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Abstract

In 1984, Goldreich, Goldwasser and Micali formalized the concept of pseudorandom functions and
proposed a construction based on any length-doubling pseudorandom generator. Since then, pseudoran-
dom functions have turned out to be an extremely influential abstraction, with applications ranging from
message authentication to barriers in proving computational complexity lower bounds.

In this tutorial we survey various incarnations of pseudorandom functions, giving self-contained
proofs of key results from the literature. Our main focus is on feasibility results and constructions, as
well as on limitations of (and induced by) pseudorandom functions. Along the way we point out some
open questions that we believe to be within reach of current techniques.
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1 Introduction

A family of functions Fs : {0,1}k → {0,1}`, indexed by a key s ∈ {0,1}n, is said to be pseudorandom if it
satisfies the following two properties:

Easy to evaluate: The value Fs(x) is efficiently computable given s and x.

Pseudorandom: The function Fs cannot be efficiently distinguished from a uniformly random function
R : {0,1}k→{0,1}`, given access to pairs (xi,Fs(xi)), where the xi’s can be adaptively chosen by the
distinguisher.

One should think of the key s as being kept secret, and of the running time of evaluation as being substantially
smaller than that of the distinguisher. This faithfully models a prototypical attack on a cryptographic scheme:
the adversary’s running time is bounded but can still exceed that of the system, and he may adaptively adjust
his probing of the system’s input/output behavior.

The definition of pseudorandom functions (PRFs), along with the demonstration of its feasibility, is one
of the keystone achievements of modern cryptography [66]. This owes much to the fact that the definition
hits a “sweet spot” in terms of level of abstraction: it is simple enough to be studied and realized, and at the
same time is powerful enough to open the door to countless applications.

Notably, PRFs lend themselves to simple proofs of security. Being indistinguishable from a random
function means that analysis cleanly reduces to an idealized system in which a truly random function is used
instead of the pseudorandom one.

1.1 Applications

Perhaps the most natural application of pseudorandom functions is that of message authentication. The goal
is to allow Bob to verify that a message m was sent to him by Alice and nobody else. To this end, Alice and
Bob share a randomly sampled secret key s, known only to them. When Alice wishes to authenticate m, she
appends a tag σ that is efficiently computable from m and s. Verifiability of (m,σ) follows from the fact
that Bob also knows m and s and so can compute σ efficiently.

An authentication scheme is said to be unforgeable if no computationally bounded adversary (not pos-
sessing s) can generate a pair (m,σ) that passes verification, where m can be any message that was not
previously sent (and hence authenticated) by Alice. To authenticate m using a PRF family Fs, Alice simply
sends to Bob the (message, tag) pair

(m,Fs(m)). (1)

Upon receiving (m,σ), Bob uses s to evaluate Fs(m) and verifies that it equals σ . Unforgeability follows
from the fact that the probability with which any computationally bounded adversary correctly guesses
σ = Fs(m) does not noticeably change if Fs(m) is replaced with R(m), where R is a random function. The
probability of correctly guessing R(m) is 2−`. This remains true even if the adversary gets to see pairs of the
form (mi,σi), where m 6= mi for all i and the mi’s are adaptively chosen.

Symmetric-key encryption. In the setting of symmetric-key encryption, Alice and Bob share a randomly
sampled secret key s, which is used along with some other string r to generate an encryption Encs(m;r)
of a plaintext m. Alice sends Encs(m;r) to Bob, who can use s in order to compute the decryption m =
Decs(Encs(m;r)).
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An encryption scheme is said to be secure if for any two plaintexts m0,m1 the distributions Encs(m0;r)
and Encs(m1;r) cannot be efficiently distinguished. Given a PRF family Fs, one can implement a secure
encryption scheme as follows:

Encs(m;r) = (r,Fs(r)⊕m), Decs(r,c) = Fs(r)⊕ c. (2)

Similarly to the case of message authentication, security is established by observing that the advantage of
any efficient distinguisher between Encs(m0;r) and Encs(m1;r) will not noticeably change if we replace
Fs(r) with R(r), where R is a random function. In the latter case, the adversary’s task is to distinguish
between R(r)⊕m0 and R(r)⊕m1, which is information-theoretically impossible.

This argument is valid even if the distinguisher gets to see Encs(mi;ri) for adaptively chosen mi’s (m0,m1
are also allowed), provided that ri 6= r for all i. In practice, this can be enforced by either deterministically
choosing the r’s using a counter, or by sampling them independently at random each time. The counter
solution does not require including r as part of the encryption, but requires maintaining state between en-
cryptions. The randomized solution does not require state, but has longer ciphertexts and moreover requires
r to be long enough so that collisions of the form ri = r are unlikely.

Interestingly, neither of the above solutions necessitates the full strength of PRFs, in the sense that they
do not require security against adaptive access to the function. In the counter solution, the PRF adversary
only observes the function values on a predetermined set of inputs, whereas in the randomized mode, it
observes values on randomly chosen inputs. This motivates two interesting relaxations of PRFs, called
nonadaptive PRFs and weak PRFs, respectively, and opens the door to more efficient constructions.

Key derivation. The following is a convenient method for generating a long sequence of cryptographic
keys “on-the-fly”. Let Fs be a PRF, and define a key ki by

ki = Fs(i). (3)

This method has advantages both in terms of memory usage and in terms of key management, at least as
long as one is able to protect the (relatively short) “master-key” s from leaking to an attacker (by definition,
Fs remains pseudorandom even if some of the ki’s are leaked). In terms of security, any efficient system that
uses the ki’s as secret keys is guaranteed to be no less secure than the same system would have been if it
were to use truly random and independent keys.

Storing, protecting, and managing a single short key s is indeed convenient. However, it has the dis-
advantage that compromise of s results in loss of security for the entire system. One way to mitigate this
concern would be to store FHE(s), where FHE is a fully homomorphic encryption scheme [128]. The idea
would be to store c = FHE(s) and erase s, keeping only the FHE decryption key. One can then homo-
morphically compute FHE(Fs(i)) for any desired i (think of the circuit Ci(s) = Fs(i)), and then decrypt the
result at the location in which the FHE decryption key is stored (say on a client machine). An attacker who
compromises the system learns nothing about the master key s, whereas an attacker who compromises the
client alone learns only the FHE key.

While conceptually simple, this solution is still not practical. Currently known FHE schemes can prac-
tically support only simple computations, certainly not ones nearly as complex as evaluating a PRF. Can
PRFs be made simple enough to allow their fast homomorphic evaluation? Alternatively, could one devise
FHE schemes so that efficient homomorphic evaluation of compatible PRFs is enabled?
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Hardness of learning. The fundamental task in machine learning is to make future predictions of an
unknown concept based on past training data. In the model of probably approximately correct (PAC) learn-
ing [135, 84] the concept is described by an efficient function F , the data comes in the form of input–output
samples (x,F(x)), and the objective is for the learner to make almost always correct predictions (with respect
to a given distribution on inputs). Statistical considerations show that O(log|C|) random samples provide
sufficient information to learn any function coming from a given class C with precision at least 99%.

In particular, a PRF Fs can in principle be learned from O(n) random samples, where n is the size of
its key. The learning, however, cannot be carried out efficiently: any learner L that is able to predict the
value of Fs at a new input x∗ based on past data (x1,Fs(x1)), . . . ,(xq,Fs(xq)) can be applied to distinguish the
sequences

(x1,Fs(x1)), . . . ,(xq,Fs(xq)),(x∗,Fs(x∗)) and

(x1,R(x1)), . . . ,(xq,R(xq)),(x∗,R(x∗)),

thereby violating the pseudorandomness of Fs. To distinguish, one can use the first q elements as training
data for the learner and test the value F(x∗) against the learner’s prediction L(x∗). If the learner is probably
approximately correct, L(x∗) is likely to agree with F(x∗) when F = Fs. On the other hand, when F = R,
the value F(x∗) is statistically independent of the training data and uncorrelated with L(x∗).

A learning algorithm can thus be viewed as a potential cryptanalytic attack against any PRF. Vice versa,
any algorithm that is believed to learn a given concept class should be tested on conjectured PRF construc-
tions that fall within this class.

1.2 Feasibility

The construction of PRFs necessitates postulating computational hardness. This is not surprising given that
the existence of PRFs requires at the very least ruling out the possibility that P equals NP: distinguishing Fs

from a random function R reduces to the NP-search problem of finding a key s consistent with the samples
(F(1),F(2), . . . ,F(m)). Such a key always exists when F = Fs, but only with small probability when F = R
(assuming m` > n).

The first hardness assumption under which PRFs were constructed is the existence of pseudorandom
generators [66]. A pseudorandom generator (PRG) is an efficiently computable deterministic function
G : {0,1}n→{0,1}m with m > n whose output G(s) ∈ {0,1}m, where s is sampled uniformly from {0,1}n,
cannot be efficiently distinguished from a uniformly random string r ∈ {0,1}m.

While PRGs and PRFs both map a short random string into a longer pseudorandom string, the definitions
differ in the quantity of output bits and in the adversary’s access to them. Any PRF family Fs : {0,1}k →
{0,1} gives rise to a PRG:

G(s) = (Fs(1),Fs(2), . . . ,Fs(m)),

as long as n < 2k (assuming, for simplicity, that the distribution on keys s is uniform). In other words, the
truth-table of a PRF is an efficiently computable sequence of pseudorandom bits of essentially unbounded
length. In contrast, the output length of a PRG is a priori bounded by its running time.

From this perspective, a PRF can be thought of as a PRG whose output length is much larger than the
running time of the distinguisher. As this output is too large to be stored in the distinguisher’s memory, a
definitional choice must be made regarding how these bits are accessed by the adversary. In this respect,
the definition of a PRF provides the adversary with imposing power: his access to the pseudorandom bits is
adversarial and adaptive.
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Goldreich, Goldwasser, and Micali showed how to use any length-doubling PRG, G : {0,1}n→{0,1}2n,
to construct a PRF family Fs : {0,1}k → {0,1}`, that is keyed by s ∈ {0,1}n, for arbitrary k and `. Subse-
quently, it was shown that PRGs are polynomial-time equivalent to one-way functions [75, 71, 134]. A
function f : {0,1}n→ {0,1}` is one-way if f is efficiently computable, but given y = f (x) for a random x,
it is infeasible to find any x′ such that f (x′) = y.

Theorem 1 ([66, 75]). Pseudorandom functions exist iff one-way functions exist.

One-way functions are the most rudimentary primitive in modern cryptography. Their existence is nec-
essary for virtually all applications of interest, save a select few in which information-theoretic security
is achievable. The definition of a one-way function merely postulates the ability to hide a “secret” that is
computationally hard to reconstruct. This encompasses, in particular, the secret key s of any candidate PRF
construction. In contrast, the security requirements of a PRF are significantly more stringent: the adver-
sary is given access to multiple input–output samples of its choice and is only asked to detect any form of
nonrandom behavior, a seemingly much easier task than reconstructing the secret key s.

Owing to the relatively mild security requirement of one-way functions, candidate constructions abound.
Any stochastic computational process that is typically difficult to invert can be modeled as a one-way func-
tion. In contrast, pseudorandom functions must exhibit significant internal structure in order to resist the vast
variety of distinguishers that they can be tested against (see Section 7 for some representative examples). It
is thus remarkable that the two notions are equivalent.

1.3 Efficiency, Security, and Functionality

The work of Goldreich, Goldwasser, and Micali (GGM) provides an elegant conceptual solution to the
problem of constructing PRFs. This has opened the door towards the finer study of their theory and practice,
and has resulted in a large body of work. In this survey we will focus on the following aspects:

Efficiency. Every evaluation of the GGM PRF on a k-bit input necessitates k sequential invocations to
the underlying PRG, while its provable security deteriorates as k becomes larger. Are there more efficient
constructions?

Naor and Reingold gave a construction that has lower parallel evaluation complexity than the GGM
construction, but assumes the availability of a pseudorandom synthesizer, an object (seemingly) stronger
than a PRG. In Section 3 we present the two constructions of PRFs, and in Section 4 we give concrete
instantiations of PRFs obtained using this paradigm.

On the negative side, the existence of efficient learning algorithms for certain types of circuits implies
inherent lower bounds on the complexity of pseudorandom functions. Razborov and Rudich explain how
such learning algorithms arise naturally from proofs of circuit lower bounds. We discuss these connections
in Section 6.

Security. Pseudorandom functions are required to be secure against all efficient distinguishers. It is some-
times useful to consider security against restricted classes of distinguishers that model specific types of
attacks such as differential cryptanalysis. A sufficiently restrictive class of adversaries may allow for a
proof of security that is unconditional. Proofs of security against restricted distinguishers can also provide
confidence in the soundness of heuristic constructions.

In Section 7 we discuss some restricted classes of distinguishers arising from the study of pseudo-
randomness (bounded query distinguishers, linear distinguishers, space-bounded algorithms), complexity
theory (polynomials, rational functions), and learning theory (statistical queries).
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Functionality. In Section 5 we illustrate the robustness of the definition of PRFs with respect to domain
size and discuss how PRFs provide a basis for implementing “huge random objects”, the most notable
example of which are pseudorandom permutations.

For certain cryptographic applications it is useful to have pseudorandom functions with additional func-
tionality. In Section 8 we present two such extensions: key-homomorphic PRFs and puncturable PRFs.

Open questions. In spite of the enormous body of work on pseudorandom functions in the last three
decades, many questions of interest remain unanswered. We mark some of our favorite ones with the symbol
©? as they come up in the text. For convenience, all the open questions are indexed at the end of the chapter.

1.4 The Wide Scope of Pseudorandom Functions

Pseudorandom functions permeate cryptography and are of fundamental importance in computational com-
plexity and learning theory. In this survey we do not attempt to provide comprehensive coverage of their
applications, but focus instead on a handful of representative settings which highlight their conceptual im-
portance. The following (partial) list gives an indication of the wide scope of PRFs.

Basic cryptographic applications. Pseudorandom functions fit naturally into message authentication and
in particular underlie the security of the widely deployed authentication function HMAC [22, 21]. They
are also used in constructions of deterministic stateless digital signatures [61], and randomized stateless
symmetric-key encryption (see Section 1.1).

Pseudorandom permutations (PRPs, see Section 5.2), which are closely related to PRFs, model block
ciphers such as DES and AES, where the PRP security notion was a criterion in the design [117].

Advanced cryptographic applications. PRFs have been applied to achieve resettable security in proto-
cols [50, 18], to hide memory access patterns in oblivious RAM [62, 68], and to bootstrap fully homo-
morphic and functional encryption schemes [9, 8]. The construction of authentication schemes from PRFs
extends naturally to provide digital signatures from verifiable PRFs [23, 100].

Key-homomorphic PRFs are useful for constructing distributed PRFs, proxy re-encryption, and other
applications with high relevance to “cloud” security (see Section 8.2). The recently introduced notion
of puncturable PRFs, in conjunction with indistinguishability obfuscation, has found applications for the
construction of strong cryptographic primitives, and demonstrates how to bridge between private-key and
public-key encryption (see Section 8.2).

Puncturable PRFs have also been recently combined with indistinguishability obfuscation to exhibit hard
on the average instances for the complexity classses PPAD [33, 60] and CLS [76].

Other applications. In the realm of data structures, permutation-based hashing, which is inspired by the
Feistel construction of PRPs, has been applied to improve the performance of dynamic dictionaries [12].
PRPs were also recently used in the construction of adaptively secure Bloom filters [113]. More generally,
PRFs are a basic building block in implementations of huge random objects (see Section 5.3).

Lower bounds and barriers. As pointed out in Section 1.1, PRF constructions present a fundamental
barrier for efficient learning algorithms (see Section 6.1) and for our ability to prove circuit lower bounds
(see Section 6.2).
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Finally, pseudorandom functions provide natural examples for “pseudo-entropic” functions that cannot
be virtually black-box obfuscated in a strong sense [69, 32].

1.5 Intellectual Merit

The evolution in the design and use of PRFs exemplifies how theory affects practice in indirect ways, and
how basic conceptualizations free our minds to develop far-reaching and unexpected ideas. The wide array
of applications of PRFs can in large part be attributed to their simplicity and flexibility. These traits facilitate
the robust design of cryptographic primitives, while relying on clearly stated and well-defined assumptions
(compare this with vague terms such as “diffusion” and “confusion”).

For instance, while a candidate PRP was already proposed in the mid 1970s (DES), there was no method-
ology available at the time for capturing the desired security properties. Indeed, rigorous analysis of various
modes of operation for block ciphers [24, 87] and Feistel-like constructions [93, 109] only emerged after
the 1984 work of Goldreich, Goldwasser, and Micali [66].

From a pedagogical point of view, the study of pseudorandom functions clarifies concepts and sharpens
distinctions between notions that arise in the study of cryptographic constructions. Some examples that
come to mind are:

Computational indistinguishability. PRFs are a prime example of a distribution that is extremely non-
random from a statistical perspective, yet indistinguishable from random by computationally bounded ob-
servers (see discussion on “A delicate balance” in Section 2.1). Moreover, computational indistinguishability
in PRF constructions and applications exemplifies the use of the hybrid proof technique, which is prevalent
in cryptographic reasoning.

Key recovery, prediction, and distingushing. For an adversary to break a cryptographic system it does
not necessarily have to fully recover the key, which may be underspecified by the system’s behavior. A
more reasonable notion of security is that of unpredictability of future responses based on past interaction.
In the case of PRFs, this type of attack is exemplified by PAC learning algorithms, which reconstruct an
approximation of the function based on past input–output data. As explained in Section 6.1, unpredictability
is implied by indistinguishability from a random function. The converse does not hold in general. The
ability to distinguish a system’s behavior from random already opens the door to severe security breaches,
even if the function cannot be predicted or the key fully recovered.

Modeling access to a system. The definition of PRFs cleanly captures what type of access an adversary
can have to a system, be it adaptive, nonadaptive, sequential, or statistically random (see Section 2.1). It
also clarifies the distinction between the adversary’s running time and the number of times it queries the
function/system.

How not to model a random function. For the definition of PRFs to make sense, the function’s descrip-
tion given by the random key s must be kept secret from the distinguisher. This should be contrasted to
the random oracle model [56, 25], whose instantiations (wrongly) assume that the oracle retains its random
properties even if its description is fully available to the distinguisher.
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2 Definitions

If you have something interesting to say,
it doesn’t matter how you say it.

LEONID LEVIN (1985)

We give a formal definition of pseudorandom functions, discuss our definitional choices, and try to provide
some intuition behind the requirements. We then gain some practice through two “warm-ups”: first, we show
how to generically increase the range size of a PRF. Second, we give a security analysis of the symmetric-key
encryption scheme from Section 1.1. Although these types of proofs are standard in cryptography [63, 82],
they will serve as compelling motivations to introduce some additional ideas and should help the reader get
accustomed to the notation.

For formal definitions of circuits and oracles the reader is referred to Goldreich’s textbook on computa-
tional complexity [64].

2.1 Pseudorandom Functions

Since it does not make sense to require pseudorandomness from a single fixed function F : {0,1}k→{0,1}`,
the definition of pseudorandom functions refers to distributions of functions sampled from a family. Each
member of the family is a function F : {0,1}n×{0,1}k→{0,1}`, where the first argument is called the key
and denoted s, and the second argument is called the input to the function. The key is sampled according to
some distribution S and then fixed. We are interested in the pseudorandomness of the function Fs(x)=F(s,x)
over the distribution S of the keys.

The PRF’s adversary is modeled by a Boolean circuit D that is given oracle access to some function F .
Namely, throughout its computation, D has access to outputs of the function F on inputs x1,x2, . . . of his
choice. The type of access can vary depending on the definition of security. By default D is given adaptive
access, meaning that the input x j may depend on values F(xi) for i < j. For an oracle F we denote by DF

the output of D when given access to F .

Definition 1 (Pseudorandom function [66]). Let S be a distribution over {0,1}n and {Fs : {0,1}k→{0,1}`}
be a family of functions indexed by strings s in the support of S. We say {Fs} is a (t,ε)-pseudorandom
function family if for every Boolean-valued oracle circuit D of size at most t,∣∣Pr

s
[DFs accepts]−Pr

R
[DR accepts]

∣∣≤ ε,

where s is distributed according to S, and R is a function sampled uniformly at random from the set of all
functions from {0,1}k to {0,1}`.

The string s is called the key, the circuit D is called the distinguisher, and the difference in probabil-
ities is its distinguishing advantage with respect to Fs. Since D is nonuniform, we may assume that it is
deterministic, as it can always hardwire the coin tosses that maximize its distinguishing advantage.

Weak, nonadaptive, and sequential PRFs. In certain settings it is natural to restrict the oracle access
mode of the distinguisher. In a nonadaptive PRF the distinguisher must make all its queries to the oracle at
once. In a weak PRF at every invocation the oracle returns the pair (x,F(x)) for a uniformly random x in
{0,1}k. In a sequential PRF the i-th oracle invocation is answered by the value F(i).
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Efficiency. We say {Fs} has size c if s can be sampled by a circuit of size at most c and for every s there
exists a circuit of size at most c that computes Fs. We are interested in the parameter regime where the
size of {Fs} is much smaller than the distinguisher size t and the inverse of its distinguishing advantage
1/ε . In the theory of cryptography it is customary to view n as a symbolic security parameter and study the
asymptotic behavior of other parameters for a function ensemble indexed by an infinite sequence of values
for n. The PRF is viewed as efficient if its input size k grows polynomially in n, but its size is bounded by
some polynomial of n.

Security. Regarding security, it is less clear what a typical choice of values for t and ε should be. At
one end, cryptographic dogma postulates that the adversary be given at least as much computational power
as honest parties. In the asymptotic setting, this leads to the minimalist requirement of superpolynomial
security: for every t that grows polynomially in n, ε should be negligible in n (it should eventually be
smaller than 1/p(n) for every polynomial p). At the other end, it follows from statistical considerations
that (2n,1/2) and (ω(n),2−n)-PRFs cannot exist. In an attempt to approach these limitations as closely as
possible, the maximalist notion of exponential security sets t and ε to 2αn and 2−βn, respectively, for some
constants α,β ∈ (0,1). Most cryptographic reductions, including all the ones presented here, guarantee
deterioration in security parameters that is at most polynomial. Both super-polynomial and exponential
security are preserved under such reductions.

A delicate balance. PRFs strike a delicate balance between efficiency and security. A random function
R : {0,1}k→{0,1}` is ruled out by the efficiency requirement: its description size, let alone implementation
size, is as large as ` ·2k. For the description size to be polynomial in k, the PRF must be sampled from a set
of size at most 2n = 2poly(k), which is a tiny fraction of the total number of functions 2`2

k
. Let F be such a set

and assume for simplicity that Fs is sampled uniformly from F. Which sets F would give rise to a PRF? One
natural possibility is to choose F at random, uniformly among all sets of size 2n. Then with overwhelming
probability over the choice of F the function Fs is indistinguishable from random, but the probability that it
can be computed efficiently (in terms of circuit size) is negligible.

Uniformity. We model computational efficiency using circuit size. A more common alternative is the
running time of some uniform computational model such as Turing machines. Most of the theory covered
here carries over to the uniform setting: all reductions between implementations preserve uniformity, but
some of the reductions between adversaries may rely on nonuniform choices. We think that the circuit model
of computation is a more natural one in the context of PRFs. Besides, proofs of security in the circuit model
are notationally simpler.

2.2 Computational Indistinguishability

It will be convenient to define a general notion of computational indistinguishability, which considers dis-
tinguishers D that adaptively interact as part of probabilistic experiments called games. When a game is not
interactive we call it a distribution.

Definition 2 (Computational indistinguishability). We say that games H0,H1 are (t,ε)-indistinguishable if
for every oracle circuit D of size at most t,∣∣Pr[DH0 accepts]−Pr[DH1 accepts]

∣∣< ε,

where the probabilities are taken over the coin tosses of H0,H1.
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The definition of pseudorandom functions can be restated by requiring that the following two games are
(t,ε)-computationally indistinguishable:

Fs: Sample s ∈ {0,1}n from S and give D adaptive oracle access to Fs

R: Sample R : {0,1}k→{0,1}` and give D adaptive oracle access to R

Definition 2 is more general in that it accomodates the specification of games other than those occurring
in the definition of a PRF.

Proposition 1. Suppose that games H0,H1 are (t1,ε1)-indistinguishable and that games H1,H2 are (t2,ε2)-
indistinguishable. Then, H0,H2 are (min{t1, t2},ε1+ε2)-indistinguishable.

In other words, computational indistinguishability is a transitive relation (up to appropriate loss in pa-
rameters). Proposition 1 is proved via a direct application of the triangle inequality to Definition 2.

Proposition 2. Let Hq denote q independently sampled copies of a distribution H. If H0 and H1 are (t,ε)-
indistinguishable then Hq

0 and Hq
1 are (t,qε)-indistinguishable.

Proof. For i ∈ {0, . . . ,q}, consider the “hybrid” distribution Di = (H i
0,H

q−i
1 ). We claim that Di and Di+1 are

(t,ε)-indistinguishable. Otherwise, there exists a circuit B of size t that distinguishes between Di,Di+1 with
advantage ε . We use B to build a B′ of size t that distinguishes between H0,H1 with the same advantage.

The circuit B′ is given an h that is sampled from either H0 or H1. It then samples hi−1
0 from H i−1

0 and hq−i
1

from Hq−i
1 (the samples can be hardwired inducing no overhead in size), feeds the vector d = (hi−1

0 ,h,hq−i
1 )

to B, and outputs whatever B outputs. If h is sampled from H0, then d is distributed according to Di,
whereas if it is sampled from H1, then d is distributed according to Di−1. We get that B′ distinguishes
between H0,H1 with advantage ε , in contradiction to their (t,ε)-indistinguishability. Thus, Di and Di+1 are
(t,ε)-indistinguishable. The claim now follows by observing that D0 = Hq

1 and Dq = Hq
0 and by invoking

Proposition 1 for q times.

Two games are (∞,ε)-indistinguishable if they are indistinguishable by any oracle circuit, regardless of
its size. In the special case of distributions, (∞,ε)-indistinguishability is equivalent to having statistical (i.e.,
total variation) distance at most ε .

2.3 Warm-Up I: Range Extension

Sometimes it is desirable to increase the size of the range of a PRF. This may for instance be beneficial in
applications such as message authentication where one requires a function whose output on a yet unobserved
input to be unpredictable. The larger the range, the harder it is to predict the output.

We show that a pseudorandom function with many bits of output can be obtained from a pseudoran-
dom function with one bit of output. Let F ′s : {0,1}k → {0,1} be any pseudorandom function family and
define Fs : {0,1}k−dlog`e→{0,1}` by Fs(x) = (F ′s (x,1),F

′
s (x,2), . . . ,F

′
s (x, `)), where the integers 1, . . . , ` are

identified with their dlog`e-bit binary expansion.

Proposition 3. If {F ′s} is a (t,ε)-pseudorandom function family then {Fs} is a (t/`,ε)-pseudorandom func-
tion family.
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Proof. For every oracle circuit D whose oracle type is a function from {0,1}k−dlog`e to {0,1}`, let D′ be the
circuit that emulates D as follows: when D queries its oracle at x, D′ answers it by querying its own oracle
at (x,1), . . . ,(x, `) and concatenating the answers. The distributions DFs and D′F

′
s are then identical, and so

are DR and D′R
′
for random functions R and R′.

It follows that D and D′ have the same distinguishing advantage. By construction, D′ is at most ` times
larger than D. Therefore, if D is a circuit of size t/` with distinguishing advantage ε , D′ has size t with
distinguishing advantage ε . By assumption such a D′ does not exist so neither does such a D.

Proposition 3 provides a generic secure transformation from a PRF with one bit of output to a PRF with `
bits of output for any given value of `. This generality, however, comes at the price of worse complexity and
security: implementation size grows by a factor of `, while security drops by the same factor. Such losses
are often unavoidable for a construction obtained by means of a generic transformation, and it is indeed
desirable to directly devise efficient constructions.

2.4 Warm-Up II: Symmetric-Key Encryption

We now state and prove the security of the encryption scheme (Enc,Dec) described in (2). Recall that
Encs(m;r) = (r,Fs(r)⊕m).

Proposition 4. If {Fs : {0,1}k→{0,1}`} is a weak (t + `t,ε)-pseudorandom function family then for every
two messages m0,m1 ∈ {0,1}`, the following games are (t,2ε + t/2k)-indistinguishable:

E0: Sample random s ∈ {0,1}n and r ∈ {0,1}k and output Encs(m0;r)

E1: Sample random s ∈ {0,1}n and r ∈ {0,1}k and output Encs(m1;r)

In both games the distinguisher is also given access to an oracle that in the i-th invocation samples a uniform
and independent ri and outputs Encs(xi;ri) on input xi.

Proof. Consider the following two games:

R0: Sample random R : {0,1}k→{0,1}` and r ∈ {0,1}k and output (r,R(r)⊕m0)

R1: Sample random R : {0,1}k→{0,1}` and r ∈ {0,1}k and output (r,R(r)⊕m1)

In both games the distinguisher is also given access to an oracle that on input xi samples a uniform and
independent ri and outputs (ri,R(ri)⊕ xi).

Claim 1. For b ∈ {0,1} games Eb and Rb are (t,ε)-indistinguishable.

Proof. Suppose for contradiction that there exists a distinguisher A of size t that distinguishes between Eb
and Rb with advantage ε . We use A to build a distinguisher D between Fs and R with the same advantage.

The distinguisher D is given access to an oracle F that is either Fs or R. It emulates A, answering his
queries, which are either according to Eb or to Rb, as follows:

• Sample r, query F to obtain F(r), and output Encs(mb;r) = (r,F(r)⊕mb)

• On input xi, sample ri, query F to obtain F(ri), and output (ri,F(ri)⊕ xi)

Accounting for the ` extra ⊕ gates incurred by each oracle query (out of at most t queries) of A, the circuit
D is of size t + `t. Note that DFs and DR are identically distributed to AEb and ARb , respectively, so D
distinguishes Fs from R with advantage ε , contradicting the (t + `t,ε)-pseudorandomness of Fs.
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Claim 2. Games R0 and R1 are (t, t/2k)-indistinguishable.

Proof. Let A be a potential distinguisher between R0 and R1. Note that A’s view of the games R0 and R1
is identical conditioned on the event that A never makes a query x that is answered by (r,R(r)⊕ x). Since
an A of size t makes at most t queries and ri is chosen uniformly and independently for every query the
probability of this event is at most t/2k.

Combining the two claims with Proposition 1, we can conclude that E0 and E1 are (t,2ε + t/2k)-
indistinguishable.

The analysis incurs security loss that grows linearly with the number of encryption queries made by D.
In this case the number of queries was bounded by t, which is the size of D. However, as we will see later,
it is sometimes useful to separately quantify the number of queries made by the distinguisher.

Definition 3 (Bounded-query PRF). A (t,q,ε)-pseudorandom function is a (t,ε)-pseudorandom function in
which the distinguisher makes at most q queries.

We also give an analogous definition for computational indistinguishability.

Definition 4 (Bounded-query indistinguishability). Games H0 and H1 are (t,q,ε)-indistinguishable if they
are (t,ε)-indisinguishable by distinguishers that make at most q queries.

Decoupling the number of queries from the adversary’s running time (as well as from the function’s input
size) will turn out to be beneficial in the proofs of security of the GGM and NR constructions (Section 3),
in the construction of pseudorandom permutations (Section 5.2), and in the discussion of natural proofs
(Section 6.2).

3 Generic Constructions

Beware of proofs by induction,
especially in crypto.

ODED GOLDREICH (1990s)

We now present two generic methods for constructing a pseudorandom function. The first method, due to
Goldreich, Goldwasser, and Micali (GGM), relies on any length-doubling pseudorandom generator. The
second method is due to Naor and Reingold (NR). It builds on a stronger primitive called a pseudorandom
synthesizer.

Both the GGM and NR methods inductively extend the domain size of a PRF. Whereas the GGM method
doubles the domain size with each inductive step, the NR method squares it. Instantiations of the NR method
typically give PRFs of lower depth. The GGM construction, on the other hand, has shorter keys and relies
on a simpler building block.
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3.1 The Goldreich–Goldwasser–Micali Construction

We start by defining the notion of a pseudorandom generator (PRG). Pseudorandom generation is a relatively
well-understood cryptographic task. In particular, it admits many candidate instantiations along with highly
efficient implementations.

Definition 5 (Pseudorandom generator [38, 137]). Let G : {0,1}n → {0,1}m be a deterministic function,
where m > n. We say that G is a (t,ε)-pseudorandom generator if the following two distributions are
(t,ε)-indistinguishable:

• Sample a random “seed” s ∈ {0,1}n and output G(s).

• Sample a random string r ∈ {0,1}m and output r.

A PRG G : {0,1}n → {0,1}2n can be viewed as a pseudorandom function F ′s : {0,1} → {0,1}n over
one input bit. For this special case the pair of values (F ′s (0),F

′
s (1)) should be indistinguishable from a truly

random pair. This is satisfied if we set F ′s (0) = G0(s) and F ′s (1) = G1(s), where G0(s) and G1(s) are the first
n bits and the last n bits of the output of G, respectively.

This extends naturally for larger domains. Suppose for example that we wish to construct a two-bit input
PRF Fs : {0,1}2→{0,1}n, which is specified by its four values (Fs(00),Fs(01),Fs(10),Fs(11)). To this end
one can define the values of Fs by an inductive application of the pseudorandom generator

G0(F ′s (0)) G1(F ′s (0)) G0(F ′s (1)) G1(F ′s (1)). (4)

Since F ′s is pseudorandom we can replace it with a random R′ : {0,1} → {0,1}n, and infer that distribu-
tion (4) is computationally indistinguishable from the distribution

G0(R′(0)) G1(R′(0)) G0(R′(1)) G1(R′(1)). (5)

On the other hand the distribution (5) can be described as the pair of values obtained by applying G on the
independent random seeds R′(0) and R′(1). The pair (G(R′(0)),G(R′(1)) is computationally indistinguish-
able from a pair of uniformly random values. Therefore, distribution (4) is computationally indistinguishable
from the truth-table of a random function R : {0,1}2→{0,1}n. The GGM construction generalizes this idea
naturally to larger input lengths. It is described in Figure 1.

Building block: A length-doubling pseudorandom generator, G : {0,1}n→{0,1}2n

Function key: A seed s ∈ {0,1}n for G

Function evaluation: On input x ∈ {0,1}k define Fs : {0,1}k→{0,1}n as

Fs(x1 · · ·xk) = Gxk(Gxk−1(· · ·Gx1(s) · · ·)),

where G(s) = (G0(s),G1(s)) ∈ {0,1}n×{0,1}n.

Size: k · size(G)

Depth: k ·depth(G)

Figure 1: The Goldreich–Goldwasser–Micali construction
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The construction can be thought of as a labeling of the leaves of a binary tree of depth k, where the leaf
indexed by x ∈ {0,1}k is labeled by the value Fs(x). The value at each leaf is evaluated in the time it takes
to reach the leaf but is never stored. Figure 2 illustrates the case k = 3.

s

G0(s)

G0(G0(s)) G1(G0(s))

Fs(010)

0

1

0

G1(s)

G0(G1(s)) G1(G1(s))

Figure 2: Evaluating Fs(010) = G0(G1(G0(s)))

Theorem 2 ([66]). If G : {0,1}n → {0,1}2n is a (t,ε)-pseudorandom generator then {Fs} is a (t ′,kt ′ε)-
pseudorandom function family, as long as t ′ = o(

√
t/k) and the size of G is at most t ′.

Proof. We prove the theorem by induction on k. Given F ′s : {0,1}k−1→{0,1}n define Fs : {0,1}k→{0,1}n

as Fs(x,y) = Gx(F ′s (y)). For the inductive step we will apply the following claim. Let c denote the circuit
size of G.

Claim 3. If F ′s is a (t−O(kq2)+cq,q,ε ′)-PRF then Fs is a (t−O(kq2),q,ε ′+qε)-PRF.

Recall that a (t,q,ε)-PRF is a (t,ε)-PRF in which the distinguisher makes at most q queries to the
function (Definition 3).

Proof. Let (x,y) ∈ {0,1}×{0,1}k−1 be an oracle query made by a purported distinguisher D between Fs

and a random R. Consider the following three games:

Fs: Sample random s ∈ {0,1}n. Answer with Fs(x,y) = Gx(F ′s (y)).

H: Sample random R′ : {0,1}k−1→{0,1}n. Answer with H(x,y) = Gx(R′(y)).

R: Sample random R : {0,1}k→{0,1}n. Answer with R(x,y).

Claim 4. Games Fs and H are (t−O(kq2),ε ′)-indistinguishable.

Proof. If D distinguishes Fs from H with advantage ε ′ then consider the circuit AF ′ that simulates D by
answering D’s queries (x,y) with Gx(F ′(y)). Then AF ′s and AR′ are identically distributed to DFs and DH ,
respectively, so A is a circuit of size at most t−O(kq2)+cq and query complexity q that distinguishes F ′s
from R′ with advantage ε ′. This contradicts the (t−O(kq2)+cq,q,ε ′)-pseudorandomness of F ′s .

Claim 5. Games H and R are (t−O(kq2),qε)-indistinguishable.
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Proof. Suppose that D distinguishes H from R with advantage qε . We use D to build a circuit A of size t
that distinguishes between q pseudorandom strings (G0(si),G1(si)) and q random strings ri ∈ {0,1}2n with
advantage qε . By Proposition 2 this is in contradiction with the assumed (t,ε)-pseudorandomness of G.

The distinguisher A obtains q strings zi = (z0i,z1i) ∈ {0,1}2n as input. It answers D’s query (x,y) ∈
{0,1}× {0,1}k−1 with zxi, where the index i = i(y) is chosen to ensure consistency among D’s queries.
For example i(y) can be set to the smallest previously unused index when y is queried for the first time.
This tracking of queries can be implemented with O(kq2) additional gates. Then the random variables
A(G(s1), . . . ,G(sq)) and A(r1, . . . ,rq) are identically distributed as DH and DR, respectively, so A has the
same distinguishing advantage as D.

Combining the two claims with Proposition 1, we get that Fs is a (t−O(kq2),q,ε ′+qε)-PRF.

We now prove that for every q≤ t, Fs is a (t−O(kq2)− c(k−1)q,q,((k−1)q+1)ε)-PRF by induction
on k. In the base case k = 1, Fs(x) = Gx(s) and Fs is (t,q,ε)-secure by the assumed security of G. The
inductive step is immediate from the claim we just proved.

If we set q = α
√

t/k for a sufficiently small absolute constant α > 0, assume that c ≤ q, and simplify
the expression, we get that Fs is a (t/2,q,kqε)-PRF. Because q≤ t/2, Fs is a (q,kqε)-PRF.

The quadratic loss in security can be traced to the distinguisher transformation that enforces the distinct-
ness of its queries. A simple “data structure” for this purpose has size that is quadratic in the number of
queries. In other computational models, such as random access machines, more efficient data structures can
be used, resulting in better security parameters.

Extensions and properties. The GGM construction readily extends to produce a PRF from {1, . . . ,d}n

to {1, . . . ,d} from a PRG G : {0,1}n → {0,1}dn. The output of such a PRG can sometimes be naturally
divided up into d blocks of n bits. This variant is particularly attractive when random access to the blocks is
available (see Section 4.2 for an example). The security of the GGM PRF extends to quantum adversaries,
where the distinguisher may query the function in superposition [139].

The GGM construction is not correlation intractable [65]: it is possible to efficiently find an x ∈ {0,1}k

that maps to say 0` given the key s for a suitable instantiation of the PRG G. At the same time, the GGM
construction is weakly one-way for certain parameter settings [53]: for a nonnegligible fraction of the inputs
x it is infeasible to recover x given s and Fs(x).

3.2 The Naor–Reingold Construction

Using pseudorandom synthesizers as building blocks, Naor and Reingold give a generic construction of a
PRF [111]. Synthesizers are not as well understood as PRGs, and in particular do not have as many candidate
instantiations. Most known instantiations rely on assumptions of a “public-key” flavor. Towards the end of
this section we show how weak PRFs give rise to pseudorandom synthesizers, opening the door for basing
synthesizers on “private-key” flavored assumptions.

Definition 6 (Pseudorandom synthesizer [111]). Let S : {0,1}n×{0,1}n→{0,1}n be a deterministic func-
tion. We say that S is a (t,q,ε)-pseudorandom synthesizer if the following two distributions are (t,ε)-
indistinguishable:

• Sample a1, . . . ,aq,b1, . . . ,bq←{0,1}n. Output the q2 values S(ai,b j).

• Output q2 independent uniform random strings in {0,1}n.
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A synthesizer can be seen as an almost length-squaring pseudorandom generator with good locality
properties, in that it maps 2q random “seed” elements to q2 pseudorandom elements, and any component of
its output depends on only two components of the input seed.

Using a recursive tree-like construction, it is possible to obtain PRFs on k-bit inputs, which can be
computed using a total of about k synthesizer evaluations, arranged in logk levels. Given a synthesizer S and
two independent PRF instances F0 and F1 on t input bits each, one gets a PRF on 2t input bits, defined as

F(x1 · · ·x2t) = S
(
F0(x1 · · ·xt),F1(xt+1 · · ·x2t)

)
. (6)

The base case of a 1-bit PRF can trivially be implemented by returning one of two random strings in the
function’s secret key.

Building block: A synthesizer S : {0,1}n×{0,1}n→{0,1}n

Function key: A collection of 2k strings in {0,1}n, where k is a power of two

Function evaluation: On input x ∈ {0,1}k recursively define Fs : {0,1}k→{0,1}n as

Fs(x) =

{
S(Fs0(x0),Fs1(x1)), if k > 1,
sx, if k = 1,

where z0 and z1 denote the left and right halves of the string z.

Size: k · size(S)

Depth: logk ·depth(S)

Figure 3: The Naor–Reingold construction

The evaluation of Fs can be thought of as a recursive labeling process of a binary tree with k leaves and
depth logk. The i-th leaf has two possible labels: si,0 andsi,1. The i-th input bit xi selects one of these labels
si,xi . The label of each internal node at depth d is the value of S on the labels of its children, and the value of
Fs is simply the label of the root.

Fs(10110110) = S(S(S(s1,1,s2,0),S(s3,1,s4,1)) ,S(S(s5,0,s6,1),S(s7,1,s8,0)))

S(·, ·)

S(·, ·)

S(s1,1,s2,0)

s1,0 s1,1 s2,0 s2,1

S(s3,1,s4,1)

s3,0 s3,1 s4,0 s4,1

S(·, ·)

S(s5,0,s6,1)

s5,0 s5,1 s6,0 s6,1

S(s7,1,s8,0)

s7,0 s7,1 s8,0 s8,1

Figure 4: Evaluating Fs(x) at x = 10110110
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This labeling process is very different than the one associated with the GGM construction. First, the
binary tree is of depth logk instead of depth k as in GGM. Second, the labeling process starts from the
leaves instead of from the root. Moreover, here each input defines a different labeling of the tree, whereas
in GGM the labeling of the tree is fully determined by the key.

Theorem 3 ([111]). If the function S : {0,1}n×{0,1}n → {0,1}n is a (t,q,ε)-pseudorandom synthesizer
then {Fs} is a (q,(k− 1)ε)-pseudorandom function family, as long as the size of S is at most q and that
q = o(

√
t/max{k,n} logk).

Proof. We prove the theorem by induction on k. Given F ′s : {0,1}k→ {0,1}n define Fs : {0,1}2k→ {0,1}n

by Fs0,s1(x0,x1) = S(F ′s0
(x0),F ′s1

(x1)). Let c be the size of S and k? = max{k,n}.

Claim 6. If F ′s is a (t+O(k?q2 + ckq),q,ε ′)-PRF then Fs is a (t,q,2ε ′+ε)-PRF.

Proof. Let (x0,x1) ∈ {0,1}k×{0,1}k be an oracle query made by a purported distinguisher D between Fs

and a random R. Consider the following four games:

Fs: Sample random s0,s1←{0,1}2k×n. Answer with S(F ′s0
(x0),F ′s1

(x1)).

H: Sample random R0,R1 : {0,1}k→{0,1}n. Answer with S(F ′s0
(x0),R1(x1)).

H ′: Sample random R0,R1 : {0,1}k→{0,1}n. Answer with S(R0(x0),R1(x1)).

R: Sample a random R : {0,1}2k→{0,1}n. Answer with R(x0,x1).

Claim 7. Games Fs and H are (t,q,ε ′)-indistinguishable.

Proof. If this were not the case, namely there is a distinguisher D with the corresponding parameters,
then F ′s1

and R1 would be distinguishable by a circuit AF that simulates D and answers each query x by
S(F ′s0

(x0),F(x)). The key s0 can be hardwired to maximize the distinguishing advantage between F ′s1
and

R. The additional complexity of A is (c+O(1))k gates per query, as the evaluation of F ′s0
requires k− 1

evaluations of S. This contradicts the assumed security of F ′s1
.

Claim 8. Games H and H ′ are (t,q,ε ′)-indistinguishable.

Proof. The proof is analogous to the previous claim, except that now AF answers each query x with
S(F(x0),R1(x1)). The distinguisher emulates the function R1(x1) by answering every new query with a fresh
random string (eventually hardwired to maximize the distinguishing advantage). This requires tracking pre-
vious queries, which can be accomplished with O(kq2) additional gates. Another cq gates are sufficient for
evaluating the synthesizer. The resulting circuit A has size t +O(kq2 + cq) and distinguishes F ′s0

from R0
with q queries and advantage ε ′, violating the assumed security of F ′s0

.

Claim 9. Games H ′ and R are (t,q,ε)-indistinguishable.

Proof. Suppose that D distinguishes between H ′ and R in size t and q queries with advantage ε . We will
argue that D can be used to break the security of the synthesizer. The challenge of the synthesizer consists
of a collection of q2 strings ui j,1≤ i≤ j ≤ q coming from one of the two distributions in Definition 6.

We describe the circuit A that distinguishes these two distributions. The circuit A simulates D, answering
query (x0,x1) with ui j where the indices i = i(x0) and j = j(x1) are chosen in some manner consistent with
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past queries. For example, i(x0) can set to the smallest previously unused index when x0 is queried for the
first time, and similarly for j(x1). This tracking of queries can be implemented with O(k?q2) additional
gates. Then A perfectly simulates the games H ′ and R under the two distributions ui j from Definition 6,
respectively, thereby distinguishing them with advantage ε in size t +O(k?q2).

This completes the proof of Theorem 3.

We now prove by induction on k that Fs is a (t−O(k∗q2 + ckq) logk,q,(k−1)ε)-PRF. In the base case
k = 1, F ′s is perfectly secure, so it is a (t,q,0)-PRF for all t and q. The inductive step from length k to length
2k follows from the above claim.

Setting q = α
√

t/k? logk for a sufficiently small absolute constant α > 0 and assuming that c≤ q, after
simplifying we obtain that Fs is a (t/2,q,(k− 1)ε)-PRF. Since q ≤ t/2, Fs is in particular a (q,(k− 1)ε)-
PRF.

The NR function can be shown to admit natural time/space tradeoffs, as well as techniques for compress-
ing the key size. These ideas are described in detail in [111]. As in the case of GGM, the NR construction
is also secure against quantum distinguishers [139]. We next show that any weak PRF gives rise to a syn-
thesizer.

Proposition 5. If Ws : {0,1}n→{0,1}n is a (t,ε)-weak PRF for uniformly distributed keys s ∈ {0,1}n then
the function S(s,x)=Ws(x) is a (t−cq2,q,ε+

(q
2

)
· 2−n)-pseudorandom synthesizer for every q, where c is

the circuit size of Ws.

Proposition 5 assumes that the weak PRF is length preserving. This assumption is essentially without
loss of generality (see Section 5.1), though for efficiency it may be desirable to guarantee this property
directly by construction.

Proof. The q queries provided to the synthesizer’s adversary can be represented as a q× q matrix. As-
sume for contradiction that there is a circuit D′ of size t− cq2 that distinguishes between the following two
distributions with advantage qε:

S: Sample random si,x j ∈ {0,1}n. Output the q×q matrix S(si,x j) =Wsi(x j).

R: Sample q2 random entries ri j ∈ {0,1}n. Output the q×q matrix ri j.

Let S′ be the distribution S with the additional condition that the strings x j are pairwise distinct. Distributions
S and S′ are (∞,q,

(q
2

)
2−n)-indistinguishable.

Claim 10. Distributions S′ and R are (t− cq2,q,ε)-indistinguishable.

Proof. Let Hi be the hybrid in which the first q− i rows are sampled from distribution S′ and the rest are
sampled from distribution R. Then D′ distinguishes Hi?−1 and Hi? with advantage ε for some i?. This
holds even after a suitable fixing of the values si for all i < i? and ri j for all i > i? and j. Consider now
the following distinguisher D: First, obtain samples (x1,y1), . . . ,(xq,yq) from the oracle. Then generate the
matrix M whose (i, j)-th entry is Wsi(x j) for i < i∗, y j for i = i∗ and ri j for i > i∗ and simulate D′ on input
M. Then D has size at most t and distinguishes Ws from a random function with advantage at least ε .

The proposition now follows from the triangle inequality (Proposition 1).

Despite their close relation, in Section 7.6 we present evidence that pseudorandom synthesizers are
objects of higher complexity than weak PRFs.
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4 Instantiations

Why don’t they do all the riots
at the same time?

CHARLIE RACKOFF (1980s)

The building blocks underlying the GGM and NR constructions can be instantiated with specific number-
theoretic and lattice-based computational hardness assumptions, resulting in efficient constructions of pseu-
dorandom functions. The first class of instantiations is based on the decisional Diffie–Hellman (DDH)
problem. The second class is based on the learning with errors (LWE) problem, via a deterministic variant
of LWE called learning with rounding (LWR).

Utilizing the structure of the constructions, it is possible to optimize efficiency and obtain PRFs that
are computable by constant-depth polynomial-size circuits with unbounded fan-in threshold gates (TC0

circuits). Beyond giving rise to efficient PRFs that are based on clean and relatively well-established as-
sumptions, these constructions have direct bearing on our ability to develop efficient learning algorithms
and prove explicit lower bounds for the corresponding circuit classes (see Section 6).

The algebraic structure underlying the PRF instantiations also opens the door to more advanced ap-
plications such as verifiability, key homomorphism, and fast homomorphic evaluation. Some of these are
described in Section 8.

4.1 Number-Theoretic Constructions

We consider the availability of public parameters (G,g), where g is a randomly chosen generator of a group
G of prime order q with |q|= n. For concreteness think of G as being a subgroup of Z∗p where p is a prime
such that q divides p−1.

The DDH problem. We say that the DDH problem is (t,ε)-hard in (G,g) if the following two games are
(t,ε)-indistinguishable:

• Sample random and independent a,b ∈ Zq and output (ga,gb,gab) ∈G3.

• Sample random and independent a,b,c ∈ Zq and output (ga,gb,gc) ∈G3.

For (t,ε)-DDH hardness to hold it is necessary that the discrete logarithm problem is (t,ε)-hard in the
group G; namely no circuit of size less than t can find x given gx with probability larger than ε . It is not
known whether (t,ε)-hardness of the discrete logarithm problem is sufficient for (poly(t),poly(ε))-DDH
hardness.

The fastest known method for breaking DDH is to find the discrete logarithm of ga or of gb.1 The best
classical algorithms for finding discrete logarithms run in time 2Õ(n1/3). Thus, given the current state of
knowledge, it does not seem unreasonable to assume that there exist α,β > 0 such that DDH is (2nα

,2−nβ

)-
hard.

1In particular, since discrete logarithms can be found in time poly(n) by a quantum algorithm [131], then the DDH problem is
not (poly(n),1− ε)-hard for quantum algorithms.
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Instantiating GGM using a DDH-based PRG. Consider the following family of (effectively) length-
doubling functions Gga : Zq→G×G, defined as:

Gga(b) = (gb,gab). (7)

When ga ∈G and b∈Zq are sampled independently at random, the distribution of Gga(b) is (t,ε)-indistinguishable
from a random pair in G2 if and only if DDH is (t,ε)-hard. This suggests using the function Gga as a PRG,
and instantiating the GGM construction with it. However, the efficiency of the resulting construction is not
very appealing, as it requires k sequential exponentiations modulo p.

To improve efficiency, Naor and Reingold [110] proposed the following construction of a DDH-based
length-doubling PRG Gga : G→G×G:

Gga(gb) = (G0
ga(gb),G1

ga(gb)) = (gb,gab). (8)

At a first glance this alternative construction does not appear useful, as it is not clear how to compute
Gga(gb) efficiently. Nevertheless, a closer look at the proof of security of GGM reveals that efficient public
evaluation of the underlying PRG is not actually necessary. What would suffice for the construction and
proof of GGM to work is that the underlying PRG can be efficiently computed using the random bits a that
were used to sample its index ga.

The key observation is that, if a is known, then Gga(gb) can be efficiently evaluated, and thus satisfies
the required property. Invoking the GGM construction with the PRG from (8), where at level i∈ [k] one uses
a generator indexed by gai for independently and randomly chosen ai ∈ Zq, one obtains the PRF

Fa0,...,ak(x) = Gxk
gak (G

xk−1
gak−1 (· · ·G

x1
ga1 (g

a0) · · ·)). (9)

The final observation leading to an efficient construction of a PRF is that the k sequential exponentiations
required for evaluating Fā(x) can be collapsed into a single subset product ax1

1 · · ·a
xk
k , which is then used as

the exponent of ga0 .

Public parameters: A group G and a random generator g of G of prime order q with |q|= n

Function key: A vector ā of k+1 random elements a0, . . . ,ak ∈ Z∗q

Function evaluation: On input x ∈ {0,1}k define Fā : {0,1}k→G as

Fā(x1 · · ·xk) = ga0 ∏
k
i=1 a

xi
i .

Size: k ·poly(log |G|)

Depth: O(1) (with threshold gates)

Figure 5: The Naor–Reingold DDH-based construction

Theorem 4 ([110]). If the DDH problem is (t,1/2)-hard in (G,g) then {Fā} is a (t ′,ε ′)-pseudorandom
function family, as long as t ′ = o(ε ′2/3t1/3/k) and group operations in G require circuit size at most t ′.

Proof. As seen in (9), the function Fā is based on the GGM construction. Thus, Theorem 4 follows from
Theorem 2. The PRG from (8), which underlies the construction, is (t,ε)-pseudorandom if and only if the
DDH problem is (t,ε)-hard, meaning that security depends on the hardness parameters of the DDH problem.

20



The DDH problem is random self-reducible: If it can be solved on a random instance, then it can be
solved on any instance. This can be leveraged to reduce the distinguishing advantage at the cost of increasing
the complexity of the distinguisher. Let OP be the circuit size of a group operation in G.

Claim 11. If DDH is (t,1/2)-hard then it is (o(ε2t−10 ·OP),ε)-hard for all ε > 0.

Proof. Consider the randomized mapping T : G3→G3 defined as

T (ga,gb,gc) =
(
(ga)r ·gs1 ,gb ·gs2 ,(gc)r · (ga)r·s2 · (gb)s1 ·gs1·s2

)
,

where s1, s2, and r are uniformly and independently sampled in Zq. It can be verified that T is computable
using 10 group operations, given ga, gb, gc, s1, s2, and r. Letting (ga′ ,gb′ ,gc′) = T (ga,gb,gc) and writing
c = ab+ e mod q, we have that:

a′ = ra+ s1 mod q, b′ = b+ s2 mod q, c′ = a′b′+ er mod q.

Using the fact that c = ab mod q if and only if e = 0 mod q and that if e 6= 0 mod q then er mod q is
uniformly distributed in Zq (since q is prime), it follows that

• If c = ab then c′ = a′b′ and a′,b′ are uniform and independent in Zq.

• If c 6= ab then a′,b′,c′ are uniform and independent in Zq.

To obtain the desired parameters, invoke the distinguisher O(1/ε2) times independently on the output of the
reduction. Accept if the number of times the distinguisher accepts exceeds a threshold that depends on the
distinguisher’s acceptance probability (this can be determined in advance and hardwired).

The theorem now follows by plugging the parameters into those of Theorem 2.

Efficiency. The evaluation of the NR function can be performed by invoking the following two steps in
sequence:

1. Compute the “subset product” a0 ·ax1
1 · · ·a

xk
k mod q.

2. Compute the PRF output Fā(x) = ga0·a
x1
1 ···a

xk
k .

As shown in [126], both steps can be computed by constant-depth polynomial-size circuits with thresh-
old gates.2 Thus, if the DDH problem is indeed hard, PRFs can be computed within the class TC0, which
corresponds to such circuits.

An additional efficiency optimization with interesting practical implications comes from the observation
that, for sequential evaluation, efficiency can be substantially improved by ordering the inputs according to
a Gray code, where adjacent inputs differ in only one position. The technique works by saving the entire
state of the subset product ∏ax1

i from the previous call, updating to the next subset product by multiplying
with either a j or a−1

j depending on whether the j-th bit of the next input is turned on or off (according to the
Gray code ordering). This requires only a single multiplication per call (for the subset product part), rather
than up to k−1 when computing the subset product from scratch.

2The second step reduces to subset product by hardwiring gi = g2i
mod p for i = 1, . . . ,dlogqe and observing that gx =

∏gxi
i mod p for x = ∑2ixi.
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Applications and extensions. The algebraic structure of the NR pseudorandom functions has found many
applications, including PRFs with “oblivious evaluation” [57], verifiable PRFs [94], and zero-knowledge
proofs for statements of the form “y = Fs(x)” and “y 6= Fs(x)” [111]. Naor and Reingold [111], and Naor,
Reingold and Rosen [112] give variants of the DDH-based PRF based on the hardness of RSA/factoring.
The factoring-based construction directly yields a large number of output bits with constant computational
overhead per output bit. Such efficiency cannot be attained generically (i.e., by applying a PRG to the output
of a PRF).

4.2 Lattice-Based Constructions

Underlying the efficient construction of lattice-based PRFs are the (decision) learning with errors (LWE)
problem, introduced by Regev, and the learning with rounding (LWR) problem, introduced by Banerjee,
Peikert, and Rosen (BPR).

The LWE problem ([125]). We say that the LWE problem is (t,m,ε)-hard if the following two distributions
are (t,ε)-indistinguishable:

• Sample random s ∈ Zn
q and output m pairs (ai,bi)∈Zn

q×Zq, where ai’s are uniformly random and
independent and bi = 〈ai,s〉+ei mod q for small random ei.

• Output m uniformly random and independent pairs (ai,bi) ∈ Zn
q×Zp.

One should think of the “small” error terms ei ∈ Z as being of magnitude ≈ αq, and keep in mind
that without random independent errors, LWE would be easy. While the dimension n is the main hardness
parameter, the error rate α also plays an important role: as long as αq exceeds

√
n or so, LWE is as hard as

approximating conjectured hard problems on lattices to within Õ(n/α) factors in the worst case [125, 118,
97]. Moreover, known attacks using lattice basis reduction [89, 130] or combinatorial/algebraic methods [37,
13] require time 2Ω̃(n/ log(1/α)). Unlike DDH, no nontrivial quantum algorithms are known for LWE.

The learning with rounding problem is a “derandomized” variant of LWE, where instead of adding a
small random error term to 〈ai,s〉 ∈Zq, one deterministically rounds 〈ai,s〉 to the nearest element of a public
subset of p well-separated values in Zq, where p is much smaller than q. Since there are only p possible
rounded values in Zq, we view them as elements of Zp and denote the rounded value by b〈ai,s〉ep ∈ Zp,
where bxep equals b(p/q) · x mod qe mod p.

The LWR problem ([17]). We say that the LWR problem is (t,m,ε)-hard if the following two distributions
are (t,ε)-indistinguishable:

• Sample random s ∈ Zn
q and output m pairs (ai,bi) ∈ Zn

q×Zp, where the ai’s are uniformly random
and independent and bi = b〈ai,s〉ep.

• Output m uniformly random and independent pairs (ai,bi) ∈ Zn
q×Zp.

The LWR problem can be hard only if q > p, for otherwise no error is introduced. The “absolute” error
is roughly q/p, and the “error rate” relative to q (the analogue of the parameter α in the LWE problem) is
on the order of 1/p.
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An LWE-error distribution is B-bounded if for all errors e in the support of the distribution it holds that
e ∈ [−B,B].3 Let RD be the cost of rounding a single element in Zq into an element in Zp.

Proposition 6 ([17]). If the LWE problem is (t,m,ε)-hard for some B-bounded error distribution then the
LWR problem is (t−m · RD,m,mp(2B+1)/q)+ ε)-hard.

The proof relies on the fact that when e is small relative to q/p we have b〈a,s〉+ eep = b〈a,s〉ep with
high probability (see Figure 6), while bxep for a random x ∈ Zq is random in Zp (assuming p divides q).
Therefore, given samples (ai,bi) of an unknown type (either LWE or uniform), we can round the bi terms to
generate samples of a corresponding type (LWR or uniform, respectively).
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Figure 6: Rounding an LWE sample 〈a,x〉+ e with q = 27, p = 3, and B = 2. The shaded areas de-
note the possibility of a rounding error. For instance, when 〈a,x〉 = 3, b〈a,x〉ep = 0 but it is possible that
b〈a,x〉+ eep = 1, but when 〈a,x〉= 17, b〈a,x〉ep and b〈a,x〉+ eep are equal with probability one.

Proof. Consider the following three distributions:

H0: Output m pairs (ai,b〈ai,s〉ep) ∈ Zn
q×Zp.

H1: Output m pairs (ai,b〈ai,s〉+ eiep) ∈ Zn
q×Zp.

H2: Output m pairs (ai,bbiep) ∈ Zn
q×Zp, where the bi’s are random.

In all the distributions above, the ai’s are uniformly random and independent in Zn
q and the ei’s are chosen

independently from the LWE error distribution. For simplicity, we assume that s is random in the set of
nonzero divisors Zn∗

q = {x ∈ Zn
q : gcd(x1, ...,xn,q) = 1}.

Claim 12. Distributions H0 and H1 are (∞,mp(2B+1)/q)-indistinguishable.

Proof. Since the ei’s are selected according to a B-bounded error distribution, it holds that ei ∈ [−B,B] for
all i ∈ [m]. We thus know that, as long as 〈ai,s〉 does not fall within±B of a multiple of q/p, it is guaranteed
that b〈ai,s〉+ eiep = b〈ai,s〉ep.

3Under typical LWE error distributions the event ei 6∈ [−B,B] does have some positive probability. This probability, however,
is usually negligible (think of a Gaussian distribution with α ≈ B/q), and so one can conduct the analysis conditioning on the event
not occurring without substantial loss in parameters.
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For any fixed s ∈ Zn∗
q the probability over random ai ∈ Zn

q that 〈ai,s〉 ∈ Zq falls within ±B of a multiple
of q/p is p(2B+1)/q. By the union bound:

Pr [∃i ∈ [m] : b〈ai,s〉+ eiep 6= b〈ai,s〉ep]≤ mp(2B+1)/q,

where the probability is taken over random and independent ai ∈ Zn
q and ei ∈ [−B,B]. Since this holds for

every fixed s ∈ Zn∗
q then it also holds for random s.

Claim 13. Distributions H1 and H2 are (t−m · RD,ε)-indistinguishable.

Proof. Suppose that there exists an oracle circuit D of size t −m · RD that distinguishes between H1 and
H2, and consider the circuit D′ of size t that on input m pairs (ai,bi) ∈ Zq ×Zq simulates D on input
(ai,bbiep) ∈ Zq×Zp. If (ai,bi) are LWE samples then the input fed to D is distributed as in H1, whereas
if (ai,bi) are random then the input fed to D is distributed as H2. Thus, D′ has the same distinguishing
advantage as D, in contradiction to the (t,ε)-hardness of LWE.

The theorem follows by combining the two claims with Proposition 1 and by observing that H2 is
distributed uniformly at random in Zn

q×Zp.

Proposition 6 gives a meaningful security guarantee only if q� mp(2B+1). Nevertheless, the state of
the art in attack algorithms [37, 13, 89, 130] indicates that, as long as q/p is an integer (so that bxep for a
random x∈Zq is random in Zp) and is at least Ω(

√
n), LWR may be exponentially hard for any p = poly(n),

and superpolynomially hard when p = 2nε

for any ε < 1. It is open whether one could obtain worst-case
hardness guarantees for LWR in such parameter regimes. ©?

In some applications, such as the PRG described below, the parameter m can be fixed in advance, allow-
ing smaller q. Several works have studied LWR in this setting [7, 40, 6]. In other applications, however, m
cannot be a priori bounded. It is an open problem whether the dependency of q on m can be removed. ©?

Instantiating GGM using an LWR-based PRG. The LWR problem yields a simple and practical pseu-
dorandom generator GA : Zn

q→ Zm
p , where the moduli q > p and the (uniformly random) matrix A ∈ Zn×m

q
are publicly known [17]. Given a seed s ∈ Zn

q, the generator is defined as

GA(s) =
⌊

AT · s
⌉

p
, (10)

where rounding is performed coordinate-wise. The generator’s seed length (in bits) is n log2 q and its output
length is m log2 p, which gives an expansion rate of (m log2 p)/(n log2 q) = (m/n) logq p. For example, to
obtain a length-doubling PRG, we may set q = p2 = 22k > n and m = 4n. In this case rounding corresponds
to outputting the k most significant bits.

When evaluating the GGM construction instantiated with GA, one can get the required portion of GA(s)
by computing only the inner products of s with the corresponding columns of A, not the entire product AT ·s.
This becomes particularly attractive if one considers GGM trees with fan-in d > 2.

Instantiating NR using an LWR-based weak PRF. Consider the following weak pseudorandom function
Ws : Zn

q→ Zp, indexed by s ∈ Zn
q:

Ws(a) = b〈a,s〉ep. (11)

Weak (t,m,ε)-pseudorandomness of Ws follows from (t,m,ε)-hardness of the LWR problem, using the fact
that the ai vectors are public [17]. To instantiate the NR construction of PRFs from synthesizers, one can
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invoke Proposition 5, giving a synthesizer from a weak PRF. This requires the weak PRF’s output length to
match its input length. To this end, one can apply an efficient bijection, K : Z`×`

p → Zn×`
q , for `≥ n such that

p` = qn, and modify the weak PRF from Equation (11) as follows:

WS(A) := K
(
bAT ·Sep

)
∈ Zn×`

q ,

where S,A ∈ Zn×`
q . The resulting synthesizer can be plugged into Equation (6) to give LWR-based PRFs

F{Si,b} : {0,1}k → Zn×`
q . Security assuming (t,m`,ε)-hardness of LWE follows from combining Proposi-

tions 6 and 5 with Theorem 3. This results in a (t ′,ε ′)-pseudorandom function family, where t ′ = t −
poly(n,m, `) and ε ′ = O(`(k− 1)(mp(2B+ 1)/q+ ε)). As a concrete example, the evaluation of this PRF
when k = 8 (so x = x1 · · ·x8) unfolds as follows:⌊⌊

bS1,x1 ·S2,x2eq· bS3,x3 ·S4,x4eq
⌉

q
·
⌊
bS5,x5 ·S6,x6eq· bS7,x7 ·S8,x8eq

⌉
q

⌉
q
,

where for clarity we let bSi,xi ·S j,x jeq stand for K
(
bSi,xi ·S j,x jep

)
.

A direct construction of PRFs. One drawback of the synthesizer-based PRF is that it involves logk levels
of rounding operations, which appears to lower-bound the depth of any circuit computing the function by
Ω(logk). Aiming to get around this issue, BPR suggested to imitate the DDH-based construction, where
sequential exponentiations are collapsed into one subset product. Since such a collapse is not possible in the
case of LWR, they omitted all but the last rounding operation, resulting in a “subset-product with rounding”
structure.

Public parameters: Moduli q� p

Function key: A random a ∈ Zn
q and k random short (B-bounded) Si ∈ Zn×n

q

Function evaluation: On input x ∈ {0,1}k define F = Fa,{Si} : {0,1}k→ Zn
p as

Fa,{Si}(x1 · · ·xk) =

⌊
aT ·

k

∏
i=1

Sxi
i

⌉
p

.

Size: poly(k,n)

Depth: O(1) (with threshold gates)

Figure 7: The Banerjee–Peikert–Rosen LWR-based construction.

The BPR function can be proved to be pseudorandom assuming that the LWE problem is hard. Two
issues that affect the choice of parameters are the distribution of the secret key components Si, and the
choice of q and p. For the former, the proof requires the Si to be short. (LWE is no easier to solve for
such short secrets [10].) This appears to be an artifact of the proof, which can be viewed as a variant of the
LWE-to-LWR reduction from Proposition 6, enhanced to handle adversarial queries.

Theorem 5 ([17]). If the LWE problem is (t,mn,ε)-hard for some B-bounded error distribution then {Fa,{Si}}
is a (t ′,m,ε ′)-pseudorandom function family, where

t ′ = t−mmax{n,2k}OP−O(nm2)−n · RD, ε
′ = mnp(2nkBk+1 +1)/q+ kεn,

and OP is the cost of a group operation in Zq.
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Proof. Define the function P : {0,1}k→ Zn
q as

P(x) = Pa,{Si}(x) := aT ·
k

∏
i=1

Sxi
i (12)

to be the subset product inside the rounding operation. The fact that F = bPep lets us imagine adding
independent error terms to each output of P. Consider then a related randomized function P̃ that computes
the subset product by multiplying by each Sxi

i in turn, but also adds a fresh error term immediately following
each multiplication.

By LWE-hardness and using induction on k, the randomized function P̃ can be shown to be itself pseu-
dorandom (over Zq), hence so is bP̃ep (over Zp). Moreover, for every queried input, with high probability
bP̃ep coincides with bPep = F , because P and P̃ differ only by a cumulative error term that is small relative
to q (this is where we need to assume that Si’s entries are small). Finally, because bP̃ep is a (randomized)
pseudorandom function over Zp that coincides with the deterministic function F on all queries, it follows
that F is pseudorandom as well.
Specifically, consider the following three games:

R: Give adaptive oracle access to a random function R : {0,1}k→ Zn
q.

P: Give adaptive oracle access to P : {0,1}k→ Zn
q defined in (12).

P̃: Give adaptive oracle access to P̃ : {0,1}k→ Zn
q inductively defined as:

• For i = 0, define P̃0(λ ) = aT, where λ is the empty string.

• For i≥ 1, and on input (x,y) ∈ {0,1}i−1×{0,1}, define P̃i : {0,1}i→ Zn
q as

P̃i(x,y) = P̃i−1(x) ·Sy
i + y · ex, (13)

where a,S1, . . . ,Sk are sampled at random and the ex ∈Zn
q are all sampled independently accord-

ing to the B-bounded LWE error distribution.

The function P̃ = P̃k is specified by a, {Si}, and exponentially many vectors ex. The error vectors can be
sampled “lazily”, since the value of P̃(x) depends only on a, {Si}, and ex.

Lemma 1. Games bPep and bP̃ep are (∞,m,mnp(2nkBk+1 +1)/q)-indistinguishable.

Proof. Observe that for x ∈ {0,1}k

P̃(x) = (· · ·((aT ·Sx1
1 + x1 · eλ ) ·Sx2

2 + x2 · ex1) · · ·) ·S
xk
k + xk · ex1···xk−1 mod q

= aT ·
k

∏
i=1

Sxi
i︸ ︷︷ ︸

P(x)

+ x1 · eε ·
k

∏
i=2

Sxi
i + x2 · ex1 ·

k

∏
i=3

Sxi
i + · · ·+ xk · ex1···xk−1︸ ︷︷ ︸

ex

mod q.

Now since both Si and ei are sampled from a B-bounded distribution, then each entry of an “error term”
vector ex is bounded by nkBk+1 (the magnitude being dominated by the entries of eε ·∏k

i=2 Sxi
i ). By an

analogous argument to the one in the proof of Proposition 6, it follows that, for every fixed choice of
S1, . . . ,Sk,

Pr
a

[
∃x : bP(x)+ exe 6= bP(x)ep

]
≤ mnp(2nkBk+1 +1)/q.

Since this holds for every choice of Si’s, it also holds for a random choice.
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Lemma 2. Games bP̃ep and bRep are (t−2mkOP−nRD,m,kεn)-indistinguishable.

Proof. For i ∈ [k], consider the following games:

Ri: Give adaptive oracle access to a random function Ri : {0,1}i→ Zn
q.

P̃i: Give adaptive oracle access to the function P̃i : {0,1}i→ Zn
q as defined in (13).

Hi: Give adaptive oracle access to the function Hi : {0,1}i→ Zn
q, defined as

Hi(x,y) = ax ·Sy
i + y · ex, (14)

where (x,y) ∈ {0,1}i−1×{0,1}, and ax, Si, and ex are all sampled at random.

We prove inductively that P̃k and Rk are (t − 2mkOP,m,kεn)-indistinguishable. For the induction basis
we have that P̃0 and R0 are (∞,m,0)-indistinguishable by definition, and so are in particular (t,m,0)-
indistinguishable. For the inductive step, suppose that P̃i−1 and Ri−1 are (t − 2m(i− 1)OP,m,(i− 1)εn)-
indistinguishable.

Claim 14. Games P̃i and Hi are (t−2miOP,m,(i−1)εn)-indistinguishable.

Proof. Suppose that there exists a circuit D of size t − 2miOP that distinguishes between P̃i and Hi with
advantage (i−1)εn using m queries. We use D to build an A that (t−2m(i−1)OP,m,(i−1)εn)-distinguishes
between P̃i−1 and Ri−1.

The distinguisher A starts by sampling a random S ∈ Zn×n
q . Then, given a query of the form (x,y) ∈

{0,1}i−1×{0,1} from D, it queries its oracle with input x to obtain ax, and replies to D with ax ·Sy + y · ex,
using a random LWE error ex.

If A’s oracle is distributed according to P̃i−1, then A’s replies to D are distributed as P̃i. On the other hand,
if A’s oracle is distributed according to Ri−1, then ax = Ri−1(x) is random, and so A’s replies are distributed
as Hi. Thus, A has the same advantage as D. Accounting for the two additional operations required by A for
each of the m queries made by D we get that A is of size t−2miOP+2mOP.

Claim 15. Games Hi and Ri are (t−mnOP−O(nm2),m,εn)-indistinguishable.

Proof. Using a hybrid argument (akin to the proof of Proposition 2) it can be shown that the (t,mn,ε)-
hardness of LWE implies that the following two distributions are (t−mnOP,m,εn)-indistinguishable:

• Sample a random S ∈ Zn×n
q and output ((a1,b1) . . . ,(am,bm)) ∈ (Zn

q×Zn
q)

m, where the a j’s are uni-
formly random and~b j = aTj ·S+ e j mod q for random e j.

• Output m uniformly random pairs ((a1,b1) . . . ,(am,bm)) ∈ (Zn
q×Zn

q)
m.

Suppose that there exists a distinguisher D of size t−mnOP−O(nm2) that distinguishes between Hi and Ri

with m queries and advantage εn. We use D to build a distinguisher A that (t−mnOP,m,εn)-distinguishes
the two distributions from above.

Given m pairs (a j,b j) ∈ Zn
q×Zn

q, the distinguisher A emulates an oracle for D as follows: for j ∈ [m],
answer the query (x j,y j) ∈ {0,1}i−1×{0,1} given by D with a j if y j = 0 and with b j if y j = 1. Similarly to
Theorem 2, O(nm2) additional gates are required for A to memorize previous answers so that he can answer
consistently.

If ~b j = aTj · S+ e j mod q then the replies given by the above oracle are distributed exactly as in (14)
(with Si = S), and hence according to Hi. On the other hand, if~b j is random, then the oracle’s replies are
random and independent and hence distributed according to Ri. Thus A has the same advantage as D.
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Combining the two claims using Propositions 1 and 2, we get that games P̃i and Ri are (min{t−mnOP−
O(nm2), t−2miOP},m,(i−1)εn+εn)-indistinguishable. Thus, games P̃k and Rk are (t−mmax{n,2k}OP−
O(nm2),m,kεn)-indistinguishable.

Since P̃k = P̃ and Rk = R, we finally conclude that the games bP̃e and bRe are (t−mmax{n,2k}OP−
O(nm2)−n · RD,m,kεn)-indistinguishable.

The theorem now follows by combining Lemma 1 with Lemma 2 via the triangle inequality (Proposi-
tion 1), and by observing that F = bPe and that bRe is a random function from {0,1}k to Zn

p (assuming p
divides q).

Parameters. In the proof, the gap between P and P̃ grows exponentially in k, because noise is added after
each multiplication by an Si. So in order to ensure that bP̃ep = bPep on all queries, we need both q and
1/α to exceed (nB)k+1 = nΩ(k). However, as in Proposition 6, it is unclear whether such large parameters
are necessary, or whether Si really need to be short. It would be desirable to have a security reduction for
smaller q and 1/α , ideally both poly(n) even for large k. ©?

It would be even better if the construction were secure if the Si were uniformly random in Zn×n
q , because

one could then recursively compose the function in a k-ary tree to rapidly extend its input length. ©?
One reason for optimism (beyond the fact that no attacks are known) is that the PRF does not actually

expose any low-error-rate LWE samples to the attacker; they are used only in the proof as part of a thought
experiment. This appears to be related to the so-called hidden number problem (see, e.g., [2]). It would be
interesting to investigate whether there exist connections between the problems. ©?

A closely related PRF, due to Banerjee and Peikert [16], is described in Section 8.1. This PRF achieves
the tightest known tradeoffs between LWE-based security and parallellism, though if one were to instantiate
it with concrete parameters, then it would still be slower than instantiations of the subset product with
rounding PRF with comparable security (see description of the SPRING family below).

Efficiency. The fastest instantiations of the PRF use ring elements instead of matrices. In the ring variant,
a is replaced with a uniform a ∈ Rq for some polynomial ring Rq (e.g., Zq[X ]/(Xn+1) for n a power of 2),
and each Si by some si ∈ R∗q, the set of invertible ring elements modulo q.4 This function is particularly
efficient to evaluate using the discrete Fourier transform, as is standard with ring-based primitives (see,
e.g., [96, 97]). Similarly to [111], one can optimize the subset-product operation via preprocessing, and
evaluate the function in TC0.

The functions are amenable to the same key-compression and amortization tehniques as the one used to
optimize the performance of the NR DDH-based PRFs.

The SPRING family of PRFs ([15]). The SPRING (Subset Product with Rounding over a Ring) family
of functions is a concrete instantiation of the PRF described in Figure 7 (aiming for 128-bit security), with
parameters

n = 128, q = 257, p = 2, k = 128.

Using “Gray code” amortization, an implementation of SPRING was shown to perform as fast as 4x slower
than that of AES-128 (in software) with further potential optimization [15, 48]. We describe the main ideas
behind the implementation.

4Here, hardness is based on the ring-LWE problem [97], in which we are given noisy/rounded ring products bi ≈ ai · s, where s
and the ai are random elements of Rq, and the error terms are “small” in a certain basis of the ring; the goal again is to distinguish
these from uniformly random pairs.
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The key, consisting of a,s1, . . . ,sk ∈ R∗q, is stored as vectors in Zn
q using the DFT or “Chinese remainder”

representation mod q (that is, by evaluating a and the si as polynomials at the n roots of Xn+1 mod q), so that
multiplication of two ring elements corresponds to coordinate-wise product. Then to evaluate the function,
one computes a subset product of the appropriate vectors, interpolates the result using an n-dimensional
FFT over Zq, and rounds coordinate-wise. For k = ω(logn), the runtime is dominated by the kn scalar
multiplications in Zq to compute the subset product; in parallel, the arithmetic depth (over Zq) is O(log(nk)).

The subset-product part of the function might be computed even faster by storing the discrete logs of the
Fourier coefficients of a and si, with respect to some generator g of Z∗q. The subset product then becomes
a subset sum, followed by exponentiation modulo q, which can be implemented by table lookup if q is
relatively small. Assuming that additions modulo q−1 are significantly less expensive than multiplications
modulo q, the sequential running time is dominated by the O(n logn) scalar operations in the FFT, and the
parallel arithmetic depth is again O(logn).

5 Transformations

Do you have the notion of a refill?
SHAFI GOLDWASSER (1985)

The significance of pseudorandom functions can be partly explained by their remarkable robustness and
flexibility. In Section 2.3 we saw that the size of the function range is essentially irrelevant in the PRF
definition. PRFs are similarly robust with respect to the choice of domain size: the domain can be easily
enlarged and restricted for strong and weak PRFs alike. Domain extension can be accomplished with the
help of pairwise independence, a restricted notion of pseudorandomness for which simple, unconditional
constructions are available.

With regard to flexibility, PRFs serve as the main building block used in the construction of more com-
plex pseudorandom functionalities. The best-known example is that of pseudorandom permutations, but the
paradigm can be applied more generally to obtain succinct implementations of various huge random objects
such as pseudorandom codes and pseudorandom graphs.

5.1 Domain Extension (and Restriction)

The domain extension problem is to efficiently construct a PRF on long inputs from a PRF on relatively
short inputs. The GGM and NR constructions can be viewed as domain extension procedures in which the
input length grows by one bit and doubles in every stage, respectively. Consequently, the complexity of the
domain-extended PRF grows with the resulting input size (at different rates in the two constructions).

We present a domain extension procedure of Levin [90] in which the efficiency of the original PRF is
essentially preserved. However, unlike in the GGM and NR constructions, the original domain size affects
the security of the domain-extended PRF. Levin’s construction makes use of pairwise independent functions.

Definition 7 (Pairwise independence). A family {Hs : {0,1}k→{0,1}k′} of functions is pairwise indepen-
dent if it is perfectly indistinguishable from a random function by any distinguisher that makes at most two
queries.

In other words, {Hs} is (∞,2,0)-indistinguishable from random. This is a special case of the notion of
bounded independence (see Definition 12 in Section 7). Pairwise independent hash families can have size
as small as linear in k+ k′ [80].
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Theorem 6. If Hs : {0,1}k → {0,1}k′ is a pairwise independent family of functions and F ′s′ : {0,1}k′ →
{0,1}` is a (t,q,ε)-PRF then the function Fs,s′(x) = F ′s′(Hs(x)) is a (t− c,q,ε +

(q
2

)
· 2−k)-PRF, where c is

the circuit size of Hs.

Proof. We analyze the advantage of the distinguisher with respect to the following sequence of games:

F ′: Sample s and s′. Answer query x by F ′s′(Hs(x)).

R′: Sample s and R′ : {0,1}k′ →{0,1}`. Answer query x by R′(Hs(x)).

R: Sample R : {0,1}k→{0,1}n. Answer query x by R(x).

Games F ′ and R′ can be shown to be (t− c,q,ε)-indistinguishable using a standard simulation argument.

Claim 16. Games R′ and R are (∞,q,
(q

2

)
·2−k/2)-indistinguishable.

Proof. We will assume, without loss of generality, that the distinguisher’s queries are pairwise distinct. We
relate R′ and R to the following pair of games:

C: Sample s. Answer query x by collision if Hs(x) = Hs(x′) for some previously

queried x′, and by ⊥ if not.

⊥: Answer every query by ⊥.

If games C and ⊥ are (∞,q,ε)-indistinguishable so must be R′ and R: Unless a collision occurs, the
answers of R′ and R are identically distributed (to a sequence of independent random strings).

Any distinguisher between C and ⊥ is essentially nonadaptive: The query sequence x1, . . . ,xq can be
extracted by assuming that the distinguisher interacts with the⊥ oracle. Its advantage equals the probability
of a collision, which can be bounded by

Pr[collision]≤ ∑
1≤i< j≤q

Pr[Hs(xi) = Hs(x j)] =

(
q
2

)
·2−k.

The inequality is obtained by taking a union bound over all pairs of queries, while the equality follows from
pairwise independence.

The theorem follows by applying the triangle inequality.

The security guarantee in Theorem 6 becomes meaningless when the number of queries exceeds 2k/2.
This is unavoidable by the birthday paradox: A distinguisher that looks for collisions among 2k/2 random
queries has constant advantage. Berman, Haitner, Komargodski, and Naor [29] give a different domain
extension procedure with improved security: Their construction uses two independent instances of the PRF
F ′s and has security that is independent of the input length k, as long as the number of queries is at most 2k−2.

Domain restriction and range extension for synthesizers. Naor and Reingold [110] consider domain
restriction—namely, the problem of reducing the input length—for synthesizers. They prove the following
statement, which follows by an application of Proposition 2:

Proposition 7. If S′ is a (t,q,ε)-synthesizer and G : {0,1}k→{0,1}k′ is a (t +c,ε ′)-PRG then the function
S(x) = S′(G(x)) is a (t,q,ε +2qε ′)-synthesizer, where c is the circuit size of S′.
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We do not know if an analogous transformation exists for weak PRFs.©? Proposition 7 can be combined
with the following range extension construction to convert a synthesizer with sufficiently long input and one
bit of output into a length-preserving synthesizer:

Proposition 8. If S′ : {0,1}k → {0,1} is a (t + cq2`,q,ε)-synthesizer then S((x1, . . . ,x`),(y1, . . . ,y`)) =
(S′(x1,y1), . . . ,S′(x`,y`)) is a (t,q, `ε)-synthesizer, where c is the circuit size of S′.

5.2 Pseudorandom Permutations

Nu, permutaziot!
ABRAHAM LEMPEL (1981)

A pseudorandom permutation (PRP) is a permutation that is easy to evaluate, but hard to distinguish from
a random permutation. PRPs are a model of block ciphers, which are used to implement various modes of
operation in symmetric-key encryption and authentication schemes. PRPs will also serve as an illustrative
example of the “huge random objects” discussed in Section 5.3.

Definition 8 (Pseudorandom permutation [93]). A family of permutations Fs : {0,1}k→{0,1}k is (t,q,ε)-
pseudorandom if the following two games are (t,q,ε)-computationally indistinguishable:

Fs: Sample a random s←{0,1}n and answer query x ∈ {0,1}k by Fs(x),

P: Sample a random permutation P : {0,1}k→{0,1}k and answer x by P(x).

The security requirement of Definition 8 is met by any pseudorandom function family Fs:

Proposition 9. If Fs is a (t,q,ε)-PRF then games Fs and P are (t,q,ε +
(q

2

)
2−k)-indistinguishable.

Proof. Consider the game

R: Sample a random function R : {0,1}k→{0,1}k and answer query x by R(x).

Claim 17. Games R and P are (∞,q,
(q

2

)
2−k)-indistinguishable.

Proof. We may assume, without loss of generality, that the distinguisher’s queries are pairwise distinct.
We analyze the hybrid game Hi in which the first i queries x1, . . . ,xi are answered using P and the rest are
answered using R. Games Hi−1 and Hi are identically distributed conditioned on R(xi) taking a different
value from P(x1), . . . ,P(xi−1). The probability this fails is (i− 1)2−k. The claim follows by the triangle
inequality.

As Fs and R are (t,q,ε)-indistinguishable, Proposition 9 follows by applying the triangle inequality
again.

In general, the functionality requirement of being a permutation may not be satisfied by certain PRFs
such as those obtained via the GGM and NR constructions. Luby and Rackoff [93] describe a generic
transformation for constructing a PRP from any length-preserving PRF.

Both of these constructions are based on the Feistel shuffle

Fei[F ](x,y) = (y,x+F(y)), x,y ∈ {0,1}k/2,

31



where F is a function from {0,1}k/2 to {0,1}k/2 and + is bit-wise XOR. The function Fei[F ] is a permutation
on {0,1}n; its inverse is (x,y) 7→ (y+F(x),x).

x y

+

+

F

F ′

x+F(y) y+F ′(x+F(y))

Figure 8: The two-round Feistel network. The intermediate outputs are flipped for clarity

The Feistel permutation is clearly not pseudorandom (regardless of the choice of F) as its output reveals
half of its input. The starting point of the PRP construction is the composition Fei2[F,F ′] = Fei[F ′]◦Fei[F ]
for “independent” functions F and F ′ (see Figure 8). This is the permutation

Fei2(x,y) =
(
x+F(y),y+F ′(x+F(y))

)
.

The permutation Fei2 also fails to be pseudorandom (regardless of the choice of F and F ′) as its outputs
satisfy the relation

Fei2(x,y)+Fei2(x′,y) = (x+ x′,something) (15)

for any pair of queries of the form (x,y) and (x′,y). It turns out that this is the only nonrandom feature of
the permutation, in the following sense:

Proposition 10. For every q, the following two games are (∞,q,q(q−1) ·2−k/2)-indistinguishable:

F: Sample F,F ′ : {0,1}k/2→{0,1}k/2. Answer query (x,y) by Fei2[F,F ′](x,y).

P: Sample a random permutation P : {0,1}k→{0,1}k and answer with P(x,y),

assuming all queries made by the distinguisher are ynique.

Definition 9 (ynique sequence). We call a sequence (x1,y1), . . . ,(xq,yq) ynique if all y-components are
distinct (i.e., yi 6= y j when i 6= j).

Proof. We analyze the advantage of the distinguisher with respect to the sequence F,R,P, where R is the
game

R: Sample R : {0,1}k→{0,1}k. Answer query (x,y) by R(x,y).

By Proposition 9, games R and P are (∞,q,
(q

2

)
· 2−k/2)-indistinguishable. It remains to analyze the distin-

guishing advantage between F and R.

32



Claim 18. Games F and R are (∞,q,
(q

2

)
·2−k/2)-indistinguishable, assuming the sequence of queries made

by the distinguisher is ynique.

Proof. Consider the hybrid Hi in which the first i queries (x1,y1), . . . ,(xi,yi) are answered as in F and the
rest are answered as in R. We will show that Hi and Hi−1 are (∞,∞,(i− 1) · 2−k/2)-indistinguishable. The
claim then follows by the triangle inequality.

The first i outputs of Hi are(
x j +F(y j),y j +F ′(x j +F(y j))

)
j=1,...,i−1,

(
xi +F(yi),yi +F ′(xi +F(yi))

)
By yniqueness, F(yi) is random and independent of F(y1), . . . ,F(yi−1), F ′, as well as the other q− i out-
puts of Hi, which can be fixed to maximize the distinguishing advantage. We can therefore represent this
distribution as (

x j +F(y j),y j +F ′(x j +F(y j))
)

j=1,...,i−1,
(
xi + r,yi +F ′(xi + r)

)
.

for a random r← {0,1}k. The probability that xi + r = x j +F(y j) for some j < i is at most (i−1) ·2−k/2.
Conditioned on this event not happening, F ′(xi + r) is independent of all the other j− 1 evaluations of F
and F ′ and of r. Changing notation again, we can represent the distribution as(

x j +F(y j),y j +F ′(x j +F(y j))
)

j=1,...,i−1,
(
xi + r,yi + r′

)
.

for a random r′← {0,1}k. The pair (xi + r,yi + r′) is uniformly random. By yniqueness it can be replaced
with R(xi,yi) as in the distribution Hi−1.

The proposition now follows from the triangle inequality.

The Luby–Rackoff and Naor–Reingold constructions. The requirement that all queries have distinct
y-coordinates can be enforced by preprocessing the queries. Luby and Rackoff apply another Feistel round
for this purpose. Here we describe a variant of Naor and Reingold [109], who use a pairwise independent
permutation instead. A family of permutations Hs : {0,1}k→{0,1}k is pairwise independent if it is perfectly
indistinguishable from a random permutation by any distinguisher that makes at most two queries. One
simple example is the family Ha,b(x) = a ·x+b where a← F×2k , b,x← F2k , and the operations are performed
over the field F2k .

Theorem 7. If {Fs} is a (t,q,ε)-PRF and Hs is a pairwise independent family of permutations then the
function Fei2[Fs′ ,Fs′′ ] ◦Hs is a (t−O(kq2 + ckq),q, 3

2 q(q− 1) · 2−k/2 + 2ε)-PRP, assuming Fs and Hs have
circuit size at most c.

Proof. We may assume that the distinguisher never makes the same query twice by modifying it to memorize
its previous answers. This incurs a loss of at most O(kq2) in size. Consider the sequence of games

Fs: Sample s,s′,s′′ independently. Answer by Fei2[Fs′′ ,Fs′ ](Hs(x,y)).

I: Sample s and F,F ′ : {0,1}k/2→{0,1}k/2. Answer by Fei2[F ′,F ](Hs(x,y)).

P: Sample Hs and a random permutation P on {0,1}k. Answer by P(Hs(x,y)).

Games Fs and I are (t−O(kq2 + ckq),q,2ε)-indistinguishable by an analysis as in the proof of Theorem 3.
Game P is perfectly indistinguishable from a random permutation. To show indistinguishability of I and P
we need the following claim. Let (x1,y1), . . . ,(xq,yq) denote the query sequence.
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Claim 19. The probability that the sequence (Hs(xi,yi))i=1,...,q is not ynique in game P is at most
(q

2

)
·2−k/2.

Proof. By the same argument used in the proof of Theorem 6, it can be assumed without loss that the
distinguisher makes its queries nonadaptively. Writing (x′i,y

′
i) for H(xi,yi),

Pr[(x′i,y
′
i)i=1,...,q is not ynique]≤ ∑

1≤i< j≤q
Pr[y′i = y′j] =

(
q
2

)
· 2
−k/2−2−k

1−2−k .

The inequality follows from the union bound, and the equality follows from pairwise independence of Hs.
After simplifying we obtain the desired bound.

Claim 20. Games I and P are (∞,q, 3
2 q(q−1) ·2−k/2)-indistinguishable.

Proof. Consider the following pair of games:

I?: Same as F , but fail if Hs(x,y) is not ynique.

P?: Same as P′, but fail if Hs(x,y) is not ynique.

By the above claim, P? and P are (∞,q,
(q

2

)
· 2−k/2)-indistinguishable. By Proposition 10, I? and P? are

(∞,q,q(q− 1) · 2−k/2)-indistinguishable. Applying the triangle inequality, I? and P are (∞,q, 3
2 q(q− 1) ·

2−k/2)-indistinguishable. The distinguishing advantage cannot increase when I? is replaced by I, proving
the claim.

The theorem follows by applying the triangle inequality.

The pairwise independence of Hs is only used in the proof to ensure that the y-components of the se-
quence Hs(xi,yi) are pairwise pseudorandom. Luby and Rackoff accomplish the same effect with an initial
Feistel round.

Strongly pseudorandom permutations. A family of permutations is strongly pseudorandom if security
holds even against adversaries that are allowed to query both the permutation P and its inverse P−1. This
property is required in certain cryptographic applications. The construction from Theorem 7 may not be
strongly pseudorandom as the inverse permutation satisfies relations analogous to (15). Strong pseudoran-
domness can be achieved by adding another hashing step at the output, or via an additional Feistel round
(see Figure 9).

x y

+

+

Fs2

Fs3

Hs1

Hs4

x y

+

+

+

+

Fs1

Fs2

Fs3

Fs4

Figure 9: The pseudorandom permutations of Naor–Reingold and Luby–Rackoff. The last layer is needed
for strong pseudorandomness
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Security versus domain size. In Theorem 7, the parameter k governs both the input size and the secu-
rity guarantee of the pseudorandom permutation. The security guarantee is poor for PRPs on small do-
mains, which are useful in practice [34]. This is unavoidable for the Luby–Rackoff construction; Aiello
and Venkatesan [1] proved that the four-round Feistel network is not (poly(k) ·2k/4,2k/4, 1

2)-pseudorandom.
Maurer, Pietrzak, and Renner [99] show that increasing the number of Feistel rounds can improve the de-
pendence on k in the security. However, their security guarantee is still inadequate for small values of k.

While it is not known in general if this dependence between security and input size is necessary for
Feistel-type PRP instantiations, it is an inherent limitation of “information-theoretic” security proofs such
as the proof of Theorem 7. There, the security of the PRP is deduced from the security of an idealized game
I in which the underlying PRF instances are replaced by truly random functions. It is then shown that the
game I is statistically secure: Any q-query adversary, regardless of its size, distinguishes I from a random
permutation P with probability at most O(q2 ·2−k/2).

A counting argument shows that the analogues of games I and P for the r-round Feistel network
Feir[F1, . . . ,Fr] are not (∞,r2k/2, 1

2)-indistinguishable [103]. To see this, consider the sequence of permu-
tation values at the lexicographically first q inputs. The permutation Feir is fully specified by the truth-
tables of the r underlying PRFs F1, . . . ,Fr : {0,1}k/2→{0,1}k/2, so the sequence (Feir(1), . . . ,Feir(q)) can
by described by at most rk/2 · 2k/2 bits. On the other hand, for a random permutation P, the sequence
(P(1), . . . ,P(q)) has min-entropy log(2k)q ≥ q log(2k − q). The two can be distinguished with constant
advantage when q≥ r2k/2.

In summary, the security analysis of the Feistel construction is limited by the relatively small input
size of the underlying (pseudo)random functions, which is an artifact of its balanced nature—namely, the
requirement that x and y should be equally long. It is therefore sensible to investigate the security of un-
balanced variants. In the extreme setting |x| = 1, |y| = k− 1 the analog of the Feistel shuffle is the Thorp
shuffle

Th[F ](x,y) = (y,x+F(y)), x ∈ {0,1},y ∈ {0,1}k−1

with underlying (pseudo)random function F : {0,1}k−1 → {0,1}. Morris, Rogaway, and Stegers [103]
show that the r-round Thorp network Thr (instantiated with random functions) is (∞,q,(q/r?) · (4kq/2k)r?)-
indistinguishable from a random permutation, where r? = r/(2k + 1). In the case q = 2k, Morris [102]
proves that r = O(k3 log1/ε) rounds yield (∞,2k,ε) security for any k and ε .

The Feistel shuffle Fei[F ] and the Thorp shuffle Th[F ] are examples of oblivious card-shuffling pro-
cedures: The permutation can be viewed as a rule for shuffling a deck of 2k cards with the randomness
described by the underlying (pseudo)random function F .5 For the resulting PRP to be efficiently com-
putable, the shuffle should be oblivious in the sense that the new position of every card in the deck can be
computed efficiently as a function of only its previous position and the randomness, and not the positions of
the other cards in the deck. Oblivious shuffles that enjoy rapid “local” mixing give rise to PRP constructions
with a good tradeoff between efficiency and security.

5.3 Implementing Huge Random Objects

A pseudorandom permutation is an example of a huge object that is guaranteed to satisfy the global property
of being a permutation, while being “locally” indistinguishable from a random permutation. An implementa-
tion of a pseudorandom permutation by a (pseudo)random function would preserve the local indistinguisha-
bility (by Proposition 9), but is likely to violate the global property. This may be relevant in applications
where the user of the implementation may rely, for instance, on the existence of inverses.

5This perspective is attributed to Naor [109], who was the first to propose the Thorp shuffle-based PRP construction.
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The distinction is even more prominent in the case of a strong pseudorandom permutation. In a “truthful”
implementation, such as the four-round Feistel network, the user is guaranteed that evaluating P−1

s (Ps(x))
always outputs x. In contrast, if P is instantiated with an arbitrary PRF, a consistent inverse may not even
exist, much less be efficiently computable.

Goldreich, Goldwasser, and Nussboim [67] initiated a general study of efficient implementations of huge
random objects of various types. The Luby–Rackoff construction suggests a generic two-step template for
this purpose:

1. Starting from a random function R, construct an object OR that is statistically indistinguishable from
a random object of the desired type (for a suitable bound on the number of queries).

2. Replace the random function R by a PRF to obtain an efficient implementation Os of the object.

Let us call the implementation Os truthful if the object Os is of the desired type.6 Goldreich et al.
observe that, even if one is willing to tolerate untruthful implementations with some small probability in the
second step, the first step must guarantee a truthful random object with probability one. This phenomenon
is illustrated in the following example:

Example 1 (Random injective function). A random function R : {0,1}n→{0,1}3n−1 is injective with prob-
ability at least 1− 2−n. However, a PRF Fs with the same domain and range need not be injective for any
key s. In fact, any PRF can be converted into a noninjective PRF by planting a random collision: If Fs is a
(t,q,ε)-PRF then the family

Fs,a(x) =

{
Fs(x), if x 6= a
Fs(0), if x = a

is a (t,q,ε +q ·2−n)-PRF that is not injective for any key (s,a), a 6= 0.

Example 1 can be explained by the fact that injectivity is a global property of functions, while step 2
only guarantees that local indistinguishability is preserved. In view of this it is interesting to ask if an almost
always truthful implementation of a random injective function can be obtained. In this case the answer is
positive.

Proposition 11. If Fs : {0,1}k→{0,1}` is a (t,ε)-PRF and Hs : {0,1}k→{0,1}` is a pairwise-independent
hash family then Is,s′(x) = Fs(x)⊕Hs′(x) satisfies the following two properties:

1. Is,s′ is (t− c,ε +
(2k

2

)
·2−`)-indistinguishable from a random injective function, where c is the size of

Hs′ .

2. Prs,s′ [Is,s′ is not injective]≤
(2k

2

)
·2−`.

Proof. The first property follows by a hybrid argument (details omitted). We prove that the second property
holds for every fixing of s:

Pr
s′
[Is,s′ is not injective]≤ ∑

x 6=x′
Pr[Is,s′(x) = Is,s′(x′)]

= ∑
x 6=x′

Pr[Hs′(x)⊕Hs′(x′) = Fs(x)⊕Fs(x′)]

=

(
2k

2

)
·2−`.

The inequality is the union bound, and the last equality follows from the pairwise independence of Hs′ .
6Our use of the term deviates slightly from the definition in [67].

36



Can Proposition 11 be strengthened so as to also provide the distinguisher access to F−1? More gener-
ally, Is,s′ almost always truthfully implements a random code of linear distance. In contrast, a result of Lovett
and Viola on the complexity of sampling [92] implies that implementing any linear code by the above two-
step template is impossible. Goldreich et al. ask if there is an alternative implementation in which the
distinguisher can be also furnished with a decoding oracle. ©?

The work [67] contains many additional results and open questions regarding huge random objects
arising from random graph theory and the theory of random Boolean functions.

Efficient implementations of huge random objects can enable an experimentalist to carry out simulations
on random objects that are prohibitively large (e.g., random graphs, random codes) with results that are
guaranteed to be sound, assuming the availability of a sufficiently strong PRF. In this setting, the stateless
nature of PRFs is a desirable feature (as it provides a short description of the huge object) but not entirely
necessary.

Bogdanov and Wee [41] introduce the notion of a stateful implementation, which may keep state in be-
tween queries. Their work gives a perfect stateful implementation of a specification suggested by Goldreich
et al.: A Boolean function f : {0,1}n→{0,1} in which the distinguisher may query the XOR of all the val-
ues of f over a subcube of its choice. Ben-Sasson et al. [28] extend these results and apply them towards the
construction of perfect zero-knowledge interactive proofs. By the work of Lovett and Viola [92], efficient
perfect stateless implementations of such objects are impossible even with oracle access to a truly random
function. We do not know if stateless implementations that are secure against distinguishers of bounded
query complexity can be obtained in this model. More generally, it would be interesting to better undestand
the differences between stateful and stateless implementations of huge random objects. ©?

6 Complexity of Pseudorandom Functions

Chazak Razborov!
BENNY CHOR (1980S)

The GGM and NR constructions from Section 3 are generic methods for obtaining a PRF from a simpler
pseudorandom object. The resulting PRF is in general more complex than the underlying primitive. In the
specific instantiations discussed in Section 4, this increase in complexity was mitigated by careful imple-
mentation.

There is however a limit to the amount of efficiency that can be squeezed by further optimizations. PRF
implementations inherently require a certain amount of complexity. We discuss two related reasons for
this: the availablity of efficient learning algorithms and the existence of “natural” lower-bound proofs for
sufficiently simple circuit classes. We then describe some heuristic PRF candidates that are just complex
enough to arguably match these limitations.

6.1 Learning Algorithms

A learner for a class of functions F is a two-stage algorithm L that works as follows: In the first stage the
algorithm is given oracle access to some function F ∈ F. In the second stage the algorithm receives an input
x and outputs a prediction for the value F(x). The learner has approximation error δ if Pr[LF(x) 6= F(x)]≤ δ

for x chosen from the uniform distribution on inputs.7

7Other distributions on inputs are also studied in learning theory.
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Learning algorithms differ depending on the learner’s mode of oracle access. A membership query
learner may query the oracle adaptively on inputs of its choice. A learner from random examples has only
access to random input–output pairs (x,F(x)) for independent and uniform inputs x.

The existence of a low-complexity learner for a class of functions implies bounds on the security of
any implementation of a pseudorandom function family in this class [119]. We state the result for Boolean-
valued functions Fs : {0,1}k→{0,1}.
Proposition 12. If the function family {Fs} can be learned from membership queries (resp., random ex-
amples) with approximation error 1

2 − ε by an algorithm of size t then Fs is not a (t +O(k),ε− t/2k)-PRF
(resp., weak PRF).

Learning with approximation error 1
2 amounts to random guessing. Proposition 12 states that any non-

negligible improvement to the approximation error by an efficient learner rules out pseudorandomness of
Fs.

Proof. Consider the distinguisher DF that simulates LF and makes one additional random query x to obtain
answer F(x) (or, in the case of random examples, obtains one additional example (x,F(x))). If LF(x) = F(x)
the distinguisher accepts, and otherwise it rejects.

By assumption, LFs(x) equals Fs(x) with probability at least 1
2 + ε . On the other hand, if R is a random

function, LR(x) is statistically independent of R(x) as long as the oracle has not been queried at x, which
fails to happen with probability at most t/2k. The advantage of the distinguisher is therefore at least (1

2 +
ε)− (1

2 + t/2k) = ε− t/2k.

We will say a pseudorandom function Fs can be implemented in class F if Fs belongs to F for all s.
Applying Proposition 12 to different algorithms from the computational learning theory literature yields the
following limitations on the implementation complexity of PRFs:

1. Weak PRFs cannot be implemented by linear threshold functions, as such functions can be learned
efficiently using the algorithm of Blum et al. [35].

2. PRFs cannot be implemented by polynomial-size formulas in disjunctive normal form (DNF), as these
can be learned efficiently (under the uniform distribution) by Jackson’s harmonic sieve algorithm [81].

3. Any function family implemented by AND/OR circuits of size s, depth d, and input length k is not
(
( k
≤O(logs)d−1

)
, 1

2)-weakly pseudorandom, as such circuits can be learned under the uniform distribution
by the algorithm of Linial, Mansour, and Nisan [91].

The learning algorithms of Blum et al. and Linial, Mansour, and Nisan can be implemented in the
statistical query model that is discussed in Section 7.7.

Proposition 12 can also be applied in the contrapositive form to argue computational limitations on
learning. In particular:

1. Polynomial-size circuit families cannot be learned efficiently from membership queries, assuming
polynomial-size one-way function families exist. This follows from the equivalence of one-way func-
tions and PRFs discussed in Section 1.2.

2. Polynomial-size constant-depth circuit families with linear threshold gates (the class TC0) cannot be
learned efficiently from membership queries, assuming the hardness of DDH or LWE. This follows
from the complexity of the constructions in Section 4.

3. Polynomial-size constant-depth AND/OR circuit families require quasipolynomial time to learn from
membership queries, assuming the exponential hardness of factoring Blum integers [85].
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6.2 Natural Proofs

I asked my wife what is the definition of natural,
and she said “anything that does not contain
petroleum products.”

LEONID LEVIN (2007)

In an attempt to understand the difficulties inherent in proving lower bounds on the size of Boolean circuits
computing explicit functions, Razborov and Rudich introduced a formal framework that captures many of
the currently available techniques. A circuit lower-bound proof can be viewed as a property P of functions
that distinguishes between the functions computable by circuits in the given class and the “hard” function.

Razborov and Rudich showed that, in many known proofs, the distinguishing property has the following
two features. For convenience let us assume that the domain and range are {0,1}k and {0,1}, respectively.

Smallness: Property P fails not only for the hard function, but for, say, at least half the functions from
{0,1}k to {0,1}.8

Constructivity: There exists an oracle circuit of size 2O(k) that, given oracle access to F , decides if F has
property P.

A small and constructive property that holds for all functions in a given class F is called natural for F.

Proposition 13. If there exists a property that is natural for the function family {Fs} then Fs is not a
(2O(k), 1

2)-PRF.

It is useful to keep in mind that the (strong) PRF distinguisher can control the input length k of the
candidate PRF by fixing some of the input bits.

Proof. Let D be the circuit of size 2O(k) that decides if F has property P. By assumption, DFs always accepts.
By smallness, Pr[DR accepts]≤ 1

2 . Therefore D has distinguishing advantage at least 1/2.

Applying Proposition 13 to various properties implicit in circuit lower-bound proofs, Razborov and
Rudich derive the following consequences among others:

1. Any function family implemented by AND/OR circuits of size expo(k)1/(d−1) and depth d is not pseu-
dorandom. This follows from the parity circuit lower bound of Håstad [58, 138, 73]. Boppana [44]
shows that the following simple distinguisher works: Choose two random inputs x,y that differ on a
single coordinate and check if F(x) = F(y). Distinguishers of this type are discussed in Section 7.1.

2. Any function family implemented by AND/OR/PARITY circuits of size s and depth d (the class
AC0[⊕]) is not (exp(logs)O(d), 1

2)-pseudorandom. This follows from a “naturalization” of the lower-
bound proof of Razborov and Smolensky [123, 132]. The conclusion also holds if PARITY is re-
placed by the MODq function for any constant prime power q. This distinguisher is described as the
Razborov–Rudich test in Section 7.4.

3. Any function family implemented by AND/OR formulas of size k3−ε for any ε > 0 and sufficiently
large k is not (2O(k), 1

2)-pseudorandom. This follows from Håstad’s proof of hardness for the Andreev
function [74] (see also [39]).

8Razborov and Rudich work with the complementary property NOT P and call the corresponding condition largeness.
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In summary, PRFs cannot be constructed in any class that is (a) learnable or (b) has a natural property.
Learnability and natural properties are closely related. In one direction, learnability is a natural property,
as the learning algorithm can be used to efficiently distinguish functions in the class from a random func-
tion. In the other direction, Naor and Reingold [108] and Nisan and Wigderson [115] give constructions
of PRFs from functions that are hard to predict on a chosen and random input, respectively. Carmosino
et al. [51] apply the latter transformation to obtain a quasipolynomial time learning algorithm for AC0[⊕]
circuit families.

While these results essentially rule out the existence of PRFs of very low complexity, it remains an open
question whether similar limitations hold for some of their immediate applications such as symmetric-key
encryption schemes or authentication protocols. ©?

6.3 Heuristic Constructions

Propositions 12 and 13 indicate that the efficiency of PRFs is of fundamental relevance in computational
learning theory and computational complexity. These connections provide extrinsic motivation for a fine-
grained study of the complexity of PRF constructions in various computational models.

In practice, the most efficient PRFs for a given level of security are not obtained by means of generic
methods such as the ones from Section 3. The modular nature of such constructions appears to entail a
loss in security which can be potentially avoided with a carefully crafted design. However, claims of secu-
rity for “direct” PRF constructions can no longer be based on standard assumptions and must rely instead
on the collective wisdom of cryptanalysts (motivated in part by social incentives for attacking candidate
implementations).

The practical construction of PRFs is an intricate art form that we do not attempt to cover here. We
recommend Chapter 5 in the textbook of Katz and Lindell [82] as an introduction to this subject. Our
emphasis here is on elementary principles of direct PRF and PRP constructions. We mention some concrete
proposals and discuss their relevance to the feasibility of learning and the existence of natural proofs.

Two paradigms that have been applied towards practical implementations of PRPs (called block ciphers
in the applied cryptography literature) are Feistel networks and substitution-permutation networks. Both of
these methods in fact yield (pseudorandom) permutations.

Feistel networks. The most well-known Feistel network-based PRP is DES (the Data Encryption Stan-
dard). Despite the long history and prominence of DES (it was designed and standardized in the 1970s
and has enjoyed widespread use ever since), it has shown remarkable resilience to cryptanalysis. DES is
a permutation family on 64-bit strings with a 56-bit key. Its basic building block is the 16-round Feistel
network Fei16[Fs1 , . . . ,Fs16 ] instantiated with some special function Fs that “mixes” the input and its key.
The round keys s1, . . . ,s16 are not independent; they are derived by applying iterative transformations to the
56-bit master key of DES.

This type of key scheduling process that injects partial information about the key at different rounds
is commonly used in block cipher design. It possibly serves as a mechanism to hinder cryptanalysis by
humans, as it makes the inner workings of the function challenging to understand. Generic constructions
like the ones from Section 3, on the other hand, are designed so that human analysis is a desirable feature
(for the objective is to come up with proofs of security).

Differential and linear cryptanalysis. One class of attacks that is natural to consider in the context of
iterated constructions like the Feistel network is differential cryptanalysis [30]. The attacker tries to obtain
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correlations among pairs of outputs by flipping some bit positions of a (random) input. If the correlations
are sufficiently “typical” they may tend to propagate throughout the Feistel network and be used to learn the
candidate PRF. Biham and Shamir [31] designed such an attack to learn DES using 247 queries and a similar
amount of time, and other iterated constructions even more efficiently.

Miles and Viola [101] suggest the following formalization of differential cryptanalysis. Here + denotes
bit-wise XOR.

Definition 10 (Differential cryptanalysis). A family {Fs : {0,1}k → {0,1}`} of functions is said to be ε-
secure against differential cryptanalysis if for all ∆x 6= 0 and ∆y, Prx,s[Fs(x)+Fs(x+∆x) = ∆y]≤ ε .

The two-round Feistel construction is an example that is insecure against differential cryptanalysis (re-
call (15) in Section 5.2).

Linear cryptanalysis [98] is a different type of attack that attempts to find linear relationships between
the bits of random input–output pairs. Miles and Viola [101] formalize it as follows. Here 〈a,x〉 denotes the
inner product modulo 2 function a1x1 + · · ·+akxk.

Definition 11 (Linear cryptanalysis). A family {Fs : {0,1}k → {0,1}`} of functions is said to be ε-secure
against linear cryptanalysis if for all a ∈ {0,1}k and b ∈ {0,1}`, Es[Ex[(−1)〈a,x〉+〈b,Fs(x)〉]2]≤ ε .

Matsui [98] devised an attack of this type to learn DES using 243 queries.
In spite of these attacks, DES is believed to be a remarkably secure PRP. Its 56-bit key, however, is

considered inadequately short for modern applications.

Substitution–permutation networks. Substitution–permutation networks (SPNs) are another blueprint
for constructing PRPs. Here the PRP Ps : {0,1}k→{0,1}k is obtained by sequentially composing “simple”
permutations of the following types:

• S-boxes are highly nonlinear fixed (independent of the key) permutations S : {0,1}c→{0,1}c where
c is a small factor of k. The input is partitioned into k/c blocks of size c, and the S-box is applied to
each block in parallel.

• P-boxes are linear permutations of the whole input that contain a large number of input–output de-
pendencies.

• Round key operations are linear shifts of the input by the round key. As in Feistel network-based
constructions, round keys are obtained by applying iterative transformations to the master key.

The nonlinear nature of the S-boxes is meant to guarantee security against “local” attacks such as linear
and differential cryptanalysis. The P-boxes ensure that the effect propagates throughout the input positions.
Miles and Viola prove general bounds on the security of SPNs against linear and differential cryptanalysis.

AES (the Advanced Encryption Standard) is a highly efficient SPN-based family of permutations on 128
bits. There are three variants of the construction, allowing keys of size 128, 192, and 256, respectively. In
spite of the scrutiny this design has received, no significant weakness is known.

Miles and Viola propose several SPN-based constructions of PRP and PRF families on infinitely many
input lengths and provide some theoretical evidence for their asymptotic security. If their security con-
jectures hold, quasilinear-size circuit families, TC0-type circuit families of size n1+ε , and quadratic-time
single-tape Turing machines with a quadratic number of states are hard to learn and have no natural prop-
erty.
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Dodis et al. [54] study a model of SPNs in which the S-boxes are implemented by a random permutation
oracle that can be queried both by the construction and by the distinguisher. They observe that 2-round
SPNs are insecure in this model and construct a 3-round SPN that is provably O(n2q2/2c)-secure against
a distinguisher that makes q queries. They also obtain similar security for a 1-round SPN variant with a
nonlinear P-box.

Weak pseudorandom functions. Owing to the severely restricted nature of the distinguisher, weak PRFs
ought to be easier to construct than their strong counterparts. Differential cryptanalysis, in particular, does
not apply to weak PRFs, although linear cryptanalysis does. We describe two conjectured separations be-
tween PRFs and weak PRFs as evidence that weak PRFs are indeed a less complex object.

Blum, Furst, Kearns, and Lipton [36] (Section 2.3) consider the following family of functions FS,T : {0,1}n→
{0,1}:

FS,T (x) = MAJORITY(x|S)+PARITY(x|T ),

where the key consists of two random (logn)-bit subsets S and T of {1, . . . ,n}, x|S is the projection of x
on its S-coordinates, and + denotes XOR. They conjecture that this family is a (nc,n−c)-weak PRF for any
constant c and sufficiently large k. The best known algorithms for learning such functions from random
examples have complexity nΩ(logn) [105]. For every S and T , FS,T is a function of 2 logn inputs and can in
particular be computed by a DNF of size n2. In contrast, as discussed in Section 6.1, DNFs cannot compute
strong PRFs whose security is superpolynomial in their size.

In the regime of exponential security, the binary modulus (q = 2) variant of LWE (see Section 4.2) is a
conjectured example of a randomized weak PRF. The noisy parity randomized function family Fs : {0,1}n→
{0,1} (s ∈ {0,1}n) is given by

Fs(x) = 〈s,x〉+ e(x) = s1x1 + · · ·+ snxn + e(x),

where the bits e(x) : x ∈ {0,1}n are independent and δ -biased for some δ < 1/2. Blum, Kalai, and Wasser-
man [37] give an algorithm for this problem with running time 2O(n/(logn−log log1/(1−2δ ))). Lyubashevsky [95]
significantly reduces the query complexity of this algorithm but at the cost of increasing its running time.

Noisy parities are attractive owing to their extreme simplicity, but their randomized nature is undesirable.
For instance, using Fs as the basis of an encryption scheme like the one in Section 2.4 would introduce
decryption errors with some probability.

Akavia et al. [3] conjecture that the function family GA,b : {0,1}n→{0,1} given by

GA,b(x) = g(Ax+b) (16)

is a weak PRF. Here, A is a random n×n matrix, b is a random {0,1}n vector, and g : {0,1}n→ {0,1} is a
suitably chosen function of constant depth and size polynomial in n. By the discussion in Section 6.2, the
security of any strong PRF in this class is at most quasipolynomial.

Akavia et al. propose setting g to equal the tribes function of Ben-Or and Linial [27] XORed with an
additional input bit. In Section 7.5 we show that this instantiation is insecure. Proposing an explicit choice
of g for which the family (16) is arguably weakly pseudorandom, or showing that no such choice exists,
remains an open problem. ©?
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7 Distinguishers

There is no intuition.
You just do the calculation.

JOHAN HÅSTAD (1990s)

The security of PRFs is required to hold against arbitrary efficient adversaries. It is however sometimes
useful to study distinguishers of restricted computational power. Restricted distinguishers can model specific
classes of cryptanalytic attacks. Proofs of security against such distinguishers can provide evidence for the
soundness of heuristic constructions, and potentially achieve better parameters even when a generic proof of
security is available. Moreover, if the class of distinguishers is sufficiently restrictive, unconditional proofs
of security may be possible.

In the first two parts we focus on distinguishers of bounded query complexity and linear distinguishers.
These lead to natural requirements on the distribution of outputs of the PRF: bounded independence for
the first type and small bias for the second. We then turn to space-bounded distinguishers and several
types of “randomness tests” that have found application in computational complexity and learning theory:
polynomial correlation tests, rational function representations, cylinder product tests, and statistical query
algorithms.

7.1 Distinguishers of Bounded Query Complexity

The following is a generalization of pairwise independence (Definition 7 in Section 5.1).

Definition 12 (Bounded independence). A function family Fs : {0,1}k→{0,1}` is q-wise independent if it
is (∞,q,0)-pseudorandom.

Pairwise (2-wise) indepedence guarantees security against linear and differential cryptanalysis in the
sense of Definitions 10 and 11.

Achieving q-wise independence requires a key of length at least q`. When ` = n, a key of size q` is in
fact sufficient: the function Fs(x) = s0 + s1x+ · · ·+ st−1xt−1, where s is the vector (s0, . . . ,st−1) ∈ Ft

2k and
all algebra is over the field F2k .9

Even though the function Fs is perfectly indistinguishable from a random function by a q-query dis-
tinguisher, it is not even weakly pseudorandom: since Fs is a polynomial of degree q, after observing
Fs(x1), . . . ,Fs(xq) at any q points, the value Fs(x) can be computed efficiently for all x using the Lagrange
interpolation formula. Therefore, Fs can be distinguished from a random function using any q+1 queries.

Bounded independence tends to be effective against adversaries that do not employ attacks based on
linear algebra (over various outputs of the PRF). One model for such adversaries is the class of bounded-
depth circuits. Circuits in this class cannot compute linear functions unless they are very large [58, 138, 73].
Bounded independence ensures security against bounded-depth distinguishers: a (logs)O(d) · log(1/ε)-wise
independent function family is (s,ε)-pseudorandom with respect to distinguishers of size s and depth d [47]
(see also [133, 72]).

The notions of bounded independence and cryptographic pseudorandomness are incomparable: not only
is bounded independence insufficient for cryptographic pseudorandomness, it is also unnecessary. Even for
a single bit of output, bounded independence requires perfect indistinguishability from true randomness.

9For one bit of output, a key size of (q logk)/2+Oq(1) is both necessary and sufficient (see Section 13.2 of [4]).
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For cryptographic purposes statistical indistinguishability is adequate. This leads to an approximate notion
of bounded independence.

Definition 13 (Approximate bounded independence). {Fs} is (q,ε)-wise independent if it is (∞,q,ε)-
pseudorandom with respect to nonadaptive distinguishers.

Approximate bounded independence is closely related to the small bias property that we discuss next.

7.2 Linear Distinguishers

A linear distinguisher computes some linear function of the values of the PRF. A distribution that is pseu-
dorandom against such distinguishers is called small-biased [106]. We focus on the case of linear tests over
the group Z2, where it is natural to assume that the PRF is Boolean-valued. The definition can be extended
to other Abelian groups.

Definition 14 (Small bias [106]). A function family {Fs} is (q,ε)-biased if every distinguisher that computes
a linear function modulo 2 of at most q bits of the function’s output has advantage at most ε/2.

It is convenient to view the range of the function as a multiplicative group, which allows for easier
Fourier analysis [116]. Under this convention, the values of Fs are represented by the square roots of unity
1 and −1. The small bias property then requires that for all distinct inputs x1, . . . ,xr, 1≤ r ≤ q,∣∣E[Fs(x1) · · ·Fs(xr)]

∣∣≤ ε.

If a function family is (q,ε/2)-wise independent then it is clearly (q,ε)-biased. The two definitions are
in fact equivalent up to an exponential loss in q:

Lemma 3. If {Fs} is (q,ε)-biased then it is (q,
√

2q−1 · ε/2)-wise independent.

It follows from Lemma 3 that (q,2−q/2)-wise independence cannot be achieved when q exceeds the
key length. For smaller values of q, the small bias property provides information-theoretic security against
distinguishers that make a bounded number of queries. In particular, these include differential attacks.

Proof. Let D : {0,1}X →{−1,1} be any statistical distinguisher that queries F on the set X = {x1, . . . ,xq}.
In the Fourier basis we can write

DF = ∑
A⊆X

D̂(A) ·∏
x∈A

F(x).

Then ∣∣E[DFs ]−E[DR]
∣∣= ∣∣∣∑A⊆X D̂(A) ·

(
E∏x∈A Fs(x)−E∏x∈A R(x)

)∣∣∣
=
∣∣∣∑A⊆X ,A6=∅ D̂(A) ·E∏x∈A Fs(x)

∣∣∣
≤∑A⊆X ,A 6=∅ |D̂(A)| ·

∣∣∣E∏x∈A Fs(x)
∣∣∣

≤ ε ·∑A⊆X ,A 6=∅ |D̂(A)|.

(17)

By the Cauchy–Schwarz inequality and Parseval’s identity the last expression is at most ε
√

2q−1. Therefore∣∣Pr[DFs accepts]−Pr[DR accepts]
∣∣= 1

2 ·
∣∣E[DFs ]−E[DR]

∣∣≤√2q−1 · ε/2.
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Generalizing this argument to adaptive distinguishers, it follows that if {Fs} is (q,ε)-biased then every
adaptive distinguisher that makes at most q queries has advantage at most 2q · ε/2. To prove this, the
distinguisher is modeled as a decision tree over variables Fs(x) of depth at most q. The sum of the absolute
values of the Fourier coefficients of a decision tree is upper bounded by the number of its leaves, which is
at most 2q. The bound then follows by a calculation similar to (17).

There are several efficient constructions of (2k,ε)-biased families Fs : {0,1}k → {0,1} of size polyno-
mial in k and log1/ε [106, 5, 26]. As in the case of bounded independence, some of them are cryptographi-
cally insecure.

We do not know of any generic methods for obtaining cryptographically secure PRFs that provably
exhibit the small bias property. In the case of the GGM construction, it would be interesting to understand
which property of the underlying PRG is sufficient to guarantee that the PRF has small bias. As an initial step
in this direction, we suggest the problem of constructing an efficient PRG G so that the GGM construction
instantiated with G has small bias. ©?

Regarding concrete constructions, Miles and Viola [101] prove that one of their proposed PRFs is
(3,2−Ω(k))-biased. It would be interesting to prove that the other constructions described in Section 4 have
the small bias property. ©?

7.3 Space-Bounded Distinguishers

A distinguisher is space-bounded if its amount of memory is bounded by some (possibly sublinear) efficient
function of the PRF key size. An algorithm with m bits of memory can be modeled as a branching program
of width 2m whose input is the truth table of the function to be distinguished.

Definition 15 (Pseudorandomness against bounded space). A function family {Fs : {0,1}k→ {0,1}} is ε-
pseudorandom against space m if the distinguishing advantage of any branching program of width 2m is at
most ε .

The access mode of the branching programs can be sequential, random, oblivious, or unrestricted, cor-
responding to the notion of sequential, weak, nonadaptive, and general PRFs, respectively.

The pseudorandom generators of Nisan [114] and Impagliazzo, Nisan, and Wigderson [78] can be
viewed as function families of key length O(k2 + km+ k log(1/ε)) and size polynomial in k, m, and 1/ε

that are ε-pseudorandom against space m with sequential access.
In a permutation branching program, the answer to each query induces a permutation of the states.

Reingold, Steinke, and Vadhan [127] give a PRF of key length and size polynomial in k, 2m, and log1/ε that
is ε-pseudorandom against space m permutation branching programs with nonadaptive read-once access.
There is little hope of removing the read-once and permutation restrictions at the same time: By Barrington’s
theorem [20], polynomial-size branching program families of width 5 have the same computational power as
the circuit class NC1. A PRF against NC1 with an unconditional proof of security would imply an explicit
circuit lower bound against this class, thereby resolving a long-standing open problem in computational
complexity.

Raz [121] proved that the function Fs(x) = 〈s,x〉= s1x1 + · · ·+ snxn mod 2 is 2−o(n)-weakly pseudoran-
dom against branching programs of width 2o(n2) and length 2o(n). This result was generalized to a larger
class of functions [122] (see also Moshkovitz and Moshkovitz [104]).
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7.4 Correlation with Polynomials

I don’t like polynomials.
They are mysterious.

ODED GOLDREICH (2000s)

One can attempt to detect nonrandom behavior in a function by looking for correlations with some structured
class of functions. In this context, the class of low-degree polynomials over a finite field is important in many
areas of the theory of computing. On the algorithmic side, there are efficient methods for detecting low-
degree correlations in several interesting parameter regimes. On the complexity-theoretic side, functions that
correlate with some low-degree polynomial capture several interesting classes of computations, in particular
bounded-depth circuits with AND, OR, and PARITY gates [123, 132].

Here we focus on polynomials over the binary field F2. The results can be extended to other finite fields,
but the efficiency of the tests worsens as the field size becomes larger.

Definition 16 (Proximity to polynomials). The function F : Fk
2→ F2 is δ -close to degree d if

Pr
x←Fk

2

[F(x) 6= p(x)]≤ δ

for some polynomial p : Fk
2→ F2 of degree at most d.

A standard counting argument shows, for example, that the probability of a random function being 1/3-
close to degree k/3 is at most 2−Ω(2k). We now describe some settings in which low-degree correlation can
be tested efficiently.

Exact representation. In the extreme setting δ = 0, we are interested in an exact representation of F as
an F2-polynomial of degree at most d:

F(x) = ∑
S : |S|≤d

F̃(S) ·∏i∈S xi. (18)

Every input–output pair (x,F(x)) then reveals a linear dependence between the coefficients F̃(S). Given
sufficiently many such linear dependences, the values F̃(S) can be learned via linear algebra. As there are( k
≤d

)
values to be learned, at least this many queries to F are required. This number of queries is also

sufficient: For example, if x ranges over all
( k
≤d

)
strings of Hamming weight at most d, then the system of

equations (18) has full row rank and the coefficients F̃(S) are uniquely determined.
Using a few additional queries, F can even be learned from independent random samples of the form

(x,F(x)): O(2d
( k
≤d

)
) such pairs are sufficient to ensure full row rank with constant probability. In Sec-

tion 7.5 we will analyze a more general variant of this test. Since every function has a unique canonical
multilinear expansion, it can in principle be verified that a given candidate PRF implementation resists these
types of attacks.

High correlation. Low-degree polynomials have a dual characterization: A function p has degree at most
d if and only if ∑x∈A p(x) = 0 for all affine subspaces A of dimension d +1.

This characterization provides a more efficient test for exact representation of F by a polynomial of
degree at most d. Moreover, it extends to testing correlation in the regime where δ is smaller than 2−d−2.
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The test chooses a random a← Fk
2 and outputs ∑x∈A+a F(x) for an arbitrary (d + 1)-dimensional affine

subspace A. Assuming F is δ -close to a polynomial p of degree at most d, it follows from union bounds that

Pr
[
∑x∈A+a F(x) 6= 0

]
≤ Pr

[
∑x∈A+a p(x) 6= 0

]
+Pr[F(x) 6= p(x) for some x ∈ A+a]

≤ 0+∑x∈A Pr[F(x+a) 6= p(x+a)]

= δ ·2−d−1,

while Pr[∑x∈A+a R(x) 6= 0] = 1/2 for a random function R.
The learner for exact degree-d representation from random input–output samples can also be used in a

regime of very high correlation: If F is δ = 1/O(2d
( k
≤d

)
)-close to degree d, the learner outputs the unique

polynomial p that is δ -close to F with constant probability.

Noticeable correlation. In the regime δ ≥ 2−d−1 there may be more than one polynomial of degree at
most d that is δ -close to F . This imposes additional difficulties in the design and analysis of correlation
tests.

The Gowers test. A natural way to test for correlation is to evaluate the expression ∑x∈A p(x) on a
random affine subspace A of dimension d+1. It is more convenient for the analysis to also allow degenerate
subspaces (of lower dimension): The distinguisher chooses a0, . . . ,ad+1 independently and uniformly at
random from Fk

2, sets A = {a0 +a1x1 + · · ·+ad+1xd+1 : x1, . . . ,xd+1 ∈ F2}, and outputs ∑x∈A p(x).

Theorem 8. The Gowers test distinguishes functions that are δ -close to degree d from a random function
with advantage at least 2 · (2δ −1)2d+1

.

Proof. Gowers [70] showed that if F is δ -close to degree d then

E
A

[
∏x∈A(−1)F(x)

]
≥ (2δ −1)2d+1

.

On the other hand, EA[∏x∈A(−1)R(x)] = 0 for a random function R. Therefore,

Pr
[
∑x∈A F(x) = 0

]
−Pr

[
∑x∈A R(x) = 0

]
= 2 ·

(
E
[
∏x∈A(−1)F(x)

]
−E
[
∏x∈A(−1)R(x)

])
≥ 2 · (2δ −1)2d+1

.

The analysis is essentially tight, as can be seen by instantiating F to a random function with δ2k ones.
Owing to the doubly exponential dependence on d in Theorem 8, the efficiency of the Gowers test degrades
rapidly with the degree.

The cylinder product test described in Section 7.6 extends the Gowers test to a larger class of functions.
The two have identical soundness guarantees.

In Section 7.5 we describe a test of Razborov and Rudich [124] for correlation with rational functions,
of which polynomials are a special case. The Razborov–Rudich and Gowers tests have incomparable sound-
ness guarantees.

Weak pseudorandomness. If only random input–output samples are available, the problem of detecting
correlation with linear functions (i.e., degree-1 polynomials) is polynomially equivalent to learning noisy
parities [55]. For this purpose, the algorithms of Blum, Kalai, and Wasserman and Lyubashevsky discussed
in Section 6.3 can be applied. We do not know of any results for higher degree. ©?
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7.5 Correlation with Rational Functions

A rational function is a ratio of two polynomials with the convention that 0/0 may represent any value.

Definition 17. A function F : Fk
2→ F2 has rational degree at most r if there exist polynomials p and q of

degree at most r, not both identically zero, such that

F(x) ·q(x) = p(x) for all x in Fk
2. (19)

Rational degree generalizes polynomial degree, which corresponds to the special case q≡ 1. Represen-
tation by rational functions is in fact equivalent to one-sided representation by polynomials in the following
sense:

Proposition 14 ([11]). F has rational degree at most d if and only if there exists a nonzero polynomial P of
degree at most d such that P(x) = 0 whenever F(x) = b for some b ∈ {0,1}.

As in the case of polynomials, we say f is δ -close to rational degree at most d if there exists r of rational
degree at most d such that Pr[ f (x) 6= r(x)]≤ δ .

We describe and analyze two tests for correlation with rational functions of low degree. The first one
applies to the high-correlation regime and can distinguish even weakly pseudorandom functions. The second
one, due to Razborov and Rudich [124], is for strong pseudorandom functions but works even when the
proximity parameter δ is close to 1/2.

Exact representation and high correlation. Functions of low rational degree cannot even be weakly
pseudorandom:

Proposition 15. If Fs : Fk
2→F2 has rational degree at most d for all s then it is not a (poly(2d

( k
≤d

)
), 3

4)-weak
PRF.

Proof. The test accepts if there exist p and q that are consistent with the equations (19) on m = 4 ·2d
(( k
≤d

)
+

1
)

samples x. This is a linear system in the coefficients of p and q, so the existence of a nonzero solution
can be decided by a circuit of size polynomial in m. If F = Fs, a nonzero solution always exists. If, on the
other hand, F is a random function, the following claim applies:

Claim 21. If p, q are polynomials of degree at most d, not both zero, then for a random function R and a
random input x, PrR,x[R(x) ·q(x) = p(x)]≤ 1−2−d−1.

Proof. Since p and q are not both zero, it must be that p is nonzero or p and q are different. If p is nonzero,

Pr[R(x) ·q(x) 6= p(x)]≥ Pr[p(x) 6= 0] ·Pr[R(x) = 0 | p(x) 6= 0]≥ 2−d · 1
2 = 2−d−1,

where the inequality Pr[p(x) 6= 0]≥ 2−d follows by the Schwarz–Zippel lemma. If p and q are different, then
Pr[R(x) ·q(x) 6= p(x)] = Pr[(R(x)+1) ·q(x) 6= p(x)+q(x)], and the same argument applies to the functions
R+1, q, and q+ p.

By independence and a union bound over all pairs (p,q), the probability that a random function passes
the test is at most (

22( k
≤d)−1

)
·
(
1−2−d−1)m ≤ 22( k

≤d)−m·2−d−1
≤ 1

4

by the choice of m.
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Akavia et al. [3] conjecture that the construction (16) instantiated with g equal to the tribes function
XORed with an additional input bit is a weak PRF. Their conjecture is false as g can be seen to have rational
degree at most O(logk). By Proposition 15, the resulting function family is not a (kO(logk), 1

3)-weak PRF.
The following theorem shows, more generally, that weak PRF constructions in the class DNF◦⊕ cannot

be too secure.

Theorem 9. If Fs : {0,1}k→ {0,1} is an OR of at most t ANDs of parities of literals for all s then it is not
a (poly(tk ·2log t·logk), 1

3)-weak PRF.

sketch. The distinguisher accepts if (1) F passes the test in Proposition 15 with d = log2 t + 2 or (2) the
number of x such that F(x) = 0 is at most 2k/3. From the above proof and large deviation bounds, it follows
that a random function is accepted with probability at most 1/3.

When F =Fs, we consider two possibilities. If all AND terms of Fs have fan-in more than log2 t+2, then
by a union bound, Fs(x) is nonzero with probability at most 1/4 over the choice of x. By a large deviation
bound, Fs is then rejected by test (2) with probability at most 1/3. If, on the other hand, Fs contains an AND
term with fan-in at most log2 t +2, then this term is a nonzero polynomial of degree at most log2 t +2 that
evaluates to one whenever Fs does. By Proposition 14, Fs has rational degree log2 t +2 and it is rejected by
test (1) with probability one.

Proposition 15 in fact holds under the weaker assumption that Fs is o
(
1/2d

( k
≤d

))
-close to rational degree

d, as the probability that such a function triggers a false negative in the test is vanishingly small. Towards
understanding the security of (16) it would be interesting to investigate the approximate rational degree of
AC0 function families. Akavia et al. show that the tribes function on n inputs is Ω(2d)-far from polynomial
degree d for every d ≤ n−ω(logn). Does a similar property hold for some AC0 function family with respect
to rational degree? ©?

Noticeable correlation. Testing for correlation with functions of low rational degree can be reduced to
testing for exact representation by a rational function of degree close to k/2.

Proposition 16. If F is δ -close to rational degree at most r then the linear space of solutions to (19) has
dimension at least

( k
≤d−r

)
−δ ·2k.

Proof. If F is δ -close to rational degree r, then there exist polynomials p,q of degree at most r such that
F(x) · q(x) 6= p(x) for at most δ2k inputs x ∈ Fk

2. Consider the linear space Z of polynomials of degree at
most d− r that vanish on these inputs. This space has dimension at least

( k
≤d−r

)
− δ · 2k. On the other

hand, for every z ∈ Z, it holds that F(x) · p(x)z(x) = q(x)z(x) on all inputs x ∈ Fk
2, so all pairs of the form

(pz,qz) : z ∈ Z are solutions to (19).

We now restrict our attention to the regime d = (k− o(
√

k))/2. Proposition 16 then has the following
asymptotic behavior for every δ < 1/2 and sufficiently large k: If r = o(

√
k) then the dimension of the

solution space is at least (1
2 −δ −o(1)) ·2k. In particular, if δ is bounded away from 1

2 then the system has
at least one solution. This gives the following reduction from approximate to exact rational degree:

Corollary 1. For every δ < 1/2 there exists an ε > 0 such that for sufficiently large k, if F : Fk
2 → F2 is

δ -close to rational degree at most ε
√

k, then F has rational degree at most (k− ε
√

k)/2.

On the other hand, (19) is a linear system of 2k equations in (1−o(1)) ·2k unknowns. We may conjecture
that, for a reasonable fraction of functions F , the equations should exhibit few linear dependencies and
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so the system should have no solution. Razborov and Rudich write that they have no easy proof of this
conjecture. It was recently observed by Swastik Kopparty and the first author that this property follows
from the asymptotic optimality of Reed-Muller codes under random erasures, which was recently proved by
Kudekar et al. [88].

Proposition 17. For every ε > 0, the probability that a random function R : Fk
2→ F2 has rational degree at

most (k− ε
√

k)/2 approaches zero for large k.

Proof. Kudekar et al. show that for every ε > 0, if E is a uniformly random subset of Fk
2 (representing

a set of erasures), every polynomial P of degree at most d = (k− ε
√

k)/2 is uniquely determined by the
evaluations (x,P(x)) : x 6∈ E with probability approaching one for large k. In particular, when P ≡ 0, the
only polynomial of degree at most d whose zeros cover the set E is the zero polynomial with probability
approaching one.

For a random function R, the sets R−1(0) and R−1(1) are uniformly random subsets of Fk
2. Therefore the

probability that there exists a nonzero polynomial of degree at most d whose zeros cover R−1(0) or R−1(1)
approaches zero for large k. By Proposition 14, this is exactly the probability that R has rational degree at
most d.

We obtain the following consequence regarding the correlation of pseudorandom functions to functions
of low rational degree.

Theorem 10. For every δ < 1
2 there exists ε > 0 such that for sufficiently large k, if Fs : Fk

2→ F2 is δ -close
to rational degree at most (k− ε

√
k)/2 for all s, then {Fs} is not a (2O(k), 1

2)-PRF.

Proof. By Corollary 1 and Proposition 17, the probability that a random function R : Fk
2→ F2 is δ -close to

rational degree at most (k− ε
√

k)/2 is at most 1
2 for sufficiently large k. Correlation with rational functions

is testable in time 2O(k) (the time it takes to solve (19)). It follows that Fs and R can be distinguished in size
2O(k) with advantage 1

2 .

Razborov and Rudich prove a weaker version of Proposition 17. They show that for k odd and d =
(k−1)/2 the linear space of solutions to (19) has dimension at most 1

4 2k with probability at least 1
2 over the

choice of a random R.10 Together with Proposition 16, this establishes the conclusion of Theorem 10 under
the stronger assumption δ < 1

4 .
For completeness, we give an elementary proof of an even weaker dimension bound, which yields the

conclusion of Theorem 10 under the assumption δ < 1
2 log2

4
3 ≈ 0.2075.

Proposition 18. For k odd and d = (k− 1)/2 the linear space (p,q) of solutions to (19) has dimension at
most 1

2 log2
3
2 ·2

k +1 with probability at least 1
2 over the choice of a random F.

Proof. For a fixed pair q, p and a random F , the probability that Fq equals r is zero if q(x) = 0 and p(x) = 1
for any x, and 2−|{x : q(x)=1}| if not. If p and q are chosen independently at random, we have

Pr
F,p,q

[Fq = p] = E
p,q

[
1(q(x) = 1 or p(x) = 0 for all x) ·2−|{x : q(x)=1}|].

Let B = {x : |x|< k/2} and B = {x : |x|> k/2}. By the Cauchy–Schwarz inequality, we can write

Pr[Fq = r]≤
√

Eq,r[Z(B)] ·
√

Eq,r[Z(B)],

10In fact, they only show this holds for the q-component of the solution space, which is sufficient.

50



where
Z(S) = 1(q(x) = 1 or p(x) = 0 for all x ∈ S) ·2−2|{x∈S : q(x)=1}|.

By symmetry, E[Z(B)] = E[Z(B)], so Pr[Fq = p]≤ E[Z(B)].
Every polynomial of degree less than k/2 represents a unique function from B to F2. (The coefficients

of an interpolating polynomial for a given function can be calculated iteratively in order of increasing set
size. Since the dimensions of the space of functions and the space of polynomials are both 2k−1, the corre-
spondence is one-to-one.) Therefore the values of q and r at different points in B are mutually independent
and

E[Z(B)] = ∏
x∈B

E[Z({x})].

The value of Z({x}) is 1/2 conditioned on q(x)= 0 and 1/4 conditioned on q(x)= 1, from where E[Z({x})]=
3/8 and E[Z(B)] = (3/8)2k−1

. It follows that the expected number of solutions (q,r) to Fq = r is at most

22k · Pr
F,q,r

[Fq = r]≤ 22k ·
(3

8

)2k−1

= 2
1
2 log2

3
2 ·2

k
.

By Markov’s inequality, the probability that the number of solutions is more than 2
1
2 log2

3
2 ·2

k+1 is less than
half, implying the bound on the dimension of the solution space.

7.6 Correlation with Cylinder Products

Cylinder products are functions that exhibit a “product structure” with respect to a fixed partition of the
inputs. They play a central role in the study of low-complexity circuits and communication protocols.
Pseudorandom synthesizers and their higher-dimensional analogues turn out to be closely related to cylinder
products.

Definition 18 (Cylinder product). Let D1, . . . ,Dd be any finite domains. A function F : D1× ·· ·×Dd →
{−1,1} is a d-cylinder product11 if it can be written as a product F = f1 · · · fd where the function fi does
not depend on its i-th input.

In particular, 2-cylinder products are the functions of the form F(x,y) = f (x) ·g(y). It is easily verified
that such functions satisfy the relation

F(x1,y1) ·F(x2,y1) ·F(x1,y2) ·F(x2,y2) = 1

for all x1,x2 ∈ D1 and y1,y2 ∈ D2. In general, for a d-cylinder product F , the following expression vanishes
for all x1,y1 ∈ D1, . . . ,xd ,yd ∈ Dd :

∏
σ1∈{x1,y1},...,σd∈{xd ,yd}

F(σ1, . . . ,σd). (20)

The cylinder product test [52, 120, 136] evaluates (20) on uniformly random inputs x1,y1, . . . ,xd ,yd . We
next give an analogue of Theorem 8 for cylinder intersections.

Theorem 11. The cylinder product test distinguishes functions that are δ -close to a d-cylinder from a
random function with advantage at least 2 · (2δ −1)2d

.

11This is the class Π∗d of Viola and Wigderson [136] (Section 3.1), who explain the close relation with the cylinder intersections
of Babai, Nisan, and Szegedy [14].
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The cylinder product test is more general than the Gowers test for the purpose of distinguishing from
a random function: A degree-(d−1) polynomial from Fk

2 to F2 is a d-cylinder product with respect to any
product partition Fk1

2 ×·· ·×Fkd
2 of the input domain (with k1, . . . ,kd > 0).

The cylinder product test generalizes to functions that take values on the complex unit circle. (This
requires conjugating the entries with an odd number of xi in (20).)

On the complexity of synthesizers. As the 2-cylinder product test can be implemented by a two-query
distinguisher for a pseudorandom synthesizer, Theorem 11 has the following corollary:

Corollary 2. If F if 1
2(1− (ε/2)1/4)-close to some 2-cylinder then F is not a (O(1),2,ε)-pseudorandom

synthesizer.

As 2-cylinders over Zn
2×Zn

2 include all linear functions, it follows that all Fourier coefficients of a
synthesizer must have negligible magnitude.

Akavia et al. [3] provide evidence that all function families in the class AC0 ◦⊕ of polynomial-size,
constant-depth AND/OR circuits with a bottom layer of PARITY gates have a Fourier coefficient of mag-
nitude at least exp(−poly logn). Thus, it is conceivable that AC0 ◦⊕ circuits can compute weak PRFs (see
Section 6.3) but not synthesizers. In contrast, Proposition 5 indicates weak PRFs can only be more complex
than synthesizers.

To resolve this apparent contradiction, recall that the complexity of a weak PRF family Fs(x) is the
maximum complexity of the function Fs over all fixings of the key s. The induced synthesizer S(s,x) = Fs(x)
is a function of both the key and the input of the original PRF. The function S could have high complexity,
but reduce to a function of lower complexity once s is fixed.

This phenomenon is exemplified by the LWR problem from Section 4.2: For every fixing of the key s,
the function Fs(a) = b〈a,s〉ep (see (11)) has a large Fourier coefficient over Zk

q (the coefficient F̂s(s)), while
all the Fourier coefficients of the corresponding synthesizer are small.

7.7 Statistical Queries

Random input–output pairs (x,F(x)) can be used as samples to estimate statistics Eφ = Ex[φ(x,F(x))]
for various real-valued functions φ . If φ is bounded in the range [−1,1], then about 1/ε2 samples are
needed to estimate the statistic within error ε with constant probability. Many known algorithms for learning
from random examples operate in this manner: The algorithm computes estimates of Eφ for all φ in some
fixed class of real-valued functions Φ and outputs the value of some function of these estimates only. The
algorithm of Linial, Mansour, and Nisan for low-weight Fourier learning is one such example.

The statistical query learning model [83] captures this class of algorithms. The following pseudoran-
domness property is necessary and sufficient for functions to be hard to learn in this model [49]. It postulates
that any statistic of the queried function should be close in value to what is expected for a random function.

Definition 19 (Pseudorandomness against statistical queries). The family {Fs} is (ε,δ )-pseudorandom
against statistical queries Φ if, with probability at least 1−δ over the choice of s,∣∣E

x
[φ(x,Fs(x))]− E

x,R
[φ(x,R(x))]

∣∣≤ ε

for all φ in Φ.

For Boolean-valued functions, pairwise independence is sufficient to ensure pseudorandomness against
statistical queries.
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Lemma 4. Let Φ be any set of [−1,1]-valued functions. If Fs : {0,1}k → {−1,1} is pairwise independent
then it is (

√
2|Φ|/δ2k,δ )-pseudorandom against Φ.

Proof. Any statistical query can be written as a combination of two correlation queries [49]:

E
x
[φ(x,F(x))] = E

x

[
φ(x,−1) · 1− f (x)

2
+φ(x,1) · 1+ f (x)

2

]
= 1

2 E
x
[φ(x,1) ·F(x)]− 1

2 E
x
[φ(x,−1) ·F(x)]+ 1

2 E
x
[φ(x,1)+φ(x,−1)].

The last term is independent of F , so we can bound the distinguishing advantage of φ by∣∣E
x
[φ(x,Fs(x))]− E

x,R
[φ(x,R(x))]

∣∣≤ 1
2

∣∣E
x
[φ(x,1) ·Fs(x)]− E

x,R
[φ(x,1) ·R(x)]

∣∣
+ 1

2

∣∣E
x
[φ(x,−1) ·Fs(x)]− E

x,R
[φ(x,−1) ·R(x)]

∣∣
= 1

2 |Ex [φ(x,1) ·Fs(x)]|+ 1
2 |Ex [φ(x,−1) ·Fs(x)|.

It therefore suffices to bound |Ex[ψ(x) ·Fs(x)]| for an arbitrary set of 2|Φ| functions ψ : {0,1}k → [−1,1].
We apply the second-moment method. Since every bit of Fs is uniformly distributed, Es Ex[ψ(x) ·Fs(x)]
equals zero. For the second moment, write

E
s

[
E
x
[ψ(x) ·Fs(x)]2

]
= E

s

[
E
x,y
[ψ(x)Fs(x) ·ψ(y)Fs(y)]

]
= E

x,y

[
ψ(x)ψ(y)E

s
[Fs(x) ·Fs(y)]

]
= E

x,y
[ψ(x)ψ(y)1(x = y)]

≤ Pr[x = y].

This is the collision probability of the uniform distribution, which equals 1/2k. By Chebyshev’s inequality,
the probability that |Es[ψ(x) ·Fs(x)]| exceeds

√
2|Φ|/δ2k is at most δ/2|Φ|. The lemma follows by taking

a union bound over all ψ .

It would be interesting to investigate if an analogous statement holds for adaptive distinguishers. ©?
A variant of this proof appears in the work of Akavia et al. [3]. In particular, since the function family

HA,b(x) = Ax+b is pairwise independent, construction (16) is pseudorandom against statistical queries.

8 Contemporary Constructions

The dishwasher is a gift of nature!
SILVIO MICALI (1980’s)

We present two recently-proposed extensions of PRFs and describe some of their applications. A key-
homomorphic PRF allows for the efficient evaluation of Fs1+s2(x) given the values Fs1(x) and Fs2(x). In a
puncturable PRF the adversary obtains code for evaluating Fs everywhere but at a single input x̊ of its choice
and cannot distinguish the value Fs(x̊) from a random one.

Puncturable PRFs are an indispensable tool in applications of indistinguishability obfuscation, an in-
triguing concept that has attracted recent interest. Sahai and Waters used puncturable PRFs together with
indistinguishability obfuscation to convert certain private-key encryption schemes into public-key ones. We
provide a self-contained treatment of their result.
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8.1 Key-Homomorphic PRFs

Key-homomorphic PRFs were introduced by Naor, Pinkas, and Reingold [107], who constructed, in the
random oracle model, a very simple key-homomorphic PRF family assuming the DDH problem is hard.

Definition 20 (Key-homomorphic PRF). Let S and G be Abelian groups. We say that a family {Fs : {0,1}k→
G} of functions, indexed by s ∈ S, is key homomorphic if for every s1,s2 ∈ S and every x ∈ {0,1}k, it holds
that

Fs1(x)+Fs2(x) = Fs1+s2(x).

Recently, Boneh et al. [42] constructed the first (almost) key-homomorphic PRF without random oracles.
The construction is based on the LWE problem, and builds upon ideas used in the non-key-homomorphic
LWE-based PRFs of Banerjee, Peikert, and Rosen [17], and specifically on the reduction from LWE to LWR
(Proposition 6). The Boneh et al. construction was subsequently generalized by Banerjee and Peikert [16],
resulting in higher efficiency and tighter security reductions.

Constructions in the random oracle model. Let G be a finite cyclic group of prime order q and let
H : {0,1}k→G be a function modeled as a random oracle. Define the function Fs : {0,1}k→G, keyed by
s ∈ Zq, as

Fs(x) = H(x)s ∈G.

Since Fs1(x) ·Fs2(x) = H(x)s1+s2 = Fs1+s2(x) then Fs is key homomorphic. Naor, Pinkas, and Reingold [107]
proved that {Fs} is a PRF family in the random oracle model, assuming DDH is hard in G (see Section 4.1
for a description of DDH).

Similarly, it is possible to construct (almost) key-homomorphic PRFs from the LWR problem in the
random oracle model [42]. Let p < q and let H : {0,1}k → Zq be a function modeled as a random oracle.
Define the function Fs : {0,1}k→ Zp as

Fs(x) = b〈H(x),s〉ep, (21)

where bxep equals b(p/q) · x mod qe mod p. The function can be shown to be a secure PRF in the random
oracle model, assuming the LWR problem is hard (see Section 4.2 for a description of LWR). Because round-
ing is not linear, the function Fs is not actually key homomorphic. However it is almost key homomorphic
in that

Fs1(x)+Fs2(x)−Fs1+s2(x) ∈ {−1,0,1}.
This relaxed property turns out to be sufficient for many applications.

Application I: Distributed PRFs. Distributed PRFs support splitting of the secret key among n servers
so that at least t servers are needed to evaluate the PRF. Evaluating the PRF is done without reconstructing
the key at a single location. This can be useful, for instance, in mitigating the risk of master key leakage, as
described in Section 1.1 (in the context of key derivation).

Key-homomorphic PRFs give a simple, one-round solution to this problem. For instance, for n-out-of-n
sharing, server i stores a random key si and the overall PRF key is s = s1 + · · ·+ sn. To evaluate Fs(x) the
client sends x to all servers and each server responds with yi = Fsi(x). The client combines the results to
obtain Fs(x) using the key-homomorphism property.

For t-out-of-n sharing, the client first homomorphically multiplies the responses from the key servers
by the appropriate Lagrange coefficients and then applies key homomorphism to add the results. This still
works with an almost key-homomorphic PRF as long as the PRF range is sufficiently larger than the error
term. The homomorphism error is eliminated by setting the output to the high-order bits of the computed
value Fs(x).
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Application II: Proxy re-encryption. Given a ciphertext encrypted under one symmetric key, we would
like to enable a proxy to transform the ciphertext to an encryption under a different symmetric key without
knowledge of either key. To this end, the proxy is provided with a short re-encryption token t. Consider a
ciphertext of the form (r,Fs(r)+m) where Fs is a key-homomorphic PRF. To re-encrypt from key s to key
s′, one sends the re-encryption token t =−s+ s′ to the proxy, who computes Ft(r) and adds it to Fs(r)+m
to obtain Fs+t(r)+m = Fs′(r)+m. This also works with an almost key-homomorphic PRF except that here
we pad each message m with a small number of zeros on the right to ensure that the small additive error
term does not affect the encrypted plaintext after several re-encryptions.

Constructions without random oracles. The Boneh et al. PRF [42] is indexed by two public matrices
A0,A1 ∈ {0,1}n×n, both sampled uniformly at random. The (secret) key for the PRF is a vector s ∈ Zn

q. The
PRF Fs : {0,1}k→ Zn

p is defined as

Fs(x) =

⌊
sT ·

k

∏
i=1

Axi

⌉
p

. (22)

The function Fs satisfies Fs1(x)+Fs2(x)−Fs1+s2(x) ∈ {−1,0,1}n. It is thus almost key homomorphic in the
same sense as the function Fs from (21).

The Banerjee–Peikert (BP) almost key-homomorphic PRF is a generalization of the Boneh et al. con-
struction. A basic tool underlying the construction is the bit decomposition operator, which allows one to
control the magnitude of individual entries in a matrix. Let `= blogqe, and for each a ∈ Zq, identify it with
its unique integer residue in {0, . . . ,q−1}. Define the bit decomposition function d : Zq→{0,1}` as

d(a) = (x0,x1, . . . ,x`−1),

where a = ∑
`−1
i=0 xi2i is the binary representation of a. Similarly, define the function D : Zn×m

q → {0,1}n`×m

by applying d entry-wise.
For a full (but not necessarily complete) binary tree T , let |T | denote the number of its leaves. If

|T | ≥ 1, let T.l, T.r denote the left and right subtrees of T , and for a string x ∈ {0,1}|T | write x = (xl,xr) for
xl ∈ {0,1}|T.l| and xr ∈ {0,1}|T.r|.

Public parameters: Moduli q� p, matrices A0,A1 ∈ Zn×n`
q , and a binary tree T

Function key: A random s ∈ Zn
q

Function evaluation: On input x ∈ {0,1}|T | define F = Fs : {0,1}|T |→ Zn
p as

Fs(x) =
⌊

sT ·AT (x)
⌉

p
,

where the function AT : {0,1}|T |→ Zn×n`
q is defined recursively as

AT (x) =

{
Ax, if |T |= 1
AT.l(xl) ·D(AT.r(xr)), otherwise

Size: poly(k,n)

Depth: O(s(T ))

Figure 10: The Banerjee–Peikert key-homomorphic PRF
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The BP function generalizes the function of Boneh et al. This can be seen by setting public parame-
ters Bb = D(Ab) and a left-spine tree T (as in Figure 11.(a)), which (after a minor adaptation) yields the
construction Fs(x) =

⌊
sT ·∏i Bxi

⌉
p from (22).

Sequentiality and expansion. In terms of efficiency, the cost of computing Fs(x) is dominated by the
evaluation of AT (x). Since linear operations over Zq can be computed by depth-one (unbounded fan-in)
arithmetic circuits, the circuit depth of the construction is proportional to the maximum nesting depth of
D(·) terms when one unwinds AT . This is the sequentiality, s(T ), which measures the right depth of the tree,
i.e., the maximum number of right edges over all root-to-leaf paths.

For security based on the hardness of the LWE problem, the public parameters A0,A1 and the secret
key s are sampled uniformly at random over Zq. The modulus q and underlying LWE error rate, and hence
also the dimension n needed to obtain a desired level of security, are determined by the maximum number
of terms of the form D(·) that are consecutively multiplied when one unwinds the recursive definition of
AT . This is the expansion e(T ), which measures the left depth of the tree, i.e., the maximum number of left
edges over all root-to-leaf paths.

Ax1 Ax2

D
Ax3

D
Ax4

D

Ax1 ·D(Ax2) ·D(Ax3) ·D(Ax4)

(a)

Ax1

Ax2

Ax3 Ax4

D

D

D

Ax1 ·D(Ax2 ·D(Ax3 ·D(Ax4)))

(c)

Ax1 Ax2

D

Ax3 Ax4

D

D

Ax1 ·D(Ax2) ·D(Ax3 ·D(Ax4))

(b)

Figure 11: Instantiations of the Banerjee–Peikert PRF. All functions are on four inputs with the following
sequentiality (s)/expansion (e) tradeoffs: (a) s = 1,e = 3, (b) s = e = 2, (c) s = 3,e = 1

Theorem 12 ([16]). If the LWE problem is (t,mn`,ε)-hard for some B-bounded error distribution then {Fs}
as defined in Figure 10 is an almost key-homomorphic (t ′,ε ′)-pseudorandom function family, where

t ′ = t−poly(n,m,k), and ε
′ = pB(n`)e(T )/q+poly(ε).

The use of a left-spine tree T (as in Figure 11 (a)) yields a maximally parallel instantiation: Its sequen-
tiality is s(T ) = 1. This instantiation, however, also has maximal expansion e(T ) = |T |−1. In Theorem 12,
the modulus q and error parameter 1/p have to grow exponentially with e(T ), so using a tree with large
expansion leads to a strong hardness assumption on LWE, and therefore large secret keys and public param-
eters. Other trees give different sequentiality/expansion tradeoffs (as in Figure 11 (b) and (c)).
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Efficiency. The cost of computing Fs(x) is dominated by the evaluation of AT (x), which can be done
publicly without any knowledge of the secret key s. This property can be very useful for the efficiency of
certain applications, such as the homomorphic evaluation of Fs given an encryption of s (see Section 1.1).

In addition, if AT (x) has been computed and all the intermediate matrices saved, then AT (x) can be
incrementally updated for an x′ that differs from x in just a single bit. As discussed in Sections 4.1 and 4.2,
this can significantly speed up successive evaluations of Fs on related inputs, e.g., in a counter-like mode
using a Gray code.

8.2 Puncturable PRFs

I cannot relate to emotional statements.
Which of the words here is incorrect?

LEONID LEVIN (1989)

A function family is puncturable if it can be evaluated at all but a single point x̊ and its value at this point is
secret [86, 45]. The GGM construction has this property, so a puncturable PRF can in principle be obtained
from any one-way function.

Sahai and Waters [129] show how to build public-key encryption from any puncturable function family
using an indistinguishability obfuscator. Their construction has yet to produce encryption schemes that are
as practical as available alternatives. Moreover, the existence of efficient and secure indistinguishability
obfuscators is currently a subject of debate. Despite these shortcomings, the methodology holds signifi-
cant conceptual appeal: If indistinguishability obfuscation is possible then public-key encryption can be
constructed generically from any one-way function.

Definition 21 (Puncturable function family). A puncturing of a function family Fs is a pair of deterministic
algorithms Gen and F̊ such that for all s, x̊, and x 6= x̊, F̊s̊(x) = Fs(x), where s̊ = Gen(s, x̊). The puncturing is
(t,ε)-secure if the distributions (s̊,Fs(x̊)) and (s̊,r) are (t,ε)-indistinguishable for every x̊.

Every puncturable function family is a PRF, but the opposite may not hold. A PRF distinguisher can
only make black-box queries to the function, while the adversary to a puncturable function family has a
circuit that evaluates the PRF everywhere except at the challenge point. It may be interesting to study under
which conditions the two notions can be formally separated. ©?

Proposition 19. If Fs has a (t,ε)-secure puncturing of size c then it is a (t−qc,q,qε)-PRF for every q.

Proof. Assume Fs is not a (t−qc,q,qε)-PRF. By a hybrid argument the following two games are (t−qc,ε)-
distinguishable for some i≤ q:

Answer the first q− i queries randomly and the other i according to Fs.

Answer the first q− i−1 queries randomly and the other i+1 according to Fs.

After fixing the first q− i−1 answers to maximize the distinguishing advantage we obtain that the games

F : Answer all i queries according to Fs

R: Answer the first query randomly and the other i−1 according to Fs

are also (t−qc,ε)-distinguishable. Let x̊ be the first query made by the distinguisher D of size at most t−qc
and s̊ = Gen(s, x̊). The following circuit A of size t then breaks the assumed security of puncturing: Given a
challenge (s̊,y), emulate D by answering the first query by y and every subsequent query x 6= x̊ by F̊s̊(x). By
the functionality of puncturing, A(s̊,Fs(x̊)) = DF and A(s̊,r) = DR, so the distributions (s̊,Fs(x̊)) and (s̊,r)
are (t,ε)-distinguishable.
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A puncturable PRF. The PRF Fs of Goldreich, Goldwasser, and Micali from Section 3.1 is puncturable.
The puncturing is specified recursively by

Gen(s, åx̊) =
(
å,G1−å(s),Gen(Gå(s), x̊)

)
,

F̊(å,y,g)(ax) =

{
Fy(x), if a 6= å
F̊g(x), if a = å,

where a, å ∈ {0,1} and x, x̊ ∈ {0,1}k−1. In the base case k = 0, Gen and Eval output an empty string. The
functionality requirement follows from the definition of the GGM pseudorandom function.

s

G0(s)

G0(G0(s)) G1(G0(s))

0
G1(G1(G0(s)))

1

0

G1(s)

Figure 12: The GGM function family punctured at x̊ = 010. The punctured key is s̊ =
(0,G1(s),1,G0(G0(s)),0,G1(G1(G0(s))))

Proposition 20. If G is a (t,ε)-PRG of size c then (Gen, F̊) is a (t−O(ck3),2kε)-secure puncturing of Fs.

Proof. We prove the proposition by induction on k. When k = 0, (s̊,Fs(λ )) and (s̊,r) are both distributed
like (λ ,s), so the two distributions are identical. Here λ is the empty string.

Now assume (t−O(c(k−1)3),2(k−1)ε)-security holds for input length k−1, namely the distributions

(Gen′(s, x̊),F ′s (x̊)) and (Gen′(s, x̊),r)

are (t−O(c(k−1)3),2(k−1)ε)-indistinguishable for all x̊ ∈ {0,1}k−1. Here, F ′s is the GGM construction
on input size k−1 and Gen′ is the corresponding punctured key-generation algorithm.

Claim 22. The distributions

(Gen(s, åx̊,Fs(åx̊)) =
(
å,G1−å(s),Gen′(Gå(s), x̊),F ′Gå(s)(x̊)

)
and

(Gen(s, åx̊),r) =
(
å,G1−å(s),Gen′(Gå(s), x̊),r

)
are (t−O(ck3),2kε)-indistinguishable for every å ∈ {0,1} and x̊ ∈ {0,1}k−1.

Proof. Since G is (t,ε)-pseudorandom and Gen′ can be computed using O(k2) calls to G, these two distri-
butions are (t−O(ck2),ε)-indistinguishable from(

å,r1,Gen′(r0, x̊),F ′r0
(x̊)
)

and
(
å,r1,Gen′(r0, x̊),r

)
, (23)

respectively, for random strings r0 and r1 of length n. The distributions (23) are (t−O(c(k−1)3),2(k−1)ε)-
indistinguishable by inductive assumption. The claim follows by the triangle inequality.

This completes the inductive step.
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From private-key to public-key encryption. Much cryptographic evidence suggests that public-key en-
cryption needs to be based on the hardness of “structured” problems such as discrete logarithms or finding
close vectors in lattices. In contrast, private-key encryption follows from the existence of one-way functions,
which are seemingly abundant. This divide is explained by theoretical results that rule out a fully-black-box
construction of key exchange from one-way functions [79, 77].

On the other hand, there is an appealing blueprint for upgrading encryption from private-key to public-
key: Publish an obfuscation of the encryption circuit as the public key. Assuming the encryption circuit can
be obfuscated in the “virtual black-box” (VBB) sense, the resulting public-key scheme can be proved secure.
Unfortunately, VBB obfuscation is impossible for all but a few rudimentary classes of functions [19].

Sahai and Waters propose applying this transformation to a variant of the encryption scheme (2) that was
analyzed in Section 2.4. They show that the resulting public-key scheme is secure under the assumption that
the obfuscator satisfies the seemingly weaker security notion of indistinguishability [19]. Garg et al. [59]
give a candidate construction of an indistinguishability obfuscator. However this and related candidates
were subsequently shown to be insecure. The feasibility of indistinguishability obfuscation is currently a
highly active research area. Whether such obfuscation is attainable in its most general form is still uncertain.

Circuits C0 and C1 are functionally equivalent if C0(x) =C1(x) for all x. Let C,C′ denote the classes of
circuits of sizes c and c′, respectively.

Definition 22 (Indistinguishability obfuscation [19]). We say that a probabilistic function iO: C→ C′ is
a (t,ε)-indistinguishability obfuscator if, for all C ∈ C, it holds that iO(C) and C are functionally equiv-
alent with probability 1 (functionality), and for all pairs of functionally equivalent circuits C0,C1 ∈ C the
distributions iO(C0) and iO(C1) are (t,ε)-indistinguishable (indistinguishability).

The construction of Sahai and Waters relies on the existence of a puncturable family Fs : {0,1}2n →
{0,1}`, a PRG G : {0,1}n → {0,1}2n, and an indistinguishability obfuscator iO. The starting point is the
following variant of the private-key encryption scheme (2):

Enc′s(m;r) = (G(r),Fs(G(r))⊕m), Dec′s(y,z) = Fs(y)⊕ z. (24)

The public-key encryption scheme of Sahai and Waters is shown in Figure 13. Its functionality follows from
the functionality of indistinguishability obfuscation and the private-key scheme (Enc′,Dec′).

Private key: A key s for the scheme (Enc′,Dec′)

Public key: The circuit pk = iO(Enc′s)

Encryption/decryption: For message m ∈ {0,1}` and randomness r ∈ {0,1}n

Encpk(m;r) = pk(m;r), Decs(y,z) = Dec′s(y,z).

Figure 13: The Sahai–Waters public-key encryption scheme

Proposition 21 ([129]). Suppose that {Fs} is a (t,ε)-puncturable family, that G is a (t,ε)-pseudorandom
generator, and that iO is a (t,ε)-indistinguishability obfuscator, all of size at most c. Then for every two
messages m0,m1 ∈ {0,1}`, the following games are (t−O(c),6ε +2 ·2−n)-indistinguishable:

E0: Sample pk,s,r and output (pk,Encpk(m0;r)).

E1: Sample pk,s,r and output (pk,Encpk(m1;r)).
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Proof. For b ∈ {0,1} consider the following sequence of games:

Eb: Sample random s,r and pk = iO(Enc′s). Output (pk,G(r),Fs(G(r))⊕mb).

Yb: Sample random s, ẙ and pk = iO(Enc′s). Output (pk, ẙ,Fs(ẙ)⊕mb).

Hb: Sample random s, ẙ 6∈ Im(G) and pk = iO(Enc′s). Output (pk, ẙ,Fs(ẙ)⊕mb).

F̊b: Sample random s, ẙ 6∈ Im(G) and p̊k = iO(E̊ncs̊). Output (p̊k, ẙ,Fs(ẙ)⊕mb).

R: Sample random s, ẙ 6∈ Im(G),r and let p̊k be as in H̊b. Output (p̊k, ẙ,r).

In the game F̊b, we set s̊ = Gen(s, ẙ), and E̊ncs̊(m;r) = (G(r), F̊s̊(G(r))⊕m).

Claim 23. Eb and Yb are (t− c,ε)-indistinguishable.

Proof. The claim follows from the pseudorandomness of G and from the fact that iO is of size at most c.

Claim 24. Yb and Hb are (∞,2−n)-indistinguishable.

Proof. The distribution Hb is Yb conditioned on ẙ not landing in the image of G. By a union bound, the
probability of this event is at most

Pr[ẙ ∈ Im(G)]≤∑
r

Pr[ẙ = G(r)]≤ 2n ·2−2n = 2−n.

Claim 25. Hb and F̊b are (t,ε)-indistinguishable.

Proof. Fix s and ẙ to maximize the distinguishing advantage. After fixing, the distributions reduce to
iO(Enc′s) and iO(E̊ncs̊) (plus some fixed bits). Owing to the assumption ẙ 6∈ Im(G), the circuits Enc′s and
E̊ncs̊ are functionally equivalent, so indistinguishability follows from the security of iO.

Claim 26. F̊b and R are (t−O(c),ε)-indistinguishable.

Proof. Fix ẙ to maximize the distinguishing advantage. By the security of puncturing, (s̊,Fs(ẙ)) and (s̊,r)
are (t,ε)-indistinguishable. Then the distributions

(iO(E̊ncs̊), ẙ,Fs(ẙ)⊕mb) and (iO(E̊ncs̊), ẙ,r⊕mb)

are (t−O(c),ε)-indistinguishable. These are identical to F̊b and R, respectively.

The proposition follows by applying Proposition 1 to the sequence E0,Y0,H0, F̊0,R, F̊1,H1,Y1,E1.

The proof generalizes to the stronger adaptive security notion in which the challenge messages m0 and
m1 are chosen after observing the public key.

60



Constrained PRFs and witness PRFs. Constrained PRFs extend puncturable PRFs in that they allow
for more general constraints than mere puncturing [43, 86, 45]. A constrained PRF can be evaluated at any
input x that satisfies some constraint circuit C(x), but the constrained key reveals no information about the
PRF values at points that do not satisfy the constraint to a computationally bounded adversary.

Brakerski and Vaikutanatan [46] construct an LWE-based function of constraint PRFs. Boneh and Wa-
ters [43] consider a more general definition in which security holds even if the adversary is given multiple
constrained keys derived from different circuits. They give candidate constructions for restricted circuit
classes whose security is based on strong hardness assumptions related to multilinear maps. ©?

An even more intriguing notion is that of a witness PRF [140], which can be seen as a nondeterministic
analogue of a constrained PRF. Here the constrained key allows for evaluation of Fs(x), but only if the
evaluator is also given a witness w that satisfies the constraint circuit C(x,w). If no such w exists, the
adversary obtains no information about the value Fs(x). Witness PRFs are sufficient to realize some of
the most interesting applications of indistinguishability obfuscation. What makes them intriguing is the
possibility of constructing them from more standard hardness assumptions than the ones currently used to
construct obfuscation. ©?

Open Questions

In the established physical sciences . . . a rich intellectual structure
has been uncovered that reveals at any time a wide range of un-
solved problems or puzzles. Solutions to these provide increased
understanding of the field and further enrich the structure. As long
as successful problem solving continues, progress is close to being
guaranteed. The possibility of almost routine progress of this nature
appears to be a fundamental aspect of science. Even if it is not the
most celebrated aspect, it may be the most characteristic one.

LESLIE VALIANT (Circuits of the Mind, 1999)
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