Electronic Colloquium on Computational Complexity, Report No. 114 (2017)

Proper Learning of k-term DNF Formulas
from Satisfying Assignments

Maciej Liskiewicz, Matthias Lutter, and Riidiger Reischuk

Institut fiir Theoretische Informatik, Universitiat zu Liibeck, Germany
{liskiewi,lutter,reischuk}@tcs.uni-luebeck.de

Abstract. In certain applications there may only be positive samples available to
to learn concepts of a class of interest, and this has to be done properly, i.e. the
hypothesis space has to coincide with the concept class, and without false positives,
i.e. the hypothesis always has be a subset of the real concept (one-sided error). For
the well studied class of k-term DNF formulas it has been known that learning is
difficult. Unless RP = NP, it is not feasible to learn k-term DNF formulas properly
in a distribution-free sense even if both positive and negative samples are available
and even if false positives are allowed.

This paper constructs an efficient algorithm that for arbitrary fixed k, if samples are
drawn from distributions like uniform or g-bounded ones, properly learns the class
of k-term DNFs without false positives from positive samples alone with arbitrarily
small relative error.

Keywords: algorithmic learning, learning from positive samples, g-bounded distri-
butions, k-term DNF formulas

1 Introduction

Boolean formula in DNF is a common way for humans to describe a concept over
binary attributes. In particular, using DNF seems to be more natural than express-
ing a concept in CNF and, in contrast to CNF representation, DNF allows simple
generation of attribute values of belonging objects. Since humans learn quickly such
concepts — usually from positive examples only — one could have expected that they
are also algorithmically learnable.

A systematic study on learnability of concepts described by DNF formulas was
initiated by Valiant in his seminal paper [29] formalizing the Probably Approxi-
mately Correct (PAC) model of learning. The question whether DNF formulas can
be learned efficiently in the PAC and related models, has been then the subject of a
considerable amount of research, to name just a few [22, 23, 28, 21, 11, 13, 20, 26,
30, 1, 3, 16, 27, 9, 5, 7]. However, despite intensive research it remains an important
open problem whether this class can be learned in polynomial time — even under the
uniform distribution. The fastest known algorithm so far for learning (polynomial
size) DNF formulas in the standard distribution-free PAC model is due to Klivans
and Servedio [16]. It runs in time 20('") for formulas with n variables. For the case
that samples are drawn uniformly from {0,1}" Verbeurgt [30] has shown that DNF
can be learned in time roughly n@osm)

On the other hand, negative results have shown that in a distribution-free PAC
model it is not feasible to learn even k-term DNF formulas properly (the hypothesis

ISSN 1433-8092

space has to coincide with the concept class) for every fixed k > 2 unless RP = NP.
Learning k-term DNF concepts for £ > 4 remains infeasible even if allowing as
hypothesis f(k)-term DNF for any function f(k) < (2k — 3) [23].

In this paper we investigate proper learning without false positives for DNF
formulas from positive samples. This setting has originally been studied by Valiant
in [29] posing the following problem: “The question as to whether monotone DNF
expressions can be learned from [positive] EXAMPLES alone is open. A positive
answer would be especially significant.” In that paper an efficient learner has been
constructed for 1-term DNFs, i.e. for monomials, even for the nonmonotone case.
Valiant’s underlying model is the standard (e,d)-PAC model with the following
additional constraints:

(a) the algorithm has to learn a target formula ¢(z) given only satisfying assign-
ments x that are produced with probability D(z)/D(¢~1(1)), where D is an
(unknown) distribution on the set {0,1}" of all possible assignments,

(b) the hypothesis h generated belongs to the same class as ¢ (proper learnability),

(¢) h does not have false positives, i.e. h=1(1) C ¢ ~1(1),

(d) h achieves small error probability for false negatives, i.e. with probability at
least § it holds D(h~1(0) N~ 1(1)) <e.

Notice the importance of requiring both the learning from positive samples alone
and the proper learnability. For example, in some applications, negative samples are
difficult or impossible to collect while positive samples may be obtained easily. Sim-
ilarly, in machine learning settings, getting natural counter-examples in the training
phase may be problematic. Proper learning plays a significant role, especially in the
context of DNFs. It has been well known that k-term DNF formulas can be learned
efficiently from positive samples if k-CNF formulas as hypotheses are allowed. How-
ever, such a k-CNF representation may be useless in specific applications. Also
learning with one-sided error is a important property required in certain cases. For
example, the combination of proper learning from positive samples without false
positives shows up in steganography (see [19] or [10] for more discussion).

In [22] Natarajan gives a complete characterization of concept classes that are
(polynomial time) learnable in the model defined above. His result implies that even
monotone DNFs, bounded k-DNFs, and k-term DNFs, for k > 2, are not efficiently
proper PAC-learnable without false positives from positive samples. One property
of the learning model that makes it very difficult is the requirement that the learner
has to perform well for every probability distribution D. Thus, an adversary may
pick a different probability distribution for the samples for every concept which
assigns high probabilities to the most “difficult” assignments.

If one wants to overcome these impossibility results and restricts the set of
possible distributions an extreme case would be to fix a single distribution, naturally
the uniform one on {0,1}", as it has been done in several subsequent papers. Here,
for an arbitrary value ¢ > 1 we will consider the quite large family of ¢-bounded
distributions D where the ratio of the probabilities is bounded by ¢, that means
max, D(z) < ¢ - min, D(z).

Flammini, Marchetti-Spaccamela, and Kucera have proven that 2-term DNFs
are proper learnable in polynomial time from satisfying assignments for ¢g-bounded

distributions [12]. Recently De, Diakonikolas, and Servedio [7] have shown that DNF
formulas have efficient learning algorithms using uniformly distributed positive sam-
ples, but instead of a k-term DNF hypothesis the learner outputs a sampler for
¢~ 1(1) only that may have two-sided errors.

There are also positive results for monotone DNF (MDNF) formulas, i.e. those
without negated variables, for the uniform distribution. By results of Sakai and
Maruoka [24] we know that proper learning is possible for log-term MDNF formulas
from positive assignments alone. Moreover, the class of k-term MDNFs can even be
learned for g-bounded distributions [25, 17]. However, the nonmonotone case has
remained open.

This paper addresses this problem and considers a harder requirement than
condition (d) for the error probability of false negatives, which in particular for k-
term DNFs makes more sense. Considering the absolute error probability D(h~1(0)N
@~ 1(1)) is the most commonly used definition in the literature on learning from
positive samples, also in the setting allowing two-sided error where one has also to
take into account D(h=(1) N¢~1(0)) (see e.g. [22, 8, 9]). Instead, we will estimate
the relative error probability

(d) D(h=1(0) Ne™H(1)) / D(p~(1)),

that is with respect to satisfying assignments only. This criterion has already been
used in learning from positive samples, for example in [28]. Moreover, this definition
essentially corresponds to the total variation distance used in [7] to measure the
distance between the uniform distribution ,-1(;) over the satisfying assignments
for ¢ and the distribution S of the sampler learned defined as drv(S,U,-1(1)) =
%er{o’l}n |S(x) — Uy-1(1)(z)]. As noted in [7], this measure is more appropriate
than the standard one. For example, in uniform-distribution learning the constant
0 function is an acceptable hypothesis for every function ¢ with [¢~1(1)] < € 2" In
contrast, the condition (d’) gives a reasonable error measure also for small [o~1(1)].
For a detailed discussion of error measures for DNF see the next section.

1.1 Owur Contribution

The main result of this paper says that for the family of ¢g-bounded distributions
for every fixed k there exists an efficient learner for k-term DNF formulas with
properties (a)—(d').

The major challenge already occurs for the uniform distribution since false posi-
tives cannot be tolerated at all. Our solution works in two phases taking two separate
batches of samples. In the first phase k-term DNF formulas are learned with very
high accuracy and without false positives using k-CNF representations.

In the second phase, we construct a set of maximal monomials that should cover
most of the area of this k-CNF formula. The number of candidates for these mono-
mials can be extremely large. Therefore, we design a mechanism to select a suitable
subset. This subset may still contain many more than k£ monomials. Finally, we
apply tests with a second sequence of positive samples to select a subset of size at
most k as final hypothesis.

Comparing our learner with the result in [7] for learning a k-term DNF ¢ from
uniformly distributed satisfying assignments, note that their algorithm learns a sam-
pler for a distribution S with drv (S,U,-1(1)) < €, while our method returns a k-term
DNF formula h, with

D(h™H0)ne™'(1)) / D¢~ (1)) = Prlh(z) # ¢(z) | p(z) =1] <,

both with probability > 1 —§ (recall h~1(1) C ¢~1(1)). Such a representation h can
always be used as an efficient sampler to generate the uniform distribution Uj,-1(;)
(see [14]). In addition, the total variation distance between this distribution and the
uniform distribution U,-1(1) satisfies:

drv(Up-1(1y,Up-1(1)) = Pracy, [h(z) # ¢(2) | p(z) = 1],

where U,, denotes the uniform distribution on {0,1}". Thus, our algorithm is more
general than the method of [7] and it is not clear whether it can be extended to
g-bounded distributions, however, it is faster.

As a negative result, we show that it is impossible to learn unrestricted DNF
formulas without false positives. For ¢g-bounded distributions learning n-term DNF
formulas requires an exponential number of positive samples regardless of the hy-
pothesis space. An overview of the current state of knowledge concerning DNF
learning is given in Table 1.

l concept class [distribution-free [uniform / g-bounded ‘
1-term DNF (monomials) yes [29] yes [29]
2-term DNF no [22] yes [12]
k-term DNF no (22, 23| yes (Theorem 1)
log-term DNF no [23] open
unrestricted DNF no [23] no (Theorem 2)

Table 1: Positive and negative results for proper learning of DNF formulas from
positive samples over several distributions in polynomial time. The negative results
of [23] (unless RP = NP) for k-term, with k£ > 3, log-term, and unrestricted DNFs
hold even for learning from positive and negative samples.

1.2 Related Work

Learning of DNF formulas is too vast for a detailed survey here, so we focus on
the most related results for settings with samples drown from specific distributions
including the most prominent research area — the uniform-distribution DNF learning.

If the number of terms of the DNFs may grow arbitrarily, due to Verbeurgt
[30] we know that n-term DNF formulas over the uniform distribution (both with
positive and negative samples) can be learned using a polynomial number of samples
in quasi-polynomial time n®1°8™) However, the hypothesis space has to be extended
to (n - t)-term DNF with ¢ depending on the sample complexity.

For monotone DNFs faster algorithms are known. Sakai and Maruoka [24] gave
a polynomial-time algorithm for log-term MDNFs under uniform distribution and

Bshouty and Tamon [6] extended these result to g-bounded distributions and for
learning formulas including O(log?(n)/loglog(n))-term MDNFs. Servedio [27] has
improved these results showing that k-term MDNF formulas are learnable to accu-
racy € in time polynomial in (k - log(nk/e))°8*/910e(1/€) and n. In particular, this
algorithm can learn 0(2\/@)—term MDNFs in polynomial time to any constant
accuracy.

In [18] Linial, Mansour, and Nisan have introduced a powerful Fourier transform-
based learning technique to learn under the uniform distribution. Particularly, it
allows learning depth d circuits in time roughly nlos" . This technique has been
used intensively in subsequent years to prove important results on learning of DNFs
under the uniform distribution. In [20] Mansour, based on Fourier analysis, gave
an O(n'°&1°8") time bounded learning algorithm for DNFs under the uniform dis-
tribution in the PAC model in which the learner can also ask membership queries.
Finally, Jackson [13] has designed a polynomial time learning algorithm for DNFs
in this model. In contrast, Angluin and Kharitonov [3] have shown that for the
distribution-free setting membership queries do not help to PAC-learn DNF.

The rest of this paper is organized as follows. The next section gives the basic
facts about monomials needed later and a formal definition of the learning model.
The learning algorithm will be presented in section 3. Its analysis follows in the next
sections. Section 7 gives the lower bound. We conclude with a question whether
efficient learning of k-term DNF formulas can be extended to the case of small
growing k.

2 Preliminaries and Definitions

Let us start with some basic definitions. In the following, n will always denote
the number of Boolean variables xi,...,z, and X = {0,1}" the set of possible
assignments to these variables and D be a distribution over X. D is called g-bounded
for ¢ > 1if

max{D(z)} < ¢ -min{D(z)} .

Let D, denote the family of all g-bounded distributions. Note that for ¢ = 1 we get
the uniform distribution on X.

For a Boolean formula ¢ let sat(y) := ¢~ 1(1) = {x € X | ¢(x) = 1} denote the
set of assignments that satisfy ¢, which will also be called the support of . When
learning from positive assignments without false positives the ¢-bounded condition
can even be relaxed. The ratio q only has to hold for z € ¢~1(1) since the probability
on ¢~ 1(0) is totally irrelevant. Considering X as an n-dimensional cube the support
of a monomial M over x1, ..., x, will always be a subcube. We may assume that no
monomial contains a literal twice or becomes trivial by containing a variable and
its complement. Two monomials M and M’ are considered identical if sat(M) =
sat(M’) — that means they have the same set of literals. A monomial of length ¢,
that means consisting of ¢ variables, has a support of size 27,

For a k-term DNF ¢ consisting of monomials M, ..., My of length ¢1,... /0
the size of ¢~ !(1) can be most 2" 3" 27%. If the distribution D on X is ¢-bounded

then D(M; (1)) < ¢ 27%. Omitting all M; '(1) in a hypothesis h for ¢ for all
M; with D(M; '(1)) < €/2k can generate an absolute error of at most ¢/2. Thus,
in order to satisfy condition (d) it suffices to learn only those monomials M; in ¢
with ¢; < log(2 g k/e). However, for bounded k the number of such monomials
is polynomially bounded which significantly simplifies the learning problem. In the
extreme case, where every ¢; is large the DNF formula identical 0 already achieves
small absolute error at most €. Thus, to exclude this trivial solution and to get a
much better precision it makes sense to consider the relative error as defined in (d’).

Definition 1. A monomial M is shorter (with respect to its length) than a mono-
mial M' — also called larger (with respect to its support) — if M consists of less
literals than M’ — which by excluding trivial monomials is equivalent to | sat(M)| >
| sat(M')|.

On the other hand, a proper submonomial of M is obtained by removing some
literals from M, thus enlarging the support.

Note that a proper submonomial of M is always shorter and larger, but a shorter
monomial does not have to be a submonomial. The following notion plays important
role in our main algorithm.

Definition 2. Let 1 be a Boolean formula and x € sat(y). A monomial M is
(¢, z)-maximal if x € sat(M) C sat(vy)) and there is no proper submonomial of M
fulfilling this condition.

Let S(1), x) denote the set of all (¢, x)-mazimal monomials. For an integer ¢ > 0
we call a subset 8" C S(¢,x) a (¢, z,c)-set if |S'| = min{c, |S(¢,x)|}, that means
S’ contains ¢ many mazimal monomials or all if their number is less than c.

A k-term DNF formula ¢ is a disjunction of at most & monomials. ¢ is called
non-redundant if it does not contain a monomial M such that removing M from ¢
does not change sat(y), in particular there are no identical or trivial monomials.
Throughout the whole paper we consider only non-redundant DNF formulas. The
support of a k-term DNF is the union of at most k& subcubes.

A k-CNF formula 1 is given by a conjunction of clauses each containing at most k
literals. We may assume that no clause contains a literal more than once or a variable
and its negation (a trivial clause). Also no clause should be empty which would
make 1 unsatisfiable. Similarly to DNF formulas, a CNF formula fulfilling these
properties is called non-redundant and we will consider only such CNF formulas.
The support of a clause with k literals is the complement of a subcube of dimension
n — k. This implies that the support of a k-CNF formula v is the intersection of
such complementary subcubes. It may become arbitrarily complex. This geometric
intuition will be helpful for the following investigations.

In this paper we consider the family of concept classes

{sat(p) | ¢ is a k-term DNF formula over X'}

and proper learning of these classes from positive samples as discussed in the intro-
duction, i.e. the learner seeing only satisfying assignments has to output a k-term

DNF formula that is close to ¢ and has no false positives (condition (a)—(d’)). For-
mally, we make the following

Definition 3. A learner learns a concept class C from positive samples without
false positives with respect to g-bounded distributions if given the parameter q for the
distributions and error parameters €, 6, for every pair (C, D) of a concept C' € C and
a distribution D € Dy, getting positive samples x for C that are chosen independently
with probability D(x)/ 3>, cc D(y) its output hypothesis h satisfies h C C, and with
probability at least 1 — 6, D(C'\ h) / D(C) <.

A concept class C can be learned efficiently for bounded distributions if a learner
exists with running time polynomial in (1/£,1/d,n,q).

3 The Main Algorithm

Throughout this paper ¢ will always denote a k-term DNF formula representing the
concept to be learned.

In [12], Flammini et al. presented a method for proper learning such concepts
from positive and negative samples: In a first phase candidate monomials are selected
based on positive samples such that every monomial that is part of ¢ and is satisfied
by enough of these positive samples becomes a member of this set of candidates.
But their number in general is larger than k. In the second phase, combinations
of at most k candidate monomials are tested against a set of positive and negative
samples. If such a combination fulfills a specific error bound then it becomes the
output. It has been shown that with high probability this yields an approximately
correct hypothesis.

In the following we describe an alternative approach that can handle the lack
of negative samples. Getting only positive samples our learner learns properly, i.e.
computes a k-term DNF formula as a hypothesis, and such a hypothesis does not
include false positives, but is still close to the real concept.

We start by constructing a k-CNF formula that represents a first batch of positive
samples. Then the main technical difficulty is to construct appropriate monomials
from this CNF formula. This strategy in pseudo code is listed as Algorithm 1.

It has been shown how to learn a k-term DNF formula ¢ without false positives
by using as hypothesis space k-CNF formulas [23, 29, 4]. In this case ((2n)F*! —
Ind)/e positive samples are needed. The learner starts with the conjunction of all
possible non-tautological clauses of length at most k, of which there are at most
(2n)**1. Then clauses not satisfied by a positive sample are deleted. This strategy
is used in step 4 of Learn-k-Term-DNF. Fig. 1 illustrates such a hypothesis 1 for a
target formula ¢ consisting of 3 monomials.

Our first innovation constructs candidate monomials for ¢ by extracting mono-
mials from 1. We choose monomials M with sat(M) C sat(y) as large as possible.
Generally, for k > 3 it is N P-hard to find a single satisfying assignment for a k-CNF
formula. But here we already know a number of satisfying assignments, namely the
positive samples used to create 1. For this purpose, we define a criterion for poten-
tial candidate monomials generated from 1 and a sample = € sat(¢): M has to be
(¢, z) maximal. An illustration is given in Fig. 1 (Right).

Algorithm 1: Learn-k-Term-DNF(e, d, k, ¢, EX)
Input: parameters ¢, 9, k, ¢
sampling oracle £ X for a target k-term DNF ¢
Output: k-term DNF hypothesis ¢’
T e Lzt

1

2 Ny +— &7 ((2n)F1 +1n(2/6));

3 draw NN} samples E = (eq,...,en,) using EX;

4 learn k-CNF formula v using samples in F;

5 M+ 0;

6 for j +— 1 to N; do

7 generate a (v, e, 2F — 1)-set M

8 M+— MU ./\/lj;

9 end
10 reduce M to the (2% — 1)-shortest monomials;
11 Ny «— 48 e 2 In(2K°+2/6);
12 draw Ny samples S = (s1,...,sn,) using EX;
13 foreach subset W of M of size at most k do
14 ew = Vyew M;
15 if @ misclassifies less than 3¢ Ny /4 samples of S

then return ¢’ := ¢y ;

16 end
17 return ¢’ = /o M for some W C M of size k;

In step 7 of Learn-k-Term-DNF for every positive sample e; used to learn the k-
CNF formula ¢ has to select several (1, e;)-maximal monomials, but at most 2% — 1
many. While it is not difficult to provide an algorithm which finds a single (1, e;)-
maximal monomial, the task to construct a (1, e;, 2¥ — 1)-set efficiently seems to be
highly nontrivial. In Section 4 we present a strategy for solving this problem and
provide its analysis.

After finishing the for-loop over all positive samples e, ez, ... (steps 6-9), the
learner might get a very large set of maximal monomials M = (J; M;, where M;
denotes the (1, e, 2F — 1)-set for a sample ej. Thus, a method is needed to reduce
their number. To obtain a smaller number of candidates to continue with we try
to prune the set M without losing too many satisfying assignments. To this aim
every monomial of the unknown k-term DNF formula ¢ that has a large support
should become a candidate monomial. On the other hand, monomials with a small
support might be removed without losing much accuracy. This selection performed
in step 10 reduces the number of maximal monomials in M to 2F — 1.

Finally, to construct the resulting k-term DNF formula ¢’, the learner chooses a
subset of k monomials in M such that the formula ¢’ consisting of these monomials
misclassifies a small fraction of fresh samples. This learner achieves the following
properties.

Fig.1: A running example for £ = 3. The grey region illustrates the set X of all
possible assignments.

Left: The support of a target 3-term DNF ¢ is indicated by dashed red rectangles.
The support of the 3-CNF hypothesis 1 that approximates ¢ is surrounded by the
solid black line. On the right a scattered region (like a staircase) is generated that
requires many rectangles to be covered.

Right: The blue rectangle denotes a (¢, x)-maximal monomial that is bounded to
the right by the scattered region.

Theorem 1. For every constant k, Learn-k-Term-DNF learns k-term DNF formu-
las without false positives over q-bounded distributions with sample size bounded by

o(e,6,m,k,q) == e q k2% ((2n)FF! +1n(2/6)) + 4827 In (212/5)
and time complezity polynomial with respect to (1/e,1/8,n,q).

The procedure for generating maximal monomials from a CNF formula will
be discussed in Section 4. In Section 5 we will show that it suffices to select only
2% —1 maximal monomials. Finally, in Section 6 the correctness proof and complexity
analysis of the whole algorithm will be presented to complete the proof of Theorem 1.

4 Generating Maximal Monomials for a CNF Formula

Let 9 be a non-redundant k-CNF formula over variables z1, ..., z, with a satisfying
assignment z and ¢ a natural number. First, let us consider Algorithm 2 that finds
a single (v, z)-maximal monomial. It will be used as a subroutine in Algorithm 3 to
compute a (¢, z, c)-set.

SingleMaxMonomial starts by removing all literals from 1 that are not satisfied
by x. Then each variable appears only in one form — either positive or negative.
Beginning with the constant monomial M = 1, we gradually add literals to M that
are left in the truncated version of ¢ until sat(M) C sat(¢)) becomes true.

Lemma 1. For fized k and an arbitrary k-CNF formula 1 and x € sat(vy) the
algorithm SingleMaxMonomial (3, x) outputs a (¢, z)-mazimal monomial.

Algorithm 2: SingleMaxMonomial (¢, x)

Input: £-CNF formula 1); assignment z € sat(1))

Output: some (1), z)-maximal monomial M

remove every literal from 1 that is not satisfied by x;

M +—1;

while true do

while there exists a clause in v consisting of a single literal ¢ do
M +— (M N0,

remove all clauses from v that contain /;

end

if 1 is empty then return M;
select an arbitrary literal £ from ;
10 remove £ from every clause in ;

© 0w N O s W

11 end

Its run time is bounded by a polynomial py(n) depending only on the number of
variables in .

Moreover, for every (¢, x)-maximal monomial M one can select a sequence of literals
in line 9 such that the output becomes M.

Proof. The number of clauses in 1 is bounded by (2n)*. At most n different literals
are left after performing line 1, and each iteration of the external while-loop removes
at least one further literal. Thus, the total number of operations is bounded by
(’)(nl”l).

If SingleMaxMonomial (¢, x) returns M then we have to show that it is a (¢, z)-
maximal monomial. After performing line 1 the algorithm composes M only from
literals that are satisfied by z. Thus, = € sat(M).

A literal ¢ is added to M (line 5) only if ¢ is a single literal left in a clause K.
We will show that this guarantees the maximality of the resulting monomial M. If ¢
were removed from M then the assignment T obtained from x by negating ¢ and the
values of all variables that do not appear in M does not satisfy the initial formula
1. This holds since all the other literals initially being in K have been removed —
either in the first step because not being satisfied by x or in line 10. The later ones
are complemented in x because they do not show up in M, and thus cannot satisfy
K. Thus, there is no proper submonomial M’ of M with sat(M') C sat(v)).

The algorithm terminates when v is empty. This means that every clause of the
original CNF formula is satisfied by the literals in M. Thus, sat(M) C sat(1)).

Finally, we prove that for every (¢, x)-maximal monomial M there exists a run
of the algorithm such that its output M in line 8 equals M. A maximal monomial
M can only contain literals that appear in 1, otherwise it could be shortened and
would not be maximal. The condition z € sat(M) implies all literals in M must be
satisfied by x, thus none will be removed in line 1.

Fact 1. Every clause K of i has at least one literal £ that belongs to M.

10

~

Proof. A similar argument as above shows that otherwise sat(M) C sat () would
be violated. O

Fact 2. For every literal £ of M there exists at least one clause K = VLV V)
i 1 such no other literal ¢; in K belongs to M, too.

Proof. Otherwise M would not be a maximal monomial because one could remove
¢ from M. O

Now consider the following run of SingleMaxMonomial:
in line 9 always select as £ a literal that does not appear in M.

Since every clause has at least one literal of M, removing literals not in M will end
up in nonempty clauses that have only literals belonging to M. By Fact 2, every
literal £ of M has a clause where it is the unique one of M. Thus, such a clause will
force £ to be selected for the output monomial M. Finally, after all literals of M have
been selected, all clauses have become empty and been removed. This is exactly the
point where the algorithm terminates with M being identical to M. This completes
the proof of Lemma, 1. O

A k-CNF formula 1) may have many maximal monomials for a given satisfying
assignment x. To find a subset of size ¢ one could apply SingleMaxMonomial itera-
tively performing a depth-first search over its choices of literals in line 9. However,
this strategy runs into the problem that different choices may lead to the same
maximal monomial. Thus, the search time until enough distinct monomials have
been found could be extremely large. Algorithm 3 solves this problem by pruning
redundant branches at an early stage. It follows only those branches that actually
shrink the set of remaining maximal monomials.

Proposition 1. For a given k-CNF formula 1, a satisfying assignment x € sat(v)),
and a positive integer ¢, MaxMonomials (¢, z, c) returns a (¢, x,c)-set. Its run time
is bounded by O (pk(n) - n°).

Thus, to find the monomials in step 7 of Learn-k-Term-DNF we call MaxMonomials
with parameters (1, e;, 2% — 1).

In the rest of this section we will prove Proposition 1. Let ¢, x and ¢ be as
specified above. Lines 6-12 of MaxMonomials correspond to the deterministic part
of SingleMaxMonomial. Lines 13-23 implement a pruned depth-first search over the
nondeterministic decisions used to remove a literal. In lines 13-17 the algorithm
computes a subset £ of removable literals that are potentially useful for further
examination. The global variable Mgopal is used to cancel the search as soon as
enough distinct monomials have been found. The branches of the search are ex-
amined by recursive calls in line 20. The last parameter of the function DFS, the
sequence removed__literals, is used to facilitate the analysis of the algorithm and
plays no other role. An implementation of MaxMonomials can omit this parameter.

At the leaf level when the recursion stops only a single monomial is returned.
Thus, eventually the algorithm has either visited the complete recursion tree or

11

Algorithm 3: MaxMonomials(v,z,c)

«w N

© W N o w;

10
11
12

13
14
15
16
17

18
19
20
21
22
23

Input: k-CNF formula 1); satisfying assignment = € sat(v);

requested number of monomials ¢ > 0

Output: a (¢, z, ¢)-set M

remove every literal from 1 that is not satisfied by x;
Mglobal A (Z);

return DFS (¢, 1, ());

Function DFS (v, M, removed_literals)

// termination test

while there exists a clause in v consisting of a single literal ¢ do
M «+— (M N0,

remove all clauses from 1 that contain ¢

end

f 1 is empty then

Mgiobal $— Magiobal U {M};

return {M}

end

o

// recursion preprocessing

M +— O;

select a shortest clause K of ¥ and an arbitrary literal ¢ of K;

let v’ be obtained from v by removing ¢ from each clause of 1) ;

call SingleMaxMonomial (¢,) to get a (¢, z)-maximal monomial M’ ;
L +— all literals in M’ A £ ;

// recursion

foreach / € £ do
let " be obtained from % by removing ¢ from each clause of 1);
M +— MUDFS(¢', M, (removed__literals, £));
if |Mgiopal > ¢ then return M ;

end

return M;

the cardinality of Mgjohar achieves the value ¢ and the procedure stops. Hence,
MaxMonomials will never output more than ¢ monomials. An example of the recur-
sion tree is depicted in Fig. 2. It remains to show that our pruning strategy does

not exclude maximal monomials.

Assume MaxMonomials is called with ¢ larger than the total number of maximal
monomials. Consider a fixed, but arbitrary run p on this instance. In this case the
run will inspect the complete recursion tree. The sequence r of removed__literals that
is the third argument of a recursive call of DFS(¢, M, (r)) will be used to uniquely
identify the other arguments. Thus, ¢, := ¢ and M, := M, and the whole triple

12

call DFS((z1 V 22 V 24) A (23 V 24),1,()) in line 3
select £ = x3 in line 14

compute maximal monomial M' = x4 in line 16
L = {x3,24} in line 17

remove 3 in line 19 \%\f 4 in line 19

call DFS((z1 V @2 V x4) A @4, 1, (x3)) in line 20 call DFS((z1 V 2) A x3,1, (x4)) in line 20
Return monomial x4 compute M = x3, ¢ = x1 V x2 in while-loop at line 6

remove TlAmlmp/ \wjn m

call DFS(z1, x3, (x4, 2)) in line 20
Return monomial x1z3

call DFS(x2, 3, (x4, 1)) in line 20
Return monomial zox3

Fig.2: A recursion tree of MaxMonomials (v, x,¢) on input ¥ = (x1 V 22 V 24) A
(Ta V o3 V x4), © = 1111, and ¢ = 7. This tree corresponds to the choice of the
literal ¢ = x3 in line 14 and computing the monomial M’ = x4 in line 16 in the
initial call of DFS in line 3. In this run the algorithm finds all (4, z)-maximal
monomials: x4, zox3, and x1x3. Note that the last parameter of each call of DFS,
sequence removed__literals, includes all edge literals which lay on the path from the
root to the corresponding call.

Up, M, (r) is denoted by P(r). In the initial call DFS(¢,1,()) the sequence r of
removed__literals is empty and this call is abbreviated by DFS(P()). For the set of
literals £ = {¢1,...,¢;} computed in line 17, DFS(P()) initiates recursive calls of
DFS with parameters P(¢1), ..., P({;). Note that the formula ¢’ in line 19 is obtained
from 1 by removing ¢;, and the second parameter M is the result of the deterministic
part of Algorithm 2 on input (¢,).

Furthermore, if r defines a sequence of literals that corresponds to a call
DFS(P(r)) and if £ = {¢},..., ¢}, } are computed during DFS(P(r)) in line 17, then
DFS(P(r)) initiates the recursive calls DFS(P(r,¢})),...,DFS(P(r,{,)) parameter-
ized by the sequences (r, £;). Accordingly, every P(r,(.) is determined by the choice
of ¢/ in line 18. We define the notions child, ancestor and leaf of a call DFS(P(r)) in
an obvious way.

Let DFS(P(r)) denote the set of monomials that is returned by the function call.
Particularly, DFS(P()) is the set of monomials computed by MaxMonomials. For a
sequence r of literals let A11Mon (1) denote the set of all (1, x)-maximal monomials
that do not contain any literal of 7.

Lemma 2. For all parameters P(r) of the run p holds DFS(P(r)) = Al1Mon (r).

Proof. If MaxMonomials examined the entire tree without pruning the property
would hold due to Lemma 1. Thus, we have to show that it is sufficient to fol-
low the literals in £, which are the literals of M’ A . The monomial M’ A M does
not contain ¢, so the path to M’ is not cut off at this stage. Since M’ is a maxi-
mal monomial, for every other maximal monomial M € Al1Mon (r) there must be a
literal of M’ that is not contained in M. Thus, for every maximal monomial, there
exists a path of removing-decisions that is not cut off at the current stage. The
arguments above can be applied to every level of the recursion tree. Thus, every
element of A11Mon (r) is treated by DFS(P(r)). 0

13

Hence, MaxMonomials(v, z, ¢) with ¢ large enough finds every (1, x)-maximal mono-
mial.

Lemma 3. For all parameters P(rf) of p it holds DFS(P(r¢)) C DFS(P(r)).

Proof. A child P(rf) of P(r) = (', M, (r)) fulfills £ € L, where L, denotes the
value assigned to £ in line 17 during DFS(P(r)). There are two types of literals in
L. The first one are literals of the maximal monomial M </7~) computed in line 16.
Removing such a literal ¢ implies DFS(P(r¢)) C DFS(P(r)), because M<’T,> A M is in
Al1lMon (r), but not in A11Mon (r¢).

The other type is a literal £ selected from a shortest clause K, in line 14. Note
that 7/’ in line 15 does not contain any literal of r. We construct a maximal monomial
containing ¢, but none of the literals in r. Let us run SingleMaxMonomial (¢,)
with the following rule.

Whenever an arbitrary literal has to be removed and K, is still in 1), remove
a literal of Ky from ¢’ that is not £.

Because K is a shortest clause, no other clause will contain exactly one literal
before K,y does. Thus, K., will not be removed from " until it contains exactly
one literal. The last literal of K,y will be £. Hence £ must be added to the maximal
monomial. When we combine the result with M, we get a maximal monomial con-
taining ¢, but no literal from 7, implying A11Mon (/) C Al1Mon (7). O

Note that the depth of the recursion tree is bounded by min{n,|A11Mon ({)|},
the minimum of n and cardinality of all (¢, x)-maximal monomials. Otherwise there
must be a node that violates Lemma 3.

Lemma 4. For all parameters P(r) of p such that P(r) is the root of a subtree of
depth h it holds [DFS(P(r))| > h.

Proof. Otherwise there must be a node that violates Lemma 3. O

Lemma 5. If the whole recursion tree has depth at least h then after n" recursive

calls of DFS at least one root of a subtree with depth exactly h has been visited.

Proof. We construct a run where the root of such a subtree is visited as late as
possible.

The number of branches per node is bounded by n. At most n — 1 complete
subtrees of height h — 2 are added as children to the root and one larger subtree
preventing the root and every node in the n — 1 complete subtrees from being a root
of a subtree of height h. The last child of the root can have at most n — 2 complete
subtrees of height h — 2 as children and one larger subtree, and so on.

The maximal height of the whole tree is bounded by n. So, we can repeat this
procedure at most n — h times before the root of a subtree of height h must occur.
Every subtree of height i — 2 has less than n"~2 nodes. Hence, the total number of
nodes that have been visited before the final subtree is reached must be less than
nh. O

14

These properties imply

Lemma 6. For every positive integer ¢, MaxMonomials(vy,z,c) returns a (¢,x,c)-
set after at most O(n®) recursive calls.

5 Bounding the Subset Size for Maximal Monomials

In this section we show that with high probability for every monomial M of the
original k-term DNF formula, Learn-k-Term-DNF draws at least one sample x in
line 3 such that every (v, , 2% — 1)-set covers almost all satisfying assignments of M.
Figure 3 illustrates the idea for the case of the 3-term DNF target formula ¢ and the
3-CNF hypothesis 9 presented in Fig. 1. For the sample x on the left that satisfies
the monomial of ¢ marked in red, there are seven (1, z)-maximal monomials — two
of them are drawn in green and blue — that cover only a small portion of satisfying
assignments of the red monomial. However, on the right has only two maximal
monomials — one being identical to the red monomial itself.

Fig.3: The 3-term DNF formula ¢ and the 3-CNF hypothesis ¢ of Fig. 1 with
positive samples x and corresponding maximal monomials.

In the following let ¢ = My V ---V My be a k-term DNF formula, where
we may assume that the monomials are ordered by increasing length, and ¢; =
e q k1 270Gk a5 defined in Algorithm 1.

Definition 4. Let g denote the function g(p,q, k) := q 2¥| sat(y)|.
For v > 0 we call a monomial M; of ¢ v-large if | sat(M;)| > v g(e, q, k).

Proposition 2. With probability at least 1 —§/2, for every (£12%F)-large monomial
M; of ¢ holds: Learn-k-Term-DNF in line 3 draws at least one sample e € sat(M;)
such that

a) the number of (1, €)-mazimal monomials is at most 28 — 1, and

b) there exists a (v, e)-maximal monomial M] with sat(M;) C sat(M]).

To prove this claim let us first consider the case that the k-CNF formula v is
equivalent to the unknown k-term DNF formula ¢. In general as illustrated above,

15

sat () may cover only a part of the satisfying region of a monomial in a scattered
way and there could exist many (¢, z)-maximal monomials.

Definition 5. For a non-empty subset I = {i1,...,ip} C {1,...,k} of indices of
the monomials of ¢, a (p,x)-maximal monomial M is called (p,x,I)-maximal if
sat(M) C sat(M; V---V M;,) and after removing any M;; from the right side
this inclusion fails.

Lemma 7. For every ¢, I and z, a (p,x,I)-mazimal monomial My, is unique. If
y € sat(M;, V-- -\/Mip) also possesses a mazimal monomial My, then My, = My ;.

Proof. Suppose My, # M. This implies the existence of at least one literal ¢ such
that ¢ occurs in exactly one of the two monomials. Without loss of generality, let ¢
occur in My .

My, is a (o, x)-maximal monomial, so there exists at least one i € I such that
the monomial M; in ¢ contains £. Further, there must exist some j € I such that
M; in ¢ does not contain ¢, because otherwise M;, would have to contain £. So,
there is a non-empty strict subset J C I such that, for every j € I, M; does not
contain ¢, if and only if j € J.

Let s € sat(My,) \ sat(¢) be an assignment. If ¢ occurred in any M; with
i € I, My, would not be (¢,z,I)-maximal, because i could be removed from I.
From sat(My,) C sat(M;,,...,M;,) it follows that there must exist some j € J
such that s € sat(M;). If we flip the bit belonging to £ in s, we get s;. Notice that
s; € sat(Mj), because M; contains neither £ nor /.

Such a monomial M;, with j € J, that is satisfied by s and s; can be found for
any assignment s € sat(My,)\sat(¢). Thus, any assignment that satisfies M7, also
satisfies some M; with j € J. So one has sat(My) C sat(Mj;, V M, V-V Mj),
with ji,ja, ..., Mj, € J C I, and M, would not be (p,y, I)-maximal. This is a
contradiction. It follows that My, = My . O

This implies that the number of different (¢, z, I')-maximal monomials over all
r € sat(y) and nonempty I C {1,...,k} is bounded by 2¥ — 1. Next we will derive
a bound on the number of satisfying assignments for those maximal monomials that
intersect potentially scattered regions of .

Lemma 8. Ford € IN let u(d) be the number of monomials M; with | sat(M;)| > 2¢
and g = My V -~V My the conjunction of these large monomials (remember the
monomials are ordered by length). For the remaining small monomials My(g)41, - - -,
My, and a Boolean formula xq with sat(xq4) C sat(Myqy41V -V My) define the
following:

1. g == @4V Xd

2. MU .= (M| M is a (¢4, 2)-maz. monom. for some x € sat(xq) \ sat(eq)},
3. & = Viremia M.

Then, |sat(&)] < 29+k=1

Proof. If sat(xq) C sat(pg) then | sat(&,)| = 0 since M4 = (. Otherwise, consider
an assignment = € sat(xq)\sat(¢q). The formula pg(x) with sat(eq(z)) 2 sat(eq)

16

is derived from ¢, by removing every literal that supports x. Thereby, x does not
become a satisfying assignment of ¢4(z). Further, let M* denote the monomial with
sat(M?) = {z} and define ¢4(x) := pq(x) V M*. To continue the proof we make
the following claims.

Fact 3. For any assignment z € sat(&y), there exists an assignment x € sat(xq) \
sat(pq), such that every (¢Yq(x), x)-mazximal monomial is satisfied by z.

Let &, be a disjunction that for every assignment x € sat(xq) \ sat(pq) contains an
arbitrary (14(z), z)-maximal monomial Mg(x). From Fact 3 we get the inequality

| sat(8a)| < [sat(£y)]-

Fact 4. Every (1q(z), z)-mazimal monomial My(z) in €} has at most 249 satisfy-
ing assignments.

From these facts we can conclude the upper bound stated in Lemma 8 as follows:

| sat(a)| < [sat(&y)] < > | sat(Ma(2))| < |sat(xa)| 2"

z€sat(xaq)\sat(pq)
<24 (k — u(d)) 294 < dtk-1 since u(d) <k .

It remains to prove Fact 3 and Fact 4.

Proof (Fact 8). Consider an arbitrary assignment z € sat(&g).

— Case 1: z € sat(pg).
Because of z € sat(yq), with z = z every (¢4(z),x)-maximal monomial is
satisfied by z.

— Case 2: z € sat(pg).
&4 contains a monomial M with z € sat(M). Furthermore, there must be at
least one assignment in (sat(M)Nsat(xq)) \ sat(¢q) due to the construction of
&4. From these assignments, we choose an assignment x with minimal Hamming
distance to z.
Let y be an arbitrary assignment that differs from x at exactly one position
towards z. Note that y € sat(M)Nsat(pq). Let M; be a monomial in ¢, that is
satisfied by y. During the construction of ¢4(x), all literals that are satisfied by
x are removed from M;. Thus, the equivalent for M; in ¢4(x), M;(x), consists
only of one literal ¢(z,y) with x ¢ sat({(x,y)) and y € sat({(z,y)). Hence, no
(¥q(x), z)-maximal monomial contains ¢(x,y).
This argument can be repeated for any choice of y and any £(z,y) that satisfies
x, but not z. Since every (14(x), z)-maximal monomial is satisfied by z, it is also
satisfied by z. O

Proof (Fact 4). Let My(x) be a (14(x), z)-maximal monomial of &. It holds {z} =
sat(M?*) C sat(My(z)). Thus, M* only differs from Mg(x) in some additional
literals, £1, ..., £,. This implies | sat(Mq(z))| = 2" [sat(M®)[= 2".

Let M®* denote the monomial that is formed by replacing £ by 7 in M*. We
consider a literal £y, with s € {1,...,r}. It holds sat(M®%) ¢ sat(M?®). From

17

sat(M®h) C sat(My(z)) C sat(pq(x)VM?®), it follows that there exists at least one
assignment satisfying M’ and oq(x). Hence, there must be at least one monomial
M, in pq(x), with t € {1,...,u(d)}, that is satisfied by the same assignment. Thus,
M, cannot contain any negated literal from M.

Now assume that r > u(d). Then there must be at least one monomial M; in
wq(x), with t € {1,...,u(d)}, that shares a satisfying assignment with a monomial
M=t as well as with M%%' where s’ € {1,...,s—1,s+1,...,r}. Thus, M; cannot
contain any negated literal from M?®% or M®% especially neither ¢y nor £,. It
follows that sat(M?) C sat(M;). By sat(M;) C sat(pq(x)), we get sat(M?*) C
sat(q(z)). The construction of & implies x € sat(M?*) \ sat(pq(z)). This is a
contradiction. So, r < u(d) and thereby | sat(My(z))| < 24D | sat(M?)| = 21U,

O

This completes the proof of Lemma 8. O

Now let us estimate how well a k-CNF formula v can reconstruct the original mono-
mials of the unknown k-term DNF ¢ to bound the size of the scattered regions xg.

Lemma 9. Lety = KiA---AK), be a k-CNF formula with clauses K; and sat (1) C
sat(y), D be a g-bounded distribution and vy > 0.
If D(sat(p)\sat(¢))/D(sat(p)) < v then sat(M;) C sat(v) for every vy-large M;.

Proof. Choose a monomial M; with |sat(M;)| > v 2* ¢ |sat(p)| and consider
x € (sat(M;) \ sat(e))). There must be a clause K in 1, such that « ¢ sat(Kj).
This clause K; cannot contain any literal from M;. So, K is not satisfied by at
least 27%| sat(M;)| assignments that satisfy M;. Even in the case that all these
assignments are g-times more likely than any other assignment satisfying ¢ according
to D, one has D(sat(p A %)) / D(sat(y)) > D(sat(M; A) / D(sat(p)) >
27% | sat(M;)| / (q | sat(p)]) > 7. Consequently, the assignment x cannot exist and
the claim follows. O

Thus, if a CNF formula ¢ approximates a k-term DNF formula ¢ quite well without
false positives then every monomial of ¢ with large support is completely covered by
1. Only monomials with small support may give rise to errors in the approximation.

Lemma 10. Let ¢; equal ¢ without M;. Then | sat(M;) \ sat(p;)| > |sat(M;)]-
9—k+1

Proof. Consider a monomial M; # M; from ¢. There must be at least one literal
¢; from M; that is not contained in M;. So, sat(M; A £;) N sat(M;) = 0 and
|sat(M;) \ sat(M;)| > |sat(M; A ¢;)| > |sat(M;)|- 271, Successively, we obtain
| sat(M;) \ sat(yp;)| > |sat(M;)] - 27F+1, 0

Now we are ready to prove the main result of this section.

Proof (Proposition 2). Let M; be an (g12%F)-large monomial and ¢; as defined above.
The algorithm starts by learning a k-CNF formula . As already mentioned in Sect. 3

18

this can be done without false positives and with relative error bounds (e1,9/2)
using N; positive samples. Assume that the algorithm has learned such a 1 with
D(sat(p) \ sat(¢)) / D(sat(y)) < e1, which happens with probability at least
1-6/2.

Consider the construction in Lemma 8 for d = [log(e1 g(v,q,k))] and xq4 as
defined above. Then ¥y = ¢4V xq = ¢ and &y is the disjunction of all (¢, x)-
maximal monomials for elements = € sat(y) that are not covered by the monomials
of ¢ with support at least 2¢. Using Lemma 8 and Lemma 10 we can conclude

|sat(&)] <2771 < e g(p, g, k) 2°
<ok | sat(M;)| < |sat(M;) \ sat(p;)] .

Thus, we obtain

Claim 1: sat(M;) \ (sat(y;) Usat(&y)) # 0, that means every (£122%)-large mono-
mial has a satisfying assignment that is not covered by any other monomial of ¢
nor by any (p,z)-maximal monomial for elements in sat(y) that are not covered
by monomials of support at least 2¢.

Next we show

Claim 2: The sample sequence F given to Learn-k-Term-DNF at the beginning
contains an element e € sat(M;) \ (sat(y;) Usat(&y)).

If none of the e; of E belongs to sat(M;) \ sat(y;) the DNF formula ¢; would
be satisfied by every sample in E. The formula ¥ has to be learned without false
positives. Since the learner cannot distinguish between the concepts ¢ and ¢; he
must also learn ¢; without false positives, thus (sat(M;) \ sat(y;)) Nsat(y) = 0.
Thus, we get sat(M;) € sat(¢)) which contradicts Lemma 9. Hence, there exists
some e € E that satisfies M;, but no other M of ¢.

If e does not satisfy £; we are done.

Otherwise, fix an assignment = € sat(M;) \ (sat(p;) U sat(£y)) and assume that
every e; € E N (sat(M;) \ sat(p;)) satisfies £, thus there exists a monomial M (e;)
in &g that is satisfied by e;. For each such monomial M (e;) there must exist a lit-
eral £; in M(e;) that is set to true in ej, but to false in z. Further, for every such
¢; the formula ¢ must contain at least one monomial M (¢;) that includes ¢; since
otherwise no (p, z)-maximal monomial could contain ¢;. If M (¢;) is not satisfied by
e; we may throw away some literals of this monomial to achieve this property, but
keep ;.

We repeat this process for each sample of E belonging to sat(M;) \ sat(y;).
Finally, by removing M; from ¢ and taking all other monomials M potentially
shortened we get a k-term DNF ¢’ that is compatible to E. Thus a learner cannot
distinguish between ¢ and ¢’. But ¢’ is not satisfied by z, therefore z cannot be
in sat(¢), which again contradicts Lemma 9. Thus, there must be a sample e € F
that satisfies M;, but not &;.

Claim 3: The number of (¢, e)-maximal monomials is bounded by 2% — 1.

Consider the monomials M (e) that are (¢, e)-maximal. Since e ¢ sat(&;), the con-

19

struction of &; yields sat(M(e)) N (sat(xq) \ sat(pg)) = 0, because otherwise
x € sat(M(e)) N (sat(xq) \ sat(pq)) would cause a (v, x)-maximal monomial
M(z) = M(e) in & and therefore e € sat({y). Therefore, sat(M(e)) C sat(pq)
and M (e) is (¢q, €)-maximal, because by Lemma 9, sat(y4) C sat(¢)). The number
of (¢4, €)-maximal monomials is bounded by 2¥ — 1 due to Lemma 7.

Finally, the fact sat(M;) C sat(t)) implies that at least one of the (1), e)-maximal
monomials M/ covers M; completely. O

6 The Complexity and Correctness of Learn-k-Term-DNF

First we show that it is sufficient to consider only the (2¥ — 1) shortest monomials
as done in line 10 of the algorithm.

Lemma 11. With probability at least 1 —3/2, for every (£12%F)-large monomial M;
at the beginning of the second phase of Learn-k-Term-DNF a monomial M| with
sat(M]) D sat(M;) belongs to M.

Proof. By Proposition 2, such a M/ is added to M in line 7. It remains to show that
M/ is not removed later, which could only happen in line 10.

To prove that M is among the 2¥ — 1 shortest monomials in M note that
| sat(M;)| > | sat(&,)| implies that | sat(M;)] is bigger than the number of satisfying
assignments of any monomial in ;. Thus, only (g4, €)-maximal monomials can be
shorter than M/. By Lemma 7, the number of these monomials is bounded by 2k 1.
Hence, M/ is one of the 2¥ — 1 shortest monomials that will be kept in M. O

Now we are ready to conclude that Learn-k-Term-DNF satisfies the properties
stated in Theorem 1.

Proof (Theorem 1). The output hypothesis of the learner is a disjunction of maximal
monomials. The support of every maximal monomial is a subset of the support of
the k-CNF formula 9. Since sat(¢) C sat(yp) it follows that the output hypothesis
has no false positives.

Suppose that for every every (£122%)-large monomial M; of ¢ the learner has
added a monomial M/ with sat(M/) D sat(M;) to M. In the final stage as possible
hypotheses the set Haq of all up to k-fold disjunctions of monomials of M are used.
Its size can be bounded by

k k

2" —1

Hul < z(Z.)<zk2 |
=0

Assume that for every (122F)-large monomial M; of ¢ a covering monomial M is
part of the output and let H be a hypothesis that includes all these M/. Then less
than & monomials from ¢ with less than 1 22¥ g(p, p, k) satisfying assignments each
are not covered. Hence, the error of H is bounded by

g
ke 2% g(p,p, k) = 5 Isat(e)] .

20

Let us estimate the probability that such a good H will not be given as output.

Case 1: H is not satisfied by enough samples to be accepted as a hypothesis.
The probability that this happens can be bounded by

. Ng(:;:f) (‘7\;2) (1_;>i<;>N2—i |

Using Proposition 2.4 of Angluin and Valiant [2] (for § = ¢/(4 —2¢)), we can bound
p1 by the following inequation:

eNy(1-5)) _ SBm2 (1)
o (‘ 24~ 2)?) - (‘ (1))

- (2k§+2> @

0<e<1implies3/(2—¢)>1and 0< 6 <1 gives p; < /4.

IA

yai

Case 2: The learner chooses a bad hypothesis H' € H 4 that does not satisfy the
error bound ¢ before reaching a good H. It may happen that the learner terminates
before reaching H.

The probability that H' is satisfied by enough samples to be accepted as a hypothesis

is
No
NQ - No—i
< _ 1 2—1
S <¢><1 oy Nt
=N (1 %)

Similarly, (for 8 = ¢/(4 — 4¢)), one can bound py by the following inequation:
e2No(1 —¢) 28 1n 2 +2(1—5)
xp|—————5" | = exp| —
PN T34 - 40)2 P 48(1 — ¢)2

§ \1=
_ <2k2+2) .

0<e<1implies1/(1—¢)>1and0 < § < 1 gives py < & 2-**+2) Thus, if
H € H g, then the probability that the learner outputs a hypothesis that violates
the error bound ¢ is

IN

b2

0 o
Perror < p1+ ‘HM’ p2 < Z + 2k2 o 27(k2+2) = 5 .
According to Lemma 11, the probability for H € Ha, is at least (1 — g) So, with
probability at least (1 — ¢§), the hypothesis output by Learn-k-Term-DNF satisfies
the error bound e.
It is left to show that for constant k the algorithm runs in time polynomial in

1/e, 1/, n, and g. The number of samples o(e, d,n, k, q) fulfills this bound. The
k-CNF formula can be learned in polynomial time with respect to all parameters

21

except k. The algorithm computes at most 25~ maximal monomials for each sample.
By Proposition 1 this can be done in polynomial time. Hence the time needed for
computing candidate monomials is polynomial, too. The size of the hypothesis space
for the sequential test is [Haq| < 2% The test itself can be performed in polynomial
time. O

We note that our learning algorithm can be made applicable even if the parameter
q is unknown (see [12]).

7 Infeasibility for Unrestricted DNF Formulas

Verbeurgt [30] has developed a method for learning poly(n)-term DNF over the
uniform distribution from a polynomial number of positive and negative samples
with a quasi-polynomial running time. In contrast, we can show:

Theorem 2. For every hypothesis space H learning n-term DNF formulas without
false positives requires an exponential number of positive samples. This even holds
when fizing the set of possible distributions to a single arbitrary q-bounded distribu-
tion for error parameter e < 1/q .

Proof. For every nontrivial error parameters (e,) and the uniform distribution
the number of positive samples needed to learn (monotone) clauses without false
positives is £2(2"/4), independent of the hypothesis space [15]. The class n-term
DNF contains all clauses, thus the number of samples needed to learn n-term DNF
without false positives cannot be smaller. For g-bounded distributions, in the best
case the error € may decrease by a factor ¢ at most. O

8 Conclusions

We have presented a polynomial-time algorithm for properly learning k-term DNF
formulas from positive samples alone for every fixed k. On the contrary, if £ may grow
linearly with the number of variables DNF formulas cannot be learned efficiently
from positive samples without false positives due to information theoretical reasons.
For log-term DNF formulas our learner needs a quasi-polynomial number of samples.
Can this bound be improved?

References

1. Aizenstein, H., Pitt, L.: On the learnability of disjunctive normal form formulas.
Machine Learning 19(3), 183-208 (1995)

2. Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits
and matchings. J. Comput. Syst. Sci. 18(2), 155-193 (1979)

3. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput.
System Sci. 50(2), 336-355 (1995)

4. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and
the Vapnik—Chervonenkis dimension. J. ACM 36(4), 929-965 (1989)

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Bshouty, N.H., Mossel, E., O’Donnell, R., Servedio, R.A.: Learning DNF from

random walks. J. Comput. System Sci. 71(3), 250-265 (2005)

. Bshouty, N.H., Tamon, C.: On the Fourier spectrum of monotone functions. J.

ACM 43(4), 747-770 (1996)
De, A., Diakonikolas, I., Servedio, R.A.: Learning from satisfying assignments.
In: Proc. 26th SODA. pp. 478-497. STAM (2014)

. Denis, F.: PAC learning from positive statistical queries. In: Proc. 9th ALT. pp.

112-126. Springer (1998)

. Denis, F., Gilleron, R., Letouzey, F.: Learning from positive and unlabeled ex-

amples. Theoretical Computer Science 348(1), 70-83 (2005)

Ernst, M., Liskiewicz, M., Reischuk, R.: Algorithmic learning for steganography:
proper learning of k-term DNF formulas from positive samples. In: Proc. 26th
ISAAC. pp. 151-162. Springer (2015)

Flammini, M.: On the learnability of monotone ku-DNF formulae under product
distributions. Inform. Process. Lett. 52(3), 167-173 (1994)

Flammini, M., Marchetti-Spaccamela, A., Kucera, L.: Learning DNF formulae
under classes of probability distributions. In: Proc. 5th COLT. pp. 85-92. ACM
(1992)

Jackson, J.C.: An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. J. Comput. System Sci. 55(3), 414-440
(1997)

Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combina-
torial structures from a uniform distribution. Theor. Comput. Sc. 43, 169188
(1986)

Kearns, M., Li, M., Valiant, L.: Learning Boolean formulas. J. ACM 41(6),
12981328 (1994)

Klivans, A.R., Servedio, R.: Learning DNF in time 20(?) 7, Comput. System
Sci. 68(2), 303-318 (2004)

Kucera, L., Marchetti-Spaccamela, A., Protasi, M.: On learning monotone DNF
formulae under uniform distributions. Inform. and Comput. 110(1), 84-95 (1994)
Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform,
and learnability. J. ACM 40(3), 607-620 (1993)

Liskiewicz, M., Reischuk, R., Wolfel, U.: Grey-box steganography. Theor. Com-
put. Sc. 505, 27-41 (2013)

Mansour, Y.: An O(n!°¢!°8™) learning algorithm for DNF under the uniform
distribution. J. Comput. System Sci. 50(3), 543-550 (1995)

Natarajan, B.K.: Probably approximate learning of sets and functions. STAM J.
Comput. 20(2), 328-351 (1991)

Natarajan, B.K.: On learning boolean functions. In: Proc. 19th STOC. pp. 296—
304. ACM (1987)

Pitt, L., Valiant, L.G.: Computational limitations on learning from examples.
J. ACM 35(4), 965-984 (1988)

Sakai, Y., Maruoka, A.: Learning monotone log-term DNF formulas under the
uniform distribution. Theory of Comput. Systems 33(1), 17-33 (2000)

Sakai, Y., Maruoka, A.: Learning k-term monotone Boolean formulae. In: Proc.
3rd ALT, LNCS, vol. 743, pp. 195-207. Springer (1993)

23

26.

27.

28.

29.
30.

Sakai, Y., Takimoto, E., Maruoka, A.: Proper learning algorithm for functions
of k terms under smooth distributions. Inform. and Comput. 152(2), 188-204
(1999)

Servedio, R.A.: On learning monotone DNF under product distributions. Inform.
and Comput. 193(1), 57-74 (2004)

Shvaytser, H.: A necessary condition for learning from positive examples. Ma-
chine Learning 5(1), 101-113 (1990)

Valiant, L.G.: A theory of the learnable. CACM 27(11), 1134-1142 (1984)
Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-
polynomial time. In: Proc. 3rd COLT. pp. 314-326. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1990)

24

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il

