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Abstract

Many low-degree tests examine the input function via its restrictions to random hyperplanes
of a certain dimension. Examples include the line-vs-line (Arora, Sudan 2003), plane-vs-plane
(Raz, Safra 1997), and cube-vs-cube (Bhangale, Dinur, Livni 2017) tests.

In this paper we study tests that only consider restrictions along azis-parallel hyperplanes,
which have been studied by Polishchuk and Spielman (1994) and Ben-Sasson and Sudan (2006).
While such tests are necessarily “weaker”, they work for a more general class of codes, namely
tensor product codes. Moreover, axis-parallel tests play a key role in constructing LTCs with
inverse polylogarithmic rate and short PCPs (Polishchuk, Spielman 1994; Ben-Sasson, Sudan
2008; Meir 2010). We present two results on axis-parallel tests.

(1) Bivariate low-degree testing with low-agreement. We prove an analogue of the Bivariate
Low-Degree Testing Theorem of Polishchuk and Spielman in the low-agreement regime, albeit
with much larger field size. Namely, for the 2-wise tensor product of the Reed—Solomon code, we
prove that for sufficiently large fields, the 2-query variant of the axis-parallel line test (row-vs-
column test) works for arbitrarily small agreement. Prior analyses of axis-parallel tests assumed
high agreement, and no results for such tests in the low-agreement regime were known.

Our proof technique deviates significantly from that of Polishchuk and Spielman, which relies
on algebraic methods such as Bézout’s Theorem, and instead leverages a fundamental result in
extremal graph theory by Kovari, Sés, and Turdn. To our knowledge, this is the first time this
result is used in the context of low-degree testing.

(2) Improved robustness for tensor product codes. Robustness is a strengthening of local
testability that underlies many applications. We prove that the axis-parallel hyperplane test
for the m-wise tensor product of a linear code with block length n and distance d is Q(n:i )-
robust. This improves on a theorem of Viderman (2012) by a factor of 1/ poly(m). While the
improvement is not large, we believe that our proof is a notable simplification compared to prior
work.
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1 Introduction

Locally testable codes (LTCs) are error-correcting codes for which, given an input word, one can
verify whether the word belongs to or is far from the code by inspecting the word in a few random
locations. LTCs have been studied extensively in different contexts, including program checking,
interactive proofs, and probabilistically checkable proofs (PCPs) [BLR93; RS96; BFL91; BFLS91;
PS94; GS06]. Goldreich and Sudan [GS06] describe LTCs as “combinatorial counterparts of the
complexity theoretic notion of PCPs”, motivating the study of these objects separately.

LTC constructions. The first constructions of LTCs were algebraic in nature, and relied on mul-
tivariate polynomials. Starting with the seminal work of Blum, Luby, and Rubinfeld [BLR93]|, there
has been much work on such algebraic LTCs by way of results on linearity testing and low-degree
testing in numerous settings [BLR93; BCLR08; BSVW03; BCHKS96; AKKLRO05; BKSSZ10].
Many other constructions [Mei09; Vid13; KMRS16| further optimize parameters of these codes,
including rate, distance, and the number of queries made by the tester.

Ben-Sasson and Sudan [BS06] suggested a combinatorial approach to construct LTCs starting
from any linear code by (i) applying the tensor product operation [Wol65; WE63] to the code, and
(ii) testing the resulting code via the axis-parallel hyperplane test. We now discuss both.

The 2-wise tensor product of a linear code C' C F”, denoted C?, is the code in F* consisting of
all 2-dimensional matrices whose n rows and n columns are codewords in C; similarly, the m-wise
tensor product of C, denoted C™, is the code in F*" consisting of all m-dimensional matrices M
whose restrictions to any axis-parallel (m — 1)-dimensional hyperplane is a codeword in C™~!. For
example, the code of evaluations of all m-variate polynomials of individual degree at most r is the
m~wise tensor product of the code of evaluations of all univariate polynomials of degree at most r.

The axis-parallel hyperplane test for the code C™ works as follows: given a word M, sam-
ple a random axis-parallel hyperplane and check if the restriction of M to this hyperplane is a
codeword in C™~!. This natural test extends ideas of axis-parallel line tests used in early PCP
constructions [BFL91; BFLS91; AS98| to arbitrary tensor product codes.

We study two aspects of the axis-parallel hyperplane test for tensor product codes.

(1) Low-agreement regime. All of the aforementioned works study the axis-parallel hyperplane
test in the “high-agreement regime”, in which the given codeword is within the unique decoding
radius of the tensor product code. What can be said about the “low-agreement regime”, in which
the given codeword may be as far as the list-decoding radius? This setting is more challenging
because one wishes to deduce that a given word has some noticeable global correlation with a
codeword, or a short list of codewords, by only assuming that local views of the test have some
non-trivial agreement with accepting views (but may not necessarily be very close to such views).

Results in the low-agreement regime are known for other tests, such as tests for the Hadamard
code [BCHKS96] and the long code [Has01] as well as random non-axis-parallel hyperplane tests in
various dimensions [RS97; AS03; MRO8|. Moreover, these have applications to PCP constructions
and hardness of approximation. However, to our knowledge prior to our work no results are known
for the low-agreement regime of axis-parallel tests.

(2) Robustness. Ben-Sasson and Sudan [BS06] analyze the axis-parallel hyperplane test via
the notion of robustness, a stronger notion of local testability borrowed from the PCP literature
[BGHSV06; DR04|. Informally, a test for a code is robust if, given any input that is far from the
code, the local view of the test is also far from an accepting view on average. For example, the
axis-parallel hyperplane test is robust if, given any M that is far from C™, the restriction of M to



a random hyperplane is far from C™~! on average.

Robustness thus relates the global distance to the expected local view distance and, as shown
in [BS06], facilitates query reduction via a natural way to compose tests; this notion has also found
applications to proof composition in the setting of PCPs [BGHSV06|. These works have motivated
the study of the robustness of the axis-parallel hyperplane test for tensor product codes, establishing
both positive results [DSWO06; BV08; BV15; Vid12] and limitations [Val05; CR05; GM12].

Despite significant progress, robustness results for the axis-parallel hyperplane test seem to be
far from tight. The best known relation between the global distance and the local distance is due
to Viderman [Vid12], but no examples that come anywhere close to his proven bound are known.

2 Main results

We present two main results about tests for tensor product codes. First, we prove an analogue of the
Bivariate Low-Degree Testing Theorem of Polishchuk and Spielman [PS94] in the low-agreement
regime, albeit with much larger field size. Second, we improve on the robustness of the hyperplane
test for testing the tensor product code C™, for m > 3. We now discuss our results.

2.1 Bivariate low-degree testing in the low-agreement regime

One of the applications of locally testable codes is constructing PCPs, where it is often desirable to
reduce the number of queries made by the test. Typically this is done by increasing the alphabet
size so that each “large” symbol bundles together several “small” symbols from different locations
of the given word. This bundling now introduces a consistency problem, because two large symbols
may in principle disagree about the same location in the word.

For example, in [RS97; AS03; MRO8; BDN17| the test has access to (alleged) restrictions of a
low-degree polynomial to all lines, planes, cubes, or other low-degree manifolds. The test samples
several queries that intersect, and checks that their answers are consistent on the intersection.
These works establish that if the test accepts with probability above a certain threshold, then the
restrictions are close to the restrictions of some low-degree polynomial.

We study this problem in a modified setting, where the test only has access to axis-parallel
restrictions. Restricting the test in this way makes its task more difficult, but doing so provides
other advantages. First, axis-parallel restrictions are sometimes the only natural restrictions, such
as when testing the m-wise tensor product of a general linear code C' (one may consider restrictions
to all (m — 1)-dimensional hyperplanes). Second, having fewer restrictions enables more efficiency,
e.g., it facilitates the construction of short PCPs [PS94; BS08§].

Indeed, for this very reason, Polishchuk and Spielman [PS94] study the above problem for
bivariate polynomials, where m = 2 and C is the degree-r Reed—Solomon code. That is, the test
has access to a table of row polynomials and a table of column polynomials, and its goal is to check
if these are consistent with restrictions of a bivariate polynomial of individual degree r. The test
works as follows: pick a random (z,y) € F?, read the row and column polynomials through this
point, and accept if and only if the two polynomials are equal on (z,y).

Clearly, if all the row polynomials and column polynomials are restrictions of a bivariate poly-
nomial of individual degree r, then the test always accepts. They prove that, conversely, if the test
accepts with probability close to 1, then the given polynomials are “close” to being restrictions (to
axis-parallel lines) of some low-degree bivariate polynomial, as written below. In the statement, we



say that a bivariate polynomial in variables x and y has degree (a,b) if the degree in x is at most a
and that in y is at most b. This means that the table of row polynomials, R(z,y), has degree (r,n)
and the table of column polynomials, C(x,y), has degree (n,r), where n is the size of the table.

Theorem 2.1 (|[PS94|). Let F be a field and X,Y CF subsets of size n:= |X| = |Y|. Let R(z,y)
be a polynomial of degree (r,n) and C(x,y) a polynomial of degree (n,r) such that

Pr  [C(z,y) = R(z,y)] =1—1~>
(w)eg(xy[ (z,y) (z,y)] ¥

for some v > 0. If n > 2yn + 2r, then there exists a polynomial Q(x,y) of degree (r,r) such that

Pr [C(l’,y) - R(w,y) - Q(x,y)] >1- 272 .
(z,y)eX XY

The theorem above assumes that n > 2yn + 2r, which means that 72 < (1/2 — r/n)? < 1/4.
In other words, it requires the row polynomials and column polynomials to agree on (at least)
more than three quarters of the points in X x Y. A slight improvement in the parameters of this
theorem is shown in [BCGT13]. However, their result still requires the polynomials to agree on a
large fraction of the points in X x Y. But what, if anything, can be said if we only assume that
they agree, for example, on more than a 0.1-fraction of those points?

There are several results on low-degree testing that show that, even if we only assume that
the test accepts with noticeable probability (for the row-vs-column test this probability equals the
agreement between row and column polynomials), one can still prove the existence of a short list of
polynomials that ‘explain’ most of this probability, and this in turn has applications to constructing
PCPs with small errors (see, e.g., [RS97; AS03; MROS]).

Our next result gives a positive answer to the question above, stating that even in the low-
agreement regime, we can still deduce some structure about the polynomials R and C, assuming
that the field size is sufficiently large.

Theorem 1. Let F be a field of size n, r € N, and d,e € R be such that § > € > 6y/r/n. Let
R(z,y) be a polynomial of degree (r,n) and C(z,y) a polynomial of degree (n,r) such that

Pr [Clz,y) = R(z,y)] =0 .
Pt [Cy) = R(.)]

If n > exp(Q(Llog(L))), then there exist t = O(1) polynomials Q1(z,y), ..., Q(z,y) of degree
(r,7) such that

Pr_[3i€[f] Cle,y) = R(z.y) = Qilw,y) 26—« .
(z,y)€F

We remark that Theorem 1 holds in general for the 2-wise tensor of any linear code C' C F”
with minimal distance > n — 7 such that n > exp(€2(Z log(%))). In particular, this means that the
minimal distance of C' is at least n — O(logn). See the paragraph Beyond polynomials on page 4
for details.

Note that in the above theorem, ¢ is the agreement probability, while ¥? in Theorem 2.1 is the
disagreement probability. Also, since r = o(n), both § and € can be sub-constant. This is the first
result that analyzes the row-vs-column test in the low acceptance regime that we are aware of.

The row-vs-column test and its higher-dimensional analogues underly many known PCP con-
structions [BFL91; BFLS91; PS94; BS08|. However, in all these constructions the low degree tests



are only analyzed in the high agreement regime. We believe that analyzing the test in the low-
agreement regime may imply short PCP constructions with small (sub-constant) soundness. A
weakness of the result stated in Theorem 1 is the requirement that the field size must be very large,
which restricts us from getting PCPs with polynomial-size proof length. Nonetheless, we consider
Theorem 1 as a promising first step in this direction. More generally, our result suggests that the
low-agreement regime for tensor product codes merits further study.

To prove the theorem we leverage a fundamental result in extremal graph theory by Kovari, Sés,
and Turan. To our knowledge, this is the first time this result is used in the context of low-degree
testing. See Section 4.1 below for a high-level description of our proof.

We observe that in the above theorem, for ¢ > ¢ sufficiently small, it is necessary to have a list
of at least ﬁ;(wa) polynomials in order to explain all but € of the agreements of R and C. In
particular, if ¢ is a small constant and ¢ > 0 is sufficiently small, then the bound in Theorem 1 is
tight up to a polylog(1/¢) factor.

Proposition 2.2. Let F be a field of size n, r € N, and 6, € R be such that § > € > . There
exists a polynomial R(x,y) of degree (0,n) and a polynomial C(x,y) of degree (n,0) such that

Pr [C(z,y) = R(z,y)] =6

(z,y)€F?
but for any t < ﬁgﬁ(we) and polynomials Q1(x,y),...,Qi(x,y) of degree (r,r) it holds that
Pr [Fi€[t] s.t. C(z,y) = R(z,y) = Qi(z,y)] <d—¢ .
(z,y)€F?

Thus, unlike other results in this area [RS97; AS03; BDN17] where the list size depends only
on ¢, the list size must grow as a function of ¢ in our setting. The reason for this difference comes
from the restriction of our test, which considers only axis-parallel lines, as opposed to arbitrary
lines (or planes or cubes) used in the other works. In particular, in our setting once we choose
a point (z,y), the lines going through this point are fixed by the design of the test, while in the
aforementioned works above there are many lines (or planes or cubes) going through this point,
and the performed queries are chosen at random conditioned on the chosen random point.

Beyond polynomials. While [PS94]’s proof relies on polynomials (a key step is Bézout’s Theo-
rem), we rely on combinatorial techniques, so that our Theorem 1 holds in general for the 2-wise
tensor of any linear code C' C F" with minimal distance > n — r such that n > exp(Q(Z log(1))).
In particular, this means that the minimal distance of C' is at least n — O(logn). The row-vs-
column test is now given two matrices R,C € F™*™ such that every row of R is in C, and every
column of C is in C. If Pr, yyem2[R(7,y) = C(z,y)] = J, then there exist ¢ = O(1/¢) codewords
Q1,...,Q¢ € C? such that Pre, pem2[3i € [t] st. R(x,y) =C(z,y) = Qi(z,y)] >0 —e.

In this context it is worth mentioning that there has been a lot of work on the robustness of the
axis-parallel line test for 2-wise tensor products, proving both positive results [BS06; DSW06] and
negative ones [Val05; CR05; GM12]. We find it quite remarkable that this result holds for general
pairwise tensor codes, albeit with very high distance, as the closely related notion of robustness
does not hold for general 2-wise tensor products.

Finally, in the high-agreement regime there is a correspondence between the robustness of the
axis-parallel line test and the soundness of the row-vs-column test (the matrix is given as a collection



of lines rather than explicitly).! Yet this correspondence does not hold in the low-agreement regime.
Consider a matrix M whose rows are random independent codewords: the tensor product test passes
with probability at least 0.5 (when reading a row), but M is typically far from a tensor codeword.

Open problems. We raise two questions on the low-agreement regime of axis-parallel line tests.

e Smaller field size. Our result (Theorem 1) assumes that the field size n is exponential in the
degree r. Can one prove a similar result for smaller fields, such as n = poly(r)?

e Higher dimensions. Polishchuk and Spielman [PS94| explain that their result (in the high-
acceptance regime) also holds in higher dimensions, where now the test is given a table of
low-degree polynomials for each axis-parallel line in F”* and works as follows: pick a random
p € F™, read the polynomials along the m axis-parallel lines through p, and check that all
polynomials agree on p. Can one prove a high-dimensional analogue of Theorem 17 Namely,
is it true that if this test accepts with probability 6 > 0, then there is a short list of low-degree
polynomials that explain most of the agreements?

2.2 Improved robustness for the axis-parallel hyperplane test

We study the robustness of the axis-parallel hyperplane test for the tensor product code C™ C F*"
for an arbitrary linear code C' with minimal distance d and block length n over the field F. Let
H be the test that, given a word M € F"", samples a random axis-parallel (m — 1)-dimensional
hyperplane H and checks if M|z € C™~!. For a word M € F*", we define 6(M) to be the relative
distance of the word M to the code C™ and p(M) to be Ey[§(M|g,C™1)], the expected local

distance of M. The test H is a-robust if p(M) > «-6(M) for every word M € F*". The ‘strength’
of the test increases with «a, so the goal is to establish the largest « for which this inequality holds.

What is known. There are two main prior works that study the robustness of the test H for
general m. We state the results of these works, starting with one of Ben-Sasson and Sudan [BS06].

Theorem 2.3 (|[BS06]). Let C C F" be a linear code with minimal distance d. For m > 3 and
(%)m > 7/8, the test H is a-robust for C™ with a = 2716,

The above theorem is limited in that the proved robustness is small and, moreover, only provides
a guarantee when C' has a very large distance. Viderman [Vid12] shows that this condition on the
distance is not necessary in order to show some robustness guarantee.

Theorem 2.4 ([Vid12]). Let C C F™ be a linear code with minimal distance d. For m > 3, the

test H is c-robust C™ with o = 53 (5) .

The above theorem, the state of the art in this setting, improves on the previous one as (i) even if
( %)m > 7/8, the robustness provided by Theorem 2.4 is larger than that provided by Theorem 2.3

for m < 169; (ii) a robustness guarantee is provided for any choice of m,d,n (as long as m > 3).

Our result. We present a simpler proof of Theorem 2.4, which also achieves a # improvement
in the robustness by showing that the hyperplane test is Q(Z—Z)—robust. This improved value for

the robustness appears more “natural”, because Z—Z is the distance of the code C™.

! Let M € F™*™ be such that the average relative distance of a row/column of M to some codeword is 1 — e.
One can verify that by considering the closest codewords in each row and in each column, the obtained table of
row/column codewords passes the row-vs-column test with probability at least 1 —2e. Therefore, there exists a tensor
codeword that agrees with most of the rows and most of the columns, which in turn implies its agreement with M.



Theorem 2. Let C' C F" be a linear code with minimal distance d. For m > 3, the test ‘H is
a-robust for C™ with o = % (d)m.

n

Tight or not? Several works have studied the test H and all resulting analyses have an exponential
dependence on m in the robustness. Yet, there is no evidence indicating that this dependence is
necessary. Perhaps a “dream” result of constant robustness, for all codes C' and m > 3, is possible.
Like previous results, we too incur the same exponential dependence in the robustness. We present
some observations that may suggest that this dependence is not necessary.

e Under certain conditions on M, we can prove that p(M) > max{ m1+c, d4LY - 5(M) for con-

stants ¢, ¢ > 0. These two expressions are incomparable, as we can set the parameters m, d,n
to make either expression bigger than the other. (See Claim A.1.)

e The guarantees of Theorem 2.3, Theorem 2.4, and Theorem 2 all degrade as Z:Z decreases.

In particular, the proven value of « in all these cases tends to 0 as % tends to 0. However, if
C' is the Reed—Solomon code (or any other code with a similar interpolation property), then
we can prove that 6(M) < p(M) + % for all M. (See Claim A.4.)

We, thus, think that determining the optimal robustness of H is an intriguing open problem:

What is the optimal robustness of the hyperplane test H?

Can one prove that a = (max (%, Z—Z)), or even o = (1), for all codes?

In [BS06], [Vid12], and our result, the proof shows that when p(M) is below some threshold (related
to the code’s unique decoding radius), then (M) is also small. However, when p(M) is not below
this threshold, the analysis says nothing about 6(M/), and naively uses §(M) < 1 to prove robustness
in this regime. We believe that progress on understanding the optimal robustness of H hinges on
understanding what techniques (if any) can be used to bound §(M) in terms of p(M) for a larger
range of p(M).



3 Roadmap

The rest of this paper is organized as follows. Section 4 describes the techniques used to prove
our results. Section 5 introduces preliminaries for Theorem 1. Section 6 provides the proof of
Theorem 1 and Proposition 2.2 (which justifies the list size in Theorem 1). Section 7 introduces
basic notations and definitions for Theorem 2. Section 8 provides the proof of Theorem 2.



4 Techniques

We give an overview of the proof techniques behind Theorem 1 and Theorem 2.

4.1 Theorem 1: bivariate testing in the low agreement regime

Polishchuk and Spielman [PS94| prove their result (Theorem 2.1) using the following approach.
Given R and C (as in the theorem) such that Pr, ,[R(x,y) = C(x,y)] > 1—0, they define an “error
polynomial” E that equals 0 for all (z,y) such that R(z,y) # C(z,y). Since the fraction of points
where R(z,y) # C(x,y) is small, E is a low-degree polynomial. However, in the low-agreement
regime that we consider, the degree of E is rather large, which seems to preclude their approach.
In particular, a key step based on Bézout’s Theorem in their proof appears to break down.

We take a completely different approach, which relies on a combinatorial statement from ex-
tremal graph theory. Given R and C such that Pr, ,[R(z,y) = C(z,y)] = J, we define A € {0, 1}"*"
to be the ‘agreement matrix’: A(z,y) = 1 if and only if R(z,y) = C(z,y). By the assumption it
follows that A has at least 6n? ones. By invoking the Kovéri-Sés-and Turdn Theorem (which may
be thought of as an analogue of Ramsey’s Theorem for bipartite graphs) it follows that there are
some S,T C [n] such that |S|,|T| > Q(log(n)) > r and A|sxr = 1. Since the rows of R and the
columns of C are polynomials of degree r, we deduce that there exists a unique polynomial @} of
degree (r,r) such that for all (x,y) € S x T it holds that R(z,y) = C(z,y) = Q(z,y).

The argument above may appear to be good progress toward our goal. However, there is a total
of =~ dn? ones in A, and the rectangle S x T is of size O(log(n)), i.e., tiny compared to n. This
means that the progress is actually rather small!

Nevertheless, we can now set A|sx7 to be zero, and repeat the same argument again, thus
covering all but a small fraction of ones of A with small rectangles. However, this raises a new
problem. Each rectangle S x T found in the previous step can be wvery small, and so there are
potentially many different polynomials () that explain the agreements of R and C. Our next goal
is therefore to “stitch” these rectangles together to show that, in fact, there is only a small number
of distinct polynomials. We do so by “making the rectangles larger”, as we now explain.

Consider a rectangle S x T from the first step, and let ¢ € F\ T. Note that if there are r + 1
points s € S such that A(s’,t') = 1, then the row polynomial R(-, ") is uniquely defined by these
r + 1 points, and hence A(s,t') = 1 for all s € S. Therefore, we can increase T by adding ¢’ to
it. On the other hand, if there are less that r + 1 such points s’ € S, then we may disregard these
points as they amount to only a small fraction of the points (since |S| > 7). Thus, on a typical
rectangle S x T', we can go from size O(log(n)) x O(log(n)) to size roughly O(log(n)) x Q(n).

In the last step, we show that if we have many rectangles of size O(log(n)) x ©(n) then it is
possible to “stitch” them together using the fact that if we have two rectangles 51 x T1 and Ss x T
with corresponding polynomials @; and Q2 such that |77 NT| > r, then @1 = Q2. Indeed, this
follows by the fact that if two univariate polynomials of degree r agree on more than r points, then

in we cannot
have more than 2 subsets T; C [n] of size at least en such that |T; N Tj| < r for all i # j.
The full proof of Theorem 1 is provided in Section 6.

they are equal. We then use the inclusion-exclusion principle to show that for ¢ >



4.2 Theorem 2: improved robustness for the hyperplane test

Our goal is to prove that the axis-parallel hyperplane test H is a-robust for o = % (%)m We prove

this statement via a careful combination of the approaches taken by [BS06] and [Vid12|. Specifically,
we analyze p(M) and 6(M) by studying the following combinatorial object: the inconsistency graph
G of the hyperplane test H, which we now informally describe.

The test H has access to a word M € F*", allegedly in C™. For any axis-parallel hyperplane
H, we denote by gy the closest codeword to M|y in C™ ! (breaking ties by picking an arbitrary
closest codeword). The vertex set of the graph G is the set of (m — 1)-dimensional hyperplanes,
which are the local views of the test. There is an edge between two different hyperplanes H and
H' if gy and gy disagree on the intersection of the hyperplanes, H N H'. (See Definition 8.1 for
details.) In other words, the graph has an edge between two planes if the local codewords assigned
to the planes are inconsistent. The graph G that we study is similar to the inconsistency graph
analyzed in [BS06]. The difference is that, for some threshold parameter 7, the graph used in [BS06]
adds an edge from H to every other H' in the graph if §(M |y, gy) > 7.

First, we show that if G has a large independent set I, then there is a codeword f in C™ that
agrees with the local codewords gy on every hyperplane H in I. For an independent set I, we
define I to be the set of ¢ € [n] such that the hyperplane {p € [n|™ : p, = i} is in I. A key
property of tensor product codes is the unique extension property, which we formally state later
on as Claim 7.2. Using the unique extension property of tensor product codes, we show that if
there are two axes by and by where I, and I, both have at least n — d + 1 planes, then there is
a word f in C™ where f|g = gy for every H in the independent set. Without loss of generality
assume b; = 1 and by = 2. Intuitively, we fill in the restricted hypercube in FlixB2xn™"2 with the
values of the closest codewords to M|y for each H in the independent set. Since the independent
set is large, the restricted hypercube is large enough so that we can extend the partially filled-in
hypercube to a unique codeword f in C™. The uniqueness of the extension implies that f|g = gy
for every H in I.

Next, we analyze the structure of G to show that every edge is adjacent to a vertex of degree
at least (m — 2)d/2. The key point is that two different C™2 codewords must disagree on at least
d™?2 points, and these points have a particular structure. For two distinct C™~2 codewords, we
prove that on each of the m — 2 remaining axes there must be at least d planes, parallel to that
axis, that contain points of disagreement. If not, then using the unique extension property we show
that the two codewords must be equal, which is a contradiction. For any edge (H, H'), this gives
us a total of (m — 2)d planes that disagree with at least one of gy and gy on H N H', which shows
that deg(H) + deg(H’) is at least (m — 2)d. Therefore, at least one of H and H' has degree at least
(m—2)d/2. As an immediate consequence, the set of planes with degree at least (m — 2)d/2, which
we denote by L, is a vertex cover, and the set of planes not in L is an independent set I.

With some algebraic manipulation, we relate the size of this vertex cover to the expected local
distance p(M). By expressing p(M) as a sum over pairs of intersecting planes, we show that

1
M)> ———— E A / ).
(H,H'):HNH'#0

This allows us to express the robustness of the test H in terms of the size of the vertex cover L.

Similar to the analysis of [Vid12], we break up the proof into two cases. If |L| is somewhat large,

then p(M) > (g)m, and the theorem follows immediately because d(M) is anyways at most 1. If

n



|L| is small, then the corresponding independent set has two axes where |I| > n—d+ 1. Therefore,

there is a global codeword f that is consistent with all the hyperplanes in the independent set. We

use this fact to show that §(M) must be small when p(M) is small, which concludes the proof.
The full proof of Theorem 2 is provided in Section 8.
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5 Preliminaries for Theorem 1

5.1 Low-degree polynomials

We will use the following lemmas about low-degree polynomials in the proof of Theorem 1. These
are standard interpolation lemmas, and direct proofs can be found in [PS94].

Lemma 5.1. Let S,T CF be two sets each of size at least v + 1. Suppose that for two polynomials
Q1(x,y), Qa(z,y) of degree (r,r), if holds that Qi(x,y) = Q1i(x,y) for all (x,y) € (S,T). Then
Q1 = Qs.

Lemma 5.2. Let S,T CF be two sets each of size at least v + 1. Suppose that there is polynomial
R(x,y) of degree (r,n), and a polynomial C(x,y) of degree (n,r) such that R(z,y) = C(x,y) for
all (x,y) € (S,T). Then, there exists a polynomial Q(z,y) of degree (r,r) such that Q(x,y) =
C(z,y) = R(x,y) for all (x,y) € (S,T).

Corollary 5.3. Let S,T C T be two sets each of sizes |S| > r+2 and |T| > r+2, and let (xo,y0) €
(S,T). Suppose that there is a polynomial R(x,y) of degree (r,n), and a polynomial C(x,y) of degree
(n,r) such that R(x,y) = C(z,y) for all (x,y) € (S,T)\ {(x0,y0)}. Then C(xo,y0) = R(xo,Yyo)-

5.2 The Kovari—-Sos—Turan theorem

We first define the density of a binary matrix.

Definition 5.4. Let A € {0,1}**¢ be a binary matriz. Define the density of A to be 6(A) =

. . AZ ] . .
%. We say that A is T-dense if §(A) > 7.

In the proof of Theorem 1 we will use a result due to Kévéri, Sés, and Turdn [KST54], which
states that any sufficiently dense binary matrix contains a large submatrix where every entry is 1.

Theorem 5.5 (Ko6vari, Sés, Turan). Let N, M, t, s be natural numbers that satisfy N > s and
M >t>s, and let A € {0,1}V*M be a binary matriz. If A is (f/ % + %) -dense, then there are
S C[N] and T C [M] of sizes |S| = s and |T| =t such that A|lgxr = 1.

Remark 5.6. The Kovdri-Sos—Turdn theorem is usually stated as saying that any sufficiently
dense bipartite graph contains a large bipartite clique. It is clear, however, that the matrix formu-
lation above is equivalent by associating a bipartite graph with its adjacency matrix, where the rows
correspond to the vertices on the left, and the columns correspond to the vertices on the right.

11



6 Proof of Theorem 1

The key step in the proof of Theorem 1 is the following lemma.

Lemma 6.1 (Key lemma). Suppose that [F| > exp((Z log(1))). Then, for any e > % there are
t < % polynomials Q1,...,Q: each of degree (r,r), and subsets Si,...,St, B1,...,By CF such that
1. For alli € [t] and (x,y) € (Si, B;) it holds that C(x,y) = R(z,y) = Qi(x,y).

2. All S;’s are pairwise disjoint.
3. % > 0 — 3¢, where 6 = Pr[C(x,y) = R(z,y)].
Before proving Lemma 6.1 let us see how it immediately implies Theorem 1.

Proof of Theorem 1 using Lemma 6.1. Let ¢ > 6\/2, and apply Lemma 6.1 with ¢/3 > 1/2%. By

Lemma 6.1 for some ¢t < 2. = g there are disjoint subsets S; x Bi,...,S; x By C F? such that

€/3
% > 0—e¢, and for all ¢ € [t] and (z,y) € (S;, B;) it holds that R(x,y) = C(x,y) = Qi(x,y).

This implies that

" SEFQEZ' € [t] s.t. Rz, y) =C(z,y) = Qi(z,y)] = Pr[(z,y) € UigySi x Bi ,

which is at least § — ¢, as required. O

We devote the rest of this section to proving Lemma 6.1.

6.1 Proof of Lemma 6.1
Let n = |F|, and define the binary matrix A € {0, 1}"*" where A(z,y) =1 if C(z,y) = R(x,y) and

A b .
A(z,y) = 0 otherwise. Note that by the assumption of Theorem 1, we have M =9, ie.,
n

the matrix A is §-dense.

6.1.1 Step 1

In the first step we apply Theorem 5.5 iteratively to show that there exists a collection of disjoint
sets S1,...,9, C [n] with [S;| > £ such that for most points (z,y) it holds that if A(x,y) = 1, then
x € US;, and for each i € [u] there exists T; C [n] of size |T;| > L such that Ag,x1, = 1.

Claim 6.2. Let n,r € N, § > ¢ > 0, and let k = [r/e]. Let A € {0,1}"*" be a 0-dense

matriz as above, and suppose that n > 2k> (é)kﬂ. Then, there exist u € N and two sequences
S; C [n],T; C [n] withi=1,...,u satisfying the following conditions.

1. The S;’s are pairwise disjoint.
2. |S;| = |T;| = k.

3. A(z,y) =1 for every (z,y) € (S;,T;) and i € [u].

12



b X eme s A, y) < en?.

Proof. We will use Theorem 5.5 to find a submatrix of A of size k X k whose entries are all
1s. By the choice of £ and the assumption that n is sufficiently large we have that (¢ — %)k =

eb(1— £y > k(1 - ) > ek /2 > k=1 "and hence € >

L f/E=L1 4k Hence, since A is 6-dense, we
ENn ENn n

have 6(A) > 8§ > e > ¢/ % + % Therefore, by Theorem 5.5 there exist S1 C [n],T1 C [n] each of
size |S1| = |T1| = k such that A|s,x7, = 1.
Next, we remove the rows contained in S; from A, and apply the same argument again. Let

M; = [n]\ S; and define A; to be the (n —k)xn submatrix of A whose rows are indexed by Mj.
Note that if 37 ¢y ven) A1(z,y) > en? then 6(A;) > ‘M » and thus we have 0(A1) > e > e >

‘ Ml\ + 5. Therefore, we can apply Theorem 5.5 again, and find Sy C M; and T» C [n] of size

|Sa| = |T»| = k such that A|g,x7, = 1.
We repeat the same argument again, for each i > 2 defining the the subset M; = M;_; \ S;_1,
and letting A; = Apy,x[,). Note that if 37 cpp o cp Al@,y) 2 en? then |M;| > en, and §(A;) >

|§/?.| > e > (/% + % Therefore, by Theorem 5.5 there exist S; C M; and T; C [n] of size
|S;| = |T;| = k such that Alg,«7, = 1.
We stop the process after u iterations when ZIEMu,ye[n} A(z,y) < en?. By definition of the

S;’s and T;’s, this gives us the subsets with the desired properties. O

By the assumption |F| = n > exp(€(£ log(1))) in Theorem 1 we have n > 2k? (é)kﬂ. Therefore,
we can apply Claim 6.2 on A to get S;’s and T;’s as in the claim.

6.1.2 Step 2
Next, we show that the sets T; from the previous step can be chosen to be of size at least en.

Claim 6.3. Let {(S;,T;)}i-, be the sets from Claim 6.2. For each i € [u] define B; = {yo € [n] :
> wes, Alx,yo) > 7+ 1} Then

1 Yic 2o wesi Alz,y) <en®.
y€[n|\B;

2. For every i € [u] if yo € B; then A(z,yo) =1 for all x € S;.

Proof. The first item is by the choice of k > r/e. In each ¢ € [u] and y € [n] \ B; it holds that
less than ¢ fraction of the entries are ones, and hence the total number of ones in all ¢ € [u] and
y € [n] \ B; is less that en?. Formally, we have

Z Z A(z,y) < Z Z rgu-n‘rgenz,

€lu yeac[g}S\B i€fu] ye[n]\B;
where the last inequality uses the fact that u < n/k, and k > r/e.

To prove the second item, we use Corollary 5.3. Suppose that A(zg,yo) = 0 for some zy € S;
and yo € B;. By the assumption on B;, it holds that |[{z € S;: A(x,y0) =1} > r + 1. Let
S ={xo}U{x € S;: A(z,y0) = 1}, and let T' = {yo} U T;, so that A(z,y) = 1 for all (z,y) €
S x T\ {(xo,y0)}- Recall that, by definition of A, R(z,y) = C(x,y) for all such (x,y), and hence,
by Corollary 5.3 we also have R(zg,y0) = C(x0,%0), and thus A(zo,yo) = 1. O

13



Note that the ones not covered by U;(S; x B;) are the < en? ones omitted in Claim 6.2 and the
< en? ones disregarded in the proof of Claim 6.3 above. Let us also disregard all S;’s and B;’s
such that |B;| < en, and consider only the remaining subsets. Note that the set of B;’s with
|B;| < en can contain at most en? ones. Redefining u to be the number of remaining sets, we get
two collections of subsets {S; C [n], B; C [n]};",; such that

1. the S;’s are pairwise disjoint.
2. |Bi| > en for all i € [u].

3. Z(Ly)GULISMBi > (6 — 3¢)n?.

4. Alg,xp;, =1 for all i € [u].

In particular, by Lemma 5.2 for each i = 1, ..., u there is a polynomial P; of degree (r,7) such that
R(x,y) =C(x,y) = Pi(x,y) for all (z,y) € S; x B;.

6.1.3 Step 3

Next, we observe that if two sets B;, B; from the previous step have large intersection, then the
corresponding polynomials P; and P; are equal.

Claim 6.4. Suppose that |B; N\ Bj| > r + 1 for some i # j € [u]. Then P; = P; and B; = Bj.

Proof. Denote B = B; N B;. Note that, for each y € B, Pi(z,y) = C(z,y) for all |S;| =k >r+1
values of z € S;, and hence Pi(z,y) = C(z,y) for all x € [n|. In particular, Pi(z,y) = C(z,y) for
all (z,y) € S; x B. Therefore, Pi|s.xp = Pj|s,;xp, and thus P; = P; by Lemma 5.1. Applying
Corollary 5.3, we conclude that P;(z,y) = Pj(z,y) = C(z,y) = R(z,y) for all (z,y) € (S; U S;) x
(B; U Bj). This implies that B; = Bj;, as required. O

6.1.4 Completing the proof

In the last step we will show that there is a short list of ¢ < % polynomials Q1,...,Q; such that
each of the P;’s is in fact equal to one of the @);’s. Indeed, denote the number of different B;’s by ¢.
By Claim 6.4, if B; # B; then |B; N Bj| < r, and thus by the inclusion-exclusion principle we have

t

t
n > |Ui_Bi| > Z | Bi| — Z |B; N Bj| >t-en— <2>r ,
i=1 i#£j
where in the last inequality we used the bound |B;| > en for all i. If t > 2, then n > t-en— (é)r >
2n — 6%7“, and thus € < \/%, which contradicts the assumption on . Therefore ¢ < %, as required.
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6.2 Proof of Proposition 2.2

d/e

We prove that in Theorem 1, for § > ¢ sufficiently small, it is necessary to have a list of Solylog(57)

polynomials in order to explain all but € of the agreements of R and C.
Let F be a prime field that is sufficiently large, and let N € N be an integer that depends on ¢,
to be chosen later. For all ¢ € [N] let a; = ﬁg%, and let ¢ = SN a2, Note that 33°, a; < oo,

zlz

and ¢ = Y 7%, a? < co. Let Ay,...,Ax C F be disjoint subsets of size |4;| = <\/§> a; |F|. (We
assume for simplicity that F is sufficiently large and there are no rounding issues.) Note that
SN 4] = \/52@1\;1 a; |F|, which is smaller than |F| for 6 > 0 sufficiently small.

For every y € A;, set the row polynomial R(z,y) equal to i, and for every = € A;, set the
column polynomial C(z,y) equal to i. For all y ¢ UA; let R(z,y) = N + 1, and for all =z ¢ UA; let
C(xz,y) = N + 2. Note that R(z,y) = C(x,y) if and only if z,y € A; for some i. In particular,

N ) 2
PiiRG) = Cea) = Y (151) =3 2z =
=1 7

It is clear that if | A;] > r+ 1 for all ¢ € [N], then the only bivariate polynomials that agree with R
and C on more than IlFI fraction of point are the constant polynomials (); =i forall¢=1,..., N.

By construction, for each i € [N] we have Pr,4[R(z,y) = C(z,y) = Qi(z,y)] = ('ﬁ') = ‘ga?,
and for different @);’s the domains of the agreements are disjoint. Therefore, in order to choose ¢
polynomials @); that maximize the probability Pr, ,[3i € [t] s.t. R(z,y) = C(z,y) = Qi(x,y)] we

should choose the first ¢ polynomials @1, ..., Q; to get

N5,
Pr(3i € [t] s.t. R(z,y) =C(x,y) = Qi(w Z P

x7y

Note that >3°, . a? >
of t, we will get that

T Therefore, if we choose N to be sufficiently large, as a function
polylog(t)

| 1
Pr[di € [t] s.t. R(,y) = C(z,) = Qilz,y)] <0 - O (5 ' t‘polylog(t)> .

By letting e = O (6 . i )> we get that ¢ > %, as required.

1
t-polylog(t polylog
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7 Preliminaries for Theorem 2

7.1 Linear codes

A linear code C over a field I is a linear subspace C of the vector space F". Each codeword w in C'is
a string of length n, which is the block length of the code. The dimension of the code dim(C) is the
dimension of C' as a vector space in F". For any two words w and v in F", the Hamming distance
between w and v, denoted by A(w,v), is the number of indices where i where w; # v;. Formally,
A(w,v) = |{i € [n] : w; # v;}|. The relative distance between w and v is 6 (w,v) = A(w,v)/n, which
is the fraction of points where w and v disagree. For any subset S of [n], we will define A|g(w,v) to
be [{i € S : w; # v;}|, which is the Hamming distance between w and v on the subset S. Similarly,
d|s(w,v) = Alg(w,v)/|S|. The distance d of a code C' is the minimum Hamming distance between
any two distinct codewords of C, i.e. d = d(C) = min,x,ec A(w,v). For any w in F”, the distance
from w to C is defined as A(w, C) = min,ec A(w, v), and the relative distance is defined similarly.
For any subset S C [n], the distance from w to C on S is A|g(w,C) = min,ec A|g(w,v). We will
write d(w) instead of §(w, C') when the code is clear from the context.
Linear codes have a unique extension property.

Claim 7.1 (Unique Extension). Let I be a subset of [n] of size at least n — d + 1. Let C' be the
restriction of the code C' to the subset I. Then, for every codeword w € C' there exists a unique
v € C such that v|; = w.

Proof. By definition, for every w in C” there must exist at least one v in C such that v|; = w.

Suppose there exists v; and ve such that vi|; = wva|; = w. Then v; and ve agree on S, so
A(vy,v9) <n—|I| <d—1. Since v; and ve are codewords, A(vy,vs) < d if and only if v; = vs.
Therefore, the codeword w has a unique extension to C. O

7.2 Tensor product codes

For any linear code C, the 2-wise tensor product of C, denoted by C? = C ® C' is the linear code in
F”Z, where every codeword M € F™ is an n x n matrix whose each row and column is a codeword of
C. The m-wise tensor of C, denoted by C™, is defined recursively as C™ ! ® C. The code C™ has
block length n™ and distance d™. Furthermore, each f € C™ can be written asann xn x --- xn
(m times) matrix where the entries are values in F, and each axis-parallel line is in C. It is easy
to see that f is in C™ if and only if the restriction of f to any (m — 1)-dimensional axis-parallel
hyperplane H is in C™~!. It is also worth noting that the fractional distance of the code C™ is
(d/n)™, so the fractional distance of the code decays exponentially in m.

Tensor product codes have a unique extension property that will be used many times in the
proof of Theorem 2.

Claim 7.2 (Unique Extension for Tensor Product Codes). Let {Cy}", be codes with blocklength
ny and distance dy,. Let I, C [ny] be a set of size at least ny, — dy + 1, and let C; be the projection
of Cy to I. Then for everyw € C' =C{ @ ---® Cl,, there exists a unique v in C =C1 @+ Q Cy,
such that vl x...x1,, = W.

Proof. By Claim 7.1, for all b € [m] the projection map m,: Cp — Cj is bijective. We can extend
mp to be a bijective map from the hybrid code C1 ® --- ® C; ;| @Cp @ -+ - @Cprto C1 ® -+ @ C) ®
Cpy1 ® - ® Cpy. For any v in the first hybrid code, define 74(v) = v|1; x--x 1, xnpyq x--xnn, » Which is
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the projection of v to I along the bth axis, and the identity map everywhere else. Clearly, m, is
still a bijection, and so the composition of maps m = m,, o m,;,_1 © - - - o w1 is therefore a bijection
from C to C’, which proves the claim. O

7.3 Locally testable codes and robust tests

A g-query test T for a code C' C F” is a probabilistic algorithm that, given oracle access to a word
w € F", makes ¢ (non-adaptive) queries to w and then accepts or rejects. Informally, C' is locally
testable if there is a test 7 that accepts (with probability 1) whenever w is in C, and rejects (say
with probability at least 0.5) when w is far from C.

The expected local view distance p’ (w) of 7 on a word w is the average, over the local views
of T, of the distance of w to an accepting view. Instead of analyzing the local testability of C™, we
will instead consider a stronger notion of local testability called robustness, that was introduced in
[BS06]. The test T is a-robust if p7 (w) > a - §(w, C) for every word w € F™. The ‘strength’ of the
test increases with «, so the goal is to establish the largest « for which this inequality holds.

7.4 The axis-parallel hyperplane test

Definition 7.3. Let C be a linear code, and let C™ be the m-wise tensor of C. The axis-parallel
hyperplane test H for C™ is the test that given a word M € F™" samples a random axis-parallel
(m — 1)-dimensional hyperplane H and checks if M|g € C™~ 1.

We introduce several observations about the test H that will be useful in the proof of Theorem 2.
Since the hyperplanes sampled by H are axis-parallel, each hyperplane H C [n|™ must be a set of
the form H = {p € [n|™ : pp = i}, for some b € [m] and ¢ € [n]. This means that there are nm
hyperplanes in total, and each hyperplane can be specified by the pair (b,7). We will use (b,7) to
refer to the hyperplane {p € [n]™ : p, = i}.

For M € F*" and an axis-parallel hyperplane H in [n]™, we define gy to be the closest C™ !
codeword to M|y . If this codeword is not unique, then we break ties by picking an arbitrary closest
codeword. Using this notation, the expected local view distance p(M) can be expressed as

p(M) = Eg[0|a(M,C™ )] = Enld|n(M, gm)] ,
where the expectation is taken over all axis-parallel hyperplanes H.

Definition 7.4. The test H is a-robust if p(M) > a - 6(M,C™) for every word M € F*™ | where
(M, C™) is the relative distance of the word M to the code C™, and p(M) is the expected local
distance of M.

Note that robustness « for the test H is at most 1.

Lemma 7.5. The robustness of the axis-parallel hyperplane test H is a < 1.
Proof. Let f be any C™ codeword such that §(M) = §(M, f). Then,

§(M) =6(M, f) = % > olu(M, f) > % > 6lu(M, gu) = p(M)
H H

since gz is closer to M|y than f|g, as flg € C™ 1. Thus a < p(M)/6(M) < 1. O

In Appendix B we discuss the difference between robustness and soundness for the test H.
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8 Proof of Theorem 2

We prove Theorem 2. We start by recalling some notation. Let C be a linear code with distance d
and block length n over F, and let C" be the m-wise tensor product of C, for some m > 3. Let M
be the input to the test H, which is an evaluation table of a function from [n|™ — F. Define gy to
be the closest C™~! word to M|, where ties are broken by picking an arbitrary closest codeword.
We will view M as fixed throughout the analysis.

We need to show that p(M) > a - §(M), for a = & (%)m The main idea in the proof is to
upper bound 6(M) by figuring out how to “stitch” together the gp’s to make a global codeword
f. We begin by defining the inconsistency graph G. The graph G has each hyperplane as a vertex,
and has an edge between two hyperplanes H and H’ if they have nonzero intersection and their
respective local codewords gy and gg are inconsistent, i.e., they disagree on some point p in their
intersection H N H'.

Definition 8.1 (Inconsistency Graph). The inconsistency graph G of the test H is a graph where
V is the set of hyperplanes, and E = {(H,H'): 3p € HN H' s.t. gy(p) # g (p)}-

The proof will be divided into several steps. First, we will show that if G contains a large
independent set, namely a large set of planes which are all consistent with each other, then there
is a global codeword f that stitches together all of the local codewords gy for every H in the
independent set. Then, we will show that every edge in G is adjacent to a vertex of (somewhat)
large degree. This will imply that the set of vertices that have large degree is a vertex cover, and
its complement is an independent set. We will then show that p(M) is lower bounded by some
function that is linear in the number of vertices that have large degree. Using these components,
we will conclude the proof.

8.1 Step 1: the case of a large independent set

We will show that if G has a large independent set I, then there is an f in C™ that agrees with gg
on H for every H in I. In other words, f is the codeword of C™ that stitches together all of the
gr’s in the independent set. The proof relies on Claim 7.2.

Lemma 8.2 (Interpolation). If G has an independent set I of size |I| > (m —1)(n —d) + n, then
there exists f in C™ such that f|g = g for every H € I.

Our proof of this lemma is similar to the proof of a different lemma in [BS06].

Proof. Define I}, to be the set of i € n such that the plane (b,4) isin I. Since |I| > (m—1)(n—d)+n,
there must exist by # bo such that |I, | and |Ip,| are at least n—d+1, as otherwise [I| = > ;" | [Iy| <
(m —1)(n —d) +n. Without loss of generality assume by = 1 and by = 2. Let S = I} x Iy x [n]™ 2
and let g: S — F be a matrix in F¥. Define g(p) = gr(p) for every p € S, where H is some plane
in I; U Iy such that p € H. Note that g is well-defined since all the planes in I are consistent with
each other, as I is an independent set.

We claim that g € C|;, ® C|z, ® C™ 2. This is because for any H € I; it holds that g|y €
Clr, ® C™ 2, as g|g = gu except that the second axis is now restricted to Is. This means that for
every axis b # 1,2 and for every line ¢, parallel to the b-th axis it holds that g|,, € C. Also, for every
line ¢ parallel to the second axis we have that g|s, € C|y,, because we took a C™~! codeword and
restricted it to the subset Iy. However, by symmetry we can repeat the same argument, swapping
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axis 1 and axis 2, and hence for every line ¢; parallel to the first axis it must hold that gy, € C|r,.
Thus, g € C|;, ® O, ® C™ 2. Since || and |I5| are at least n —d + 1, we can apply Claim 7.2 to
the code C|j, ® O, ® C™ 2 to extend g to a unique codeword f € C™.

We still need to show that f|z = gg for every H € I. By definition of C™ we have f|z € C™ L.
There are three cases. If H € I, then f agrees with gy on a subset of H of size I x [n]™ 2, because
9| Lx =2 = Gliyxpm—2 = flixpm-2. Similarly, if H € I, then f agrees with gy on a subset of
size I x [n]™72, and if H € T\ (I UIy), then f agrees with gy on a subset of size I; x I x [n]™73.
In all 3 of the cases, since |I1| and |I5| are at least n—d+1, by Claim 7.2 there is a unique codeword
w € C™~ 1 that equals f|gy (or gy) on that subset of H. But f|y is in C™~!, so by the uniqueness
of the extension it follows that f|g = gg. O

8.2 Step 2: the structure of ¢

We will now show that every edge (H, H') in G is adjacent to a vertex of large degree. The proof
uses the structure of C™ to show that if two planes disagree on a point, they must disagree on
many points, and these points have a certain structure. Using the structure of these points, we find
(m —2)d planes that intersect H N H’ on at least one point that gi and gp disagree, and therefore
each of these new planes must be adjacent to at least one of H and H’.

Lemma 8.3. If (H,H') € E, then deg(H) + deg(H') > (m — 2)d.
A similar lemma appears in [BS06|, but the graph they consider is different from ours.

Proof. Without loss of generality assume that H = (1,7) and H' = (2,5). Fix k € {3,...,m}.
Let I be the set of I’s such that the plane (k,l) is not adjacent to both H and H’. Suppose
k| > n—d+1. Then gulsxmm-3 = gu'lfxpm-s- Since |Ix] > n —d+ 1, by Claim 7.2
9H| 1, xnjm-3 can be extended to a unique w € C™ 2, and so w = gg|gnpmr. Similarly, 9u |1, xn)m-3
can be extended to a unique v € C™ 2, and so v = gy/|gnp. However, since both gy|mnm
and g/ |gnme agree on I, x [n]™ 3, the uniqueness of the extension implies that they are equal,
contradicting the fact that (H, H') is an edge in the graph. Therefore, |Ix| < n — d for every k.
This means that for a fixed k, there are at least d planes (k,[) such that g and gg disagree on the
intersection of all 3 planes. Since gy and gy disagree, g ;) can agree with at most one of them,
so at least one of (H, (k,l)) and (H', (k,1)) is an edge. This holds for at least d planes for every k,
which is a total of (m — 2)d planes. Therefore, deg(H) + deg(H') > (m — 2)d. O

Thus, for every edge (H,H') one of H and H’' has degree > (m — 2)d/2, so we deduce the
following corollary.

Corollary 8.4 (Vertex Cover). The set L of vertices with degree > (m — 2)d/2 is a vertex cover.

8.3 Step 3: relating the expected local distance to the vertex cover

We now relate the set of vertices of large degree to the expected local view distance of the test H.
The main idea is to put the expression for p(M) into a particular form, and then apply the triangle
inequality to express p(M) as a sum over edges in the graph. Using a simple relation between |L|
and |E|, the lemma follows.

Lemma 8.5. Let L be the set of vertices with large degree. Then p(M) > m=2_dn_7 |L|

= 4m—1) nm—Tnm-"
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Proof. By definition, p(M) = Sy A(M|y,gn). For any H = (b,1),

AM|g,gn) = —— > > Alpney(M,gm) = —— e > Algrg (M, gn) -
Ce[m]\{b}JE[n} H':HNH'#(

This is because for any point p € H and for any axis ¢ # b, the point p is in the intersection
H N (e, j) for exactly one j. Therefore,

S AMI g = —— S Y Al (M, gn)
H

p(M) = n™m m—1

nmm
H':HNH'#()

Every pair (H, H') with HNH' # () appears exactly twice in the sum, contributing A|gng/ (M, gr)
and A|gng (M, gyr) to the sum. Therefore,

1
M)=——— A (M A (M, gg
p(M) wm(m — 1) > \tnm (M, g1) + Alpan (M, gu)
(H,H")-HNH' £

1
= m Z A’HﬂHl(gHagH/) =
(H,H'):HNH'#0

1

e —— A ’ ! .
nmm(m — 1) Z |HﬂH (gﬂng)

(H,H)eE

as (H,H') ¢ E = Al|gnn (91, 9m’) = 0 by definition. Fix (H, H') € E. The local codewords gi
and ggp are both in C™ 1, so gi|gnr and g |gnm are both C™~2 codewords. In particular, since
Alpnm (9m,9m) > 0, they are distinct codewords, and so A|gng(9m, gr) > d™ 2. Therefore,

‘E| dm—Z

nmm(m—1)

1

n™m(m — 1)

p(M) > > Alunw(gu,gm1) >

(H,H"€E

Since L is the set of vertices of degree > (m — 2)d/2,

(m 2)d (m—2)d
2 = > —_— > —_— .

B = deg(H) 2 ) _ deg(H) > |L| = |B| > L]

H HeL
Thus,
E m—2 —NIL m—1 —9 m—1 L
Sy s BT =t (=2 an ) -
n™m(m — 1) dn™m(m — 1) 4(m — 1) nm1lnm

8.4 Putting things together

We are now ready to prove Theorem 2. The result follows from straightforward applications of the
previous steps.

Proof of Theorem 2. If |L| > (m — 1)d, then by Lemma 8.5 we have

(m=2) &L || (m=2) " d_m—2d w2t
4(m —l)nm Lnm ’

| \/

(
M) > — i
pM) 2 4(m —1)nm=1  nm dm n™ —  4m nm

where the last inequality holds because 6(M) < 1. Therefore, assume that |L| < (m — 1)d. For
every f in C™, using triangle inequality we have

6(M) <o6(M, f) = ZﬂH M, f) <7Z(5‘H M, gr) +7Z(5‘H (9m, f
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Recalling that p(M) = -1 3", 6| (M, gir) we get that
1
6(M) < p(M) + — ZfsfH(gH,f)
H

Since L is a vertex cover, the set L = V \ L is an independent set. Since |L| < (m — 1)d,
|L| > nm — (m —1)d = (m — 1)(n — d) + n. By Lemma 8.2, 3f* € C™ such that f*|y = gp for
every H € L. Thus,

L
5(0M) < p(M +—25\H9Hf> M)+ S dlalon. £ < p00) + 1L
HeL
—2) gm-1 |L Ll _ 4(m—1)n
By Lemma 8.5, p(M) > 4((’:;_1))%%. Therefore, % < %p(M) and so
5 < |L| < 4(m — 1)nm1 1
(M) < p(M) + o S p(M) 1+ Tm =) T = p(M) = P (e Ve 6(M) .
+ o1
Thus, VM, p(M) > ad(M), for « = min <1+4(m11)nm11 , ’Z;ﬂz f:,t) Since m > 3, we have that
(m—2)d™

1 1 an—! 2dm 1dm sdmTl o1 dmy 1 dm

1+4(7n 1)nm 11 2 1+8nm i = 9pm—1 d sz nm Z 12nm: Therefore’ o Z mln(gnm_l ’ ﬁﬁ) — 12nm
(m—2)dm— dam=

21



Acknowledgements

The authors thank Eli Ben-Sasson, Oded Goldreich, and Madhu Sudan for helpful discussions, and
the anonymous referees for their very useful comments. This work was supported in part by the
Center for Long-Term Cybersecurity at UC Berkeley.

22



A Other Results

Here we will prove other results that are incomparable to Theorem 2.

We have already shown in Theorem 2 that H is robust for a > % (%)m Most of the proof was
dedicated to analyzing the test when the set of large degree vertices, L, was less than (m — 1)d.
In this same regime, we can prove an incomparable value for «. Specifically, we can show that for

every M such that |L| < (m — 1)d it holds that p(M) > —1— . §(M), where c is a constant.

m—+c
Claim A.1. If|L| < (m—1)d, then p(M) > mic 0(M), for ¢ =32/9. Combining with Theorem 2,
this implies that p(M) > max (mic, L (%)m) -0(M) when |L| < (m —1)d.

Proof. Let I be the set of planes that are not in L. By the assumption |L| < (m — 1)d, we have
[I| > (m —1)(n —d) + n, and thus, by Lemma 8.2 there exists f € C™ such that f|y = gp for all
Hel

Let K = {p:VH € I,p ¢ H} be the set of points that are not contained in any plane in I.
Writing I = Up" I, where I, is the set of planes (b,4) that are in I, it is clear that we can rewrite
K as K ={p:py ¢ I, Vb € [m]}. Therefore,

b=1 b=1 b=1
Now, we show that 6(M, f) < (m +c¢) - p(M). We start by writing d(M, f) as follows.

SOML 1) = s M) # S0} = — [ € K - M) # F@)) + o |(p & K - M() # 7))

m
The first term is upper bounded by %, and so it is at most (%) . In order to bound the second

term, note that for all p ¢ K there exists a plane H, € I such that p € H,, and thus, f(p) = gu, (p).
Therefore,

P K M) A SN = | ¢ K M) # 9, 0)]
< o Hpe ™ M) # gn, ()]
< o X WHipe H M) £ gn ()
et
This implies that
0.0 < () - pan

Next, using the bound |L| < (m — 1)d in the assumption of the claim, as well as the bound
L < pary - Am=D) ™0 from Lemma 8.5, we get that

nm — m—2 dm
IR =) R

6(M, f)

IN




For m > 3 we get that (M) < (m + 32/9)p(M), as required. O
Remark A.2. In fact, by a slightly modified argument (writing p(M) as the sum over the intersec-
tions of k planes) we can prove that for |L| < (m — 1)d it holds that §(M) < p(M) (k + ck’c}:—::),
where ¢, is a constant for a fized k € [m]. The proof of Theorem 2 used k = 1.

We can also show that when |L| < (m —1)d, we get a robustness of & = 1 plus an additive term
of d/n. Note that d is the distance of the code, so when d = O(n), the additive term is not small.

Claim A.3. If |L| < (m —1)d, then 6(M) < p(M) + d/n.
Proof. In the proof of Theorem 2, we showed that if |L| < (m — 1)d, then

m—1)d d
! <p(M)+ — . O
nm nm n
Next, we observe that if C' is the Reed-Solomon code (or any code with a similar interpolation

property), then the above holds without the constraint on |L|.
Claim A.4. If C is the Reed-Solomon code, then 6(M) < p(M) + d/n unconditionally.

Proof. Define vy = H=(b,3) Alg(M,gp), and without loss of generality assume that v; < vy <
-+« < Up,. Observe that

1 m
p(M) = nmm;% :

Let S be any subset of (1,4) planes of size exactly n—d+ 1. By m-variate polynomial interpolation,
there exists f in C™ such that f|g = gy for every H in S. Therefore,

(M) <d6(M, f)= nim > Alg(M, f) < nim > Alg(M, f) + nim (n—|S|)n™!

H=(1,) HeS
1 d—1 1 d—1 1 d—1
= — S Alg(M R S P i
o Hze:s \n (M, gm) + TSRt — nmm(mvl) T
1 & d—1 d
— < oM - . O
_nmm;%+ o < p( )+n
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B Robustness vs. Soundness

In Theorem 2, we study the robustness of the test H. We now compare the robustness of ‘H to the
soundness of H, and show a tight result for the soundness of H.

Robustness is a stronger guarantee than soundness, as Pr[HM rejects] > p(M). Thus, if we
show that p(M) > ad(M), then we can deduce that Pr[HM rejects] > ad(M), which upper bounds
the soundness error. However, the converse is not true.

In fact, unlike for robustness, we can prove a tight result on the soundness of H, stated below.

Note that the query complexity of H is n™~!, which is N 1=5 where N := n™ is the block length
of C™, the code being tested.
Claim B.1. Let ¢ = ((n—d)(m—1)+n)/nm. If Pr[HM accepts| = € > ey, then §(M) < (1 —¢€)™.
Proof. Observe that Pr[HM accepts] = ¢ = —L . |I|, where I is the set of planes H such that
M|y € C™ L. The condition € > €y implies that |I| > (n — d)(m — 1) +n, so by Lemma 8.2, there
exists an f in C™ such that flg = M|y. Let K = {p:p ¢ H VH € I}. By the same logic as in
the proof of Claim A.1,

5(M)g5(M,f)g‘K’g<1_'”)m:a_e)m. O

nm nm

We remark that the above claim is tight, as there are functions where Pr[H™ accepts] = ¢ and
0(M) = (1—¢€)™, and furthermore the threshold ¢j is necessary, as we now explain.

e Necessity of e. Fix €, and let S be a subset of [n] of size (1 — ¢)n. Let M be a codeword
of C™ on the set [n]™\ S™, and a random function on the set S™. It is clear that §(M) =
|S™ /n™ = (1—¢€)™, and that the test H will accept if it reads the plane (b,i) for any b € [m]
and i ¢ S. Furthermore, the test H will reject when it reads a plane (b,) for any b € [m)]
and i € S. Therefore, Pr[HM accepts] = (1 — |S|)/n = e.

e Necessity of €g. The threshold ¢ is necessary, as we can get an acceptance probability of 1/m
“for free” by setting M| ; to be a random C™=! codeword. Then, the test H will accept
with probability 1 when it reads a (1,7) plane, and will reject with high probability when it
reads a (b, 1) plane for b # 1. However, M will be very far from C", so having an acceptance
probability of 1/m says little about §(M ).
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