips f in exactly one location if C is satisfiable. If the flipped location happens
to land among the sensitive locations of f , we can detect this by running our assumed white-box
algorithm on Cf ⊕ C ′ and noting that its output is different from that on Cf . To make sure that
the flipped location is among the sensitive ones for f , we consider a random-shift version of C ′ so
that its unique satisfying assignment (if it exists) will be in a uniformly random location. As, by
assumption, f has very many sensitive locations, this randomization will ensure that we detect if
C is satisfiable with high probability. The runtime of the described algorithm is polynomial in the
sizes of Cf and C. We think of a small circuit Cf as nonuniform advice, thereby getting a nontrivial
nonuniform algorithm for Circuit-SAT.

The (nonuniform) algorithm for Circuit-SAT described above achieves high success probability
in case a sensitive input f : {0, 1}n → {0, 1} (provided as advice via a small circuit computing f)
has very large sensitivity s ≥ Ω(2n). What if the sensitivity is only as large as 2Ω(n)? (Such a lower
bound is the best one can hope for if one assumes the Sensitivity Conjecture and that the given
property F has exponential decision tree complexity.) In this case, our described algorithm would
have success probability only about 2−δn, for some constant 0 < δ < 1, for solving Circuit-SAT on
n-input circuits. However, if the algorithm runs in (non-uniform) time at most 2o(n) (which will
happen if the advice circuit Cf is of size at most 2o(n)), then we can use the amplification technique
of Paturi and Pudlák [PP10] to get a new algorithm in non-uniform time 2o(n) that succeeds with
probability 1.

For the special case of monotone properties F , we show how to make do with even smaller
sensitivity assumption on the advice function f , getting a subexponential-size Circuit-SAT algorithm
for any superpolynomial sensitivity s > nω(1). The idea is to use hashing (which is also the main
ingredient in the aforementioned result of [PP10]).

If we don’t assume that a sensitive input f for a given property F would have a small circuit, we
can still say something interesting by applying a “win-win” argument. Informally, we get that if F
has sensitive inputs and an efficient white-box algorithm, then either Circuit-SAT is nonuniformly
easy (in subexponential size, infinitely often), or we get an efficient “hardness tester”: a polytime
algorithm that accepts only truth tables of boolean functions of exponential circuit complexity, and
accepts at least one such truth table. Getting such a hardness tester is a highly nontrivial task,
and is not known unconditionally. Once you have this tester, you can, for example, conclude that
BPP ⊆ NP, using standard “hardness-randomness” trade-offs [NW94, BFNW93, IW97].

Remainder of the paper. We give some basic definitions and facts in Section 2. We state
and discuss the Black-Box Hypothesis in Section 3. We prove Theorem 1.1 in Section 4. In
Section 5, we consider the special case of monotone properties as counterexamples to the Black-
Box Hypothesis, getting a proof of Theorem 1.2. In Section 6, we consider the case of properties
defined using succinct versions of the Minimal Circuit Size Problem (MCSP). We consider some
variants of the BBH for restricted circuit classes in Section 7. We conclude with some open problems
in Section 8.
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2 Preliminaries

The truth table of a boolean function f : {0, 1}n → {0, 1} is denoted by tt(f). With a boolean
circuit C on n inputs, we associate the boolean function fn = [C] computed by C. Slightly abusing
the notation, we use tt(C) to denote the truth table of a boolean function computed by the circuit
C. A standard encoding of C as a binary string is denoted desc(C).

A property of boolean functions is a function F : {0, 1}2n → {0, 1}, where strings over {0, 1}2n are
interpreted as truth tables of boolean functions on n variables, for every n. A meta-language over
circuits corresponding to a property F is LF = {desc(C) | C is a boolean circuit and tt(C) ∈ F}.
In particular, if LF is a meta-language over circuits, then for any circuits C1 and C2, if [C1] = [C2]
then C1 ∈ LF ⇔ C2 ∈ LF .

The size of a boolean circuit C is the number of gates plus the number of wires. Let size(f) =
minC,[C]=f |C|. We say that f ∈ SIZE(t(n)) if size(f) ≤ t(n).

We denote by Circuit-SATn,m the problem of deciding the satisfiability of a given n-input circuit
of size at mostm. For a time bound t = t(n), we denote by RTIME(t) the class of languages decidable
by randomized algorithms, with one-sided error at most 1/2, in time t; as usual, RP = RTIME(poly).
For an advice size function a = a(n), we denote by RTIME(t)/a the class of languages decidable by
an RTIME(t) algorithm, given the correct advice of size at most a.1

For a function F : {0, 1}N → {0, 1}, with N = 2n, we can think of inputs to F as truth tables
of n-variate boolean functions f : {0, 1}n → {0, 1}. For a circuit size bound t = t(n), we define the
randomized decision tree complexity of F on inputs of complexity at most t, denoted Rtt(F ), as the
minimal depth of a randomized decision tree deciding F , with error probability at most 1/3, on all
inputs f : {0, 1}n → {0, 1} of size(f) ≤ t(n).

A boolean function f : {0, 1}n → {0, 1} is sensitive on the ith bit of input x if flipping that bit
changes the value of f(x). Sensitivity of f on input x ∈ {0, 1}n, denoted by sens(f, x), is the number
of bits in x to which f is sensitive. The sensitivity of f , denoted sens(f), is maxx∈{0,1}n sens(f, x).

Simon’s lemma [Sim83] gives a weak lower bound on sens(f). We will use the following corollary
of this lemma from [AV15]:

Lemma 2.1 ([Sim83]). For every non-constant n-variate boolean function f , there exists an input
x ∈ f−1(1) with sens(f, x) ≥ n− log |f−1(1)|.

Although decision tree complexity of a boolean function is polynomially related to many other
measures that we do not define here (see, for example, [BdW02, HKP11]), its relationship with the
sensitivity remains elusive. The question of whether there is a polynomial relation between sens(f)
and the decision tree complexity Dt(f), known as the Sensitivity Conjecture, has been formulated
already in [Nis91]. However, despite much work, it is still unresolved.

Conjecture 2.1 (Sensitivity conjecture). There exists an integer k such that, for any function f ,
Rt(f) ≤ sens(f)k.

1For semantic complexity classes such as RTIME, it is customary to use the weaker notion of a class with advice,
where the algorithm is required to behave as a true RTIME-type algorithm only when given a correct advice string,
and can behave arbitrarily otherwise.
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3 Black-Box Hypothesis

3.1 Defining BBH

To investigate whether having a circuit Cf for an input function f helps decide a property F of
boolean functions, we compare the complexity of deciding F on f given a circuit Cf versus given
an oracle access to f . In the latter case, following [BGI+12], an algorithm deciding F (f) is also
given as its input the size m of some Cf (or, rather, an upper bound on Cf ), in unary (that is, the
algorithm can “see how large the box is”, but cannot peek inside). This makes the comparison of
the running time in both frameworks more meaningful. With this intuition, we define “white-box”
and “black-box” algorithms as follows.

Definition 3.1 (White-box vs. black-box algorithms). An algorithm A decides a property F in
white-box if A decides the corresponding meta-language LF . That is, given as input a string desc(C)
A accepts iff [C] ∈ F .

An algorithm A decides F in black-box if Af (1n, 1m) accepts iff f ∈ F , where f : {0, 1}n → {0, 1},
m is an upper bound on the circuit size of f and Af denotes that the algorithm A has oracle access
to the boolean function f ; as usual, 1n and 1m represent n and m in unary.

Definition 3.2. A property F is in white-box BPP, denoted F ∈ wbBPP, if there is a BPP algorithm
deciding LF . We say F is in black-box BPP, denoted F ∈ bbBPP, if there is a black-box randomized
algorithm Af (1n, 1m) deciding F in time polynomial in n+m, with the probability of error at most
1/3 over the choice of randomness, for every f, n,m.

With the above definitions, the Black-Box Hypothesis can be stated concisely as follows.

Hypothesis 3.1 (Black-Box Hypothesis (BBH)). For any property F of boolean functions,

F ∈ wbBPP ⇐⇒ F ∈ bbBPP.

If the BBH holds, then P 6= NP, as the well-known exponential black-box lower bounds for SAT
would rule out even a subexponential-time probabilistic algorithm for SAT. On the other hand,
if NP ⊆ BPP, then the BBH is false, with SAT as a counterexample. Suppose the BBH is false.
Would that imply that SAT is easy? We make the following conjecture.

Conjecture 3.1. (Informal) BBH is false iff Circuit-SAT is easy.

As a step towards proving the conjecture, we show that if the BBH fails in a particular way
(see the next subsection for the definition), then there is a family of circuits of subexponential size
that decides Circuit-SAT.

3.2 Defining a Strong Counter-Example to BBH

As noted before, a property F ∈ BPP can only be a counterexample to BBH when any black-box
algorithm requires superpolynomial time on some input of subexponential size (otherwise white-box
complexity and black-box complexity are polynomially related).

Thus, if F is not in black-box BPP, then any black-box algorithm deciding F requires super-
polynomial time on some input of subexponential circuit size, which we call an easy input.

Ideally, we would like to prove that if the BBH fails, then Circuit-SATis easy. We do not know
how to show such an implication yet. Instead, we consider the following sufficient condition for the
BBH to fail.
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Definition 3.3 (Strong counterexample to the BBH). A property F is an s-strong counterexample
to the BBH if

1. F is in wbBPP, but

2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of size(f∗) ≤ 2o(n) such that
sens(F, f∗) ≥ s.

We call a property a strong counterexample if it is 2Ω(n)-strong.

Next we argue that a strong counterexample to the BBH as defined above would indeed violate
the BBH. First, we recall the following result.

Lemma 3.2 (implicit in [Nis91]). Let F be a property of n-variate boolean functions. If sens(F, f) ≥
s for some boolean function f ∈ SIZE(t), then Rt(t+cn) ≥ (2/3)s (for some constant c > 0).

Proof. Let f i be the function that disagrees with f on the ith bit of the output, which is a sensitive
bit of f . Thus, (the truth tables of) f and f i are Hamming neighbours and circuit complexity of
f i is greater than f by at most a linear factor, i.e., size(f i) ≤ size(f) +O(n). Now to distinguish
f from each Hamming neighbour f i with probability at least 2/3, any randomized decision tree
needs to query the ith bit with probability at least 2/3. As there are s many sensitive bits for
f , the expected number of queries is (2/3)s. Thus, there is one branch on which the randomized
decision tree has to query (2/3)s of the bits.

Applying Lemma 3.2 immediately yields the required implication.

Corollary 3.3. If F is a nω(1)-strong counterexample to the BBH, then F 6∈ bbBPP (and hence,
the BBH is false).

3.3 Examples of properties with easy sensitive inputs

We give a few examples of properties with easy sensitive inputs. For each of these properties,
violating the BBH is actually equivalent to being a strong counterexample to the BBH.

Symmetric properties. A property F is symmetric if the membership of tt(f) ∈ F depends
only on the number of 1s in tt(f). Such properties were the focus of one of the previous formulations
of a possible complexity analogue of Rice’s theorem, due to Borchert and Stephan [BS00] (though
their notion of hardness was somewhat different). A basic symmetric property of N -bit strings such
as OR or XOR has an easy input (the all-0 string) of sensitivity N . We note that every symmetric
property has an easy input of sensitivity at least N/2.

Lemma 3.4. If F is a non-trivial symmetric property of n-variate boolean functions, then there is
a Boolean function f : {0, 1}n → {0, 1} with sens(F, f) ≥ 2n/2 such that f is computable by an AC0

circuit of polynomial size.

Proof. As F is a non-trivial property, there is a number 1 ≤ k ≤ 2n such that a tt(f) with k − 1
ones is accepted by F (wlog), but any tt(f) with k ones is rejected by F . If k ≥ 2n/2, then
any string with k ones has sensitivity k. Otherwise, any string with k − 1 ones has sensitivity
2n − (k − 1) ≥ 2n/2.
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Let k be the number of 1s in an input with sensitivity at least 2n/2. Define a required boolean
function f with exactly k ones in its truth table by f(x) = 1 iff x < k, where x is interpreted as
an integer in binary. It is easy to see that f has a polynomial-size circuit, even of AC0 type (as the
comparison of two n-bit integers can be implemented in AC0 [CSV84]).

Subsets of easy functions. Consider a property F that only contains a subset of easy
functions, that is, only functions of circuit complexity at most t = 2o(n). Easy functions form a
very sparse set (the number of n-bit functions of circuit size at most t is at most 2t

2
). So by Simon’s

lemma (Lemma 2.1), F contains an (easy) instance of sensitivity at least 2n−t2 = 2n−2o(n) = Ω(2n).

4 Circuit-SAT algorithm from strong counterexamples

The main theorem of this section shows that a strong counterexample to the BBH (as in Defi-
nition 3.3) implies that Circuit-SAT on n-input circuits of subexponential size can be decided by
subexponential-size circuits. Formally, we have the following.

Theorem 4.1. If there is a strong counterexample to the BBH, then

Circuit-SATn,2o(n) ∈ SIZE(2o(n)).

We prove this theorem in two steps. First we show (in Section 4.1) how sensitivity can be
exploited for deriving a randomized algorithm for satisfiability, whose success probability depends
on the assumed sensitivity of a given counterexample to the BBH. Then (in Section 4.2) we amplify
the success probability of our algorithm.

4.1 From high sensitivity to Circuit-SAT

Here we prove the following.

Lemma 4.2. Let F be an s-strong counterexample to the BBH, with an s-sensitive function fam-
ily f ∈ SIZE(t). Then Circuit-SATn,m is decidable in randomized time poly(t,m), with success
probability Ω(s/2n), given the advice of size poly(t). In particular, we have that

Circuit-SATn,m ∈ SIZE(poly(n · (t(n) +m) · 2n/s(n))).

Proof. Let AF be a BPP algorithm for LF . By Adleman’s argument [Adl78], we can assume that
AF is a deterministic algorithm, using at most poly(m) bits of advice on inputs of length m.

As a warm-up, suppose that F has maximal sensitivity 2n, and, moreover, for each n there
is a maximally sensitive input tt(f) where f has a circuit Cf of size t. Now, if C has at most 1
satisfying assignment, it is enough to check whether AF (C ⊕Cf ) = AF (Cf ): if there is a satisfying
assignment for C, it flips a sensitive bit of tt(Cf ), otherwise tt(C ⊕ Cf ) = tt(Cf ).

To use the idea described above we need to guarantee that the circuit C for which we want
to decide satisfiability has at most one satisfiable assignment. This can be done by applying the
Valiant-Vazirani reduction [VV86] to get new circuit C ′. Assuming that f is a highly sensitive
input, we have a non-trivial chance of hitting one of its sensitive bits if we randomly shift a unique
satisfying assignment of C ′. That is, we check AF (C ′(x ⊕ r) ⊕ Cf ), where r is a random binary
string of length |x|. More formally, our algorithm for Circuit-SAT is as follows.
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Algorithm for Circuit-SAT
Input: A circuit C on n inputs.
Advice: A circuit Cf of size at most t such that tt(Cf ) is an s-sensitive string for F .

1. Apply the Valiant-Vazirani reduction to C to obtain a list C1, . . . , Cn satisfying
the following: if C is unsatisfiable then so is every Ci on the list, and if C is
satisfiable, then, with probability at least 1/2, at least one Ci on the list has a
unique satisfying assignment.

2. Pick a random r ∈ {0, 1}n. For each Ci on the list, check if

F ([Cf ]) 6= AF (Ci(x⊕ r)⊕ Cf ).

If the check passes for at least one 1 ≤ i ≤ n, then accept; otherwise, reject.

The running time of the described algorithm is poly(n, t + m). The advice size is poly(t), as
we need Cf , plus the advice of size poly(|C| + |Cf |) used in Adleman’s averaging argument. If
C is unsatisfiable, then the algorithm rejects C with probability 1. If C is satisfiable, then the
algorithm accepts with probability at least (1/2) · s/2n (the success probability of the Valiant-
Vazirani reduction in Step (1), times the probability of hitting a sensitive bit of the advice tt(Cf )
by a random shift r in Step (2)).

Finally, applying Adleman’s argument to the randomized algorithm above, we get a nonuniform
circuit family solving Circuit-SAT with the stated parameters.

Corollary 4.3. Let F be a nontrivial symmetric property such that LF ∈ BPP. Then Circuit-SAT ∈
RP/poly ⊆ P/poly.

Proof. The proof follows from Lemma 3.4 and Lemma 4.2.

4.2 Amplifying the success probability

Lemma 4.2 is a weaker version of Theorem 4.1 which needs the sensitivity bound s ≥ 2n−o(n). To
handle a smaller sensitivity 2δn, for any δ > 0, we need a better way of amplifying the success
probability of our randomized Circuit-SAT algorithm above, without increasing the circuit size by
too much. We will use the following Exponential Amplification lemma by Paturi and Pudlák [PP10].

Lemma 4.4 (Exponential amplification lemma[PP10]). Let G be a family of probabilistic circuits of
size bounded by g(m,n) such that G decides Circuit-SAT with one-sided error, achieving the success
probability 2−δn on satisfiable instances. Then there exist a circuit family G′ deciding Circuit-SAT
with success probability 2−δ

2n on satisfiable instances, for all large enough n, where the circuit size
of G′ is bounded by g′(n,m) = O(g(dδne) + 5, Õ(g(n,m))).

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Let G0
m,n be the circuit family encoding the randomized algorithm from

Lemma 4.2. For concreteness, let desc(Cf ) = 2n
γ

denote a bound on the size of |Cf |. The size of
the complete circuit G0

m,n is O(2kn
γ · nkγ+1 ·mk), where k is the exponent of the running time of

AF . Assuming that m ≤ |Cf | to bound smaller factors, |desc(G0
m,n)| = O(2kn

γ · n(k+1)γ+1 ·mk).
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Apply the Exponential amplification lemma for t iteration to G0
m,n, where t ∈ ω(1) is a very

slow growing function. If 2o(n) = 2α(n) is the bound on the advice circuit |Cf |, then we need

kt ·α(n) < β(n), where β(n) ∈ o(n). As t is non-constant, success probability becomes 2δ
tn ∈ 2o(n).

Now, using the standard techniques to amplify the success probability (with 2δ
tn +O(n) trials and

fixing randomness by the averaging argument), we obtain a deterministic circuit of subexponential
size solving Circuit-SAT for circuits of description size m on n variables.

5 Monotone properties

Here we consider a special case of monotone properties F . First, we argue that it suffices to have
a monotone counterexample to the BBH with just superpolynomial sensitivity in order to obtain
a non-trivial Circuit-SAT algorithm (Section 5.1). Then we show that having a monotone property
F in white box P such that F requires high decision tree complexity implies either a nontrivial
Circuit-SAT algorithm or nontrivial derandomization of BPP (Section 5.2).

5.1 Handling a lower sensitivity bound

So far, to get a nontrivial Circuit-SAT algorithm from a counterexample F to the BBH, we assumed
that we have an easy sensitive input f∗ : {0, 1}n → {0, 1} with sens(F, f∗) ≥ 2Ω(n). Here we show
that for a special case of monotone properties F , any superpolynomial sensitivity s ∈ nω(1) would
suffice to get the same kind of Circuit-SAT algorithms.

Theorem 5.1. Let F be a monotone property such that

1. F is decidable in BPP in the white-box setting, but,

2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} of sensitivity s ≥ nω(1) and of circuit
complexity so(1) ≥ poly(n) (which implies that F requires superpolynomial time to decide in
the black-box complexity setting, even on functions of circuit complexity so(1)).

Then Circuit-SATn,2o(n) ∈ SIZE(2o(n)).

Proof. Without loss of generality, assume that F (f∗) = 1. Given f∗ as advice, we describe a
Circuit-SAT algorithm for circuits on k = log2 s inputs. We will use random hash functions. Recall
that a universal hash family Hn,k = {h : {0, 1}n → {0, 1}k} has the properties: (1) for every fixed
x ∈ {0, 1}n, the value h(x), for a random h ∈ Hn,k, is uniform over {0, 1}k, and (2) for every
x 6= y ∈ {0, 1}n, the values h(x) and h(y), for a random h ∈ Hn,k, are independent and uniform
over {0, 1}k. Our Circuit-SAT algorithm is as follows:

Given a Circuit-SAT instance C on k inputs of size 2o(k),

1. pick a random hash function h : {0, 1}n → {0, 1}k from the universal hash family
Hn,k, and build a circuit for the following function f ′: for every x ∈ {0, 1}n, set

f ′(x) =

{
f∗(x) if f∗(x) = 0

f∗(x)⊕ C(h(x)) otherwise

11



2. Run the white-box BPP algorithm to decide F (f ′). If F (f ′) = 0, output “C is
satisfiable”; otherwise, output “C is unsatisfiable”.

For the time analysis, note that the circuit size for f ′ defined above is O(so(1)) + poly(n) ≤
O(so(1)), as f ′(x) = f∗(x) ∧ ¬C(h(x)), and h has a circuit of size poly(n).

Thus, the described algorithm runs in time poly(so(1)) ≤ so(1), which is 2o(k) for k-input
Circuit-SAT instances C.

For correctness, note that if C is unsatisfiable, then f ′ = f∗, and so F (f ′) = 1. If C is satisfiable,
say by an assignment y ∈ {0, 1}k, then, with probability at least 1/2 over the choice of h, the set
h−1(y) will contain at least one sensitive location x ∈ {0, 1}n such that f∗(x) = 1, but flipping f∗

at x results in the new function g such that F (g) = 0.
By monotonicity of F , flipping f∗ at x and at any other locations x′ where f(x′) = 1 results in

a new function f ′ such that F (f ′) = 0.

5.2 Win-win analysis

As the Sensitivity Conjecture is true for monotone properties, assuming that a monotone property
F requires high decision tree complexity (i.e., non-uniform black-box complexity) implies that F
has a (not necessarily easy) sensitive input. We use a “win-win” argument to prove the following.

Theorem 5.2. Let F be any monotone property such that

1. F is in P in the white-box setting, but,

2. for almost all input lengths n, F requires decision tree complexity at least s > nω(1) on inputs
f : {0, 1}n → {0, 1}.

Then either Circuit-SATn,2o(n) ∈ SIZE(2o(n)) infinitely often, or BPP ⊆ NP.

Proof. We get that F has inputs f : {0, 1}n → {0, 1} of sensitivity at least s′ ≥ sΩ(1), for almost
all n. By monotonicity of F , we may assume, without loss of generality, that such sensitive inputs
f are minimal for F , meaning that for f such that F (f) = 1, every x ∈ {0, 1}n where f(x) = 1 is
a sensitive location (and similarly for f such that F (f) = 0, for x’s where f(x) = 0). Below, for
simplicity, we assume that f is such that F (f) = 1; the other case is symmetric.

It follows that the truth table of f is fully determined by s′′ = s′ · n bits needed to describe s′

locations x ∈ {0, 1}n where f(x) = 1. Think of this s′′-bit string as a truth table of a new boolean
function g on k = log s′′ bits. If such a function g is computable by a circuit of size (s′′)o(1) ≤ 2o(k),
then the original function f also has a circuit of size (s′)o(1) and sensitivity s′, yielding a 2o(k) circuit
for Circuit-SAT instances on k-bit inputs, as in the proof of Theorem 5.1 above.

If such easy sensitive inputs f exist for infinitely many input lengths n, we get that Circuit-SAT
is infinitely often decided by circuits of subexponential size. Otherwise, we get an efficient test
that only accepts s′′-bit strings of circuit complexity (s′′)Ω(1). The test needs to check that a given
s′′-bit string Z encodes a description of a function f : {0, 1}n → {0, 1} such that F (f) = 1 and f
is a minimal input for F . To this end, the test first builds a circuit of size poly(s′′) deciding the
boolean function f such that f(x) = 1 iff x ∈ {0, 1}n is one of the strings described by Z. Then we
use the white-box P algorithm for F to decide if F (f) = 1, and if every f ′ that differs from f in
exactly one position x ∈ {0, 1}n where f(x) = 1 is such that F (f ′) = 0. For the latter, we need to
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construct at most s′′ circuits for each such f ′, and each such f ′ has a circuit of size at most O(s′′).
Thus the overall runtime of the test is poly(s′′).

Once we have an efficient test for truth tables of exponential circuit complexity for almost all
input lengths, we conclude by the “hardness-randomness” trade-offs [NW94, BFNW93, IW97] that
BPP ⊆ NP (as we can nondeterministically guess and efficiently certify a truth table of exponential
circuit complexity, and then use it to derandomize any BPP algorithm with only polynomial blowup
in the run time).

6 Circuit-SAT algorithm from variants of MCSP

So far we have considered a Circuit-SAT algorithm that relies on the sensitivity of a given coun-
terexample F to the BBH. In this section we will show a different approach to designing Circuit-SAT
algorithm from properties that are subsets of easy functions, the one that does not explicitly use
the notion of sensitivity.2

We consider the following succinct version of MCSP, denoted SuccinctMCSP, where one is given
a circuit as input, and is asked to determine if there is a smaller circuit computing the same boolean
function; see, e.g., [AHK17] for a recent use and some basic results about SuccinctMCSP. More
formally, for t = t(n), SuccinctMCSPt(C) asks to decide if f = [C] is in SIZE(t).

Theorem 6.1. For any efficiently computable t(n) ∈ ω(n), if SuccinctMCSPt ∈ BPP, then

Circuit-SATn,m ∈ RTIME(poly(t(n),m)).

Proof. Let F = {tt(f) | f ∈ SIZE(t(n))}. As before, we describe only a BPP algorithm for
Circuit-SAT. The algorithm to decide if a circuit C(x1, . . . , xn) is satisfiable is as follows:

1. Take a random boolean function h on r := k log t(n) variables, for k such that
t(n+ k log t(n))� t(n)k/(k log t(n)).

2. Construct a circuit Cr computing h, of size O(2r).

3. Construct the circuit

C ′(x1, . . . , xn, y1, . . . , yr) = C(x1, . . . , xn) ∧ Cr(y1, . . . , yr).

4. Test if C ′ ∈ SuccinctMCSPt. If ‘Yes’, output ‘Unsatisfiable’; otherwise, output
‘Satisfiable’.

For the analysis, observe that if C is unsatisfiable, then [C ′] ≡ 0, and thus size([C ′]) ≤ t(n +
k log t(n)). So, in this case, we have [C ′] ∈ F . Next, with high probability over the choice of an
r-input random boolean function h, the circuit complexity of h is at least 2r/r, and so [Cr] /∈ F . For
each satisfying assignment a1, . . . , an to the inputs to C, we have that C ′(a1, . . . , an, y1, . . . , yr) =
Cr(y1, . . . , yr). In particular, size([C ′]) ≥ size([Cr]) > t(n + k log t(n)). So, if C is satisfiable,
[C ′] /∈ F .

2Of course, as noted earlier, Simon’s lemma implies that any such property does have an easy sensitive input, and
so one can use the sensitivity-based Circuit-SAT algorithm described above. The point here, however, is to have a
different type of a Circuit-SAT algorithm.
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Theorem 6.2. Let F be a non-empty (for all n) property that contains only a subset of functions
f ∈ SIZE(t(n)), for some efficiently computable t(n) ∈ ω(n). If F ∈ wbBPP, then

Circuit-SATn,m ∈ RTIME(poly(t(n),m))/t(n).

Proof. The structure of this proof resembles the original Rice’s theorem proof, with the main idea
as in Theorem 6.1. Suppose we are given a circuit C on n variables. Construct circuit Cr on
k log t(n) variables for a random function as in Theorem 6.1. Now, C(x1, . . . , xn) ∧ Cr(y1, . . . , yr)
has the circuit complexity at least t(n + r) iff C is satisfiable; in this case, [C ∧ Cr] /∈ F . When
C is unsatisfiable, circuit C ∧ Cr is unsatisfiable. However, now it is possible that the constant 0
function is not in F . In this case, the algorithm needs to know a circuit Cf on n+ r variables for
some f ∈ F . Given such a circuit as advice, consider the new circuit

C ′ = (C(~x) ∧ Cr(~y))⊕ Cf (~x, ~y).

Clearly, this C ′ still likely has high circuit complexity when C is satisfiable; however, when C is
unsatisfiable, C ′ is equivalent to Cf , and so is in F . Thus, with high probability, we have [C ′] /∈ F
iff C is satisfiable.

7 BBH for restricted circuit classes

We formulated the BBH with general circuits as inputs to the white-box algorithm. It is natural
to consider its variants with other types of circuits. Already, [BGI+12] have shown that the BBH
becomes false with BPP replaced by PromiseBPP (assuming one-way functions exist); here both
the property F and the class of allowable input functions come from the unobfuscatable circuit
ensemble used in the proof of impossibility of obfuscation.

We observe that for a very weak type of circuits, e.g., read-once branching programs, the
corresponding version of the BBH is unconditionally false. This is because the satisfiability of a
given roBP is exactly the reachability problem in the graph representing the roBP, and so SAT for
roBPs is in P in the white-box setting. However, SAT for roBPs is still exponentially hard in the
black-box setting.

Note that if a model of computation is exactly and properly learnable by a randomized algorithm
using polynomially many membership queries to the function, then the BBH holds for that model.
For example, since Angluin et al. [AHK93] showed that monotone read-once formulas are learnable
in O(n3) time with O(n2) queries, the BBH holds for monotone read-once formulas in place of
circuits.

What about other natural circuit classes? We observe that for AC0 circuits as inputs to the
white-box algorithm, some of our results still hold. Let us call a property F of n-variate boolean
functions an s-strong counterexample to the AC0-BBH if the following conditions hold:

1. there is a BPP algorithm that, given an AC0 circuit C, decides if [C] ∈ F .

2. for almost all n, F has an input f∗ : {0, 1}n → {0, 1} computable by an AC0 circuit of size
2o(n) such that sens(F, f∗) ≥ s.

Below we denote by AC0-Circuit-SATn,m the satisfiability problem for n-input AC0 circuits of
size at most m. We have the following analog of Lemma 4.2.
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Theorem 7.1. If there is an s-strong counterexample to the AC0-BBH, then

AC0-Circuit-SATn,m ∈ SIZE(poly(2o(n),m) · 2n/s(n).

Proof. The algorithm given in Lemma 4.2 can be adapted for AC0 circuits. The main ingredient
there is the Valiant-Vazirani reduction that needs circuits for computing the parities of (random)
subsets of n input bits (random hash functions). Each such parity is computable by a depth-d AC0

circuit of size O(2n
1/(d−1)

), which is 2o(n) for d > 2.

Theorem 7.1 yields a nontrivial Circuit-SAT algorithm for AC0 circuits when the sensitivity
bound s is at least Ω(2n). In particular, we get the following.

Corollary 7.2. If a symmetric property is a counterexample to the AC0-BBH, then

AC0-Circuit-SATn,m ∈ SIZE(poly(2o(n),m)).

Proof. By Lemma 3.4, we know that a symmetric property has an input f : {0, 1}n → {0, 1} of
sensitivity 2n/2, which is computable by a polynomial-size AC0 circuit. The required conclusion
now follows by Theorem 7.1.

For s ≥ 2Ω(n), we are unable to amplify the success probability here using the recursive approach
of [PP10], as that approach doesn’t preserve the AC0-type of input circuits. We leave it as an open
question to handle the case of s ≥ 2Ω(n).

8 Conclusions

We conjecture that the falsehood of the BBH is equivalent to the easiness of Circuit-SAT. In the
present paper, we make a step in that direction, but many interesting questions remain open. Below
we list a few of them.

1. Is it possible to prove our conjecture, assuming the Sensitivity Conjecture is true?

2. Is it possible to get a uniform algorithm for Circuit-SAT for a general class of counterexamples
to BBH, thereby (conditionally) violating the ETH?

3. Are there any algorithmic SAT consequences from the assumption that there is a strong
counterexample to the BBH for CNF formulas (rather than AC0 or general circuits)?

4. The initial formulation of BBH by Barak et al. [BGI+12] was mainly inspired by the idea of
virtual black-box obfuscation. Is it possible to use indistinguishability obfuscators for proving
or disproving BBH?
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