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Hardness of learning noisy halfspaces using polynomial thidsho
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Abstract

We prove the hardness of weakly learning halfspaces in thsepce of adversarial noise using
polynomial threshold functions (PTFs). In particular, weye that for any constantsc Z+ ande > 0,
it is NP-hard to decide: given a set £ 1, 1}-labeled points irR™ whether (YES Case) there exists a
halfspace that classifi€s — ¢)-fraction of the points correctly, or (NO Case) any degid®FF classifies
at most(1/2 + ¢)-fraction of the points correctly. This strengthens to alhstant degrees the previous
NP-hardness of learning using degzBTFs shown by Diakonikolas et al. (2011). The latter resat h
remained the only progress over the works of Feldman et @0gRand Guruswami et al. (2006) ruling
out weakly proper learning adversarially noisy halfspaces

1 Introduction

Given a distributiorD over {—1, 1}-labeled points irR"™, the accuracy of a classifier functigh: R" —
{-1,1} is the probability thatf (z) = ¢ for a random point-label paitz, ) sampled froniD. A concept
classC is said to bdearnableby hypothesis clas# if there is an efficient procedure which, given access
to samples from any distributidP® consistent with som¢ < C, generates with high probability a classifier
h € H of accuracy approaching that @gffor D. WhenH can be taken a8 itself, the latter is said to be
properlylearnable. The focus of this work is one of the simplest and most well-stedigcept classes: the
halfspacewhich mapsr € R” to sign((v,z) — ¢) for somev € R™ andc € R. The study of halfspaces
goes back several decades to the development of various algorithnmt#iaehintelligence and machine
learning such as the Perceptrétos62 MP69 and SVM [CV95]. Since then, halfspace-based classification
has found applications in many other areas, such as computer Vi$io8Q] and data-mininglRRK04].

It is known that a halfspace can be properly learnt by using linearanoging along with a polynomial
number of samples to compute a separating hyperpBBEelYW89. In noisy data however, it is not always
possible to find a hyperplane separating the differently labeled pointsedhih the presence of (adversar-
ial) noise, i.e. theagnosticsetting, proper learning of a halfspace to optimal accuracy with no distritaitio
assumptions was shown to be NP-hard by Johnson and Prep#ath [Subsequent results showed the
hardness of approximating the accuracy of properly learning a noifgphae to constant factor%% —€
by Amaldi and Kann AK98], % — ¢ by Ben-David et al. BDELO03], and % — ¢ by Bshouty and Bur-
roughs BB06]. These results were considerably strengthened independently byd&eld&opalan, Khot,
and PonnuswamiAGKP09 and by Guruswami and Raghavend@H09* who proved hardness of even
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weaklyproper learning a noisy halfspace, i.e. to an accuracy beyond thematideshold ofl /2. This
implies an optimal2 — ¢)-inapproximability in terms of the learning accuracy. Building upon these svork
Feldman, Guruswami, Raghavendra, and WGIRW13 showed that the same hardness holds for learning
noisy monomials (OR functions over the boolean hypercube) using hadfspa

At this point, it is natural to ask whether the halfspace learning probleminsrhard if the classifier
is allowed to be from a larger class of functions, ir@n-properlearning. In particular, consider the class
of degreed polynomial threshold functionTF) which are given by mapping € R™ to signP(z))
where P is a degreet polynomial. They generalize halfspaces a.kimear threshold functiongLTFs)
which are degreé-PTFs and are very common hypotheses in machine learning becauseetioeypart by
kernelized models (e.g., perceptrons, SVM’s, kernel k-means, @G, etc.) when instantiated with the
polynomial kernel. From a complexity viewpoint, PTFs were studied by Didktas, O’Donnell, Servedio,
and Wu POSW11] who showed the hardness of weakly proper learning a noisy degFEE- for any
constantl € Z*, assuming Khot's Unique Games Conjecture (UGKHJ0Z. On the other hand, proving
the hardness of weakly learning noisy halfspaces using delfdé-s has turned out to be quite challenging.
Indeed, the only such result is by Diakonikolas et BIOSW1] who showed the corresponding hardness
of learning using a degre2PTF. With no further progress till now, the situation remained unsatisfactory

In this work, we significantly advance our understanding by proving #ndriess of weakly learning an
e-noisy halfspace by a degreePTFfor any constant! € Z*. Our main result is formally stated as follows.

Theorem 1.1. (This work) For any constantg > 0, andd € Z™*, it is NP-hard to decide whether a given
set of{ —1, 1}-labeled points iR™ satisfies:

YES Case.There exists a halfspace that correctly classifies- §)-fraction of the points, or
NO Case.Any degreei PTF classifies at mogt /2 + ¢)-fraction of the points correctly.
TheNO case can be strengthened to rule out any function of constantly marngedegiTFs.

To place our results in context, we note that algorithmic results for learniisy halfspaces are known
under assumptions on the distribution of the noise or the pointset. In thenpeesrandom classification
noise Blum, Frieze, Kannan, and VempalBHKV98] gave an efficient learning algorithm approaching
optimal accuracy, which was improved by Coh€&vh97 who showed that in this case the halfspace can
in fact be properly learnt. For certain well behaved distributions, Kaléiyakds, Mansour, and Serve-
dio [KKMSO05] showed that halfspaces can be learnt even in the presence ofadaknoise. Subsequent
works by Klivans, Long, and Servedi&[S09], and Awasthi, Balcan, and Long\BL17] improved the
noise tolerance and introduced new algorithmic techniques. Building upon aniely Dan13 recently
obtained a PTAS for minimizing the hypothesis error with respect to the unigstribution over a sphere.
Several of these learning algorithms use halfspaces and low degreddBimple combinations thereof) as
their hypotheses, and one could conceivably apply their techniques settiveg without any distributional
assumptions. Our work provides evidence to the contrary.

1.1 Previous related work

Hypothesis-independent intractability results for learning for halfsparce also known, but they make
average-case or cryptographic hardness assumptions which sesicecably stronger thanNP. Specif-
ically, for exactly learning noisy halfspaces, such results have bemmnsi the works of Feldman et
al. [FGKPO09, Kalai et al. KKMS05], Kothari and Klivans KK14], and Daniely and Shalev-Shwar2$14.

In a recent work, Danielyl)an1§ rules out weakly learning noisy halfspaces assuming the intractability
of strongly refuting randonk’-XOR formulas. On the other hand, Applebaum, Barak, and X4d#q08]



have shown that hypothesis-independent hardness results unkarsgtaomplexity assumptions would im-
ply a major leap in our current understanding of complexity theory andrdileely to be obtained for the
time being. Therefore, any study (such as ours) of the standard catgglesoretic hardness of learning
halfspaces would probably need to constrain the hypothesis.

A natural generalization of the learning halfspaces problem is that afifgpmtersections of two or
more halfspaces. Observe that unlike the single halfspace, propartnigdhe intersection of two halfs-
paces without noise does not in general admit a separating hypergiseé folution. Indeed, this problem
was shown to be NP-hard by Blum and Riva3RPJ, later strengthened by Alekhnovich, Braverman, Feld-
man, Klivans, and PitassABF"08] to rule out intersections of constantly many halfspaces as hypotheses.
The corresponding hardness of even weak learning was establighédtbband Saket{S11], while Kli-
vans and SherstolKE09 proved under a cryptographic hardness assumption the intractabilitaroiing
the intersection of° halfspaces. Algorithms for learning intersections of constantly many lzalésphave
been given in the works of Blum and KannaBi97] and Vempala Yem97 for the uniform distribution
over the unit ball, Klivans, O’'Donnell, and ServedikdS04 for the uniform distribution over the boolean
hypercube, and by Arriaga and Vempa#/p6] and Klivans and Servedid[S0§ for instances with good
margin, i.e. the points being well separated from the hyperplanes.

As was the case for learning a single noisy halfspace, there is no kn®amaiktiness for learning in-
tersections of two halfspaces using (intersections of) degré@Fs. This cannot, however, be said of
the finite field analog of learning halfspaces, i.e. the problem of learnirgy parities overF[2]. While
Hastad's Has01 seminal work itself rules out weakly proper learning a noisy parity def, later work
of Gopalan, Khot, and SakeGKS1(Q showed the hardness of learning amoisy parity by a degreé-
PTF to within (1 — 1/2¢ + £)-accuracy — which, however, is not optimal fér> 1. Shortly thereafter,
Khot [Kho09 observed that Viola’s [Vio09] pseudo-random generator fooling degteBTFs can be com-
bined with coding-theoretic inapproximability results to yield optimal lower bouodsall constant de-
greesd. From the algorithmic perspective, one can learr-@oisy parity over the uniform distribution in
20(n/logn)_time as shown by Feldman et aGKP0g and Blum et al. BKWO03]. For general distributions,
Kalai, Mansour, and Verbin{MV08] gave a non-propez®("/os")_time algorithm achieving an accuracy
close to optimal.

Several of the inapproximability results mentioned above, e.g. thos&R0Y, [GKS1(, [KS11],
[FGRW13 and [DOSW11], follow the probabilistically checkable proof (PCP) teblsed approach for
their hardness reductions. While our result builds upon these methods, riartfainder of this section, we
give an overview of our techniques and describe the key enhancewtgntsallow us to overcome some of
the technical limitations of previous hardness reductions.

1.2 Overview of Techniques

For hardness reductions, due to the uniform convergence resulko9f KSS94, it is sufficient to take
the optimization version of the learning halfspaces problem which consistssef of coordinates and a
finite set of labeled points, the latter replacing a random distribution. A typéchiction (including ours)
given a hard instance of a constraint satisfaction problem (Z3R¥r vertex set” and label sef], defines

C := V x [k] to be the set of coordinates over We let the formal variable¥(,, ;) be associated with the
coordinate(w, i) € C. The hypothesig¢/ (theproof in PCP terminology) is defined over these variables. In
our case, the proof will be a degrdePTF. The PCP test chooses randomly a small set of verfioé<,

2Khot’s observations remained unpublished for while, before they Wweiladed with his permission by Bhattacharyya et
al. [BGGS1§ in their paper which made a similar use of Violad$09] pseudo-random generator.



Lo (R*, 1, €) tests halfspace sighi(Y)).

Sample € {—1, 1} uniformly at random.

Choose a random “noise” subget [k] by including each independently with probability.
Fori € [k] \ Z, sety; = b,

Fori € Z, sampley; i.i.d. at random fromV (0, 1).

Accept iff sign f(y)) = b.

arLODNE

Figure 1: Dictatorship Tesg,

and runs alictatorshiptest onS: it testsH on a set of labeled poinBy C R¢ generated by the dictatorship
test. We desire the following two properties from the test:

e (completeness)f H “encodes” a good labeling fa&#, then it is a good classifier faPg,
e (soundnessp good classifieH for Ps can be “decoded” into a good labeling f6r

The soundness property is leveraged to show thAt dlassifiesPs for a significant fraction of the choices
S, it can be used to define a good global labelingdoiThe CSP of choice in the above template is usually
the Label Cover or the Unique Games problem. While the NP-hardnes$ef Caver is unconditional, its
projective constraints seem to present technical roadblocks — aksw igcDiakonikolas et alJOSW11]

— in analyzing learnability by degreéfd > 2) PTFs.

Our work overcomes these issues and gives a hardness reductiohdbel Cover. The key ingredient
to incorporate the Label Cover projective constraints fislding over an appropriate subspace defined by
them. This amounts to restricting the entire instance to the corresponding amdicambspace. Similar
folding for analyzing linear forms has been used earlier in the works ot Khd Saket{S11], Feldman,
Guruswami, Raghavendra, and WeRW13, and Guruswami, Raghavendra, Saket, and GR$W186.

We are able to extend it over degré@olynomials leveraging the linear-like structure decoded by an appro-
priate dictatorship test. This usesmoothnesproperty of the constraints (analogous kK&[L1, FGRW12
GRSW18) of the Label Cover instance which is combined with the dictatorship testngaidth folding —

to yield the PCP test.

In the rest of this section, we informally describe our dictatorship test, thevatioth behind its design
and the key ingredients involved in its analysis. To begin, we present a sprgiminary dictatorship
test3, over R¥ which works for linear thresholds. Of course, the NP-hardnessapfeply learning noisy
halfspaces is already knowRrGKP09 GR0Y, so this test does not yield anything new. Our purpose is
illustrative and we include a sketch of the arguments of its analysis. Takindg as a small constant and
n > 0 a small parameter (to be defined later), the descripticiif given in Figurel.

Observe that the linear threshold siyi) for eachi € [k] correctly classifiegy, b) with probability
(1 — ¢). In other words, everdictator corresponds to a good solution.

1.2.1 Soundness analysis gt

Suppose there exists a linear foifm= Zie[,ﬂ f,Yz (assuming for simplicityf has no constant term) such
that sigri f) passesp, with probability 1/2 4 2¢ for some{ = Q(1). Using (by now) standard analytical



arguments, we show that there exists [k] such that

o)y f2>o. (1)

1€[k]
In other words, every good solutighcan be decoded into a dictator.

It is not particularly challenging to obtairi), However, we sketch a systematic proof which shall be
useful when analyzing a more complicated dictatorship test for PTFs.

Call a setting ofZ good if sign(f) passes the test conditioned @nwith probability 1/2 + £. By
averaging, it is easy to see thatz [Z is good > £/2. Let us fix such a good. Without loss of generality,
we may assume that= {k* +1,..., k} and further that™ > k/2 by the Chernoff bound. We now define
{Wi,..., Wi} as abasisfofY; | i € [k*]} whereW; := (1/k") 3, ey Vi, such thaf{ Wy, ... Wi} is
an orthogonal transformation é¥; | i € [k*]} of the same //k* norm. Thus, we may rewritg as:

f= Y fYi+ > FWe ©)
te[k]\[k*] Lelk*]

The variables in the first sum in the RHS of the above are all iN.(), 1). Further, it can be seen that under
the test distributionliVy = by, andW, =0 (¢ = 2, ..., k*). Therefore, we may assume that,

7i>o. 3)

Since the sign of must flip with that ofb with probability 2(¢) = ©(1), one can apply Carbery-Wright's
Gaussian anti-concentration theorem to show that,

S E< oA, (4)
i€[k]\[k*]

since otherwise, contributions from the first sum2)fill overwhelm the contribution of¥; to f. Further,
from the definition of{ W, }5” |, we obtain

> A= LS B 5)

1€ [k*] Le k>

Let us now revert to the notation with = [k] \ [k*]. Using 6) along with @), and taking; = o(c®/Vk)

one can ensure that, .

72 £2

Z fi < 0 Z fis (6)
€L 1€[k]

and from @) we obtain

Y fi>o. @)

1€[k]

Note that 6) holds for every good which is at least /2 fraction of the choices of. Randomizing over
Z, an application of the Chernoff-Hoeffding bound shows ti@thlds only with substantially smaller
probability unless there exist$ € [k] such that:

F2 f F2
fazg X R ®)



The desired bound irlf now easily follow from ) and ). The details are omitted.

The main idea of the above methodical analysis is a natural definition d¥thariables using which
we isolate the sign-perturbatidm into a single variabldd;! Gaussian anti-concentration directly lower
bounds the squared mass corresponding’{o Moreover, when transforming back to the squared mass of
Y; (¢ € [k] \ Z), the presence of the heretofore ignoféd (¢ > 1) terms can only increase this quantity,
as shown ing). Lastly, the the “decoding list size” does not depend on the sign-jpation parameter
which can be taken to be small enough to makes sure that this size is a coegt@mtling only on the noise
parametee and the marginal acceptance probabijtyf the test.

1.2.2 Enhancing the Dictatorship Test for degreet PTFs

Our goal is a reduction proving the hardness of weakly learning noifspla@es using degreéPTFs. One
could hope to utilize the dictatorship tegy itself for this purpose. Unfortunately, this presents problems
even ford = 5. To see this consider the degre@olynomial,

f)y =y > v?|,
ie[k]\{i*}

for some distinguished* € [k]. It is easy to see that sigfi) passes the test with probability closelto
However, the distinguished variablg- appears with a cubic power ifi, whereas the folding approach
works well only whenY;- occurs as a linear factor of some sub-polynomial. This is due to the inherently
linear nature of the folding constraints. Consequently, wilgris combined with a Label Cover instance
the analysis becomes infeasible.

Our approach to overcome this bottleneck is for the PCP to test severpeimdtently and randomly
chosen vertices. For this, the dictatorship test would be on the ddiidif?! whereT is chosen much
larger than the degregof the PTF to be tested. The spak®!*[7] is thought of as real space spanned by
T blocks ofk dimensions each. In this case, if the test passes with probability2, then there is a way
to decode a good label to at least one out offi@ocks. A key step in our analysis crucially leverages the
choice ofT" to extract out a specific sub-polynomial which is linear in the variables efadrthe’T” blocks.
This is done via an application of the following lemma which is proved in Segtion

Lemma 1.2. Given a degreet polynomial of the forntY; +--- + Yr) - S(Y1, ..., Yr), whereT' > 2d and
S is a degree(d — 1) polynomial, there exist at leadt/2 indices; € [T] such that: for each suclj, the
sum of squares of the coefficients corresponding to the terms (in thenmimepresentation) linear iy
is at leastc times the sum of squares of coefficients ofvherec := ¢(T, d) > 0.

In Figure 2, we give a formal description of the Dictatorship t§%t employed by our reduction. Its
analysis builds upon that 88, above, so we provide a short sketch. et 10d andes > 0 be a constant,
andn > 0 be parameter to be defined later. Consider the linear threshold given by,

T
sign( 12,
j=1

foranyi; € [k] (1 < j < T). Itis easy to see that this passes the test with probability at (€astT").
Thus, choosing a dictator for each block yields a good solution for the test.



PCP Test; (R¥*[T] 1, ¢) tests degred-PTF sigiiP(Y))

1. Sample{o; | j € [T]} from the joint Gaussian distribution where the marginalssife, 1),
E[6;05] = —1/(T — 1) forall j # 5/, andy";_, §; = 0.

Sample) € {—1, 1} uniformly at random.

3. SampleZ C [k] x [T] to be a random subset where ed¢hj) € [k] x [T] is added toZ
independently with probability.

For each(i, j) € ([k] x [T]) \ Z, sety;; = (\/(T'—1)/T)é; + bn.

Independently for eadfi, j) € Z, sampley;; ~ N(0,1).

6. Acceptiff sigr{P(y)) = b.

N

ok

Figure 2: Dictatorship Tesg;

For the soundness analysis, as in Seclicghlwe fix a good noise sét conditioned on which the test
acceptsP with probability at least /2 + £, andPr[Z is good] > £/2. Further, without loss of generality,
we assume thaf = UJ_, ({k; +1,...k} x {j}), where (by Chernoff bound); > k/2for1 < j < T.
For eachy, {W1y;,..., Wy, ;} is defined to be an orthogonal transformatio{®f;, ..., Y}, ;} of the same
1/+/k; norm, whereW,; = (1/k;) Zfil Yi;. Itis easy to see thaV; = (/(T —1)/T)d; + bn, while
We; = 0 under the test distribution far> 1.

Additionally, we also defindUy,...,Ur} to be an orthonormal transformation 6f/,,..., Wi}
wherel; = (1/V/T) >_j—1 W1;. Again, it can observed that, = (VT)bnandUs, . .., Ur are independent
N(0,1). Using this we write the polynomid? = P’ + Qo+ U1Q1, whereP’ consists of all the terms which
have anyiVy;, ¢ > 1 as a factor. Furthe), is independent of/;. SinceP’ = 0 under the distribution we
ignore it for now, noting thalQ: ||3 = E[Q?] > 0, since the test accepts with probability1/2. The first
step is to show, via Gaussian anti-concentratioid)grand Chebyshev’s inequality d@py, that

1Q0l13 < O(*)I|Q1 3. (9)

Letus writeQ1 = > g H - Q1,u(Us, ..., Ur), where the sum is over the s&t of normalized Hermite
monomial$ over the independen¥ (0, 1) variablewle{nj}f:kjﬂ. Moreover, letQ!?) = S hew, H -
Q1,a(U1,...,Ur)for0 < D <d—-1>dedQ:), where#) is the subset o of degree exactly). Thus,

1Q113 = X pew |1Quul3. Wiiting Q1 = Q1u(Wii, ..., Wir) we also defing|Q1 #||20n @S sum
of squares of the coefficients in the standard monomial bé#sisf {171, ..., Wir}. A straightforward

calculation shows that:
HQl,HH% < O(l)HQl,H”r2n0n7 (10)

where the constants dependingBrandd are absorbed in th@(1) notation. On the other hand, sin€g
is independent of/;, using similar definition o)y 7, we can establish the reverse bound for it:

1Qo, 1 lImmon < O(W)[|Qo, 13- (11)

The rest of the arguments significantly build upon those in Sedti@grl. We present a semi-formal
description, omitting much of the technical details. For reasons made cleamiatéirst carefully select

d* € {0,...,d — 1} to be the largesD € {0,...,d — 1} such that|Q'"’ |z > 1,P||Q, 2 for a small

By Hermitemonomialswe mean elements of the polynomial Hermite basis over the corresgpvatiables.



enough constant depending bril’, d, ande. It is easily observed that suchda must exist satisfying the
. rr d* ]_ 5 .. 5
properties: ()| Q1" V|13 < 1p% 1| Qul[3, and (i) [|Q{ 13 > Lo 1|Qu13-
Now we focus our attention oUngd ) writing it as

Q" = > HUQuua(Wi,....War)= > Y eumHM. (12)

HEH HEH o Ml

Let#_;«p C #p (resp. 4~ C M) be the subset of basis elements not containing any variable from
the j*th block, i.e. {Yij}r,.<i<k (resp. Wi;+). Now with Uy = (1/V/T) >_j—1 Wij, we apply Lemma
1.2to eachlU1 Q1,5 (W1, ..., Wir) in the first expansion ofiQ). Using the fact that eacH has at most
variables along with our choice @f = 10d yields aj* € [T such that

Y. D Chaw, 2 QU)( > ZC%,M> (13)

HEH _juge MEM_j HEeH ;» MM
d* *
oM > Q)™ Qi3 (14)

where the last two inequalities use){ along with property (ii) above.

The next component of the analysis is to relate the bounds above with tifieieaés of a suitable sub-
polynomial of P which is linear in the variableg;;-, 1 <7 < kj;«. For this, let us first defin€ to be exactly
the sub-polynomial of> which does not contain any term withi;; wherei # 1 andj # j*. Rewriting the
variables{W;;- | i € [kj«]} in terms of{Y};- [k;<]}, we consider the sub-polynomi@lin (of @)
which is linear in the variablegY;;- | 1 <14 < k}. Note that(u%‘:lo%_jm) o M_j-o{Y;;+}¥ | is abasis
in which Qji, can be written with coefficientdy 57 ; corresponding to the basis elemenfi/Y;;-. Using
the orthonormal transformation betwe{ewij*}ie[kj*] and{Yij*}fi*l we obtain

v

XY Yduzg | X% duw, (15)

HEZ’,j*d* MEﬂ,j* ’LE[]CJ ] HG%’,]-W* ME./%,J-*

neglecting any contribution to the LHS of the above fr@by our a small enough choice gf< p along
with (9) and (L1). The loss oft;- factor in (15) is compensated by the dependence oh k£ as we shall see
later. Combining 15) with (13)-(14) yields

S Y B =20 k) llQul3. (16)

HG%,j*d* ME%fj* Ze[kj*]

2. 2 > e

HEH _jgr MEM_jx kju<i<k

Consider now the sum

Contribution to the above can be fra@y or from UlQld ™) _the latter due to the presenceYef- (k- <

i < k) which increases the degree bf € #_;-4« to (d* + 1) in the representation @, over the basis
o M. Property (i) from our careful selection df is leveraged along with our small enough choice) of
in (9) along with (L1) to yield

S S & <0t (17)

He_ Gxd* Medl_ §* k‘ <1<k



Using a choicep < ¢/k we can combine the above with@) to obtain the following analog ofj:

oY Y dmiss Y > Y G (18)

He%fj*d* ME%,]'* ’iEIj* He%fj*d* Méﬂij* 'Le[k}

whereZ;- := 7 N ([k] x {j*}). Of course, sincg§Q||2 > 0, we also obtain

Yo > D Ghmi>0. (19)

HET_ jx g MEM_j+ i€[k)]

The analysis above shows that for every good choicg tifere exist(d*, j*) satisfying (L8)-(19). What
remains is a probabilistic concentration argument. Sihcf is good > £/2, by averaging we get that
there exist(d*, j*) and a fixing ofZ \ Z;- such that with probability at least/47'd over the choic€&;-,
(18)-(19) hold. Since each is added tdZ;- independently with probability, an application of Chernoff-
Hoeffding shows that the large deviation observedli@) Cannot occur with probability /47'd (which is
significant) unless the squared mass on the LHI 8fi§ concentrated on a small number:iof [k]. This
yields the desired decoding completing our sketch of the analysis. Thelfprawd appearing in this work
— while following the approach given above — employs additional notationdefiditions for handling a
few technicalities and ease of presentation.

Combining 33, with Label Cover and Folding. The test]3; is executed on th& blocks of coordinates
corresponding td” randomly chosen vertices of a Smooth Label Cover instance (as us&RB\}/1§).
The resulting instance is then folded, i.e. the distribution on the point-labslipgirojected onto a subspace
JF orthogonal to the span of all the linear constraints implied by the edges oftted Cover. These linear
constraints ensure that any vector/nhas equal mass sum in the coordinates of the two pre-images of a
label given by an edge’s projections. This property can be extendealyoomialsP residing inF. This
fits with our decoding off3; which is via a sub-polynomia);i, linear in the variablegY;;- }le of thej*th
block. More specifically, we may fix the vertices corresponding to all thekislexcept thg*th and also the
restriction ofZ to all the blocks except thg'th. This fixes#_ -4« o M_;+ used in (8)-(19). For a vertexy

let ¢y ari0 = CH M, Wheno is chosen as thg“th vertex. Suppose for an edge betweeamdw (not among
the fixed vertices) the respective pre-images of a common label arel B. Then, the folding constraints

imply
Z CHM,iu = Z CH.M,iv- (20)
€A i€B
We combine the above with the decoding obtained from the analy§is aking appropriately set smooth-
ness parameters to prevent masses in the pre-images containing theddemodinates from cancelling
out. The constraint22Q) then imply that the decoded labels define a labeling satisfying a signifieaioin
of edges of the Label Cover instance.

Organization. Section2 presents some preliminaries. Sect&abescribes the reduction from Label Cover
in the form of a PCP test. Sectidl.lgives the constraints implied by folding extended to polynomials.
In Section4, we show the soundness of the reduction assuming a lemma (essentially gedi@ti(i19))
about the structure of polynomials passing the test. The rest of the pajeoigd to proving this lemma.
In Section5, we apply Gaussian anti-concentration to prove the analog)oflif Section6, we prove the
structural lemma using Lemnia2 as a key ingredient. Lemnia2is proved in Sectiofd.



2 Preliminaries

2.1 The S100TH LABEL COVER Problem

Definition 2.1 (Smooth Label Cover)A SMOOTH LABEL CoVERinstancel(G(V, E), k, L, {T¢.v fecE vee)

consists of a regular connected graph with vertex Beand edge sefy, along with projection maps
Tew © kK] — [L] forall e € E,v € e. The goal is to find an assignmeat: V' — [k] such that
Ve = (u,w) € E, meyu(o(u)) = mew(o(w)). The optimum for &SMOOTH LABEL COVER instance is
the maximum fraction of edges satisfied by an assignment.

The following Theorem fromGRSW16 states the hardness oM®0TH LABEL COVER problem:

Theorem 2.2. There exists a constang > 0 such that for any constant integer parametdr2 > 1, itis
NP-hard to distinguish between the following cases f@wo0TH LABEL COVER instancel(G(V, E), k,
L, {Te }ecEvee) With parametergs = 70D [, — oR7/E,

e YES: There is a labeling that satisfies every edge.
e NO: Every labeling satisfies less thamc-fraction of edges.
Additionally, the instancé& satisfies the following properties:

e Smoothness For any v € V, and labelsi,j € [k]|,i # j, Prey[men(i) = men(4)] < 1/J. In
particular, for a subset C [k], Pre, [|me0(S)| = |S]] < |S[2/(2J).

e The degreel, of the graphG is a constant dependent only drand R.

e For any vertexs € V, edgee € E incident on vertex, and; € [L], we have (we,v)_l(j)\ <tp =
4R,

e Weak Expansion For any V' C V, the number of edges induced W is at Ieast§|E| where
o =|V'[/IV].

2.2 Hermite Bases for Multivariate Polynomials

For integerd > 0, theHermite polynomialdi,;(x) are degreet univariate polynomials such that
Ex o) Ha(X)? = 1andEy.no1)[Ha(X)Ha(X)] = 0 for anyd # d’. For example Ho(z) = 1,
Hy(z) =z, Hy(z) = %(zQ —1),andHs(z) = %(az?’ —x).

Ford € N", we defineHq(z1,...,2n) = [licpy Ha,(2i). ForD > 0, letHp = {Hq : d €
N, Zie[n] d; < D} denote theHermite basis for degre& polynomials The following is immediate.

Fact 2.3. The sett{p forms an orthonormal basis fai-variate degreeb polynomials whose inputs are
drawn fromN (0, 1)™. In particular, for anyP : R™ — R of degree< D, we can write:

P(z) = > f(d)-Ha()
deNm:Y>, d; <D

~

and moreoverE, P(z) = f(0) andE,[P(x)?] = Y4 f2(d).



The Basic PCP Test given instanc&€ of SMOOTH LABEL COVER

1. For eacly € [T7, the test chooseE random vertices:, vs, ..., vr "~ V. LetY;; :=Y;”.

2. Sample{d; | j € [T]} from the joint Gaussian distribution where the marginals/sife, 1),
E[6;0;/] = —1/(T — 1) for all j # j', andy>_, §; = 0.

3. Samplé € {—1, 1} uniformly at random.

4. SampleZ C [k] x [T] to be a random subset where ed¢hj) € [k] x [T] is added toZ
independently with probability.

5. Foreach(i, j) € ([k] x [T]) \ Z, setY;; := /(T —1)/T - §; + bn.
6. Independently for eadfi, j) € Z, sampleY;; from N (0, 1).

7. Set the variables of all other vertices (excépt | j € [T]}) to be0. Let this setting of the
variables be the point € RY.
8. Output the point-sign paily, b).

Figure 3: Basic PCP Test

2.3 Concentration and Anti-Concentration

The magnitude of polynomials in our analysis is controlled using the followinglatdrbound.
Chebyshev’s Inequality. For any random variabl& and¢ > 0, Pr[|X| > ¢] < E[X?]/t?.

The above is used in conjunction with Carbery and Wrigh@¥01] powerful anti-concentration bound for
polynomials over independent Gaussian variables.

Theorem 2.4. (Carbery-Wright CWO01]) SupposeP : R — R is a degreed polynomial over independent
N(0,1) random variables. Then,

Pr[|P| < ]| P||2] = O(de"/?).
In addition, we also use following Chernoff-Hoeffding bound.

Theorem 2.5(Chernoff-Hoeffding) Let X1, ..., X, be independent random variables, each bounded as
a; < X; <b;withA; =b; —a;fori =1,...,n. Then, forany > 0,

Pr[ >t] <2-exp<—2t2
— N S A7)

> X - ZE[XZ»]

3 Hardness Reduction

The following reduction from 800TH LABEL CoVER directly implies our main theorem.

Theorem 3.1.Foranyé > 0 andd € Z™, there exists a choice & and.J in Theoren?.2and a polynomial-
time reduction from the correspondirMOOTH LABEL COVER instancef to a set of point-sign pairs
Q C RY x {-1,1} such that:

e YESCase If L is a YES instance, then there exists a linear fdrisatisfying

WP SOn(L(x) = 5] = 1€
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e NO Case. If £ is a NO instance, then for any degrégolynomial P

i 1
(XSIEQ[SIQH(P(X)) =5 <5+

The last sentence of Theoreiri is justified in Sectior.6.

3.1 The Basic PCP Test

We begin with a Basic PCP Test given an instafi¢€&/(V, E), k, L, {me v }ecEvce) Of SMOOTH LABEL
CoVER. For each vertex € V, there is a set of variableg’?}*_,, and the set of all the variablés is
a union over all vertices € V of these variable sets. The test is described by the sampling procedure in

Figure3, and yields a distribution over point-sign pairs which is independent ofdhstraints inl. It uses
63d

some additional parameters set as folloWs:= 10d, ¢ := ({/327d), n = (20§de> , Whered is from
the statement of Theorefl

3.1.1 Folding over constraints of_

To ensure consistency across the edges,dhe points generated by the Basic PCP Tesfadedover a
specific subspace. The points generated by the Basic PCP Test retigesipaceR”. Now, for a fixed
e = (u,w) € E andj € [L], we define the vectdi$ € RY as

1 ifo=wuandi e (m..) "' (4),
hS(Y) =4 -1 ifv=wandi€ (mew) " (4), (21)
0 otherwise.

Let H C RY be the subspace formed by the linear span of the ve¢lofb.cp je(r), and letF be the
orthogonal complement off in RY, i.e. RY = # @& F andH L F. For each point-sign paify, b)
generated by the Basic PCP Test, constfyct)) wherey is the projection ofy onto the subspacé,
represented in some (fixed) orthogonal basisAor

Conversely, for any vectar € F, letz be its representation iR . Itis easy to see that suchxsatisfies:
for everye = (u,w) € E andj € [L], (z, hj) = 0 which is equivalent to

Constraint C. : Yooz = > 2. (22)
i€ (me,u) " (4) i€ (me.w) " (j)
For our purpose we shall extend the above constraint to polynomialslasGeasider a polynomiad) in
RY. For any monomial\/ over the variabled, let cg 5 be its coefficient inQ. Fix an edgee = (u, w)
andj € [L], and a monomial\/ such that)/ does not contain any variable from the g&t* | : ¢
(Tew) L ()} U{YY | i € (mew) " (j)}. For such a choice of, j, and M we say thaC, j s is avalid
constraint where:

Constraint Ce,j,]V[ : Z CQMYM = Z CQM- Y- (23)
i€ (me,u) " () i€ (me,w) ' ()

We have the following lemma.

11



Lemma 3.2. Let@ be a polynomial that resides i, i.e. is represented in an orthogonal basier F, and
let @ be its representation i®Y. Then,Q satisfies all valid constraints, ; /.

Proof. Suppose for a contradictiap does not satisfy a valid constrait ; 5,. Consider the vectarwhere,

cquryy v =ui€ (mew)” ()
r(Y) = { ey ifv=w,i€ (mew) ()
0 otherwise.

Since EquationZ3) is not satisfied, it is easy to see thfath}) # 0, and thus = ry + r; wherer, € F
andr; € H. On the other hand, consider an orthogonal bBdisr RY that is an extension dfr}, i.e. r
is an element o8. P can now be represented as:

P=nV] P+ P,

whereP; is a polynomial represented i, P, is represented i \ {r;}, andr;[)] is the }-linear form
> yeyri(Y) - Y. Note thatP is not identically zero, in particular it contains the monomidl This
implies thatP cannot be represented over any basisApwhich is a contradiction. O

Remark 3.3. Instead of monomial3/, the constraints in{23) analogously hold for elemenfs of a basis
& for polynomials over any set of variables not containifig” | i € (me.) ' ()} U{Y® | i €

()™ (1)}

3.2 The Final PCP Test

Given a degree-polynomial Pyiopa OVer the spacé, the test sampley, b) from the Basic PCP Test (as de-
scribed in Figure), and constructéy, b) as described in Sectighl.1 The test acceptff sign (Pgiobaly)) =
b.

Remark 3.4. The Basic PCP Test generates a distribution dRe&rx {—1, 1} using various independently
Gaussian random variables. Therefore, the support set of this dititsibis not finite. In Sectiod.6, using
techniques from[POSW1]), we discretize the Basic PCP Test. Building upon the discretized Basic PCP
Test, the Final PCP Test yields the desired finite subset polynomial time.

3.3 Completeness Analysis

Suppose there is a labelimg: V' — [k] which satisfies all the edges gf DefineL*(Y) = > .y Y
to be a linear form. Note that*(y) := (r*,y) for somer* € F, and soL* can be represented in an
orthogonal basis faF. Thus, for any poiny € RY, L*(y) = L*(y) wherey is the projection of on to.F
as defined in Sectio8.1.1

Now consider(y, b) generated by the Basic PCP Test. By a union bound over the randomrtégs of
test, with probability at leastl — £T): (o(v;),j) ¢ Z for eachj € [T]. Given this, it is easy to see that
L*(y) = b, and by the above reasonidg(y) = b. Thus,L* satisfies the Final PCP Test with probability
at least(1 — £7T"). Our choice ot yields the desired accuracy.

“A polynomial Q being represented in an orthogonal basis for a subspateans can be written as a polynomial over the
linear forms corresponding to an orthogonal basisAor

12



4 Soundness Analysis

Given the 100TH LABEL COVERinstance’, suppose that there is a degrépelynomial (overF) Pgiopal
such that the Final PCP Test accepts with probabili+£. Our goal in the rest of this paper is to show that
in this case there exists a labeling that satisfies at feesfi-fraction of the edges of, for an appropriate
choice of constant® and.J in Theorem2.2 and because of its NO Case we would be done.

Let Pyiobal b€ the representation 6fgiopaiin RY, S0 thatPgiopal(¥) = Pyiobally) Wherey € F is a point
generated by the Final PCP Test from a pgirgenerated by the Basic PCP Test as given in Seian
Therefore,Pyobal(y) = b with probability at leastl /2 + £ over the pairgy, b) output by the Basic PCP
Test. Using this, we focus on analyzing the structuré&gpal.

To begin the analysis note that with probability at lezsbver the choices of the verifier other than
Pyioval flips its sign on flippingb. Call a choice of{v; | j € [T} goodif conditioned on this, the same
holds with probability at least over the rest of the choices (other thgrof the verifier. By averaging, with
probability at least, the verifier makes a good choice. We now fix such a good cHoige j € [T7]}.

For convenience, we shall ugeto denote the restriction dfgopato Y := {Yj; | i € [k],j € [T]}.
Let D be the distribution oY, b) generated by the steps of the verifier. Our analysis shall first show that
in terms of this basi$” must have a certain structure which will then be used to determine a good tabelin
for L.

4.1 Basis Transformations

For the purpose of the analysis, we shall rewrite the varia¥lés different bases. Before we do that, we
shall isolate the noisy s&tof the Basic PCP Test.

4.1.1 Choice of sef

The distributionD involves choosing the s&tin which each(i, j) is added independently at random with
probabilitye. Let us call a setting af asniceif it satisfies:

1. For eacly,

{i | (i,5) e T} < k/2.

2. With probability¢ /2 over the rest of the choices of the verifier (excBptP flips its sign on flipping
b.

By our setting ofs andT, for a large enough value &f and applying the Chernoff Bound, a union bound
and an averaging argument, we have:
Il’)r [Z is nicd > ¢/4. (24)

Going forward, we shall fix a nice choice @f By relabeling, we may assume that there ekj&? <

k;j < kfor j € [T] such that
T

= J{G,4) | i=ki+1,... k} (25)
j=1

Based on this nice choice @f we now define new bases for tiYevariables. LeD7 denote the distribution
of the variables after fixing a nicg.
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41.2 BasesWandU

Foreachy € [T, we defingW1;, Way, ..., Wy, ;) as afixed orthogonal transformation(df ;, Ya;, . . ., Yk ;)
so that i
1 J
le = ]{77 Z}/Z‘j, and Wij = Z Cignj forall: e [2, k‘j] (26)
7 i=1 Lelk;]
where the vectorgc; = [ci1, cig, - . -, cikj]T}f’:'2 satisfy

e Foralli, i € [k;] \ {1} we have(c;,c;) =0
e Each vector; satisfieg|c;||> = 1/k; andc; L where is the all ones vector &,

We shall also define the vector = ki . where ¢ RF¥ is the the vector of all ones. The above along

J
with the distribution of{Y;; | i =1,... ,kj};f:l in D7 directly implies the following.
Lemma 4.1. Under the distributiorD:

(I) le = 4/ (T—l)/T . 5j + bT]

(ii) Fori#1, W;; = 0.

LetU,...,Ur be a fixed orthonormal transformation @11, ..., Wir), where
1 T
Uy = ik ;WU, andU; = g{;} ay;Whj forallt € [2,T] (27)
where vectorss, . . ., ar are orthonormal and each vector= [a;1, aso, . . ., as7| " satisfiestGT ay; =0

(i.e., they are orthogonal to the all ones vector).
Lemma 4.2. Under the distributiorD7,

() Uy =T
(i) Foreachl <t <T,U; ~ N(0,1) i.i.d.

Proof. Lemma4.1 along with the definition of/; yields the first part. The second part follows from an
application of Lemma.2. m

Before we proceed, we briefly summarize the variables and their distribwtiderD7.

e Noisy IndicesFor a fixedj € [T, [k;] is the set of non-noisys wherek; > k/2.

e TheY-variables. For each(i, j) € [k] x [T|\Z, Y;; = /(T-V)/T-0; 4+ bn. For(i,j) € Z,Y;;'s are
independentV (0, 1) random variables.

e The W-variables For a fixed;j, we define variable®/, ..., W ; with Wy; = \/(T=D/1 - §; + bn
andWyj, ..., Wy, ; are0.

e U-variables We definel/; = ﬁ > jeir) Wi which s /T and is independent of the variables
Us,...,Ur where eacli; isi.i.d. N(0,1) for¢ > 1.
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4.2 A Hybrid Basis Relative to;* and d*

Recall that we have fixed a nid@e In this section, we define a basis for polynomials using a fixed choice of
J* € [T andd* € [d]. For convenience IgT"_ ;-] := [T\ {j*}.

Definition 4.3. Let7Z_;- be the Hermite basis for all polynomials over the independent Gaussisaties
{Vi; | i€ [k\[k;],7 € [Tj+]}. In particular, E[H?] = E[G?] = 1 andE[HG] = 0 for eachH, G € %,
H # G. LetZ_;«q- be the set of basis elementsf ;- of degree exactly*.

Definition 4.4. Let ./ _;- be thestandard monomial basier polynomials over the variablegh;; | j €
[Tj+]}. In particular, each element ofZ_;- is of the form[ [, Wf]? for some non-negative integers

a; G € [T_5-]).

Definition 4.5. Let B_;« := #_;+ o Ml_;+ be the combined basis for polynomials over the variables of
#_;~ and /L _;~, where each elemem is of the formH M for someH € #_; and M € J/_;+ and
deg B) = deq H) + deg M). For convenience we also define the sulsgetj« - := #_jq- o M_;+, i.€.
each element a¥6_ ;- 4« is of the formH M whereH € Z_j+q4- and M € M _j-.

Lastly, letS;« be the set of all multisets ak;- = {(4,5%) | i € [k]}. For an elemenb € §;«, let
S(7, j*) denote the number of occurrencegofj*) in S. Using this, we defin&s := H(i,j*)eRj* Yif*(l’m.

Writing the polynomialP in the basis given by products 68_;«, {W;; : j € [T_;-],i € [k;] \ {1}}
and{Y;;- : ¢ € [k]}, the polynomialP can be represented as:

P=Pomt+ » 6 cspYsB, (28)
Ses;-
Be® ;-

wherecg g are constants aAdPymit is the sub-polynomial of? consisting of all monomials containing a
variable from{W;; : j € [T_;+],i € [k;] \ {1}}. Of course, sincé” is of degree at most, the only terms
that occur in the above sum satisfy d&g + |S| < d.

For a fixed0 < d* < d — 1 we will be interested in capturing the the massholinear inY;;- and the
subset®_;-4+. Abusing notation to let(; ;) g = c(s,p) WhereS = {(i,j*)} is the singleton multiset,
define

L. _ 2
Cijrdr = Z & i).B (29)

for each(s, j*) € Rj« and0 < d* < d — 1.

4.3 Main Structural Lemma

We are now ready to describe the structure fRathust exhibit in order to pass the Basic PCP test. Let us
first define adistinguished pairj*, d*) for a fixed setting of.

Definition 4.6. A pair (j*,d*) € [T] x {0,...,d — 1} is said to bedistinguishedor Z if,

4
2 € 2
Z Cijde = 1 Z Cij*d* | (30)

(i,5*)€T (6,5 (K] x{7* I\T

®The reason for treating,mi Separately is that it vanishes under the distribufin

15



and,
> c? i ge > 0. (31)
(6.3 )e([k]x{7* D\T
Here, ¢ is the noise parameter used in the PCP test.

The main lemma that we prove is the following.

Lemma 4.7(Main Structural Lemma)For everynicechoice ofZ, there existg* € [T]andd* € {0,1,...,d—
1} such that(5*, d*) is distinguished fof.

The proof of the above lemma is given in Sect®huilding upon analysis in Sectidh Both Sections
5 and6 assume a setting of nié
Using @24) and a simple averaging, the above lemma implies that there éxist8") such that:

£

T (32)

P%r [(5%,d") is distinguished foZ] >

4.4 Implications of the Structural Lemma

We now fix (j*,d*) satisfying 82). Let us consider the random choice Dfas first pickingZ_;« :=
ZN([k] x ([T7\{s*})), and then picking@;- := ZN([k] x {5%}). Note that the choice df;- is independent
of Z_;-. Call a choice off_;« asshared-heavyf,

gr [(j*,d") is distinguished fofZ;« UZ_;<] > STa" (33)

From (32) and an averaging argument we have:

§

STd" (34)

IPr [Z_;+ is shared-heayy>
—j*

Let us fix a shared-heavk._ ;-. Note that with this fixing, the bases given in Sectiohare well defined,
and in particulat” can be represented as 8. Since there is at least one choiceZgf such that(j*, d*)
is distinguished fofZ;« U Z_;~, using @1) this implies

> g >0 (35)
i€[k]
Further we have the following lemma. (This is where we are finally randomiziag- .)

Lemma 4.8. There exists* € [k] such that,

2 2 E 2
Ci*,j*,d* >v ( Ci,j*,d*) 5

1€[k]

forv = £2/2.
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Proof. Assume that there is no suchas in the lemma. Over the choicelf , consider the random variable
D ig*)e; ¢} ;- 4+~ The contribution from eachto this sum is independentiywith probability (1 — <) and
¢} + ¢~ With probabilitye. Thus,

2 _ 2
EIJ,* Z Ci,j*,d* =& Z Ci,j*,d* .
(1,3%)EL;* i€[k]

Pr { Z c?7j*7d* < (g/2) ( Z sz,j*,d*)]
(

Now,

i,5*)EL (4,5*)€[k]x{7* \T

| Y ez (z )

| (,5%)EL;x i€k
< PI’ Z C’?,j*,d* — E |: Z sz,j*,d*] 2 (5/2) (Z C?,j*,d*)]
2
: 2e/2)°  (Siepy Ejr.a)
<2-exp| — -
Zie[k} Cij=.d*

/2 (S Eyoar)

<2.exp| — y ekl g - <2-exp(—c?/20%) <e,
MAXie[k] € j g+ Dielk] Cij -

for 1?2 = ¢*/4 < €%/(2log(2/¢)). Here, stepl follows from the Chernoff-Hoeffding inequality (Theo-
rem2.5). Since our choice of < &/(87'd), this yields a contradiction to our choice %f ;-, (30), and
(33).

O]

4.5 Decoding a Labeling forL

In Figure4 we define a randomized (partial) labelindor the vertices” of £. To analyzer, we first define
the following random subsets of vertices and edges, where the randsiisraver the choices made in the
above procedure of labeling.

Vertex subsetl, C V: Consists of alb € V' such that:
e Settingu;+ = v, the choice offv; | j € [T} is good,
e The choice of j*, d*) satisfied 82) and,
e The choice off_ ;- is shared-heavy.

Over the randomness of the labeling procedure and a random cheicthefabove happens with probability
at least:
Aq = £- i . i (37)
075" Td 8Td

17



Randomized Partial Labeling o

=

Choosg* € [T] andd* € {0,...,d — 1} independently and u.a.r.

Choose; € V independently and u.a.r. for eagke [T\ {j*}.

3. Choose the random subget;- of [k] x ([T7] \ {j*}) by independently adding each element with
probabilitye.

4. Foreach € V,

(a) Setvj« = .

(b) Letting P be the restriction oPyobato Y = {Y;; | i € [k],j € [T']}, define the set:

. VZ
FO(U) = {/Ll € I:k] | C’l%7j*7d* > Z (Z c?7j*7d*) } bl (36)
i€[k]

wherev = £2/4 (as in Lemmat.§).
(c) If Ty(v) is non-empty, assign a label chosen uniformly at random frdrg(v).

N

Figure 4: Randomized Partial Labeling

Thus,
E[[Vol] = Ao|V].

Moreover, by the weak expansion property in Theofh
E[[E(WVo)] = E [(IVo!/IVI)Q} -(1EI/2) = E[IVol/IVI])?- (IEI/2) = (A8/2) |E|. (38)
Edge SetE’ C E(Vp): Let us first define for each € V
2
Ti(v) o= {z €] | B jege > wo”m (Z cf,j*,d*) } (39)

1€[k]

whenw;- is set tov in Step 4a of Figuré. Here, R is the parameter (to be set) from Theor@d From
(36) and B9), we havel'y(v) C T';(v) along with

To(v)| < 4/v%, and |[y(v)| < (100 - 427) /02 (40)
The setE’ is defined as:
E' = {e= (u,w) € EWV) | |meu(T1(u))] = [T1(u)| and |me o (C1(w))| = [T1(w)] . (41)

Since the graph of the instancel is regular, using second bound 40 along with the smoothness
property of Theorem.2, the fraction of edges = (u, w) € E that do not satisfy

(I7eu(T1(w)] = [T1(w)] @nd [me, (T1(w))] = [T1(w)])

10% - 448
Al = <4 > .
viJ
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Thus,
E[|E']] > (A§/2 — A1) |E]. (42)

The following lemma gives the desired property of edgeB'in
Lemma 4.9. For every edge = (u,w) € E’,
Tew (Do()) N e (To(w)) # 0. (43)
Proof. Suppose for a contradiction that3) does not hold for an edge= (u,w) € F’, i.e.
Teu (Fo(w)) N 7w (Do(w)) = 0. (44)
Let us now define for € {u,w}, andi € [k], vectorC,,; € R%i*« where for anyB € B,y
Cyi(B) = c(ij+,p  Whenv;. is set tov. (45)

Without loss of generality, we may assume that

Z ”Cqug > Z ch,i
1€[k]

i€k]

. (46)

Since bothu € Vj, (35) and Lemmat.8imply that there exist$, € [k] such that

1
2
[Cusinlly > v (Z C%) > 0. (47)

i€[k]

This implies thati,, € T'o(u). Now, Ig‘[ 0" = 7. 4(iy). SinceP is a restriction ofFPyonal Which is a
representation of the folded polynomi@ona, Lemma3.2 along with RemarlB.3 (applied to element®

Of ‘%—j*d*) ImplleS
Z Cu,i = Z Cw,i' (48)
i€mo L (0%) im0 (%)

On the other hand, sineec E’, (41) along with our suppositiordd) and the construction df’,.(v) | r €
{0,1}, v € {u, w}} implies that

e Foralliem,,(£*)\ {iu}

=

14
1Cuilly < 7577 (Z Cuzé) ' (49)

1€[k]

e Foralli e, (¢*)

NI

1%
ICuill, < 5 (Z cw,ié) : (50)

i€[k]
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e There exists at most oniee (k| such that,

N

1%
[Cuw.illy > 10 4% (Z Cw,ig) : (51)

1€[k]

The above implications along witd®) and @6) yields

ICuilly < D> ICuilly+ D Cuil,
i€ma L (%) 1€T g0 ()
iy
: }
vmoa ()] v vlmn(e)] >
< _ _rewr 0 .
<

3 3

v 112 v,.v 112
E (Z CUﬂQ) + (2 + 10) (Z CU}JQ)

1€[k] i€[k]
: 3

v
< 1o | 2 lCull | (52)

1€[k]

where we used the property (from Theor&rd) that |7, (¢*)] , |mc ., (¢)| < 4. Clearly, 62) is a contra-
diction to @7) which completes the proof of the lemma. O

Note that the seE’ is determined by Step 3 of the randomized labeling procedure. Lefr@iaplies
that in the subsequent steps of the procedure, eacheedde, w) € E’ is satisfied with probability at least

I S
To(w)] [To(w)] = 16

using the first bound in40). The above along with4@) lower bounds the expected fraction of edges

satisfies by
4
Ag = (AZ/2 - Ay) (’1’6> .

ChoosingR to be large enough andl > 4% we can ensure thak, > 2~ which yields a contradiction
to the soundness of Theoreéh®, completing the NO case analysis.
4.6 Loose Ends

Discretization of the Basic PCP Test Distribution. Let Hy be the distribution of(Zfil Bl-) /NN

where eaclB; is an independent—1, 1}-valued balanced Bernoulli random variable. The following theo-
rem was proved inOSW11].

Theorem 4.10. Fix any constan® > 1, and letf(z1, ..., z,,) be any degred> polynomial oveiR™. Let
(y,z) € R™ x R™ be generated by sampling ea@)y, z;) from (N (0, 1), Hy) whereN = m?4P*, Then,

Prisign(f(y)) # sign(f(z))] < O(1/m).
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In our Basic PCP Test distribution (for a fixed choice of the vertices ofStheoTH LABEL COVER
instance) we haven = ©(kT') Gaussian random variables. Choosilg= d and N = m24P*  we can
completely discretize the test distribution using (e{iﬁ”)o(dQ)) points. Note that this also incorporates the
possible2®(kT) choices of the noise s&t From the above theorem, this discretization results in an at most
O(1/kT) loss in the acceptance probability of the test. This discretization is done foosgible choices
by the test of the vertices of the instance.

Ruling out functions of constantly many degreed PTFs. Analogous to the argument itK§11], con-
sider any functiorh of K degreed PTFs (overF) that passes the Final PCP test with probabilitg + ¢.
Let 4 be the functiorh with the PTFs represented ov&¢¥. By averaging/ flips its sign with respect to
flipping b for at least fraction of the rest of the choices made by the Basic PCP Test. Again byging,

there must be a degreePTF sign( élobaD satisfying the same for at leastK fraction of the choices. The
entire analysis can then be repeated ustg,,;

5 Relative bounds for mass inP

Let Z denote the set of variabldd’; : j € [T, k; < i < k}. As shown in Sectiod, theZ variables are all
i.i.d. N(0, 1) under the test distribution. We begin by expressihgs

P<Z, {Ui}ieim); {Wij}i;ﬂ) = Pomit (Z, {Ui}ierm, {Wij}ie[Q,kj},je[T]> +Qo(Z, Uy, ...,Ur)
+U1Q1<ZaU17"'7UT) (53)

where P,,;; consists of all the terms that contain sofi&;; | i € [2,k;],7 € [T]} as a factor, and)y

is the part in the remaining polynomial independent/ef From the nice setting df, we have that with
probability at least /2 over the rest of the choices of the verifiétflips its sign on flippingy. Since Pyt
evaluates to zero under the test distribution ghdis independent obn by construction, we obtain that
(21 is not identically zero. For the time being, our analysis igndPgsi;. Extending Definitiong}.3 and
4.4 let # be the Hermite basis over all tie variables, and# be the monomial basis over the variables
{Wh; : j € [T]}. Using these we define two norms to quantify the relevant mass of polynontfiats.
convenience, let denote the variablesy, . .., Uy, U denote the set \ {U;}, andW denote the set of
variablesi¥iq, ..., Wir.

Definition 5.1 (|| - ||2-norm). Given a polynomiat) over the variables defined in the PCP test, define its
|| - [[2-norm as

Q]2 = \/EXNDI [yQ(x)P]

Definition 5.2 (|| - [lmon,1; [| * [|mon,2-NOrms) Given a polynomial(W) = >y , csWs represented in
the monomial basis#Z = {Wg}, for anyp > 1 define its|| - ||mon p-NOrm as

1/p
1Qlmonp = | D lesl”
Wsell
In particular, || - ||mon,1 iS the absolute sum of the coefficients, ;ﬂndHﬁan is the squared sum of the

coefficients inQ,
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As pointed out above?, is not identically zero and therefore by definition it satisfies.

1Q1]]2 >0 (54)
Our goal in this section is to prove the following lemma lower boundji€yg || relative to||Qo||2-

Lemma 5.3. Using the definitions given above,

@l < (%) IQull 55)

Proof. From Lemma4.2, we know thafl/; = bnv/T under the distributiorD7. SinceQ; is dependent on
Uy, its distribution can be dependent lnri_eth = Q1p=1, and andl); := Q1[p=—1. Thus,

1 1
101 = Buzo Qi) = FEzo[l@illb=1]+ gErularPle= -]
1 1,
= SlQtI3+5ler I (56)

Using the above along with Chebyshev's inequality (see Segtigrwe obtain for any: > 0

th% [oT|, Q7] <al@ill:] > 1-Pr[|Qf| > all@ill] — Pr{|Q7| > alQi]2]
_(1QTF 115 + HQIH%) o2
> 1 2l )= &)

where the last step follows fromb§). On the other hand note th@y, is a polynomial over standard Gaussian
variables and is independent af Applying the bound of Carbery-Wright (Theore2¥) we obtain the
following.

Pr 1ol < (6/4)"IQolla] < (58)

Settinga = 4/+/€ in (57) and using the above we obtain that with probability at ldast¢/4 — £/8 =
1 — 3¢/8 over the choice of the variabl&andUs, . .., Ur

(VDQTI, (VTQT| < (nyV/T/9)@1ll2, and, [Qo| > (£/4d)*[Qoll2-
WhennVT(|Q7| + |Q7]) < |Qo| then flippingb does not change the sign Bf Since the sign of must

flip with b with probability at least /2 over the choice o% andU,, ..., Ur, the above is a contradiction
unless,
8T
< | =L
[Qoll2 < ((5/4d)d 5) @12,
which completes the proof of the lemma. O

6 Proof of Main Structural Lemma 4.7

As in the previous section, we hat&denote the variablds, . .., Ur, U denote the sétJ \ {U;}, andW
denote the set of variablé®, ..., Wir. Similarly, we useY = {Y;; : i € [k],j € [T} to denote the set
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of all theY variables. We us& to denote the set of variabl¢¥;; : j € [T],k; < ¢ < k}. TheZ variables
are allN (0, 1) under the test distribution. For a particuldre [T7], letZ;« = Z N {Y;;» : i € [k]}, and
letZ_;- = Z \ Z;-. Also, for givenj* € [T, defineYj» = Y N{Yj;~ :i € [k]} andY_j = Y \ Y-
Finally, for given;* € [T, we defineW ;- andW _;- similarly.

Recall the definitions of the bases in Definitioh8, 4.4 and4.5. Extending these as in the previous
section, let# be the Hermite basis for polynomials in the variab®esand .# the monomial basis for
polynomials in the variable®v. For anyD € [d], we also definéZ), to be the set of all Hermite monomials
of degree exacthyp.

For convenience of measuring the monomial mass, we use Defibitdo define two different norms
as follows:

Definition 6.1 (| - ||z-Norm). For a polynomialL(Z, W) = 3" ;.5 H(Z) - Ly (W), let

IL(Z W2 = D 1L (W) lon 2 (59)
Hex

Definition 6.2(|| - [|%_ . ;. ,-Norm). 6 Supposg* € [T],d* € [d—1] andJ C [k] are given. Then, for any
polynomialM (Z_;«, Y j«, W_j;«) of the form

M(Z_j=, Yo, W_j)= > > H(Zj) Ys-Mys(W_j-),
HET. ;s S8,

we define:

2

= > D IMa 6 (W) on (60)

HM(Z_J'* Y o, W)
Bjxax g HEH jx gr i€

Finally, for j* € [T, we shall find it convenient to define the se4§ = {i: (i,7%) € I}, and
A = (k) \ AT
o = [F\ A

6.1 Anintermediate Lemma

We start by writing the polynomiaP in the variable<Z, {W;; : j € [T],1 < i < k;}, U:
P = Pomit + Prel = Pomit +©0(Z7 U \ {Ul}) + Uy 'Ql(za U)

where Pomit contains all monomials depending on variable§lii;; : j € [T],1 < < k;}.

LetQo(Z, W) andQ1(Z, W) beQ, andQ, respectively after a change of variables fréto W. For
a=0,1, we writtQ,(Z, W) inthe #Z o 4 basis:Q.(Z, W) = > ey H(Z) - Qo.u(W). For a fixed
d* € {0} U [d — 1], we let

QNZ W)= ) H(Z) Quu(W).

For a fixedj* € [T], we definePyni j+ as the sub-polynomial of containing all the monomials
containing at least one variable frofil;; : j # j*,i # 1}, and letP, ;- be the rest of the polynomial.

We shall prove Lemma4.7 using the following intermediate result:

®Note that although we call it sd},- ||s_ , Is not an actual norm, as it may vanish even for non-zero polynomials.

J*,d*,
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Lemma 6.3. There exists choice of € {0,1,...,d — 1} andj* € [T] such that the following properties
hold simultaneously:

1. |Qol% < P Q1%

d*+1 *
2. QYL < Lot YIQu

~112 _1d *
s @ > 5 (20aT) o | Qu %,
—i*ax Al

wherep = (20dkT3/e*)~%" (kT)~* andQ(Z_;+, Y-, W_;-) is the polynomial obtained by rewriting the
W« variables inP,q ;+ in terms of theY ;- variables.

Using this, we give a proof of Lemma7.

Proof of Lemmat.7. Let d* and j* be as given in Lemm&.3 Let Q(Z_;-,Y;-,W_j-,) be as in the
Lemma6.3. We can expres§ as .

d—1
@(Z_j*,W_j*,Yj*) = Z Z Z HYS@H,S(W—]'*) (61)

D=0He¥k_ *DSEC¢*

whereZ_;« p is the set of Hermite monomials which are of degféand do not contaii ;- variables. By
construction we have

Yo Gpa =015 (62)

~“ *,d*,.A‘]
(i,5*)€T !
Consider a term that contributes to the RHS @i)((as defined ir6.2). Since the additional;;- (for
(i,7*) € T) variable adds to the degree Hf, the corresponding term appears in ferepresentation of

P, asH M where the degree df is of degreel* 4+ 1. Therefore it must be a part QJ (d"+1) o Q(d“rl
Hence,

~ a1 1 41 .
1Q1% o < 1@ VI +11Qol5 < TR V1% + o IQul% < 275" T @ulE  (63)
-7

1

where the upper bound on the first term in stefpllows from

I W)QI VW)L = 3 [U(W)QE(W)|20n2
HEH yx 1
< D IOV onalQn (W) o2 (claimc.1)
HEH yx 1

d*
= T\ V|

and the upper bound on the second term in $teglows from Lemmab.3 (part 1). The last inequality uses
Part 2. of Lemmd.3. On the other hand we have,

Z zg ax ||62H<%j - (64)

* * J
(1,7 " D\T e
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From Lemma6.3 (part 3) and the choice @fin Lemma6.3we have

16T y

(20dT) " p(|Q1 1% > il (65)

~ 1
||QH$ % d* .AJ* — SkTQ

Combining 63),(64) and ©5), we get an upper bound on LHS &24) which gives us

4
(i,3*) (i,5*)e([k]x{7* D\T
thus implying inequality 30). Furthermore, from54), we know that|Q:||3 > 0, which along with Lemma
B.1(part 1) implies that|Q1||% > 0. Therefore, combining) and 64), we get that the LHS of6d) is
strictly positive, thus implying31). Hence, the choice dtl*, j*) satisfy 30) and @1). O
6.2 Proof of Lemma6.3
6.2.1 Upper bounding||Qo|| % in terms ||Q1] %
In this section, we show th#,|| is small compared termg ||z due to our choice of.

Lemma 6.4. Let p be chosen as in Lemn@&a3. Then||Qo||% < p*(|Q1]/%

Proof. We express) as

=Y HQou(W)

Hex

whereH €  are the Hermite monomials. Then by definition|jof||%, we have,

HQO(va)H?% = Z ”QOH Hm0n2

Hex

< 10d0)" S Qo (D)1

Hex
= (10d7)"Qo(U)|5

2 4d
P
< THQIH%

where stepl follows from LemmaB.1 (part2), and steg® follows from Claim5.3 and our choice of; in
Section3. Furthermore, we can relate th€) ||3 to ||Q1]/% as follows

Q111 = D 1Q1.a(W)lhons > (20d7) 71 " [|Q1, a1 (U)|[3 = (20dT) 1| Qu |13
H

Hex

where stef follows from LemmaB.1 (part1). Combining the bounds, we gQo||% < p?¥|Q1]%. O

6.2.2 Finding a heavyd* € {0,1,...,d — 1}

We begin by finding a* € {0} U [d — 1] such that); restricted to Hermite monomials #;- has large
mass compared to those frdi- 1
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Lemma 6.5. There existg* € {0} U [d — 1] such that
d*+1 *
L@ I < 1o QI

2. 1Q171% = 1" Q1%

Proof. We claim that there exist® € {0} U [d — 1] such thaq|Q H% > 2pP||Q1]/%. If not, then for all
D € {0} U [d - 1] we have||Qi”||% < 1p||Q1[|%. Then,

d—1 d—1 p
p 1
@11% =D 1M%< > —l@1l% < s 1Q1l%
4 2
D=0

D=0

which is a contradiction.
Now we seil” to be the largest such € {0}U[d—1] such that|Q\” (|2, > 1pP||Q1|%. If d* < d—1,

then by construction we know thag\" |2, < 1 o4 1 @1]/%. On the other hand * = d — 1, then by

constructlorQ1 Vis identically0 (since@) is of degree at most — 1) and hence the claim is vacuously
true. O

6.2.3 Locating a goodj* € [T

Letd* € {0} U [d — 1] be as in Lemm&.5. Now, we shall find a good* < [T] in the sub-polynomial
Ungd*) which contains a sub-polynomial lineari#i; ;- with significant|| - || z-mass.

Lemma 6.6. Let the polynomial/; Q(¢")(Z, W) be expressed in the basig as
B N(Z,W)y= > > cyuHM

HEeH j» Mel

Then there existg" € [T'] such that

> oy CHMWN_TQ (2047 (Z ZCHM> (67)

HEH_ju g MEM_ HEH « Me.Ml
Proof. Consider the following representationlﬁfQ(ld*):
0"z W)= 3 HUIQuu(W) (68)

Using the fact that’; = (1/vT) Ele Wi andT = 10d, the following lemma is directly implied by
Lemma7.1

Lemma 6.7. Fix H € %;-. LetU,1Q1 x(W) (as defined ir{68)) be expressed in the basig as

U1Q1,5(W) = Z ca M

Mecu

Then there exists at lea®t/2 choices ofj* € [T] such that

1 d
> MW 2 (20dT N crw (69)
Med_ Mew
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For a fixed Hermite monomidf € %, we call aj* € [T'] to begoodfor H if the following conditions
hold:

1. The Hermite monomial/ does not contai;--variables.
2. The indexj* satisfies §9) with respect tad

Now for a fixed Hermite monomiaH € %+, out of T' values ofj, at mostd — 1 can appear ind.
Furthermore, Lemm@.7 guarantees that for at leasf2-values of; € [T, (69) is satisfied. Sinc& = 10d,
for each Hermite monomidl there exists at least sonj& H) which is good forH . Therefore by averaging
over allH € #,-, there existg* € [T] such that

1
2 2
>
Z Z CHMW,;« = Z Z CHMW, e (rr) = T2 (20dT)~ ( Z Z CHM)
He%f‘j*d* ME%,]'* HE%,d* Me/%,j*(,ﬂ HE%d* Meu

0

6.2.4 SubstitutingW ;- with Y;«-variables

For thej* € [T] chosen in the previous sectioR,. j« can be rewritten by expandin@ ;- in the Y ;-
variables a€)(Z_;-, Y j+, W_j;=) which can be expressed in the badls ;- as follows:

Q(Z_j+ W _je, Y ) Z YooY Y enmsHMYS (70)
D=0 HEH _jxpp MEM_jx SES;

whereZ_;-p, /- ands$;- are as defined in Secti@gn2 Now we show that the squared sum of coefficients
in the above expressmn restricted to factors to terms of the févnY; ;- capture a significant fraction of
mass.

Claim 6.8. LetQ(Z_j-, W_j-, Y;-) be as in(70). Then,
1
S Y Yadwezg( XY duw.) o
He%—j*d* ME.%_]-* ’LE[I{?‘ ] HG%_j*d* ME.%_J-*

Proof. Consider the polynomial;;,, defined as follows:

Pin(Z,W)= > > > ammHMWy- (72)

HE%fj*d* ME%,]'* Ze[k]*]

which is the sub-polynomial if? consisting of monomials containing exactly ow;--variable. Note that
terms on the RHS of7R) for ¢ > 1 are contained iPomit.
FixaHM € #_j«q- o M_;- andi € [k;«]. Under the linear transformatioW ;- — Y ;- we have

Cangii) = D CHMICL (73)
le[kj]
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where thecy y, . . ., ez, are thel'” coordinates of vectors;, . . ., cr (as in Sectior). Recall thatc;, c;/) =
0 for all ¢ # ¢. Therefore

Z %IMY* = H Z O‘H,M,ZCZHQ (74)

i€[kjx] 1€ k]
2
= Z HOéH,M,lClH (75)
lefk;+]
2
A M,
> afplle® = =2 (76)
j

To finish the proof, we note that for= 1 the RHS of {2) has contribution either from terms Uthd*)
or Qo. Summing over all pairé/ M € %_;+ and using the triangle inequality we obtain

v

> > % S > G, — Qe (77)

He‘%fj*d* Meﬂij* HE%*]*d* ME.%77*

HE%—j*d* Me%_J*
where we upper bounl)y|| % as follows:
1 2 da*
1Qol% < Pl < pIQN% = of D D chw (79)

HEX e MM

Tl6 > > Chaw, e (80)

He%—j*d* ME%_J-*

A

where inequalityl follows from Lemma6.4, inequality2 follows from Lemma6.5 and the last inequality
follows from Lemma6.6and our choice op. O

6.2.5 Completing the proof of Lemma6.3

Part1 follows from Lemma6.4 and Part2 follows directly from Lemmgb.5. For Part3, observe that the
LHS of Part3 (in Lemma6.3) is equal to the LHS of{1), which can be lower bounded using Claé8,
Lemma6.6and Lemmab.5 as follows

1 1
> (20dT)~ 1
iy 2 3 o) 2 <H§ T)
j*d* a*
o (d) 2
1 d *
> 20d7) =4 p? 2

which completes the proof.
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7 A Linear Mass Bound for Low Degree Polynomials

In this section we study the structure of polynomials over the variablgget. . ., Wr}. For a polynomial
P(Wy,...,Wr), dropping the subscript we ugé’|| to denote thez-norm of the coefficients of in the
monomial basis. LetU := erzl W;. DefineQ(W1,...,Wr) = U - S(Wy,...,Wr), a polynomial of
degreel + 1. For anyj € [T, write:

d
/=
o
QWy,...,Wr) = ZWf - Qj,e(Wj) (85)
=1

whereW_, = {W;};¢, for any listo of indices. The main result of this section is the following lemma
showing that for many € [T, theW;-linear sub-polynomial); ; has significant mass:

Lemma 7.1. For polynomialsS and @ as above, ifl" > 2d, there are at least’/2 choices ofj € [T] such
that | Q1| > (20d7)~%"||5].

The rest of this section is devoted to proving Lemma

7.1 The Variable Removal Lemma

The key ingredient that is needed to prove this is the following lemma that will tagiitely applied while
reducing the number of variables and the degree at each iteration:

Lemma 7.2 (Variable Removal) Letd > 1. For variablesX, Y, Z, suppose there are polynomiafs, So
of degreeal — 1, polynomialsR,, R, of degreel — 2, and error polynomial\*, AY of degreei satisfying:

(aX =Y = 2)81(Y,Z)+ AX(X,Y, Z) + X’R(X,Y, Z)
= (aY — X — 2)S2(X,Z)+ AY(X,Y,Z) + Y2Ry(X,Y, Z). (86)
Then,
S1(Y, Z) = ((a +1)Y - z) C(Z) + Y2AL(Y, Z) + A(Y, Z)
where A is such that||A|| < 20amax(||AX]|,|[|AY]). Furthermore, we haveleg(C(Z)) < d — 2,
deg(A1(Y,Z)) <d—3,anddeg(A(Y, Z)) < d — 1.
Proof. We write the polynomials$; andS, in the following way':
S1(Y,2) = Y A(Y,Z2)+Y  Bi(Z)+ Z-C1(Z) + Dy
S2(X,Z) = X?-As(X,Z)+ X - By(Z)+ Z - Co(Z) + Ds
Note thatC4 (Z) andA; (Y, Z) can be of degree at mo$t- 2 andd — 3 respectively. Additionally, we write
the error polynomials as:
AY = X AS+Z-AF+ 7% AL(Z)+YZ-AF,(2)+ AN (XY, 2)
AY = X-AY+Z AL+ 2% A (2)+YZ-AV,(2)+ AV (X,Y,Z)

To be clear, the functions without any arguments, suahfasor AY are constants. The above decomposi-
tion is unigue. Now we match coefficients i@g).

’If d < 2, then some of the polynomials below are automatically
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1. Matching terms of the fornk Y Z=2, we get—C1(Z) + A, = —Co(Z) + ALY, = Co(Z) =
Ci(Z) + AL, — A,

2. Matching terms of the foriX Y920, we getaD; + AYX = —Dy+ AY = Dy = —aDy +AY — A
3. Matching terms of the forrx°Y°Z!, we get—D; + A% = —Dy+AY,. SubstitutingD, from above:

—Dy = —-Dy+AY — A¥ =aD; — (AY — A +(AY — AY)

which on rearranging gives Us; = ——< [A§ —A¥ — AL + A

4. MatchingX°Y!Z=! we get—B;(Z) — C1(Z) + A, = aC2(Z) + AY.,. SubstitutingC(Z) from
above,

~B1(Z) = aCy(Z)+C1(Z) + A}, — A,
= a(Ci(2)+ A% - A%) + Cu(2) + AV, - &Y,
= (a+1)C1(2) +a(A). — A) + AV, — AY,

Finally by substitutingB; (Z) and D, in the expression fof; (Y, Z) and collecting the error terms, we get

S1(Y,2) =Y?A(Y,Z) - Y [(a +1)C1(Z) +a(AY: — Ay) +AY, — A{EZ} + ZCy(Z) + Dy

(
=V2Ai(Y,2) ~ C(Z)|(a+ )Y — 2] - Y [a(AY — A%) + AV, - A
=l

(

CrTlAF - AF - (A% - aY)]
= Y24,(Y, Z) — C1(2) [(a +1)Y - Z} LAY, 2)

We obtain the lemma setting(Z) = —C1(Z) andA(Y, Z) = —-Y [a(A;2 —A%)+ AV, - A{fz]. The
upper bound o A|| follows by triangle inequality. Ol

7.2 Proof of Lemma7.1

Fix j € [T]. Comparing the coefficients of the sub-polynomial that are degiedV; in the expansion of
Q (see B85)) andU S (see 84)), we get

Qi1 (W) = Sjo+ Sj1(Wyy) Y W (87)

where) S W_, is the sum of all variables iWV_.,, for any listo of indices. Denot&); 1 (W ;) asAgl).

The proof is by contradiction i.e., we assume that more iz of the A§.1) polynomials have small

mass. We show first that there exist marg/such that the sub-polynomial 6fnot divisible bij2 retains
significant mass. This is achieved using Lemma Next, we apply Lemmag.2 and7.3 as well as the
degree bound oA to obtain a contradiction.
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7.2.1 Finding a non-quadratic sub-polynomial with significant mass

Lemma 7.3. Given a polynomialP on variablesiWy, ..., Wr of degreed such that||P|| = 1, let P =
WJZPj(Wl, s Wr) + Rj(Wy,...,Wr) for everyj € [T] whereR;(-) is the sub-polynomial which does
not contain asz factor. Then, ifl" > d, there existg € [T] such that|| R;|| > 42| PJ|.

Proof. Without loss of generality, assunijé’|| = 1 by rescaling. Suppose that for glie [d], || R;|| <71 =
4~2"_ We show that this violates the degree boundrouasing the following claim.

Claim 7.4. For every; € [d], if polynomialsH; and L; are defined such tha® = W7 --- W7 - H; + L;
and L; is not divisible byW2 - - - W2, then||L;|| < 4-nt/2".

This claim proves the lemma because it sho\lig|| < 4 - n/2*"" < 1/2, so||Hg4|| > 0 (since they

contribute disjoint monomials t®), and thereford” contains a monomial of degr@d, a contradiction. [

Proof of Claim7.4. The proof is by induction on. The base casg= 1 is clear, sincd.; = R;.
For the inductive step, suppose the claim is truejfer 1. Then, we have thdﬂ/ij +R; =P =

W2 W2 Hj_y + Ly with || L;_1|| < 4n"/? ", Write H;_, = W2H/ + L; whereL, is not divisible
by W?. Now, P = W¢ - - W2H; + W - - W2 L + Ly 1.

By looking at the terms divisible byi’?, we have thaf|W? P;|| = ||P;|| < |[Hj| + ||L;-1]. Since
1Pl > 1 —nand| L] <402, we get thaf| Hj[| > 1 — 8n/2"".

Let H; = HjandL; = W¢---W? L+ Lj_,. Then,

j—2 j—2
IL[1P =1 = | Hy|* = 1— | Hj|> <1—(1—8n"/*7)? < 169"/*

7.2.2 lterative expansion ofS

We are now ready to prove Lemn7al For contradiction, suppose thatax ;c (7o HA H < Chax =

(20dT)~3". *. By rescaling, we can assumé|| = 1. We expand the polynomid iteratively using Lemma
7.2. At each step, we shall use Lemiia to find al¥; variable such tha$ contains a sub-polynomial of
significant mass which is not divisible leQ.

As a first step, usingg(?) and the definition oﬁgl), for everyj € [T'/2], we can write:
S(W ( -3 W#) SWW ) + W2 - RO W) + Al (w) (88)

whereSi(l), Rl(l) andAg. ) are polynomials of degrees at madst 1, d — 2 andd respectively an¢|A] I <
Cmax- Becausdl’/2 > d, using Lemma/.3 and re-indexing, we can assume that the sub-polynomi&l of
not divisible byW? has/s-norm at least) := 42

Now, applying the variable reduction lemma (Lemia&) for everyj € [2,7/2], witha = 1, X =
Wi,Y = W, andZ = ) W, ;, we obtain that there exist polynomia$§2), R§.2) andAf) of degrees
d —2,d— 3 andd — 1 respectively such that

SI(Wear) = ( ZW#J) S W1 j) + W] RP (W) + AP (W)
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and||A§2)|| < 20CHhax- Again, by Lemmar.3 and re-indexing, we can ensure that the sub-polynomial of
Sg) not divisible byW2 has/y-norm at Ieast;HSfl) I|.

Applying the variable reduction lemma again with= 2, we obtain ponnomiaI§](.3), Rg.?’) andAg.?’) of
degrees! — 3,d — 4, andd — 2 respectively such that for anye [3,7/2]:

SEH (W p10) = (3Wj - Zstél,z,j) SN (Wo105) + W7 R (W s ) + A (W 5)
and|]A§3)H < 20% -2 - Chax. Continuing this way, we get that for evety< ¢ < j < T/2, there exist
polynomiaIsSj(E), R(.E) andAy) of degreesl — ¢,d — £ — 1, andd — ¢ 4 1 such that:

(e— 1) . )
Spo1 (W) = ( > Wy 11u{]}> S5 (W spe-1jug5})
+WE R( (W) + A (W 1)) (89)
and [|A; £)|| < (200)* 71 Chax. Here, S(O) S. Moreover, using Lemma‘f 3 we can assume that the
sub-polynomial otS‘é(Z 11) not divisible byW? haséz -mass at Ieast||Sé 1 Y.

For ¢ = d, we obtain a linear polynomlaﬂc(l 1 (W# .d—1) such that for every € [d,T/2], there
exists constanﬁj( ) and linear polynomlaAg ) such that:

Sc(ld,_ll)(Wyél,...,d—l) = (de - ZW;&L...@—L]‘) : Sj(d) + Aﬁ-‘” (Wi, d-1)

Note thathd) =0 because’a*c(ﬁ_ll) is not divisible bij2 being a linear polynomial.

Applying Lemma7.2 one final time, we get thaSC(Id)| < (40d)?Ciax. ON the other hand, we have the
following claim:

Claim 7.5. Forany0 < ¢ < T/2, HS )| > (4 )5_2%_

Proof. The proofis by induction. Fof = 0, the claim is true becauﬂé?éo)u = ||S|| = 1. For the induction,
note that by our choice of the indéxabove, the sub-polynomial cﬁée_*ll) not divisible byW} has/,-mass
at Ieasb7||5l§f_11) |I. Moreover, from 89) and triangle inequality this mass is at most

Y4 YA
1w =S Wog)SO )+ 1A%

So:
0 (¢—1 ¢
lewe = >~ Wo)S ) = nl S5V = 1457
> 77”53_1 | — (20€)£_10max
> 0t /T — 20(200) L Crax /T — (200) " Clax
>0t /T — 2(200) Cruax
The claim follows by observing(¢W, — EW#Z])Sy) | <T- ||S§€)||. O

ThereforeJSC(ld)\ > (n/T)%—2(20d)Cryax/T - But by our choice ofy andCyax, (7/T)4—2(20d)?Cryax /T >
(40d)4Cipax, SINCECmax ((40d) + 2(20d)?/T) < Cinax(80d)? < (1/4T)2" = (n/T)?. This is a contra-
diction.
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A Useful Tools and Results

Fact A.1. There exists a distribution of random variablgs. . ., gr such that eacly; is marginally N (0, 1),
Elgig;] = —1/(R — 1) forall i # j,and>"2 | g; = 0.

LemmaA.2. Letg = (g1 ...gr)" where{g;}, are as given in FacA.1, and suppos& = (z1...,7r)",
y = (y1...yr)" € R are orthogonal unit vectors such thét, x) = 0 and(1,y) = 0. Define,f := (x, g)
andh := (y,g). Then,f andg are independend (0, R/(R — 1)) random variables.
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Proof. We have,

= 71 (90)

The same holds fdE[kr?2]. For the second part of the lemma observe that,

E[fn] = > |zwBlgi]+ > Elgigilviys
= o
L J7F

& 1
= Z Tili — (R— 1> Z LilYj
' ]

jelR
L ji

= (14 50) o) = () eemtvn) = o (91)
O

Fact A.3 (Fact 3.4 in POSW11). Let P : R — R be a degreet polynomial over independent standard
normal variables which has at least one coefficient of magnitude atdearhen,||P||2 = /E[|P(x)|?] is

at least—%—.
aa(*h?)

B Comparing monomial and /,-masses

In this section, we relate the monomial mass of the polynomials with thairass under the distributian.

Lemma B.1. LetQ(Uy,...,Ur) be a polynomial of degreé > 1. LetQ(WLl, ..., Wi r) be the polyno-
mial obtained fromQ) (U1, ..., Ur) by the orthonormal transformation. WithandT' = 10d chosen as in
Section3, the following bounds hold:

1. 1QUy,...,Ur)|2 < (20dT)*|Q(W1 1, .., WiT)|lmon2
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2. 1fQ depends only on variablé$, . .., Ur then|| QW1 1, . . ., Wi.7)|lmon2 < (10dT)™||Q(Us, ..., Ur)|l2

Proof. For ease of notation, we shall denote variablgs, ..., Wir by Wy, ..., Wr. LetSt 4 be the set of
d
all multi-sets or{7] of size at mostl. Using the fact thaf’)) < (%) < (eT)? we havelSy 4| < (10T)%

Proof of Part 1.: For the first direction leQ (Uy, ..., Ur) = ZSGSM csUg, where the monomidls is
defined ad/s = [[,cg U™, Therefore,

%

QI3 = EDI[( > CSUS>2] (92)

SeST 4

< EDI[( > &)X U%)} (93)
SEST 4 SEST 4

= HQ(Ul,...,UT>rrion,2(EDI[ > UéD (94)

SGCS)T.,d

For the first term, we claim that

HQ(U17~--7UT)Hmon,2 HQ(UL-“,UT)Hmon,l
(1OT)3d||Q(Wla R WT)Hmon,l

(10T)4d||Q(W17 R WT)Hmon,Q

IA A IA

where the first inequality follows the fact th&f-norm is upper bounded by thg-norm, and the third
inequality follows fromCauchy-Schwarand|Sr 4| < (107)2?. The middle inequality can be argued as

follows. ConsidelUs = [];c 4 Uf(i). Then it can be expressed as in term$laf, . .., Wr as

T1(> am)™
i€S 1T

By construction, the linear transformati¢@ry, ..., Ur} — {Wy,..., Wr} is orthonormal(See section
4.1.9). Therefore each coefficient satisfias,;| < 1. Furthermore, there can be at m@gt distinct terms in
the expansion o/s. Therefore, the total contribution to the coefficient of a fixed monomiahftg can be
at most|cs|T?. Repeating the argument acrosssk 81,4 completes the argument.
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For upper bounding the expectation term3d)( fix a S € S 4. Then,

Ep, {Usﬂ = EDI[HUfS(i)}
ies
= [[Eo, {Ufs(i)] (SinceUl, ..., Ur are independebt
ies
< ]I Eo [ 25(} (Sincenﬁ<1>
i€s\{1}
1
< ]I @s@)
ieS\{1}
< (2[S])!

where steq follows from the well known fact that fog ~ N (0, 1), E[g¥] < k! for all k € Z . Therefore,
plugging in the upper bounds i84) we get

||Q<U1,...,U>mon2<EDI[ 3 US]) (107) 9 2d) 2D [ O(Wr... W) P

SE&Td

Proof of Part 2: For the second direction, we observe that

HQ(W17~--7WT)Hmon,2 S HQ(WL---uWT)Hmon,l (95)
< (10T)M|Q(Uss .., Ur) mons (96)
2 0dDY Qs ..., U (97)

where inequality again can be argued similarly to the previous direction (using the faciitfat. . ., Wr} —
{Uy,...,Ur} is again an orthonormal linear transformation).

For step2, we write Q(Us, . .., Ur) in the monomial basis df i.e.,Q(Us,...,Ur) = Y ¢csUs and
see that

|

with stepl following from FactA.3, and the last inequality uses the upper boundsary|.

= Y el S (GTDMQUs, .., Ur)s < (104TY|Q(Us, ..., Ur)||> (98)

mon,l Segn 4 SeEST_1,4

ZCSUS

S

C Comparison inequalities between Norms
Claim C.1. Given polynomials’; (W), P,(W) over variablesW = (W, ..., Wir), we have

[ PL(W) P2 (W) [lmon2 < [[P1(W)|lmon,1 | P2(W) |l mon,2-
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Proof. Let P1(W) =3y c 4 csWs. Then,

| PL(W)P3(W)|lmon2 = H Z CSWSPQ(W)‘
Wge.l

Y leslWsPa(W)llon,2
Wsell
= [[PL(W)llmon,1

mon,2

IN

P2 (W) Hm0n72

39

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il




