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Abstract

With any hypothesis class one can associate a bipartite graph whose vertices are
the hypotheses H on one side and all possible labeled examples X on the other side,
and an hypothesis is connected to all the labeled examples that are consistent with it.
We call this graph the hypotheses graph. We prove that any hypothesis class whose
hypotheses graph is mixing cannot be learned using less than 2Ω(log2 |H|) memory states
unless the learner uses at least a large number of |H|Ω(1) labeled examples. In contrast,
there is a learner that uses 2Θ(log|X | log |H|) memory states and only Θ(log |H|) labeled
examples, and there is a learner that uses only |H| memory states but a large number
Θ(|H| log |H|) of labeled examples. Our work builds on a combinatorial framework we
suggested in a previous work for proving lower bounds on space bounded learning. The
strong lower bound is obtained by considering a new notion of pseudorandomness for
a sequence of graphs that represents the learner.
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1 Introduction

Let H be a family of Boolean hypotheses. One can learn an hypothesis from H after seeing
O(log |H|) random labeled examples. Intuitively, this is true since a typical labeled example
cuts the number of possible hypotheses by a factor of two. However, learning with so few
examples requires enough memory to store Θ(log |H|) examples in memory. If X is the

family of possible labeled examples, then such a learner uses |X |Θ(log |H|) memory states.
It is also possible to learn H using many fewer memory states: enumerate the hypotheses
one by one, moving to the next hypothesis only after encountering a new labeled example
that is inconsistent with the current hypothesis. Such a brute force learner uses only |H|
memory states but requires an extravagant number Θ(|H| log |H|) of labeled examples. A

natural question is whether one can learn with both � |X |Θ(log |H|) memory states and
� |H| labeled examples.

Perhaps surprisingly, Raz [6] showed that parities (X = {0, 1}n × {0, 1} and H =

{⊕i∈Ixi|I ⊆ {1, . . . , n}}) cannot be learned unless the learner uses either |X |Ω(log |H|) =

2Ω(n2) memory states or |H|Ω(1) = 2Ω(n) labeled examples. Until recently, parities gave the
only hypothesis classes known with strong lower bounds on space-bounded learning1.

In this work we show that strong lower bounds hold for any hypothesis class that
satisfies a natural combinatorial condition about the mixing of a graph associated with the
class. This subsumes the result on parities and shows similar results for random classes
and classes that correspond to error correcting codes [5]. Many other applications follow
using the large body of research on combinatorial mixing (see, e.g., [1]). More details will
appear in the full version of this paper.

An hypothesis class can be described by a bipartite graph whose vertices are the hy-
potheses H and the labeled examples X , and whose edges connect every hypothesis h ∈ H
to the labeled examples (x, y) ∈ X that are consistent with it, i.e., h(x) = y. We say that
the hypothesis class is d-mixing if for any set of hypotheses A ⊆ H and any set B ⊆ X
of labeled examples it holds that ||E(A,B)| − |A||B|/2| ≤ d

√
|A||B|, where E(A,B) is

the set of edges between A and B in the hypotheses graph. For instance, for parities,
d = Θ(

√
|X |) (see, e.g., [5]). We prove that mixing hypothesis classes admit strong lower

bounds on space-bounded learning.

Theorem 1 (main theorem). If the hypotheses graph is d-mixing, m := |H||X |
d2 and |H| are

at least some constants, then any learning algorithm that outputs the underlying hypothesis
with probability at least m−Θ(1) must use at least 2Ω(log2m) memory states or mΩ(1) labeled
examples.

1Kol, Raz and Tal [3] generalized Raz’s work to parities on l variables out of n, showing that either

2Ω(nl) memory states or 2Ω(l) examples are needed, and for l ≤ n0.9, either 2Ω(nl0.99) memory states or lΩ(l)

examples are needed. Note: (1) For small l there are learners with both � |X|Ω(log |H|) = nΩ(nl) memory

states and � |H|Ω(1) = nΩ(l) examples [3]. (2) The work [3] implies lower bounds for classes that contain
parities on l out of n variables. To get a result for interesting classes, like DNFs or decision trees, one can
pick l ≈ logn, but then the lower bounds are weak.

1



A similar theorem holds if the learner only approximately learns the underlying hypoth-
esis [5].

1.1 Related Work

In this work we rely on a combinatorial framework – henceforth referred to as the low
certainty framework – that we introduced in a previous work for analyzing space-bounded
learning [5]. In [5] the bound on the number of memory states was only ≈ |H|1.25 (the
bound on the number of labeled examples was the optimal |H|Ω(1)). Independently of
those two works (the current work and [5]) Raz [7] showed a result similar to the one in
the current paper, relying on a spectral mixing condition instead of a combinatorial mixing
condition.

1.2 Key Ideas

A key object in the combinatorial framework of [5] is the knowledge graph of the algorithm
at various time steps. The knowledge graph is a bipartite graph, where one side corresponds
to memory states and the other side corresponds to the possible hypotheses. There is an
edge (m,h) between a memory state m and an hypothesis h for every sequence of labeled
examples that is consistent with h and leads to m at the relevant time step. For every
memory state, its neighborhood in the knowledge graph corresponds to the probability
distribution over the possible hypotheses conditioned on landing in the memory state at
the relevant time step. In this respect, the knowledge graph captures exactly the knowledge
of the algorithm about the underlying hypothesis at the time step.

The paper [5] defines the notion of certainty. Low certainty implies that there are
many plausible hypotheses for a typical memory state, whereas high certainty implies that
one can guess the underlying hypothesis with good probability given the memory state.
The combinatorial framework centers around bounding the certainty at every step of the
algorithm, showing that it can only go up sufficiently after many time steps (i.e., after
seeing many labeled examples).

Towards the goal of bounding the certainty, the work [5] shows that when the hypothe-
ses graph is mixing and the space is sufficiently bounded, the knowledge graph remains
“pseudorandom” throughout the execution of the algorithm. The intuition is that thanks
to the bounded space very little information can be known about the underlying hypothe-
sis provided that only bounded information is known about the memory state. The exact
notion of “psuedorandom” is similar to an extractor property, except that the knowledge
graph is determined by the algorithm and may be highly irregular, so we cannot use the
standard definitions of extractor and min-entropy, but rather more general notions that we
develop.

Unfortunately, an extractor-like property no longer holds when we wish to rule out
learners that use, say, |X |2 memory states, let alone when the number of memory states
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is |X |Θ(log |H|). In this case the algorithm may store a whole labeled example in memory,
and a large set of memory states may only span hypotheses consistent with that example
(about half of the hypotheses). In order to handle this case, we introduce a new notion
of pseudorandomness for the knowledge graph. The notion is a suitably enhanced sampler
with multiplicative error. We describe it next without the modifications required due to
irregularity.

We say that the knowledge graph is a sampler with multiplicative error L if the following
property holds: For every probability distribution p with sufficient min-entropy k over the
memory states M, for every sufficiently large H ⊆ H, the set H is sampled according to
its fraction, up to a multiplicative error L, i.e.:∑

m∈M
p(m) · |E(m,H)|

|E(m,H)|
≤ L · |H|

|H|
,

where E(·, ·) denotes the set of edges between given memories and hypotheses in the knowl-
edge graph. For intuition, consider the case where the algorithm stores some of the labeled
examples in memory. While the algorithm knows certain information about the hypothesis
(it is consistent with the stored examples), the amount of information is limited. Hence,
the probability of certain events H may grow, but not too much. Indeed, one can show
that if the knowledge graph is a sampler with low multiplicative error throughout the ex-
ecution of the algorithm, then the required lower bound follows. However, to prove that
the sampler invariant is preserved, we need an enhanced property that we discuss next.

In our enhanced notion, for every probability distribution p over memories, we wish
to benefit from memory states m whose probability is much lower than 2−k, where k is
p’s min-entropy. The intuition is that such memories can be thought of as coming from
a much higher “entropy level”, and hence should give rise to a much lower multiplicative
factor than the rest of the memories. Formally, for every m ∈M, denote p(m) = 2−k · γkm
where γ is a parameter related to the mixing of the hypotheses graph and km ≥ 0. We’d
like the following condition to hold:∑

m∈M
p(m) · |E(m,H)|

|E(m,H)|
· 2km ≤ L · |H|

|H|
.

We show that the knowledge graph is a sampler with low multiplicative error by induction
on the time t in the execution of the algorithm. Every probability distribution over mem-
ories at time t+ 1 corresponds to a probability distribution over memories at time t. This
distribution depends on the likelihood of transitions to the time t+ 1 memories. Moreover,
roughly speaking, less likely transitions from time t to time t + 1 may give a lot of infor-
mation about the underlying hypothesis. The enhanced notion guarantees that even after
taking the new information into account, we still have a sampler with multiplicative error
(the actual analysis is quite involved, partly because it takes irregularity into account).
The enhanced sampler notion might be of independent interest for pseudorandomness.
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2 Preliminaries

log(·) always means log2(·). The following claims were proven in [5]:

Claim 2. Let p be a probability distribution over a set A with
∑

i∈A p(i)
2 ≤ r. Then, for

every A′ ⊆ A it holds that
∑

i∈A′ p(i) ≤
√
|A′|r.

Claim 3 (generalized law of total probability). For any events A,B and a partition of the
sample space C1, . . . , Cn,

Pr(A|B) =
∑
i

Pr(A|B,Ci) Pr(Ci|B).

Claim 4 (generalized Bayes’ theorem). For any three events A,B,C,

Pr(A|B,C) = Pr(B|A,C)
Pr(A|C)

Pr(B|C)

Claim 5. Suppose B1, . . . , Bn are some disjoint events. Then,

Pr(A|B1 ∪ . . . ∪Bn) =
n∑
i=1

Pr(A|Bi)
Pr(Bi)

Pr(B1 ∪ . . . ∪Bn)
.

2.1 Mixing

For a bipartite graph (A,B,E), A are the left vertices and B are the right vertices. For
sets S ⊆ A, T ⊆ B let

E(S, T ) = {(a, b) ∈ E|a ∈ S, b ∈ T}.

For a ∈ A (and similarly for b ∈ B) the neighborhood of a is Γ(a) = {b ∈ B|(a, b) ∈ E},
and the degree of a is da = |Γ(a)|. If all da are equal, we say that the graph is da-left
regular or just left regular. We similarly define right regularity.

Definition 6 (mixing). We say that a bipartite graph (A,B,E) with average left degree
d̄A is d-mixing if for any S ⊆ A, T ⊆ B it holds that∣∣∣∣|E(S, T )| − |S||T |

|B|/d̄A

∣∣∣∣ ≤ d
√
|S||T |

Definition 7 (sampler). A bipartite graph (A,B,E) is an (ε, ε′)-sampler if for every T ⊆ B
it holds that

Pr
a∈A

(∣∣∣∣ |Γ(a) ∩ T |
da

− |T |
|B|

∣∣∣∣ > ε

)
< ε′,

where a is sampled uniformly.
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We say that a vertex a ∈ A samples T correctly if

∣∣∣∣ ∣∣Γ(a)∩T
∣∣

da
− |T ||B|

∣∣∣∣ ≤ ε. The sampler

property implies that there are only a few vertices S ⊆ A that do not sample T correctly.

Claim 8 (Mixing implies sampler). If a bipartite graph (A,B,E) is d-mixing and dA-left

regular then it is also an (ε, 2d2|B|
d2
Aε

2|A|)-sampler for any ε > 0. Specifically, if dA = |B|/2 then

the graph is an (ε, 8d2

|B||A|ε2 )-sampler for any ε > 0.

Proof. See Claim 13 in [5].

3 The Low Certainty Framework

In this section we will summarize the main components of the combinatorial framework
presented in our earlier work [5].

3.1 Hypotheses Graph

The hypotheses graph associated with an hypothesis class H and labeled examples X is
a bipartite graph whose vertices are hypotheses in H and labeled examples in X , and
whose edges connect every hypothesis h ∈ H to the labeled examples (x, y) ∈ X that are
consistent with h, i.e., h(x) = y.

Let us explore a few examples of hypothesis classes with mixing property.
parity. The hypotheses in PARITY (n) are all the vectors in {0, 1}n, and the labeled

examples are {0, 1}n × {0, 1} (i.e., |H| = 2n and |X | = 2 · 2n).

Lemma 9 (Lindsey’s Lemma). Let H be a n × n matrix whose entries are 1 or −1 and
every two rows are orthogonal. Then, for any S, T ⊆ [n],∣∣∣∣∣∣

∑
i∈S,j∈T

Hi,j

∣∣∣∣∣∣ ≤√|S||T |n.
Lindsey’s Lemma and Claim 11 from [5] imply that the hypotheses graph of PARITY (n)

is O(
√
|X |)-mixing.

random class. For each hypothesis h and an example x, we have h(x) = 1 with
probability 1/2. The hypotheses graph is a random bipartite graph. It is well known that
this graph is mixing (see [4]).

We can rephrase Claim 8 for the hypotheses graph and get

Proposition 10. If a graph (H,X , E) is d-mixing then it is also (ε, 8d2

|H||X |ε2 )-sampler for
any ε > 0.
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3.2 H-expander

The main notion of expansion we will use for the hypotheses graph is H-expander, as we
define next (H stands for Hypotheses graph). This notion follows from mixing (Defini-
tion 6).

Definition 11 (H-expander). A left regular bipartite graph (A,B,E) with left degree dA
is an (α, β, ε)-H-expander if for every T ⊆ B,S ⊆ A, with |S| ≥ α|A|, |T | ≥ β|B| it holds
that ∣∣∣∣|E(S, T )| − |S||T |

|B|/dA

∣∣∣∣ ≤ ε|S||T |.
For example, the hypotheses graph (H,X , E) is left regular with left degree |X |/2, so

in this case the denominator |B|/dA will be equal to 2.
Note the following simple observation that relates mixing and H-expander.

Proposition 12. If a graph (H,X , E) is d-mixing then it is also (α, β, 2d√
α|H|β|X |

) −
H-expander, for any α, β ∈ (0, 1).

3.3 Knowledge Graph

Definition 13 (knowledge graph). The knowledge graph at time t of a learning algorithm
with memory statesM for an hypothesis class H is a bipartite multigraph Gt = (H,M, Et)
where an edge (h,m) ∈ Et corresponds to a series of t labeled examples (x1, y1), . . . , (xt, yt)
with h(xi) = yi for every 1 ≤ i ≤ t and the algorithm ends up in memory state m after
receiving these t examples.

At each step we will remove a tiny fraction of the edges from the knowledge graph and
we focus only on the memories Mt — denote this graph by G′t. We can read off from this
graph the probability qt(h,m) which indicates the probability that the algorithm reached
memory m after t steps and all examples are labeled by h. The probability qt(h,m) is
proportional to the number of edges E′t(m,h) between a memory m and an hypothesis
h in the graph G′t. We can also observe the conditional probability qt(m|h) which is
the probability that the algorithm reached memory state m given that all the examples
observed after t steps are consistent with hypothesis h. We can deduce the probability of a
memory m: qt(m) =

∑
t qt(m|h)qt(h). We can also find the probability of a set of memories

M ⊆M, qt(M) =
∑

m∈M qt(m). If the algorithm, after t steps, is in memory state m, we

can deduce the probability that the true hypothesis is h, qt(h|m) = qt(m|h)qt(h)
qt(m) .

3.4 K-expander

To achieve the new results we need a different definition of pseudorandomness of the knowl-
edge graph. This definition will be discussed in Section 4.
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3.5 Certainty

Throughout the analysis we will maintain a substantial set of memories Mt ⊆ M and a
set of hypotheses Ht ⊆ H. At time t we pick the underlying hypothesis uniformly from
Ht and only consider memories in Mt. Initially, before any labeled example is received,
H0 = H and M0 contains all the memories. At later times, Ht and Mt will exclude certain
bad hypotheses and memories.

In this section we define the key notion of certainty. The certainty of a memory captures
the information it has on the underlying hypothesis, whereas the certainty of an hypothesis
captures the information it has on the memory state to be reached assuming the hypothesis
was picked. We further define the average certainty over all memories or hypotheses. We
will consider memories or hypotheses that are “certain above average” as bad. An algorithm
that successfully learns H will transform from having low average certainty at the initial
stage to having high average certainty by its termination. Our argument will show that
this increase in average certainty must take a long time.

First, we define the certainty of memories.

Definition 14 (certainty). The certainty of a memory m at time t is defined as∑
h

qt(h|m)2.

The average certainty of a set of memories M at time t is defined as

cert(M) :=
∑
m∈M

qt(m)
∑
h

qt(h|m)2.

If, for example, all the hypotheses could have caused the algorithm to reach m with the
same probability, then m’s certainty is

∑
h qt(h|m)2 = 1

|H| (e.g., this holds for the initial

memory). If, on the other hand, given a memory m there is only one hypothesis h∗ that
caused the algorithm to reach this memory m then m’s certainty is

∑
h qt(h|m)2 = 1.

To simplify the notation we write cert(m) when we mean cert({m}) = qt(m)
∑

h qt(h|m)2,
i.e., the average certainty with the set {m} of memories.

At each time t we will focus only on memories that are not too certain, i.e., whose
certainty is not much more then the average certainty. Using Markov’s inequality we will
prove that with high probability the algorithm only reaches these not-too-certain memories.
Let us define this set more formally,

BadcM =

{
m ∈M

∣∣∣∣∑
h

q2
t (h|m) > c · cert(Mt)

}
,

for some c > 0, that is of the order |H|ε, for some small constant ε. Oftentimes, we will
omit c when it is clear from the context. For all t ≥ 1 we will make sure that Mt will
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not include BadcM (and additional memories, as will be defined in later sections). The
next claim proves that removing bad memories does not reduce the weight too much. The
following claims are proved in [5].

Claim 15. For any c > 0 and time t, qt(Bad
c
M ) ≤ 1/c

There is an equivalent definition of certainty in terms of the certainty of the hypothesis,
rather than the memory.

Claim 16. For each memory m, hypothesis h and time t

qt(m)qt(h|m)2 = qt(h)qt(h|m)qt(m|h)

In particular we can prove

Claim 17. The average certainty is also equal to

cert(M) =
∑
h∈H

qt(h)
∑
m∈M

qt(h|m)qt(m|h).

We can therefore define the certainty of an hypothesis h, when focusing on a set of
memories M as ∑

m∈M
qt(h|m)qt(m|h)

Given the last claim in mind we define

BadcH = {h ∈ H
∣∣ ∑
m∈Mt

qt(m|h)qt(h|m) > c · cert(Mt)}.

Oftentimes, we will omit c when it is clear from the context.
Define H1 = H and for t > 1, Ht+1 = Ht \ BadH . We will define the distribution over

the hypotheses at time t by qt(h) = 1
|Ht| if h ∈ Ht, else qt(h) = 0. Next claim proves that

Ht is large.

Claim 18. For any c > 0, |Ht+1| ≥ (1− 1/c)|Ht|.

In the rest of the paper we will prove that the average certainty of Mt, even for a large
t ∼ log c, will be at most c

|H| , and in Section 7 we choose c ∼ log |H||X |
d2 .

In the next claim we will show that small certainty, small fraction of edges removed
and qt(Mt) ≈ 1 imply that learning fails after t steps.

Claim 19. Suppose that the learning algorithm ends after t steps, |Ht| ≥ 3 and at most γ
fraction of the edges were removed from the knowledge graph. Then, there is an hypothesis
h such that the probability to correctly return it is at most

3
√
c · cert(Mt) + 3(1− qt(Mt)) + γ
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We also define a weighted certainty using a weight vector w of length |M| and each
coordinate in w is some value in [0, 1] by

certw(M) =
∑
m∈M

qt(m)wm · q2
t (h|m).

Note that if w is the all 1 vector then certw(M) = cert(M).

3.6 Representative Labeled Examples

For each memory m at time t, a representative labeled example x is one with qt(x|m) equal
roughly to 1

|X | . In particular, given m and the unlabeled example, the probability to guess

the label is roughly 1/2.

Definition 20. Let m be a memory state at time t, and let εrep > 0. We say that a labeled
example x is εrep-representative at m if

1− εrep

|X |
≤ qt+1(x|m) ≤ 1 + εrep

|X |

We denote the set of labeled examples that are not εrep-representative at m by NRep(m, εrep).

In [5] a weaker notion of NRep with some specific constant εrep was used.

Claim 21. Let m be a memory in the knowledge graph at time t with certainty bounded
by r, i.e.,

∑
h qt(h|m)2 ≤ r, assuming the hypotheses graph is an (α, β, ε) − H-expander,

|NRep(m, 4
√
α|H|r + 4ε)| ≤ 2β.

We prove this claim in Section 3.6.1.

3.6.1 Auxiliary Claims

The next claim will imply an equivalent definition for NRep.

Claim 22. For any set of labeled examples S ⊆ X and a memory m it holds that

qt+1(S|m) =
∑
h

Pr(S|h)qt(h|m).

Proof. Using Claim 3 we know that

qt+1(S|m) =
∑
h

qt+1(S|m,h)qt(h|m)

=
∑
h

Pr(S|h)qt(h|m)

9



Using Claim 22, we know that the not-representative set NRep(m, εrep) is also equal
to{

x ∈ X |
∑
h∈H

Pr(x|h)qt(h|m) <
1− εrep

|X |

}
∪

{
x ∈ X |

∑
h∈H

Pr(x|h)qt(h|m) >
1 + εrep

|X |

}
.

We would like to prove that NRep(m, εrep) is small for any memory with small certainty.
Note that

qt(h|m,x) ∝ qt(h|m)I(x,h)∈E ,

where I(x,h)∈E means that x and h are connected in the hypotheses graph (this follows from

Claim 4 with A = {h}, B = {x}, C = {m} and qt(x|h,m) = qt(x|h) = 2
|X |I(x,h)∈E). This

probability distribution can be imagined as if it were constructed by taking the hypotheses
graph and adding weight qt(h|m) to every hypothesis h. Keeping this observation in mind
we need some new notation.

Suppose there is a weight wi for each hypothesis in the hypotheses graph (H,X , E).
Then, define the weights between sets S ⊆ H and T ⊆ X by w(S, T ) :=

∑
s∈S,t∈T w(s)I(s,t)∈E

and w(S) :=
∑

s∈S w(s). We would like to prove that even if there are weights on the hy-
potheses the hypotheses graph is still pseudo-random. More formally, we will use the
following definition.

Definition 23. We say that a left regular bipartite graph (A,B,E) is (β, ε)−weighted-expander
with weights w1, . . . , w|A|,

∑
iwi = 1, ∀i, wi ≥ 0, and left degree dA if for every S ⊆ A and

T ⊆ B, |T | ≥ β|B| it holds that∣∣∣∣w(S, T )− w(S)

|B|/dA
|T |
∣∣∣∣ ≤ ε|T |

The next claim proves that any H-expander is a also a weighted-expander assuming low
`22 weights.

Claim 24. If the hypotheses graph (H,X , E) is an (α, β, ε)− H-expander and
∑|H|

i=1w
2
i ≤

r then the hypotheses graph is a (β, 2ε + 2
√
α|H|r) − weighted-expander with weights

w1, . . . , w|H|.

You can find the proof of this claim in [5]. Next we will prove our main claim in this
section.

Proof. (of Claim 21) Denote ε∗ = 4
√
α|H|r + 4ε. Define T1 = {x|

∑
h∈H Pr(x|h)qt(h|m) <

1−ε∗
|X | } and define weights to hypotheses w(h) = qt(h|m). From the definition of T1 we know

that ∑
h∈H,x∈T1

Pr(x|h)qt(h|m) <
|T1|(1− ε∗)
|X |

.
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The left term is equal to ∑
h∈H,x∈T1

2

|X |
I(x,h)∈Eqt(h|m) = w(H, T1)

2

|X |

Assume by a way of contradiction that |T1| ≥ β|X |, then Claim 24 implies that

w(H, T1)
2

|X |
≥

(
w(H)

2
|T1| − 2(

√
α|H|r + ε)|T1|

)
2

|X |

=
|T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε

2|T1|
|X |

,

where the equality follows from the fact that w(H) = 1.
Thus

|T1|(1− ε∗)
|X |

>
|T1|
|X |
− 2
√
α|H|r2|T1|

|X |
− 2ε

2|T1|
|X |

,

⇒ 4
√
α|H|r + 4ε > ε∗.

But the latter contradicts the definition of ε∗. Hence we can deduce that |T1| < β|X |.
Similarly, define T2 = {x|

∑
h∈H Pr(x|h)qt(h|m) > 1+ε∗

|X | }. Assume by a way of contra-

diction that |T2| ≥ β|X | then

(1 + ε∗)|T2|
|X |

<
∑
h∈H

Pr(T2|h)qt(h|m) ≤ |T2|
|X |

+ 2
√
α|H|r2|T2|

|X |
+ 2ε

2|T2|
|X |

,

where the left inequality follows from the definition of T2 and the right inequality follows
from Claim 24. So again we conclude that |T2| < β|X |.

3.7 Decomposition to Heavy and Many Steps

We show that the certainty does not increase much with a single step of the algorithm.
To this end, we decompose almost all the transitions of the bounded space algorithm to
two kinds: either a heavy-sourced or many-sourced. A heavy-sourced memory state at time
t + 1 is one to which the algorithm moves from a memory state at time t via any labeled
example from a large family of labeled examples. A many-sourced memory state at time
t + 1 is one that has many possible time-t sources. We analyze each kind of transition
separately using H-expansion and K-expansion. For more details see [5].

4 Knowledge Graph Remains K-Expander

In this section we define a pseudorandom property, called K-expander, for the knowledge
graph. We then prove that a K-expander remains a K-expander even in the face of a new
labeled example, provided that the certainty is low and the hypotheses graph is mixing.
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Definition 25 (enlarging distribution). We say that a distribution p over the memories is
(β, γ)-enlarging with respect to a probability distribution q if for every memory m it holds

that p(m) ≤ q(m)
β and if p(m) > 0 then p(m) ≥ q(m)

β · γ.

β and γ provide a certain measure of the entropy in p. As usual, it is useful to use
a logarithmic scale to measure the entropy and our log scale will be with respect to a
parameter γ0 associated with the hypothesis class.

Definition 26 (entropy-level). The (p, q, β, γ0)-entropy-level of an element m is defined
as

eγ0(m) = logγ0

p(m)β

q(m)
.

In other words, if p(m) = qt(m)
β γi0, then eγ0(m) = i.

Definition 27 (K-expander). We say that the knowledge graph G′t is an (α, β, `, γ0, k) −
K-expander if for every H ⊆ H with |H| ≥ α|H| and every (β, γk0 )-enlarging distribution p
it holds that ∑

m

Pr(H|m)p(m)2eγ0 (m) ≤ ` · |H|
|H|

The usual definition of sampler with multiplicative error is∑
m

Pr(H|m)p(m) ≤ ` · |H|
|H|

.

Our definition requires more and seeks to benefit from memory states whose probability is
much lower than qt(m

t)/β.
Denote by Sm

t,mt+1 ⊆ X the examples that cause the memory to change from mt to
mt+1.

Claim 28. Let t ≥ 1. Assume that the following conditions hold:

1. The hypotheses graph is d-mixing.

2. The graph G′t is an (α′, β′, `, γ0, k)−K-expander.

3. All the edges (mt,mt+1) with labeled example x in G′t are representative, i.e., qt+1(x|mt) /∈
NRep(mt, εrep).

4. All memories have low certainty, i.e., for all mt in G′t, cer(m
t) ≤ c · cert(Mt) and

cert(Mt) ≤ c/|H|.

5. β′ ≥ γk−1
0 and α′ ≥ 2k+2√γ0 + 2k+2 · c ·

√
16
γ11

0
· d2

|X ||H| .

6. εrep ≤ 1/2, and γ0 ≤ 1/16.

12



Then, G′t+1 is an (α′, β′,
(
1 + 10

√
γ0 + 2εrep

)
`, γ0, k)−K-expander

Proof. We can define a distribution qt+1 over pairs (mt, Sm
t,mt+1

) where mt is a memory
at time t and Sm

t,mt+1 ⊆ X is the set of labeled examples that lead from mt to mt+1, in
the following way

qt+1(mt, Sm
t,mt+1

) := qt(m
t)qt+1(Sm

t,mt+1 |mt).

Fix a β′-enlarging distribution p (with respect to qt+1) over memories at time t + 1 and

denote its support by Mt+1. For each mt+1 ∈ Mt+1, denote p(mt+1) = qt+1(mt+1)
β′
mt+1

, for

β′mt+1 ≥ β′. This induces the distribution p(mt, Sm
t,mt+1

) := qt(mt)qt+1(Sm
t,mt+1 |mt)

β′
mt+1

. Indeed,

p(mt+1) =
qt+1(mt+1)

β′
mt+1

=

∑
mt qt+1(mt, Sm

t,mt+1
)

β′
mt+1

=
∑
mt

p(mt, Sm
t,mt+1

)

The probability that p induces on memories at time t is

p(mt) :=
∑
mt+1

p(mt, Sm
t,mt+1

) = qt(m
t)
∑
mt+1

qt+1(Sm
t,mt+1 |mt)

β′
mt+1

.

Fix H ⊆ H with |H| ≥ α′|H|. In order to prove the claim, we would like to bound the
expression ∑

mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2eγ0 (mt+1)

=
∑

mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2
logγ0

p(mt+1)β′

qt+1(mt+1)

(1)

The proof consists of five steps:
Step 1: Rewrite Expression 1 in terms of memories at time t:

13



Since p(mt+1) = qt+1(mt+1)
β′
mt+1

, Expression (1) is equal to

∑
mt+1∈Mt+1

qt+1(H|mt+1)p(mt+1)2
logγ0

β′
β′
mt+1

(definition of mt+1) =
∑

mt+1∈Mt+1

qt+1(H| ∨mt (mt, Sm
t,mt+1

))p(mt+1)2
logγ0

β′
β′
mt+1

(Claim 5) =
∑

mt+1∈Mt+1

mt∈Mt

qt+1(H|mt, Sm
t,mt+1

)
qt+1(mt, Sm

t,mt+1
)

qt+1(mt+1)
p(mt+1)2

logγ0

β′
β′
mt+1

(definition of p) =
∑

mt+1∈M
mt∈Mt,h∈H

qt+1(h|mt, Sm
t,mt+1

)
qt+1(mt, Sm

t,mt+1
)

qt+1(mt+1)

qt+1(mt+1)

β′
mt+1

2
logγ0

β′
β′
mt+1

=
∑

mt+1∈M
mt∈Mt,h∈H

qt+1(h|mt, Sm
t,mt+1

)
qt(m

t)qt+1(Sm
t,mt+1 |mt)

β′
mt+1

2
logγ0

β′
β′
mt+1

(Claim 4) =
∑

mt+1∈Mt+1

mt∈Mt,h∈H

qt(h|mt)
qt+1(Sm

t,mt+1 |mt, h)

qt+1(Smt,mt+1 |mt)

qt(m
t)qt+1(Sm

t,mt+1 |mt)

β′
mt+1

2
logγ0

β′
β′
mt+1

(definition of qt+1) =
∑

mt∈Mt,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 (2)

In the next steps we will prove that for most memories mt and for most hypotheses h
the term inside the outer sum in (2) is bounded, that is,

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 . qt(h|mt)p(mt)2eγ0 (mt) (3)

Moreover, the effect of the other memories and hypothesis is negligible. Proving the
latter will finish the proof since G′t is a K-expander.

1. In step 2 we show that memories mt with low p(mt) do not add much to Expres-
sion (2).

2. In step 3 we focus on a memory mt whose p(mt) is now low. To show that Inequal-

ity (3) holds for most hypotheses h we first recall that since p(mt) = qt(m
t)
∑

mt+1
qt+1(Sm

t,mt+1 |mt)
β′
mt+1

,

14



we need to prove that∑
mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 .

∑
mt+1

qt+1(Sm
t,mt+1 |mt)

β′
mt+1

2eγ0 (mt) (4)

In step 3 we show that for most hypotheses h it holds that

Pr(Sm
t,mt+1 |h) ∼ |S

mt,mt+1 |
|X |

∼ qt+1(Sm
t,mt+1 |mt).

3. In step 4 we show that the hypotheses that are not considered in the previous step
do not add much to Expression (2).

4. In step 5 we would like to show that Inequality (4) holds. After step 3 and the
definition of eγ0(m) this is merely showing that

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |mt)

β′
mt+1

2
logγ0

β′
β′
mt+1 .

(∑
mt+1

qt+1(Sm
t,mt+1 |mt)

β′
mt+1

)
2

logγ0
β′

∑
mt+1

qt+1(Sm
t,mt+1

|mt)
β′
mt+1

This is proved in step 5 using Jensen’s inequality.

5. In step 6 we sum everything up.

Step 2: getting rid of low p-weight memories at time t: In order to use the as-
sumption in the claim regarding the K-expander property of G′t, we need to make sure that

for each memory mt at time t, p(mt) = 0 or p(mt) ≥ qt(mt)

β′/γk0
. Denote by Low the set of all

memories mt at time t with 0 < p(mt) < qt(mt)

β′/γk0
. Note that this set has low p-weight

p(Low) =
∑

mt∈Low

p(mt) <
∑

mt∈Low

qt(m
t)
γk0
β′
≤ γk0
β′
≤ γ0, (5)

where the last inequality is true since β′ ≥ γk−1
0 . Thus, by setting the probability of the

memories in Low to 0, the remaining memories need to be multiplied by a factor of at
most 1/(1 − γ0) (i.e., by a factor that is close to 1) so as to make it a distribution again.
More formally, we divide the sum that we want to bound, Expression (2), into two sums
depending on the membership in Low:∑

mt∈Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 +

+
∑

mt∈Mt\Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1

(6)
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For mt ∈ Low, the expression 2
logγ0

β′
β′
mt+1 is at most 2k (since qt+1(mt+1)

β′
mt+1

= p(mt+1) ≥
qt+1(mt+1)γk0

β′ for any mt+1). Thus, the first term in Expression (6) is at most

∑
mt∈Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

· 2k

(see Claim 30) ≤
∑

mt∈Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

2(1 + 2εrep)qt+1(Sm
t,mt+1 |mt)

β′
mt+1

· 2k

(definition of p(mt)) =
∑

mt∈Low

qt(H|mt)2k+1(1 + 2εrep)p(mt)

(qt(H|mt) ≤ 1, εrep ≤ 1/2) ≤ 2k+2
∑

mt∈Low

p(mt)

(see Inequality (5)) ≤ 2k+2γ0 (7)

Denote s = p(Low). The second term in Expression (6) is equal to

(1− s)
∑

mt∈Mt\Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

(1− s)β′
mt+1

2
logγ0

β′
1−s
1−s ·β

′
mt+1

which is at most

∑
mt∈Mt\Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

(1− s)β′
mt+1

2
logγ0

β′
(1−s)β′

mt+1 · 2logγ0
1−s

Using Claim 32, γ0 ≤ 1/16, and Inequality (5), it is at most

(1 +
√
γ0)

∑
mt∈Mt\Low,h∈H

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

(1− s)β′
mt+1

2
logγ0

β′
(1−s)β′

mt+1 (8)

We define a distribution p′ over memories at time t: if mt ∈ Low then p′(mt) = 0, else
p′(mt) = p(mt)/(1− s). For convenience, we henceforth denote (1− s)β′mt+1 by β′mt+1 .

Step 3: Pr(Sm
t,mt+1 |h) ∼ |S

mt,mt+1 |
|X | ∼ qt+1(Sm

t,mt+1 |mt): Focus on a memory mt /∈

Low. In this step we will prove that for most hypotheses h the term Pr(Sm
t,mt+1 |h) can be

replaced by Pr(Sm
t,mt+1 |mt).We would like to rewrite the inner sum,

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 ,

in Expression (2). For this purpose we first sort all the memories in mt+1 ∈Mt+1 according
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to ascending order of 2
logγ0

β′
β′
mt+1 /β′mt+1 . Denote by β′i the value β′mt+1 for mt+1 that is

the i-th member in the sorted order. Then we get that the inner sum in Expression (2) is
equal to

∑
mi∈Mt+1

Pr(Sm
t,mi |h)

2
logγ0

β′
β′
i

β′i
=

∑
j≥1

Pr(Sm
t,mj |h)

2
logγ0

β′
β′1

β′1
+

+
∑
j≥2

Pr(Sm
t,mj |h)

2
logγ0

β′
β′2

β′2
− 2

logγ0

β′
β′1

β′1

+

+
∑
j≥3

Pr(Sm
t,mj |h)

2
logγ0

β′
β′3

β′3
− 2

logγ0

β′
β′2

β′2

+ . . .

Denote by Sm
t,≥i all the examples that lead from the memory mt to any of the time-(t+1)

memories that are not the first i − 1 memories. For convenience, define 1/β′0 := 0. Thus,
it holds that

∑
mi∈Mt+1

Pr(Sm
t,mi |h)

2
logγ0

β′
β′
i

β′i
=
∑
i≥1

Pr(Sm
t,≥i|h)

2
logγ0

β′
β′
i

β′i
− 2

logγ0

β′
β′
i−1

β′i−1

 .

We divide this sum into two, using index i(mt) which is the largest i such that |Smt,≥i| ≥
ε′|X |, for ε′ to be determined later.

i(mt)∑
i=1

Pr(Sm
t,≥i|h)

2
logγ0

β′
β′
i

β′i
− 2

logγ0

β′
β′
i−1

β′i−1

+

|Mt+1|∑
i=(i(mt))+1

Pr(Sm
t,≥i|h)

2
logγ0

β′
β′
i

β′i
− 2

logγ0

β′
β′
i−1

β′i−1


(9)

Let us start with bounding the first term in Equation (9). From Claim 31, we know

that except for a fraction of 1
ε2
· d2

|X ||H| hypotheses h ∈ H for each i ≤ (1− ε′)|X |,

Pr(Sm
t,≥i|h) ≤

(
1 + ε′ +

4ε

(ε′)2

)
|Smt,≥i|
|X |

, (10)

for ε > 0 to be determined later. From Claim 30 we know that the RHS is at most(
1 + ε′ +

4ε

(ε′)2

)
(1 + 2εrep)qt+1(Sm

t,≥i|mt)
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Denote the set of hypotheses that the bound in Inequality (10) does not apply to by
Err(mt). We know that

|Err(mt)|
|H|

≤ 1

ε2
· d2

|X ||H|
(11)

Let us now bound the second term in Expression (9). For each i > i(mt) we use the
simple bound given in Claim 30:

Pr(Sm
t,≥i|h) ≤ 2(1 + 2εrep)qt+1(Sm

t,≥i|mt). (12)

We can now rewrite Expression (9) using Inequalities 10 and 12. Namely, for mt /∈ Low
and h /∈ Err(mt) Expression (9) is at most

(
1 + ε′ +

4ε

(ε′)2

)
(1 + 2εrep)

[ i(mt)∑
i=1

qt+1(Sm
t,≥i|mt)

2
logγ0

β′
β′
i

β′i
− 2

logγ0

β′
β′
i−1

β′i−1

+

|Mt+1|∑
i=(i(mt))+1

2 · qt+1(Sm
t,≥i|mt)

2
logγ0

β′
β′
i

β′i
− 2

logγ0

β′
β′
i−1

β′i−1

]

Which is equal to

(
1 + ε′ +

4ε

(ε′)2

)
(1 + 2εrep)

i(mt)∑
i=1

qt+1(Sm
t,mi |mt)

2
logγ0

β′
β′
i

β′i
+

|Mt+1|∑
i=(i(mt))+1

qt+1(Sm
t,mi |mt)

2 · 2
logγ0

β′
β′
i

β′i

(13)

Step 4: getting rid of “bad” hypotheses: We would like to bound the portion of
Expression (2) that involves h ∈ Err(mt) for some mt. Namely, we would like to bound

∑
mt∈Mt,h∈Err(mt)

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2
logγ0

β′
β′
mt+1 . (14)

For any mt+1, from the definition of p we know that qt+1(mt+1)
β′
mt+1

= p(mt+1) ≥ qt+1(mt+1)γk0
β′ ,

hence 2
logγ0

β′
β′
mt+1 ≤ 2k. Hence Expression (14) is at most

∑
mt∈Mt,h∈Err(mt)

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

Pr(Sm
t,mt+1 |h)

β′
mt+1

2k.
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From Claim 30 we know that Pr(Sm
t,mt+1 |h)

β′
mt+1

≤ 4qt+1(Sm
t,mt+1 |mt)

β′
mt+1

. Hence, Expression (14) is

at most∑
mt∈Mt

h∈Err(mt)

qt(h|mt)qt(m
t)

∑
mt+1∈Mt+1

qt+1(Sm
t,mt+1 |mt)

β′
mt+1

2k+2 =
∑

mt∈Mt

h∈Err(mt)

qt(h|mt)p(mt)2k+2

≤ 2k+2
∑

mt∈Mt

p(mt)qt(Err(m
t)|mt).

From Claim 2 and Inequality (11) we know that

qt(Err(m
t)|mt) ≤

√
|Err(mt)|c · cert(Mt) ≤ c ·

√
1

ε2
· d2

|X ||H|
,

where the second inequality follows from Inequality (11) and the assumption in the claim
regarding the bound on cert(Mt). To sum up this step, Err(mt) adds only a small additive

error of 2k+2 · c ·
√

1
ε2
· d2

|X ||H| to Expression (2).

Step 5: towards using the K-expander property of G′t: Recall that according to

our plan at step 1 we want to prove now that for mt /∈ Low, h /∈ Err(mt) it holds that

∑
mj∈Mt+1

Pr(Sm
t,mj |mt)

β′mj
2

logγ0

β′
β′mj ≤

∑
mj

qt+1(Sm
t,mj |mt)

β′mj

 2
logγ0

β′
∑
mj

qt+1(S
mt,mj |mt)
β′mj (1+ε′4)

for some small ε′4 ∈ (0, 1) to (implicitly) be determined in the next step. To this end we
first prove, having in mind the expression in 13, that the following inequality holds

∑i(mt)
i=1

qt+1(Sm
t,mi |mt)
β′i

2
logγ0

β′
β′
i +

∑|Mt+1|
i=(i(mt))+1

qt+1(Sm
t,mi |mt)
β′i

2
logγ0

β′·γ0
β′
i∑

mj
qt+1(Sm

t,mj |mt)
β′mj

≤ 2
logγ0

β′
∑
mj

qt+1(S
mt,mj |mt)
β′mj (1 + ε4)

(15)

for some small ε4 ∈ (0, 1) to be determined later.

Define the function f(x) = 2logγ0
1
x and the following distribution over memories at time

t+ 1: p̄(mi) ∝ qt+1(Sm
t,mi |mt)

β′
mi

and divide both sides by 2logγ0
β′ then Inequality (15) can be

rewritten as

∑
mi

p̄(mi)f

(
β′i ·

(
1

γ0

)Ii>i
(mt)

)
≤ f

( 1

γ0

)log(1+ε4)

/
∑
mj

qt+1(Sm
t,mj |mt)

β′mj

 ,

19



where I is the indicator function. Use Jensen’s inequality with the concave function f (see
Claim 29) and get that the LHS is at most

f

∑
mi

qt+1(Sm
t,mi |mt)∑

mj
qt+1(Sm

t,mj |mt)
β′mj

·
(

1

γ0

)Ii>i
(mt)


Since f is monotonically increasing (see Claim 29), to prove Inequality (15) it is enough to
show that ∑

mi

qt+1(Sm
t,mi |mt) ·

(
1

γ0

)Ii>i
(mt)

≤
(

1

γ0

)log(1+ε4)

Using the inequality x/2 ≤ log(1 + x) (which follows from Fact 33 and ε4 < 1) it is enough
to prove that ∑

mi

qt+1(Sm
t,mi |mt) ·

(
1

γ0

)Ii>i
(mt)

≤
(

1

γ0

)ε4/2
. (16)

Note that by separating the LHS into two and the definition of ε′ we have that∑
mi

qt+1(Sm
t,mi |mt) ·

(
1

γ0

)Ii>i
(mt)

≤ 1 +
∑

i>i(mt)

qt+1(Sm
t,mi |mt)

(
1

γ0

)
≤ 1 + ε′

(
1

γ0

)

Thus, to show that Inequality (16) holds, it suffices to show that

1 + ε′
(

1

γ0

)
≤
(

1

γ0

)ε4/2
.

Which is true if and only if

ln

(
1 + ε′

(
1

γ0

))
≤ ε4

2
ln

(
1

γ0

)
.

Using Fact 33 it is enough to show that

ε′
(

1

γ0

)
≤ ε4

2
ln

(
1

γ0

)
.

We choose ε4 = 2
√
ε′. If

√
ε′ ≤ γ0 then the inequality will hold since γ0 ≤ 1/16 < 1/e.

Step 6: Summing up: Using Expressions (8), (13), (15) (recall that ε4 = 2
√
ε′), the

assumption is the claim regarding the K-expander of G′t, Expression (7), and the conclusion
of step 4 we have proven that Expression (1) is bounded by

(1 +
√
γ0)

(
1 + ε′ +

4ε

(ε′)2

)
(1 + 2εrep)(1 + 2

√
ε′)` · |H|

|H|
+ 2k+2γ0 + 2k+2 · c ·

√
1

ε2
· d2

|X ||H|
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We choose ε′ = γ2
0 (note that indeed

√
ε′ ≤ γ0) and ε = γ5

0/4. From the assumption in the

claim we know that α′
√
γ0 ≥ 2k+2γ0 + 2k+2 · c ·

√
16
γ10

0
· d2

|X ||H| . Hence, Expression (1) is at

most(
(1 +

√
γ0)
(
1 + γ2

0 + γ0

)
(1 + 2εrep)(1 + 2γ0)`+

√
γ0

)
· |H|
|H|
≤ (1 + 10

√
γ0 + 2εrep) ` · |H|

|H|
(in the RHS the constant 10 near

√
γ0 was chosen arbitrarily)

4.1 Auxiliary Claims

Claim 29. For any ε ≤ 1/2, the function f(x) = 2logε
1
x for x > 0 is monotonically

increasing and concave.

Proof. Note that

f(x) = 2
− log x
log ε = x

1
log 1/ε

The first derivative of f is equal to

f ′(x) =

(
1

log 1/ε

)
· x

1
log 1/ε

−1
.

The second derivative of f is equal to

f ′′(x) =

(
1

log 1/ε

)
·
(

1

log 1/ε
− 1

)
· x

1
log 1/ε

−2
.

The terms x
1

log 1/ε
−1

and x
1

log 1/ε
−2

are both positive since x > 0. Since ε ≤ 1/2 < 1 we

know that (log 1/ε)−1 > 0. The term
(

1
log 1/ε − 1

)
is smaller than 0 since 1

log 1/ε < 1⇔ 2 <

1/ε⇐ ε ≤ 1/2.

In the next claim we lower bound qt+1(S|mt) in terms of Pr(S|h) via the term |S|/|X |.

Claim 30. Let S ⊆ X . Let h ∈ H.

1. Pr(S|h) ≤ 2|S|
|X |

2. Let mt be a memory at time t. Assume S∩NRep(mt, εrep) = ∅ and εrep ≤ 1/2. Then
|S|
|X | ≤ (1 + 2εrep)qt+1(S|mt).

Proof. The first inequality follows from the fact that if (x, h) ∈ E (i.e., hypothesis h and
labeled example x are consistent) then Pr(x|h) = 2/|X | and if (x, h) /∈ E then Pr(x|h) = 0.
To prove the second inequality, we use the definition of NRep (see Definition 20) to deduce
that

1− εrep

|X |
|S| ≤ qt+1(S|mt)⇒ |S|

|X |
≤ 1

1− εrep
qt+1(S|mt)⇒ |S|

|X |
≤ (1 + 2εrep)qt+1(S|mt),

where the last inequality is true for εrep ≤ 1/2.
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Suppose that the labeled examples are sorted in some way and denote by S≥i all the
examples except the first i− 1 examples.

Claim 31. If the hypotheses graph (H,X , E) is d-mixing, then for any ε, ε′ > 0 except for

a fraction of 1
ε2
· d2

|X ||H| of the hypotheses h ∈ H, for each i ≤ (1− ε′)|X |,

Pr(S≥i|h) ≤
(

1 + ε′ +
4ε

(ε′)2

)
|S≥i|
|X |

.

Proof. We will pick ε1, ε2, ε3 > 0 at the end. Divide all the labeled examples into 1/ε2
consecutive equal parts, each of size ε2|X | (without loss of gnerality the integer ε2|X |
divides |X |). Focus for now on some part S. First we would like to show that for each part
S ⊆ X most hypotheses h do not over-sample S, i.e.,

Pr(S|h) ≤ (1 + ε1)
|S|
|X |

.

Denote by T ⊆ H all the hypotheses h ∈ H such that Pr(S|h) > |S|
|X |(1+ε1). Then E(S, T ) >

|S|
|X |(1+ε1) |X |2 |T |. From the d-mixing property we know that E(S, T ) ≤ |S||T |/2+d

√
|S||T |.

Combining these two inequalities we get that

ε1
|S||T |

2
< d

√
|S||T | ⇒ |T | < 4d2

ε21|S|
=

4d2

ε21ε2|X |
.

Denote by Err ⊆ H all the hypotheses that over-sample at least one part, i.e., hypoth-
esis h /∈ Err if and only if for each of the 1/ε2 parts, S, it holds that Pr(S|h) ≤ (1 + ε1) |S||X | .
We can easily deduce, using a union bound, that the fraction of this set is at most
|Err|
|H| ≤

4d2

ε21ε
2
2|X ||H|

.

Let us go back to the expressions that we want to bound, namely Pr(S≥i|h) for each i.
We will show that for each h /∈ Err, and for each i, the probability

Pr(S≥i|h) ≤ (1 + ε3)
|S≥i|
|X |

. (17)

For each i denote by i∗ the largest index that is smaller than i and divides ε2|X |. We have
that Pr(x|h) ≤ 2

|X | for each labeled example x and hypothesis h, thus Pr(S≥i\S≥i∗ |h) ≤ 2ε2.

Hence, the LHS of Inequality (17) is bounded by

Pr(S≥i|h) ≤ Pr(S≥i
∗ |h) + 2ε2 ≤ (1 + ε1)

|S≥i|
|X |

+ 2ε2,

So we need to make sure that

(1 + ε1)
|S≥i|
|X |

+ 2ε2 ≤ (1 + ε3)
|S≥i|
|X |

,
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which will happen only if ε1
|S≥i|
|X | + 2ε2 ≤ ε3

|S≥i|
|X | , or equivalently 2ε2

ε3−ε1 ≤
|S≥i|
|X | (assuming

ε3 > ε1 as we will choose later). Thus, except for a fraction of 4d2

ε21ε
2
2|X ||H|

hypotheses h ∈ H
for each i ≤ (1− 2ε2

ε3−ε1 )|X |,

Pr(S≥i|h) ≤ (1 + ε3)
|S≥i|
|X |

.

Choose ε1 = ε′ and ε2 = 2ε
ε1

and ε3 = ε1 + 2ε2
ε1
.

Claim 32. For any 0 < x ≤ 1/16 it holds that

2logx(1−x) ≤ 1 +
√
x.

Proof.

2logx(1−x) ≤ 1 +
√
x

⇔ logx(1− x) ≤ log2(1 +
√
x)

⇔ ln(1− x)

lnx
≤ ln(1 +

√
x)

ln 2

(x < 1) ⇔ ln(1− x) ≥ lnx · ln(1 +
√
x)

ln 2

(Fact 33 :
−x

1− x
≤ ln(1− x)) ⇐ −x

1− x
≥ lnx · ln(1 +

√
x)

ln 2

(Fact 33 : x− 1 ≥ ln(x)) ⇐ −x
1− x

≥ (x− 1) · ln(1 +
√
x)

ln 2

⇔ x

1− x
≤ (1− x) · ln(1 +

√
x)

ln 2

(Fact 33 :

√
x

1 +
√
x
≤ ln(1 +

√
x)) ⇐ x ln 2 ≤ (1− x)2 ·

√
x

1 +
√
x

⇔
√
x(1 +

√
x) ln 2 ≤ (1− x)2

(x ≤ 1/16) ⇐
√
x ≤ (1− x)2,

and the last inequality is true for x ≤ 1/16.

Fact 33. For any x > −1 it holds that

x

1 + x
≤ ln(1 + x) ≤ x

Proof. Our starting point is the known inequality

1 + x ≤ ex (18)
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which is true for any x. This immediately proves the second inequality in the fact. To
prove the first inequality, substitute x = − ln(1 + y) in Inequality (18) and get

1− ln(1 + y) ≤ 1

1 + y
.

Equivalently,
y

1 + y
≤ ln(1 + y)

5 Heavy Sourced Memories

We start by examining one possible step of the algorithm: when there is an abundance of
examples S ⊆ X that lead from a memory mt at time t to a memory mt+1 at time t + 1.
The algorithm can apply such a step, for example, to examine consistency with a specific
hypothesis h. All the labeled examples that are consistent with h (there are |X |/2 such
labeled examples) will lead the algorithm to change the memory state from mt to mt+1.

Definition 34. The set of heavy-sourced memories at time t+ 1 is defined as

Mheavy>b
t+1 = {mt+1|∃mt ∈Mt with at least b|X| labeled examples that lead to mt+1}.

We will assume, without loss of generality, that mt+1 cannot be reached through other
memories (otherwise, make a few copies of mt+1; we will make this argument formal in
Section 7). Under this assumption it makes sense to identify – as we will do later – a
memory mt+1 with a pair (mt, S) that lead to it.

We would like to show that the certainty does not increase much as a result of heavy
steps. The intuition is that if there is low certainty at mt, then the mixing of the hypotheses
graph ensures that S reveals very little information on which of the possible hypotheses
is the underlying one. The bound on the certainty at time t + 1 as a function of the
certainty at time t is shown in Claim 35 and in Claim 36. Claim 35 gives an expression for
cert+1(Mheavy>b

t+1 ). To understand this expression, notice that a small variant of Claim 17
is the following equality

certw(M) =
∑

m∈M,h∈H
qt(h)qt(h|m)qt(m|h)w(m).

Claim 35. If |Ht+1| ≥ |Ht|(1 − 1/c), and c ≥ 2 then for any set M of memories at time

t+ 1 and any weighted vector w (i.e., ∀i, wi ∈ [0, 1]) it holds that cert+1
w (Mheavy>b

t+1 ∩M) is
at most(

1 +
2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)
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Proof. Let us start with rewriting qt+1(h|mt+1), for some mt+1 ∈ Mheavy>b
t+1 that corre-

sponds to the pair (mt, S)

(?) qt+1(h|mt+1) = qt+1(h|S,mt)

(using Claim 4) = qt+1(S|h,mt)
qt(h|mt)

qt+1(S|mt)

(using Pr(S|h,mt) = Pr(S|h), =
Pr(S|h)qt(h|mt)∑

h′ qt+1(S|mt, h′)qt(h′|mt)

and Claim 3)

=
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

Note that
(??) qt+1(mt+1|h) = qt(m

t|h) Pr(S|h).

Use Claim 17 and equations (?), (?, ?) to rewrite cert+1
w (Mheavy>b

t+1 ∩M)∑
h∈H

qt+1(h)
∑

mt+1∈Mheavy>b
t+1 ∩M

wmt+1qt+1(h|mt+1)qt+1(mt+1|h)

=
∑
h∈H

qt+1(h)
∑

(mt,S)∈Mheavy>b
t+1 ∩M

w(mt,S)
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

qt(m
t|h) Pr(S|h)

(see below) ≤
(

1 +
2

c

)∑
h∈H

qt(h)
∑

(mt,S)∈Mheavy>b
t+1 ∩M

w(mt,S)
Pr(S|h)qt(h|mt)∑
h′ Pr(S|h′)qt(h′|mt)

qt(m
t|h) Pr(S|h)

=

(
1 +

2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ Pr(S|h′)qt(h′|mt)

,

to understand why the inequality is true, notice that we have a sum of the form
∑

h∈H qt+1(h)ah
for some value ah ≥ 0, which is equal (by the definition of qt(h)) to

1

|Ht+1|
∑

h∈Ht+1

ah ≤ 1

|Ht|(1− 1/c)

∑
h∈Ht+1

ah

(for c ≥ 2) ≤
(

1 +
2

c

)
1

|Ht|
∑

h∈Ht+1

ah

(Ht+1 ⊆ Ht) ≤
(

1 +
2

c

)
1

|Ht|
∑
h∈Ht

ah

=

(
1 +

2

c

)∑
h∈H

qt(h)ah
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The next claim shows that certainty does not increase much in the case of heavy sourced
memories.

Claim 36. If the hypotheses graph is an (ε, ε′)-sampler, c ≥ 4, |Ht| ≥ |H|/3, |Ht+1| ≥
|Ht|(1 − 1/c), cert(Mt) ≤ c

|H| , and for each m ∈ Mt, h ∈ Ht, it holds that qt(h|m) ≤
a · cert(Mt), and

b ≥ max(5εc+ 2c2
√
ε′, 4a2ε′c2 + ε),

then for any set of memories M at time t+ 1 and any weight w it holds that

cert+1
w (Mheavy>b

t+1 ∩M) ≤

(1 +
4

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M

cert(mt)
|S|
|X |

w(mt,S)

+

[
2

c
· cert(Mt)

]

Proof. For each subset of labeled examples S ⊆ X define Err(S) ⊆ H as the set of all

hypotheses that do not sample S correctly, i.e., if h ∈ Err(S), then
∣∣∣Pr(S|h)− |S||X |

∣∣∣ > ε.

From the sampler property of the hypotheses graph (see Definition 7) we know that for
every S ⊆ X , |Err(S)| ≤ ε′|H|.

According to Claim 35, cert+1
w (Mheavy>b

t+1 ∩M) is at most (?)(
1 +

2

c

) ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h)

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)

The denominator can be lower bounded using the sampler property of the hypotheses graph
as follows ∑

h′

qt(h
′|mt) Pr(S|h′) ≥

∑
h′ /∈Err(S)

qt(h
′|mt) Pr(S|h′)

≥
(
|S|
|X |
− ε
) ∑
h′ /∈Err(S)

qt(h
′|mt)

(see below) ≥
(
|S|
|X |
− ε
)

(1− ε′′),

where in the last inequality we used Claim 2 with ε′′ :=
√
ε′|H|c · cert(Mt) and the distri-

bution qt(·|mt) we also used the fact that since mt /∈ BadMt we know that
∑

h q(h|mt)2 ≤
c · cert(Mt). From the assumption in the claim we know that cert(Mt) ≤ c

|H| , this implies

that ε′′ ≤ c
√
ε′.

Consider two cases:
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Case 1: If h /∈ Err(S), then Pr(S|h) ≤ |S|
|X | + ε. Thus,

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)
≤

|S|
|X | + ε(

|S|
|X | − ε

)
(1− ε′′)

≤ 1 +
2ε+ ε′′(

|S|
|X | − ε

)
(1− ε′′)

(using |S|/|X | ≥ b) ≤ 1 +
2ε+ ε′′

(b− ε) (1− ε′′)

Case 2: If h ∈ Err(S), then we use Pr(S|h) ≤ 1 to bound

Pr(S|h)∑
h′ qt(h

′|mt) Pr(S|h′)
≤ 1

(b− ε) (1− ε′′)
.

We will show that∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈Err(S)

qt(h)qt(h|mt)qt(m
t|h)w(mt,S) Pr(S|h) ≤ 2a2cε′ · cert(Mt)

The left hand side is at most

(see below) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(h)qt(h|mt)qt(m
t|h)2

|S|
|X |

(Claim 16) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(m
t)qt(h|mt)2 · 2 |S|

|X |

(assumption in the claim) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

h∈Err(S)∩Ht

qt(m
t)(a · cert(Mt))

2 · 2 |S|
|X |

(cert(Mt) ≤
c

|H|
) ≤

∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈Err(S)

qt(m
t)
a2c

|H|
· cert(Mt) · 2

|S|
|X |

(|Err(S)| ≤ ε′|H|) ≤
∑

(mt,S)∈Mheavy>b
t+1 ∩M

qt(m
t)
a2c

|H|
· cert(Mt) · 2

|S|
|X |
· ε′|H|

≤ 2a2cε′ · cert(Mt) ·
∑

mt∈Mt

qt(m
t)

≤ 2a2cε′ · cert(Mt)
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The first inequality is true from the following reasons: 1. wi ≤ 1, for each i 2. for each
x ∈ X , Pr(x|h) is either 0 or 2/|X | 3. if h /∈ Ht then qt(h) = 0.

To sum up the two cases, Equation (?) is at most(
1 +

2

c

)[[ ∑
(mt,S)∈Mheavy>b

t+1 ∩M
h∈H

qt(h)qt(h|mt)qt(m
t|h)w(mt,S)

(
|S|
|X |

+ ε

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)]

+ 2a2cε′ · cert(Mt)
1

(b− ε) (1− ε′′)

]
Using Claim 17, (i.e., cert(mt) =

∑
h∈H qt(h)qt(h|mt)qt(m

t|h)), Equation (?) is at most(
1 +

2

c

)[[ ∑
(mt,S)∈Mheavy>b

t+1 ∩M

cert(mt)w(mt,S)
|S|
|X |

(
1 +

ε

|S|/|X |

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)]

+ 2a2cε′ · cert(Mt)
1

(b− ε) (1− ε′′)

]

The rest of the proof uses simple algebraic manipulations.(
1 +

2

c

)(
1 +

ε

|S|/|X |

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)
≤

(
1 +

2

c

)(
1 +

ε

b

)(
1 +

2ε+ ε′′

(b− ε)(1− ε′′)

)
(see Items (1), (2) below) ≤

(
1 +

2

c

)(
1 +

1

5c

)(
1 +

1

c

)
(see Item (3) below) ≤ 1 +

4

c

1. 5εc ≤ b⇒ ε
b ≤

1
5c

2. We would like to bound 2ε+ε′′

(b−ε)(1−ε′′) by 1
c . Recall ε′′ ≤ c

√
ε′. We have 5εc+ 2c2

√
ε′ ≤

b ≤ 1 ⇒ ε′′ ≤ c
√
ε′ ≤ 0.5 ⇒ 1

1−ε′′ ≤ 2. Thus, we would like to show the bound

4εc + 2ε′′c ≤ b − ε, so it is enough that 5εc + 2c2
√
ε′ ≤ b, which is true by the

assumption in the claim.
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3. The expression
(
1 + 2

c

) (
1 + 1

5c

) (
1 + 1

c

)
is equal to(

1 +
1

5c
+

2

c
+

2

5c2

)(
1 +

1

c

)
= 1 +

1

5c
+

2

c
+

2

5c2
+

1

c
+

1

5c2
+

2

c2
+

2

5c3

= 1 +
16

5c
+

13

5c2
+

2

5c3

= 1 +
16

5c
+

4

c
· 1

20c

(
13 +

2

c

)
(c ≥ 4) ≤ 1 +

4

c

Let us move on to the second expression we would like to bound(
1 +

2

c

)
2a2cε′

1

(b− ε) (1− ε′′)

(see Item 1 below) ≤
(

1 +
2

c

)
1

c

(see Item 2 below) ≤ 2

c

1. It suffices to show that 4a2cε′

b−ε ≤ 1/c⇔ 4a2ε′c2 + ε ≤ b

2. (1 + 2/c)1/c = 1/c+ 2/c2 and also 2/c2 ≤ 1/c for 2 ≤ c.

6 Many Sourced Memories

We would like to show that the certainty remains low in the case that a new memory
mt+1 is reached by sufficiently large qt-weight memories ψ(mt+1) = {mt

1,m
t
2, . . .} at time t

and each such memory mt
i is reached using exactly one representative labeled example xi.

Recall that representative examples were defined in Section 3.6.
We will assume, without loss of generality, that mt+1 cannot be reached from mt using

more than one example (otherwise, make a few copies of mt+1; we will make this argument
formal in Section 7). Under this assumption it makes sense to identify – as we will do later
– a memory mt+1 with set of memory-(labeled-)example pairs {(mt

i, xi)} that lead to it.

Definition 37. The set of many-sourced memories at time t+ 1 is defined as

Mmany>β,εrep

t+1 = {mt+1|∃ memories mt
i ∈Mt with

∑
i

qt(m
t
i) ≥ β

and labeled examples xi /∈ NRep(mt
i, ε

rep) that lead to mt+1}.
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We will prove that the certainty remains low for many-sourced memories for β that will
be chosen later. Here is an outline of the proof (the exact values of the constants are not
important):

1. Recall from the K-expander property (that its preservation we proved in Claim 28)
that for any large enough H ⊆ H it holds that

qt(H|ψ(mt+1)) ≤ ` |H|
|H|

(also recall that ψ(mt+1) are the memories at time t that lead to mt+1.)

2. We will prove that for any h ∈ H,

qt+1(h|mt+1) ≤ 2(1 + εrep)qt(h|ψ(mt+1))

The intuition is that one labeled example gives about one bit of information on h
and this changes the probability by about a factor of 2.

3. Putting together the first two steps we have that except for a small size set T ⊂ H,
for any other h ∈ H,

qt+1(h|mt+1) ≤ 2(1 + εrep)`

|H|
.

Importantly, the bound does not not depend on t.

4. Then we will show that certainty remains low.

In step 2 we want to upper bound qt+1(h|mt+1). Let us start with investigating this
term and writing it as a function of memories from time t.

Claim 38. For any hypothesis h and a memory mt+1 that can be reached by the pairs
{(mt

i, Si)} it holds that

qt+1(h|mt+1) =

∑
i Pr(Si|h)qt(h|mt

i)qt(m
t
i)∑

i qt+1(Si|mt
i)qt(m

t
i)
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Proof.

qt+1(h|mt+1) = qt+1(h| ∨i (mt
i, Si))

(Conditional probability dfn.) =
qt+1

(
h ∧ (∨i(mt

i, Si))
)

qt+1(∨i(mt
i, Si))

(De Morgan’s law) =
qt+1

(
∨i (h ∧ (mt

i, Si))
)

qt+1(∨i(mt
i, Si))

(Disjoint events) =

∑
i qt+1

(
h ∧ (mt

i, Si)
)∑

i qt+1(mt
i, Si)

(Conditional probability dfn.) =

∑
i qt+1(h|mt

i, Si)qt+1(mt
i, Si)∑

i qt+1(Si|mt
i)qt(m

t
i)

(Claim 4 & qt+1(Si|h,mt
i) = Pr(Si|h)) =

∑
i Pr(Si|h)

qt(h|mti)
qt+1(Si|mti)

qt+1(Si|mt
i)qt(m

t
i)∑

i qt+1(Si|mt
i)qt(m

t
i)

=

∑
i Pr(Si|h)qt(h|mt

i)qt(m
t
i)∑

i qt+1(Si|mt
i)qt(m

t
i)

Now we are ready to prove step 2.

Claim 39. If mt+1 ∈Mmany>β,εrep

t+1 and εrep ≤ 1/2 then for any h ∈ H it holds that

qt+1(h|mt+1) ≤ 2(1 + 2εrep) · qt(h|ψ(mt+1)).

Proof. We will use the fact that if mt+1 ∈ Mmany>β,εrep

t+1 , then it can be reached exactly
by the memory-(labeled-)example pairs {(mt

i, xi)} where all memories mt
i are different and

for all i, xi /∈ NRep(mi).
From Claim 38 with Si = {xi} for all i we know that

qt+1(h|mt+1) =

∑
i Pr(xi|h)qt(h|mt

i)qt(m
t
i)∑

i qt+1(xi|mt
i)qt(m

t
i)

(see below) ≤
∑

i
2
|X |qt(h|m

t
i)qt(m

t
i)∑

i qt+1(xi|mt
i)qt(m

t
i)

(Definition 20) ≤
∑

i
2
|X |qt(h|m

t
i)qt(m

t
i)∑

i
1−εrep
|X | qt(m

t
i)

(εrep ≤ 1/2) = 2(1 + 2εrep) ·
∑

i qt(h|mt
i)qt(m

t
i)∑

i qt(m
t
i)

= 2(1 + 2εrep) ·
∑
i

qt(h|mt
i)

qt(m
t
i)

qt(ψ(mt+1
i ))

(by Claim 5) = 2(1 + 2εrep) · qt(h|ψ(mt+1))
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the first inequality is true since if xi and h are consistent then Pr(xi|h) = 2
|X | , else

Pr(xi|h) = 0.

Let us move to step 3.

Claim 40. If the graph G′t is an (α′, β′, `, γ0, k) − K-expander, then for every memory

mt+1 ∈ Mmany>β′,εrep

t+1 there is a set T ⊂ H, |T | ≤ α′|H|, such that for any h /∈ T it holds
that

qt+1(h|mt+1) ≤ 2(1 + εrep)`

|H|
.

Proof. Define T = {h|2(1+2εrep)`
|H| < qt+1(h|mt+1)}, then

2(1 + 2εrep)`
|T |
|H|

< qt+1(T |mt+1),

From Claim 39 we know that for every h ∈ H it holds that

qt+1(h|mt+1) ≤ 2(1 + 2εrep) · qt(h|ψ(mt+1)).

The last two inequalities imply that

2(1 + 2εrep)`
|T |
|H|

< 2(1 + 2εrep) · qt(T |ψ(mt+1)).

Assume by contradiction that |T | ≥ α′|H|, then from the K-expander property we know

that qt(T |ψ(mt+1)) ≤ ` |T ||H| . Putting the last two inequalities together leads to a contradic-
tion.

Let us move on and prove the 4 step in the outline. To this end, we first prove that
vertex contraction can only reduce certainty, where contracting a few memories m1, . . . ,ml

in the knowledge graph into one means that all these l vertices are replaced by one vertex
m and all the edges of the form (mi, h) are now of the form (m,h). Notice that the number
of edges remains the same. The reason we care about vertex contraction is that from the
point of view of the memory mt+1 the vertices ψ(mt+1) were contracted.

Claim 41. If memories m1, . . . ,ml have been contracted to a vertex m, then

qt(m)qt(h|m)2 ≤
∑
i

qt(mi)qt(h|mi)
2
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Proof.

qt(m)qt(h|m)2 = qt(m)qt(h|m1 ∨ . . . ∨ml)
2

(using Claim 5) = qt(m)

(∑
i

qt(h|mi)
qt(mi)

qt(m)

)2

(by Jensen’s inequality) ≤ qt(m)
∑
i

(
qt(h|mi)

2 qt(mi)

qt(m)

)
=

∑
i

qt(mi)qt(h|mi)
2

Using Claim 16, the last claim imply the following

Corollary 42. If memories m1, . . . ,ml have been contracted to a vertex m, then

qt(h)qt(h|m)qt(m|h) ≤
∑
i

qt(h)qt(h|mi)qt(mi|h)

Claim 43. If the hypotheses graph is an (α, β, ε)−H-expander, the graph G′t is an (α′, β′, `, γ0, k)−
K-expander, c ≥ 45, cert(Mt) ≤ c

|H| , |Ht+1| ≥ (1 − 1/c)|Ht|, 3|Ht| ≥ |H|, and for each

m ∈ Mt, h ∈ Ht, it holds that qt(h|m) ≤ a · cert(Mt), then for any set of memories M at
time t+ 1 and any weighted vector w (i.e., ∀i, wi ∈ [0, 1]) it holds that

cert+1
w (Mmany>β′,εrep

t+1 ∩M) ≤

2(1 + 2εrep)`

|H|
·

∑
m∈Mmany>β′,εrep

t+1 ∩M

qt+1(m)wm

+10α′ca2cert(Mt)

Proof. Using Claim 40 for every memory mt+1 ∈ Mmany>β′,εrep

t+1 there is a set Tmt+1 ⊂
H, |Tmt+1 | ≤ α′|H|, such that for any h /∈ Tmt+1 it holds that

qt+1(h|mt+1) ≤ 2(1 + 2εrep)`

|H|
.

Using Claim 17,

cert+1
w (Mmany>β′,εrep

t+1 ∩M) =
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M
h∈H

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1

=
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M
h/∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1 +

∑
mt+1∈Mmany>β′,εrep

t+1 ∩M
h∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)wmt+1
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The sum over h /∈ Tmt+1 is at most∑
mt+1∈Mmany>β′,εrep

t+1 ∩M
h/∈Tmt+1

qt+1(h) · 2(1 + 2εrep)`

|H|
· qt+1(mt+1|h)wmt+1

≤ 2(1 + 2εrep)`

|H|
·

∑
mt+1∈Mmany>β′,εrep

t+1 ∩M

wmt+1

∑
h∈H

qt+1(h)qt+1(mt+1|h)

=
2(1 + 2εrep)`

|H|
·

∑
mt+1∈Mmany>β′,εrep

t+1 ∩M

qt+1(mt+1)wmt+1

Let us focus on the sum over h ∈ Tmt+1 . From Claim 39 we know that

qt+1(h|mt+1) ≤ 2(1 + 2εrep)qt(h|ψ(mt+1)) (?)

We can also upper bound the term

qt+1(mt+1|h) = qt+1(∨i(mt
i, xi)|h)

=
∑
i

qt+1(mt
i, xi|h)

=
∑
i

qt(m
t
i|h) Pr(xi|h)

(see below) ≤
∑
i

qt(m
t
i|h)

2

|X |

=
2

|X |
qt(ψ(mt+1)|h) (??)

where the inequality is true since if I(x,h)∈E then Pr(x|h) = 2/|X |, else Pr(x|h) = 0. Thus,
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from Equation (?), (??) (and using ∀iwi ∈ [0, 1])∑
mt+1∈Mmany>β′,εrep

t+1 ∩M
h∈Tmt+1

qt+1(h)qt+1(h|mt+1)qt+1(mt+1|h)

≤ 4(1 + 2εrep)

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M
h∈Tmt+1

qt+1(h)qt(h|ψ(mt+1))qt(ψ(mt+1)|h)

(see below) ≤ 10

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M

h∈Tmt+1∩Ht

qt(h)qt(h|ψ(mt+1))qt(ψ(mt+1)|h)

(using Claim 42) ≤ 10

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M

h∈Tmt+1∩Ht
mt∈ψ(mt+1)

qt(h)qt(h|mt)qt(m
t|h)

(using Claim 16) ≤ 10

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M
h∈Tmt+1

mt∈ψ(mt+1)

qt(m
t)qt(h|mt)2

(assumption in the claim) ≤ 10

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M
h∈Tmt+1

mt∈ψ(mt+1)

qt(m
t)(a · cert(Mt))

2

(|Tmt+1 | ≤ α′|H|) ≤
10

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M

mt∈ψ(mt+1)

qt(m
t)(a · cert(Mt))

2 · α′|H|

(cert(Mt) ≤
c

|H|
) ≤ 10α′ca2cert(Mt) ·

1

|X |
∑

mt+1∈Mmany>β′,εrep
t+1 ∩M

mt∈ψ(mt+1)

qt(m
t)

(see below) ≤ 10α′ca2cert(Mt)

to understand why the second inequality is true, notice that we have a sum of the form
4(1 + 2εrep)

∑
h∈T qt+1(h)ah for some value ah ≥ 0, which is equal (by the definition of qt)
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to

4(1 + 2εrep)

|Ht+1|
∑

h∈Ht+1∩T
ah ≤ 4(1 + 2εrep)

|Ht|(1− 1/c)

∑
h∈Ht+1∩T

ah

(for c ≥ 45, εrep ≤ 1/2) ≤ 10

|Ht|
∑

h∈Ht+1∩T
ah

(Ht+1 ⊆ Ht) ≤
10

|Ht|
∑

h∈Ht∩T
ah

= 10
∑
h∈T

qt(h)ah

The last inequality is true since every m ∈ M is in ψ(mt+1) for at most |X | memories
mt+1.

7 Combining Many Sourced and Heavy Sourced Memories

In this section we sum up all the claims proven so far and show that for an hypotheses
graph that is d-mixing, if the memory is bounded, then the number of labeled examples
used till learning must be large. To do so, we will notice that cer0(M0) = 1

|H| , and then
prove that

cert+1(Mt+1) ≤ cert(Mt)(1 + |H|−ν),

for some small constant ν > 0. This will imply that even after many steps (about Ω(|H|ν))
the certainty will be at most c/|H| at each step.

To bound the certainty at each step, we show how to decompose the edges of the
knowledge graph, so that each edge leads either to a heavy-sourced memory or to a many-
sourced memory (recall Definitions 34, 37), or is part of a small error set. To achieve this
we duplicate some of the memories. You can find the proof of the next claim in [5].

Claim 44 (Decomposition lemma). Suppose that the hypotheses graph is an (α, β, ε) −
H-expander, the number of memory states is at most Λ, and fraction of edges removed

from the knowledge graph Gt, i.e., γ = 1 − |E
′
t|

|Et| , is at most 0.5, then for any time t and

γ1, γ2 ∈ (0, 1) by

• removing at most
2

c
+ 4β + 4cγ1γ2Λ

fraction of the edges from Gt+1 (recall that c > 1 was used to define BadM )

• creating for each memory m in Gt+1 copies (m, i) so each edge (m,h) now corresponds
to an edge ((m, i), h) for some single i
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we can make sure that memories in the new graph G′t+1 are only in Mmany>γ1,εrep

t+1 ∪
Mheavy>γ2
t+1 .

Recall the connection between qt and G′t mentioned in Section 3.3 — the probability
qt(m) is the fraction of edges connected to m in G′t. Notice that in order for this claim to
be meaningful, the term 4cγ1γ2Λ must be smaller than 1.

For all t ≥ 1, we will construct Mt+1 formally in the proof of Claim 45. Recall also that
Ht+1 and c were defined in Section 3.5. It might be helpful to think of d in the following

claim as roughly
√
|H|, c ∼ |H||X |

d2 , and |H| ≈ |X |.

Claim 45. For any γ0 ∈ (0, 1), c > 108, and k = log c − 4, if the hypotheses graph is

d-mixing, Λ is the number of memory states with Λ ≤ γ−k0 c−7, c102d2

|H||X | ≤ 1, and 2k+2√γ0 +

2k+2 · c ·
√

16
γ11

0

d2

|X ||H| ≤
1

40c6
then for any time step t ≤ 10−8 · c, the following hold

• |Ht| ≥ (1− 1/c)t−1|H|

• the graph G′t is a
(

2k+2√γ0 + 2k+2 · c ·
√

16
γ11

0

d2

|X ||H| , γ
k
0 , (1 + 10

√
γ0 + 1

c15 )(t+ 1)2k, γ0, k + 1
)
−

K-expander.

• for any weight vector w (i.e., ∀i, wi ∈ [0, 1]) on the memories at time t and for any
subset of memories at time t, M ⊆Mt

certw(M) ≤

[
2k+2

|H|

(∑
m∈M

qt(m)wm

)
+

8

c
·
t−1∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t−1

• qt(Mt) ≥ 1− 2t
c

• for each mt ∈Mt it holds that
∑

h q
2
t (h|m) ≤ c · cert(Mt)

• for each h ∈ Ht,m ∈Mt it holds that qt(h|m) ≤ 2c2 · cert(Mt)

• we remove at most 4t
c fraction of the edges of the knowledge graph at time t

Before we prove the claim let us prove (in Claim 46) that the last item in the claim’s

list implies that cert(Mt) ≤ 2k+4

|H| ≤
c
|H| .

Claim 46. If for any t ≤ 10−8 · c,

cert(Mt) ≤

[
2k+2

|H|
+

8

c
·
t−1∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t−1

then cert(Mt) ≤ 2k+4

|H| .
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Proof. First recall a well known inequality, for any x, 1 +x ≤ ex ⇒ ∀n > 0, (1 +x)n ≤ exn.

Thus, (1 + 6
c )
t ≤ e6t/c. Since t ≤ 0.001 · c ≤ (ln(2.4/2.3)/6) · c, we have that

(
1 + 6

c

)t ≤ 2.4
2.3 .

Thus,

cert(Mt) ≤
2k+3

|H|
+

8.5

c
·
t−1∑
t′=1

cert
′
(Mt′).

Let us focus on the following recursively defined series: a1 = 2k+3

|H| and

at+1 =
2k+3

|H|
+

8.5

c
·

t∑
t′=1

at′ .

Then at ≥ cert(Mt). Since this series is monotonically increasing, we have the following
upper bound

at+1 ≤ a1 +
8.5t

c
at

(t ≤ 10−8 · c) ≤ a1 +
1

100
at

≤ a1 +
1

100
(a1 +

1

100
at−1)

(geometric series) ≤ . . . ≤ 1.02a1 ≤
2k+4

|H|

Proof. (of Claim 45) From Proposition 10 we know that the hypotheses graph is an

(εsam, ε
′
sam = 8d2

|H||X |ε2sam
)-sampler for any εsam > 0. From Proposition 12, it is also

(α, β, ε) − H-expander with β = c100d2

|H||X | and ε = 2d√
α|H|β|X |

for any α. We pick α = 1/c34.

By the choice of α, β and for c ≥ 2 we have that

ε =
2d√

α|H| · c100d2

|H||X | · |X |
=

2√
αc100

≤ 1

c17
.

Note that since k = log c− 4, the certainty is bounded by c/|H| (see Claim 46). Denote

εrep := 4
√
α|H|c · cert(Mt) + 4ε ≤ 4c

√
α+ 4ε ≤ 4

c16
+

4

c17
≤ 1

c15
.

We prove the claim by induction on t.
Induction Basis. At the beginning , before the algorithm got an example, H0 = H,

the certainty of each memory m is cer0(m) = 1
|H| , M0 contains all the memories, and G′0

is a (α′, β′, 2logγ0
β′ , γ0, k + 1)−K-expander for any α′, β′, γ0 ∈ (0, 1) and k.
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Induction Step. We use the known inequality 1− x ≥ e−2x for x ∈ (0, 1/2)⇒ ∀n >
0, (1− x)n ≥ e−2xn, x ∈ (0, 1/2), and Claim 18 to deduce that (recall c ≥ 2)

|Ht| ≥ (1− 1/c)t−1|H| ≥ e−2(t−1)/c|H| ≥ eln 1/3|H| = |H|
3
,

where the third inequality holds since t− 1 ≤ 0.5 · c ≤ c ln 3
2 .

Using Claim 28 and the inductive hypothesis, the graph G′t+1 is a(
2k+2√γ0 + c ·

√
16

γ11
0

d2

|X ||H|
, γk0 , (1 + 10

√
γ0 + 2εrep)(t+ 2)2k, γ0, k + 1

)
−K-expander.

From the the inductive hypothesis we have that at most a fraction of 4t
c ≤ 0.5 edges

were removed from G′t.
We use Claim 44 with

• Let γ1 define the many-source set Mmany>γ1,εrep

t+1 (see Definition 37). To later apply
Claim 43, we choose γ1 = γk0 .

• Let γ2 define the heavy-source set Mheavy>γ2
t+1 (see Definition 34). To later apply

Claim 36 we choose

γ2 = 5εsamc+ 20c6

√
8d2

|H||X |ε2sam
We choose εsam such that γ2 will be minimized. To do so, we equate the two terms

that comprise γ2 by choosing ε2sam = 4c5 2

√
8d2

|H||X | , which means that γ2 < 10c4 4

√
d2

|H||X | .

For later use, notice that

γ1γ2 ≤ γk0 10c4 4

√
d2

|H||X |
.

From Claim 44 we know that by removing at most

2

c
+ 4β + γk0 40c5 4

√
d2

|H||X |
Λ

fraction of the edges, the graph only has heavy-sourced or many-sourced memories.
Fix M a set of memories in G′t+1 and a weight vector w (i.e., for each memory at time

t+ 1, w assigns a weight in [0, 1])
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Heavy-sourced memories. We can use Claim 36 to deduce that

cert+1
w (Mheavy>γ2

t+1 ∩M) ≤

(1 +
4

c

) ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M

cert(mt)
|S|
|X |

w(mt,S)

+

[
2

c
· cert(Mt)

]

≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

cert(mt)
|S|
|X |

w(mt,S)

+

[
6

c
· cert(Mt)

]

(see below) ≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

qt(m
t)q2

t (h|mt)

(
1 +

1

c

)
qt+1(S|mt)w(mt,S)

+

[
6

c
· cert(Mt)

]

≤

 ∑
(mt,S)∈Mheavy>γ2

t+1 ∩M
h∈H

qt(m
t)q2

t (h|mt)qt+1(S|mt)w(mt,S)

+

[
7

c
· cert(Mt)

]
(?)

To prove the third inequality we will show that for |S| ≥ γ2|X | it holds that

|S|
|X |
≤
(

1 +
1

c

)
qt+1(S|mt).

From the sampler property (see Definition 7) we know that for each subset of labeled
examples S ⊆ X there is a set Err(S) ⊆ H with |Err(S)| ≤ ε′sam|H| such that for each
h /∈ Err(S),

Pr(S|h) ≥ |S|
|X |
− εsam
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From Claim 22

qt+1(S|mt) =
∑
h

Pr(S|h)qt(h|mt)

≥
∑

h/∈Err(S)

Pr(S|h)qt(h|mt)

≥
∑

h/∈Err(S)

(
|S|
|X |
− εsam

)
qt(h|mt)

=
|S|
|X |

(
1− εsam
|S|/|X |

) ∑
h/∈Err(S)

qt(h|mt)

(definition of γ2) ≥ |S|
|X |

(
1− εsam

5εsamc

) ∑
h/∈Err(S)

qt(h|mt)

(Claim 2 &cert(Mt) ≤
c

|H|
) ≥ |S|

|X |

(
1− 1

5c

)
(1− c

√
ε′sam)

This means that
|S|
|X |
≤ qt+1(S|mt)(

1− 1
5c

)
(1− c

√
ε′sam)

.

So we just need to show that

1(
1− 1

5c

)
(1− c

√
ε′sam)

≤ 1 +
1

c

Note that c
√
ε′sam ≤ 1/4c since

ε′sam =
8d2

|H||X |ε2sam
=

8d2

|H||X |4c5 2

√
8d2

|H||X |

=
1

4c5
2

√
8d2

|H||X |
≤ 1

16c4

Also note that

1(
1− 1

5c

) (
1− 1

4c

) − 1 =
1− (1− 1/(4c)− 1/(5c) + 1/(20c2))(

1− 1
5c

) (
1− 1

4c

)(
1

(1− 1
5c)(1−

1
4c)
≤ 2

)
≤ 2(1/(4c) + 1/(5c))

≤ 1

c
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Many-sourced memories. We can use Claim 43 and get that

cert+1(Mmany>γ1,εrep

t+1 ∩M) ≤ 2k+2

|H|
·

∑
m∈Mmany>γ1,ε

rep

t+1 ∩M

qt+1(m)wm +
1

c
· cert(Mt)

=

2k+2

|H|
·

∑
m={(mti,xi)}∈

M
many>γ1,ε

rep

t+1 ∩M

qt(m
t
i)qt+1(xi|mt

i)wm

+
1

c
· cert(Mt) (??)

Combining heavy-sourced and many-sourced memories. For each mt, memory
at time t, we define the weight of mt due to heavy-sourced memories

wheavymt :=
∑

S|(mt,S)∈Mheavy>γ2
t+1 ∩M

qt+1(S|mt)w(mt,S).

Similarly, we define the weight of mt due to many-sourced memories

wmanymt :=
∑

xi|m={(mt,xi)}∈M
many>γ1,ε

rep

t+1 ∩M

qt+1(xi|mt)wm.

The total weight of mt is denoted by wmt = wheavymt +wmanymt . Combining (?), (??) we have
that

certw(M) ≤
∑
mt

qt(m
t)

(∑
h

q2
t (h|mt) · wheavymt +

2k+2

|H|
· wmanymt

)
+

8

c
· cert(Mt)

≤
∑
mt

qt(m
t) max

{∑
h

q2
t (h|mt),

2k+2

|H|

}
· wmt +

8

c
· cert(Mt)

Define Ma = {mt|
∑

h q
2
t (h|mt) > 2k+2/|H|} and Mb = {mt|

∑
h q

2
t (h|mt) ≤ 2k+2/|H|} and

the last term is equal to ∑
mt∈Ma

qt(m
t)wmt ·

∑
h

q2
t (h|mt)

+

 ∑
mt∈Mb

qt(m
t)wmt ·

2k+2

|H|

+

[
8

c
· cert(Mt)

]

using the induction hypothesis on Ma, the last expression is at most2k+2

|H|

 ∑
mt∈Ma

qt(m
t)wmt

+
8

c
·
t−1∑
t′=1

cert
′
(Mt′)

(1 +
6

c

)t−1

+

 ∑
mt∈Mb

qt(m
t)wmt ·

2k+2

|H|

+

[
8

c
· cert(Mt)

]
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which is at most2k+2

|H|

 ∑
mt∈Mt

qt(m
t)wmt

+
8

c
·

t∑
t′=1

cert
′
(Mt′)

(1 +
6

c

)t−1

and we get the bound we wanted to show using the following equalities∑
m∈M

qt+1(m)wm =
∑

(mt,S)∈Mheavy>γ2
t+1 ∩M

qt(m
t)qt+1(S|mt)w(mt,S) +

∑
m={(mti,xi)}∈M

many>γ1,ε
rep

t+1 ∩M

qt(m
t
i)qt+1(xi|mt

i)wm

=
∑
mt

qt(m
t)

∑
S|(mt,S)∈Mheavy>γ2

t+1 ∩M

qt+1(S|mt)w(mt,S) +

∑
mt

qt(m
t)

∑
xi|m={(mti,xi)}∈M

many>γ1,ε
rep

t+1 ∩M

qt+1(xi|mt)wm

=
∑

mt∈Mt

qt(m
t)wheavymt +

∑
mt∈Mt

qt(m
t)wmanymt

=
∑

mt∈Mt

qt(m
t)wmt

Removing edges. Denote by M ′ all memories at time t + 1 that are heavy-sourced
or many-sourced. So far we bounded the average certainty cert+1(M ′). Notice that this
average certainty is equal to

cert+1(M ′) =
∑

m∈M ′,h∈H
qt+1(m,h)qt+1(h|m).

Applying Markov’s inequality, we have that

Pr
h,m

[qt+1(h|m) ≥ c2 · cert+1(M ′)] ≤ 1

c2
.

We will remove all edges with qt+1(h|m) ≥ c2 · cert+1(M ′). We will show that this removal
does not increase the certainty by much for most memories.

Denote by Err all pairs (m,h) such that qt+1(h|m) ≥ c2 ·cert+1(M). Putting in different
words the last equation, we have that

∑
m

qt+1(m)

 ∑
h|(m,h)∈Err

qt+1(h|m)

 ≤ 1

c2
.
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Applying Markov’s inequality again, we have that for most memories we do not delete too
many edges:

Pr
m

 ∑
h|(m,h)∈Err

qt+1(h|m) >
1

c

 ≤ 1

c

As was promised in Section 3.5, we maintain a substantial set of memories Mt+1 ⊆M that
we focus on, and we are ready to define it

Mt+1 :=

m ∈M ′
∣∣∣∣ ∑
h|(m,h)∈Err

qt+1(h|m) ≤ 1

c
and

∑
h

q2
t (h|m) ≤ c · cert(Mt)

 ,

recall that M ′ contains all the memories that are heavy-sourced or many-sourced. Thus,
using also Claim 15, we have that

qt+1(Mt+1) ≥ qt(Mt)−
2

c
≥ 1− 2(t+ 1)

c
.

Note that for all m ∈Mt+1, the removal of edges with qt+1(h|m) ≥ c2 · cert+1(M ′) can
only increase by at most a factor of 1

1−1/c ≤ 1 + 1.1
c the probability qt+1(h|m) (because we

have removed at most 1/c fraction of the edges from m ∈Mt+1). Thus, for each m ∈Mt+1

qt+1(h|m) ≤
(
1 + 1.1

c

)
c2cert+1(Mt+1) ≤ 2c2cert+1(Mt+1).

Let us now also remove the edges from Claim 44. Thus (using the bound we showed
earlier on γ1γ2), in time t+ 1 we removed a total fraction of(

1

c
+

1

c2

)
+

(
2

c
+ 4β + γk0 40c5 4

√
d2

|H||X |
Λ

)
≤ 1

c
+

1

16c
+

2

c
+

1

4c
+

1

2c
≤ 4

c
.

edges.
The last removal increases the average certainty cert+1

w (M) by at most (1 + 4/c). So,
in total, the removals cause the average certainty cert+1

w (M) to increase by a factor of at
most (1 + 4/c) · (1 + 1.1/c) ≤ 1 + 6

c . To sum up,

cert+1
w (M) ≤

[
2k+2

|H|

(∑
m∈M

qt(m)wm

)
+

8

c
·

t∑
t′=1

cert
′
(Mt′)

](
1 +

6

c

)t

7.1 Choosing Parameters

Before we prove the main theorem, in Claim 47 we prove that d = Ω(
√
|X |). The proof is

a straightforward adaptation of a result in [2]. Let S ⊆ X and T ⊆ H. Define

dis(S, T ) := |E(S, T )| − |S||T |
2
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Claim 47. For every 0 < ε < 1/16 there exists ε′ = 10−2ε3/2 such that there are S ⊆
X , T ⊆ H with |S| ≤ ε|X |, |T | ≤ ε|H| and

|dis(S, T )| > ε′
√
|X |
√
|H||X |,

which implies that if the hypotheses graph is d-mixing then d ≥ ε′

ε

√
|X | = 10−2√ε ·

√
|X |.

Proof. Let T ⊆ H with |T | = ε|H| be a randomly chosen and let x ∈ X be a random
labeled example. Then,

Pr
T,v

[∣∣∣∣|Γ(x) ∩ T | − |X |
2

∣∣∣∣ > 10−2

√
ε
|H|
2

]
>

1

2
.

Define

V (T ) =

{
x ∈ X :

∣∣∣∣|Γ(x) ∩ T | − |X |
2

∣∣∣∣ > 10−2

√
ε
|H|
2

}
⊆ X .

The expected size of V (T ) equals to

∑
x∈X

Pr
T,v

[∣∣∣∣|Γ(x) ∩ T | − |X |
2

∣∣∣∣ > 10−2

√
ε
|H|
2

]
>
|X |
2
.

Hence,

|X |
2

< E[|V (T )|] ≤ |X |Pr

[
|V (T )| > |X |

4

]
+
|X |
4

(
1− Pr

[
|V (T )| > |X |

4

])
,

implying

Pr

[
|V (T )| > |X |

4

]
>

1

3
.

Thus, one can choose a specific T and S ⊆ V (T ) with |S| = ε|X | such that dis(x, T ) >

10−2
√
ε |H|2 or dis(x, T ) < −10−2

√
ε |H|2 hold for all x ∈ S. In both cases S and T have

|dis(S, T )| > 10−2ε3/2
√
|X | ·

√
|H||X |.

For a mixing hypothesis class H , i.e., when d2 ≈ |X |, we show a lower bound of
Ω(log2 |H|) on the number of bits needed for learning H using less than |H|Θ(1) labeled
examples.

Theorem 48 (main theorem). If the hypotheses graph is d-mixing, m := |H||X |
d2 and |H| are

at least some constants, then any learning algorithm that outputs the underlying hypothesis
with probability at least m−Θ(1) must use at least 2Ω(log2m) memory states or mΩ(1) labeled
examples.
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Proof. To apply Claim 45 to H we will make sure that the following hold:

1. c102d2

|H||X | ≤ 1 by choosing c = 207

√
|H||X |

d2 (note that by definition of mixing d ≤
√
|H||X |,

hence c > 1)

2. 2k+2√γ0 + 2k+2 · c ·
√

16
γ11

0

d2

|X ||H| ≤
1

40c6
with k = log c− 12: we will show that

(a) 2k+2√γ0 ≤ 1
80c6
⇔ 2−10c7√γ0 ≤ 1⇐ γ0 ≤ 1

c14

(b) 2k+2 · c ·
√

16
γ11

0

d2

|X ||H| ≤
1

80c6
⇔ c2

210 ·
√

16
γ11

0

1
c207 ≤ 1

80c6
⇐ 16·802

220
1

c207−16 ≤ γ11
0 ⇐

1
c17 ≤ γ0

by choosing γ0 = 1/c15.

3. c > 108 ⇐ |H||X |
d2 ≥ 101700

4. Λ ≤ γ−k0 c−7 = c15k−7 = c15 log c−187

From Claim 45 we can deduce that even after t ≤ 10−8 · c examples given, the certainty is
at most c/|H|. We pick t :=

√
c ≤ 10−8 · c (for large enough c). The total number of edges

removed is at most 4t
c , and 1− qt(Mt) ≤ 2t

c . Using Claim 19 there is an hypothesis h ∈ H
such that the probability to correctly return it is at most

3

√
c · c

|H|
+ 3 · 2t

c
+

4t

c

Let us bound this expression. We will bound the first term by 3/c by proving that c4 ≤ |H|.
Since d2 ≥ 10−6|X | (see Claim 47), c4 ≤ (|H|106)4/207 which is smaller than |H|. The sum
of the last two terms is 6t/c = 6/

√
c.

The next theorem proves that even if we allow the bounded-algorithm to return an
approximation of the underlying hypothesis it still needs many examples.

Theorem 49. If the hypotheses graph is d-mixing, m := |H||X |
d2 and |H| are at least some

constants, then any learning algorithm that outputs the underlying hypothesis, or an ap-
proximation of it, with probability at least m−Θ(1) must use at least 2Ω(log2m) memory states
or mΩ(1) labeled examples.

Proof. From Claim 21 in [5], we know that there is an hypothesis class H′ ⊆ H with

|H′| ≥ |H|
1+ 16d2

|X|
≥ |H||X |

d2106 (for the last inequlity see Claim 47) such that every two hypotheses

in H′ has agreement less than 3/4.
We apply Theorem 48 to H′. Thus, H′ is unlearnable with bounded memory (since all

hypotheses in H′ are far apart). Note that the learner is even unable to improper learn
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H′ (which means that the learner can return hypothesis not in H′) — because the learner
does not have any computational limitations, it can compute an hypothesis in H′ exactly
(since all hypotheses in H′ are far apart). This implies that also H is unlearnable with
bounded memory.
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