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Abstract

The Octahedral Tucker problem considers an n-dimensional hypergrid of side length
two, centered at the origin, triangulated by connecting the origin to all outside vertices
(applied recursively on each of the lower dimensional hypergrids passing through their
origins at the corresponding reduced dimensions). Each vertex is assigned a color in
±i : i = 1, 2, ..., n computed using a polynomial size logic circuit which is also a com-
ponent of the input. Given that antipodal vertices are assigned complementary colors,
there is always an edge (equivalently, a 1-simplex of the triangulation) for which the two
adjacent vertices are assigned complementary colors. The computational complexity to
find one has been an outstanding challenging problem. In this paper, we resolve this
problem by proving Octahedral Tucker to be PPA-complete.
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1 Introduction
The Complexity class PPA (Polynomial Parity Argument on Graphs) was introduced by
Christos Papadimitriou in his seminal paper[13], which is the class of all problems that can
be reduced to the problem of finding another odd degree vertex in an undirected graph,
where one odd degree vertex has been given. A parity argument affirms the existence
of a second odd degree vertex in such a graph. Note that the graph considered has an
exponential number of vertices, and the edges incident to a vertex can be computed with
a polynomial time size circuit using the index of the vertex as the input. In comparison,
the PPAD class is the analog of PPA on directed graphs where both the in-degree and the
out-degree is no more than one for all vertices.

The study of these classes has motivated diverse interests, leading to increased modeling
efforts for solving computational issues involved with interesting combinatorial content that
go into the heart of combinatorial principles in a wide range of areas[2]. Both classes have
within them a significant number of member problems, such as a group of equilibrium
computation problems listed in [8] for PPAD, the integer factoring problem [10]. When it
comes to complete problems, although there have been a significant number of problems
known to be PPAD-complete, such as an array of problems listed to be PPAD-complete [11],
few completeness results have been proven for PPA. Despite close resemblance in their
definitions, there is an extreme disparity in our understanding of their complete problems
until the last couple of years.

In defining both PPA and PPAD as well as some related complexity classes [13], Pa-
padimitrou introduced several problems belonging to PPA. Later, the first PPA-complete
result was proven by Grigni in [9], proving the non-orientable 3-D version of the SPERNER
problem (finding a fully colored simplex in a properly colored and trian- gulated polygon)
to be PPA-Complete. Friedl et al in [7] further strengthened this result, proving the PPA-
completeness of a non-orientable locally 2-D version of SPERNER. After a decade, with
no new results in between, Deng et al in [4] characterized the Möbius band as the source
for the PPA-complete properties in discrete fixed points by a unified proof for several such
problems they then proved PPA-complete. These included a version of TUCKER (finding
an edge colored by two colors {−c, c} in a triangulated polygon with a proper coloring
anti-symmetric on the boundary) and SPERNER based on the mobius band, along with
other versions of discrete fixed point problems. Subsequently, Aisenberg et al proved the
first problem based in Euclidean space, the General 2-D Tucker, to be PPA-complete, in
[1].

Under the context of combinatorial topology, Fan [5] originated the study of Octahedral
Tucker in 1952, which is a high dimensional version of the TUCKER problem on a hypergrid
with side-length of two. Despite of its ressemblance and strong ties to fixed point problems,
their differences are not fully understood in the past 65 years. Since Aisenberg, et al.,
raised the challenge of computational complexity for the Octahedral Tucker problem in [1],
the key question becomes computational: whether any other PPA-complete problem can
be reduced in polynomial time to the Octahedral Tucker problem. The hardness proof is
difficult especially because of its simple structure. For related high dimensional fixed point
problems, the SPERNER problem can be shown PPAD-complete in the case where it is
restricted to a constant side length high dimension case [3]. For the case of high dimensional
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non-orientable space, SPERNER can be shown to be PPA-complete for a slightly larger
constant side length [4]. Yet the Octahedral Tucker challenge is almost impossible at a first
look: its side length is the minimum possible two. A far more precise design in construction
would be necessary to embed the proven structure of the generic PPA-complete problem for
undirected graphs of cycles and paths into the smallest side length hypergrid, if possible at
all. If done, its simplicity would open up new frontiers in the above discussed wide areas.

In this paper, we prove Octahedral Tucker PPA-complete. Our approach starts at a
new version of the 2-D TUCKER (2-D General Octahedral TUCKER) problem. It pads
together an exponential number of 2-D Octahedral Tucker instances to make a generalized
2-D TUCKER instance, which is proven PPA-hard. We reduce this new 2-D TUCKER
instance to Octahedral Tucker in steps called wrappings, where we reduce the side lengths
of the hypergrid, and simultaneously increase the number of dimensions. First, we need
to make sure that, if the input 2-D Tucker instance has parameter n, i.e. can be specifed
using n bits, the final dimension is bounded by a polynomial in n. Note that the initial
2-D TUCKER instance can have a side length exponential in n(Such an input can be
easily described in several ways, for example, given a node presented by two coordinates
of n bits each in the exponential size 2-D grid, we could have a polynomial size logic
circuit computing the color assigned to the node). The wrapping process needs to reduce
exponential side lengths to constant(2) side lengths in a polynomial number of steps. Thus,
when done iteratively, each iteration must wrap a larger length as tightly as possible on
higher dimensional smaller lengths(without wasting lengths as that will lead to increased
number of iterations). This property must be maintained until the side length reduces to
two, the smallest possible for the problem to be nontrivial.

In the first stage of the wrapping process, we reduce each side length of the hypergrid to
multiple side lengths all of size 8. Here in each iteration we ensure that while the number of
dimensions increases by one, the sum of side lengths decreases geometrically. Eventually, we
end up with a polynomial number of dimensions with each side length exactly 8. Therefore,
the sum of side lengths will become a polynomial in the input parameter n.

The second stage of wrapping process reduces a General Octahedral TUCKER instance
of constant length 8 sides to an Octahedral Tucker instance, and has a much trickier require-
ment in maintaining TUCKER’s structure than in the first stage of wrapping. However, as
we already have a total side length polynomial in the input parameter n, we can afford to
be wasteful in wrapping. Our main idea is to reduce the side length of each dimension to a
quarter of the original at the beginning of this stage, while increasing the total number of
dimensions by a factor of 4.

The detailed reductions are tricky and require careful design of gadgets to ensure an-
tipodal symmetry on the boundary so that eventually the two stage process allows us to
reduce each dimension side length to 2 and the number of dimensions to a polynomial in n,
and therefore complete our wrapping process successfully.

In the other direction for proving higher dimension TUCKER is in PPA, Papadimitriou
[13] proposed a key idea of dimension raising [6] which is also employed in Aisenberg, et
al., for 2-D TUCKER [1]. The nice structure of Octahedral Tucker allows us to develop a
proof which focuses on the use of this technique, included in appendix A for completeness.

To overcome the almost impossible task of a precise result, a series of technical tools
were developed along the way toward the proof of Octahedral Tucker’s PPA-completeness.
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First, the proper problem to reduce to Octahedral Tucker had to be chosen, or defined and
proved PPA-Complete. The main concern here was developing one on which the wrapping
stages could be applied iteratively while maintaining a sustainable consequence of wraps.
We thus defined the General Octahedral Tucker problem, and fixed it’s 2-D case as our
starting point. This problem, by itself, could be useful in other fixed point theory and
complexity theory problems.

Even if all the first stage wrapping processes go through, there is still the inevitable
task of reducing side lengths down to two, a task next only to impossible. All vertices
except the origin are boundary nodes, and hence each has an antipodal partner. Coloring
these vertices while following tucker lemma constraints, without adding extra solutions in
the wrapping processes is challenging when the manipulation room is only an arm length
of two.

Additionally, according to Octahedral triangulation, the origin is connected to every
vertex in the hypergrid. Thus, for any color assigned to the origin, if some other vertex is
also assigned the same color, then the antipodal partner of this other node has the opposite
color assigned to it, and forms a complementary edge with the origin. Hence, with an
exponential(3n) number of vertices in the grid to be colored using polynomial(2n) colors, if
the origin cannot be adjacent to a complementary edge, it has to assigned a color different
from that assigned to every vertex in the hypergrid(Allowing the origin to be adjacent to a
complementary edge, and maintaining this edge in successive stages is even more difficult).

With every increased dimension, we are provided exactly one pair of complementary
colors. Obvious ways to ensure retaining the original solution set would involve coloring
all new vertices with the new colors(and their antipodal vertices with the opposite color).
Thus, for a hypergrid in an n-dimensional space, we would require n colors simply to avoid
extra solutions. But this leaves the origin to be colored using one of the same n colors,
thus creating unwanted solutions. The idea of reusing one color in two new dimensions,
without coloring their boundary with a new color, is key to the reduction, and we believe,
could prove a useful tool to resolve outstanding graph theoretical, coloring, or fixed point
problems in complexity theory.

The other proof proving Octahedral Tucker in PPA follows the key idea in [13], but is
itself a precise execution. The technique exhibits a set of elegant choices of structures that
move toward the final prettiness of a piece of theoretical work.

Presentation Structure: In Section 2, we introduce the class PPA, and the standard
PPA-complete problem AEUL (another end of undirected lines) [4]. We then define the
General TUCKER and Octahedral Tucker problems. In Section 3 we focus on the main
task to prove Octahedral TUCKER PPA-hard. We conclude with remarks and discussion
on the future potential of this work.

2 Preliminaries

2.1 The PPA Class

A complexity class is often defined to have a collection of complete problems to which other
problems can be reduced within time and space appropriate (with lower complexity) for
the class. The famous complexity classes NP includes all problems which could be solved
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in polynomial time on non-deterministic Turing machines. A NP-complete problem is one
to which every problem in NP can be reduced to in deterministic polynomial time. Other
new complexity classes are also identified by their computational machinery, and the corre-
sponding complete problems as its members to which all other member problems are reduced
to within relatively lower computational computational resources. PPA(Polynomial Parity
Argument on graphs) is one such complexity class, introduced by Cristos Papadimitriou
in 1994, in his seminal paper [13], the member problems of which always have a solution
guaranteed by a proof structure of a graph. A fixed odd degree node is given in the graph,
and any other odd degree node will be a solution to the problem.

For simplicity, we make use of a computationally equivalent version of PPA based on
an exponential size graph consisting of nodes of maximum degree two, with a given node
of degree one. We name it AEUL (Another End of Undirected Lines) with the follow
specifications:

Definition 2.1 (AEUL [4]). Suppose that an input circuit Ln of polynomial size in n takes
an input u in the configuration space Cn = {0, 1}n and returns an output Ln(u) in the form
〈v, w〉, 〈v〉, or 〈〉 where v > w and v, w ∈ Cn \ {u}. 0n is a given configuration of one tuple,
i.e., |Ln(0n)| = 1. The search problem is to find another configuration v, v 6= 0n such that
|Ln(v)| = 1.

2.2 Octahedral Tucker is in PPA

The Tucker problem and it’s various versions, like the General Tucker, Octahedral Tucker
and General Octahedral Tucker, arise from the Tucker’s lemma, a classical statement in
topology. In this section, we state the lemma, and provide all terms and definitions building
up to the definition of Octahedral Tucker, and end with a theorem proving the membership
of Octahedral Tucker in PPA.

Lemma 2.2. (Tucker’s Lemma): In every triangulation of an n-dimensional simplex, whose
vertices are assigned colors from {±1,±2... ± n} by a coloring function that maintains
antipodal symmetry, a complementary edge always exists

Tucker’s lemma directly leads to General Tucker, the computational problem of find-
ing a complementary edge in an antipodally symmetric colored triangulated n-D simplex.
For simplicity, we define n-D Tucker on a "Hypergrid" called Vn = {p = (p1, p2, ..., pn) ∈
Zn, ∀i,−Ni

2 ≤ pi ≤ Ni
2 },

1 where Ni is the length of ith dimension. Bn = {p, ∃pi =
{−Ni/2, Ni/2}} is the boundary of this hypergrid. Let Kp = {q : qi ∈ {pi, pi + 1}} be
the unit hypergrid in Vn.

Definition 2.3 (n-D Tucker). The input of n-D Tucker is a pair (G, Vn) where Vn is an n
dimensional triangulated hypergrid centered at 0 and G is a polynomial-time machine, which
generates a coloring function g : Vn → {±1,±2, ...,±n} satisfying the antipodal boundary
condition: ∀p ∈ Bn, g(−p) = −g(p). The output of n-D Tucker is a complementary
1-simplex, i.e an edge (p, q) s.t. g(p) = −g(q).

With the help of this definition of n-D Tucker, we can give the most important definition
in this paper — n-D Octahedral Tucker:

1For simplicity, we assume Ni is even for each i.
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Definition 2.4 (n-D Octahedral Tucker). n-D Octahedral Tucker (n ≥ 2) is the special
case of n-D Tucker (G, Vn) which satisfies

• The side length of each dimension is exactly 2, i.e. ∀p ∈ Vn, ∀i ∈ [n], pi ∈ {−1, 0, 1}.

• Standard Octahedral Tucker triangulation (SOTT), which is defined recursively in
the following:

– The SOTT in 2-D Octahedral Tucker is shown in Figure 1.
– Any 2-D 2 × 2 facet (contains 9 vertices) in n-D Octahedral is triangulated by

SOTT shown in Figure 1. For example, there are 15 2-D 2 × 2 facets in 3-D
Octahedral Tucker which, shown in Figure 2.

Figure 1: An instance of the 2-D Octahedral Tucker Problem

Figure 2: An instance of the 3-D Octahedral Tucker Problem. The 15 2× 2 facets in the
3-D hypergrid, each triangulated by 2-D Octahedral Triangulation, are enumerated in the
column to the right

Formally, we could give an equivalent definition for Standard Octahedral Tucker Trian-
gulation in the following:

Definition 2.5 (Standard Octahedral Tucker Triangulation (SOTT)). In a n-D Octahedral
Tucker (G, Vn), we define a preference relation % s.t. 1 % 0, −1 % 0, 1 % 1, −1 % −1 and
0 % 0. However, there is no relation between −1 and 1. Further, we say p % q, ∀p, q ∈ Vn
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iff ∀i ∈ [n], pi % qi. The Standard Octahedral Tucker Triangulation of (G, Vn) is defined as:
∀p, q ∈ Vn, p and q are linked iff p % q or q % p.

With the definition of n-D Octahedral Tucker, we know Octahedral Tucker is a special
case of General Tucker. As General Tucker is in PPA[1, 13], Theorem 2.6 follows. For
completeness, we present a simple and complete proof in Appendix A for showing n-D
Tucker is in PPA.

Theorem 2.6 ([1, 13]). Octahedral Tucker is in PPA

2.3 2-D General Octahedral Tucker is PPA-hard

In addition, to prove the PPA-hardness of Octahedral Tucker, we need to define another
special case of n-D Tucker General Octahedral Tucker as well as the corresponding trian-
gulation, which is called General Octahedral Tucker triangulation (GOTT).

Definition 2.7 (General Octahedral Tucker). A General Octahedral Tucker is an n-D
Tucker (G, Vn) with length of each dimension {N1, N2, ..., Nn} where ∀i ∈ [n], Ni = 4ki, ki ≥
2 under the general Octahedral Tucker triangulation (GOTT), which is defined as: any
octahedral hypergrid centered at vertices with odd numbers in both coordinate

Hp = {q : qi ∈ {pi − 1, pi, pi + 1}|pi = 2mi + 1,−ki ≤ mi ≤ ki − 1}

is triangulated by Standard Octahedral Tucker Triangulation.

To proceed further to prove Octahedral Tucker is PPA-hard, as a starting point of the
reduction process, we first prove the PPA-hardness of 2-D General Octahedral Tucker.

Theorem 2.8. 2-D General Octahedral Tucker is PPA-hard.

Proof. The proof of this theorem follows directly from Aisenberg et al’s proof[1] claiming
2-D Tucker is PPA-complete, with a number of modifications. Aisenberg et al’s proof [1]
reduces the AEUL problem to 2-D Tucker by encoding the entire AEUL graph on a 2-D
Tucker instance of suitable size. The AEUL vertices are each mapped to 13×13 grids, with
one entrance and one exit possible to each grid(denoted as the ’outgoing’ and ’incoming’
edge of the vertex). Edges of the AEUL graph are encoded by joining one of these ’edges’
of each Tucker vertex to each other via 3-wide tubes, that have (−1)-colored vertices at
the center, (+2)-colored edges on one side and (−2)-colored vertices on the other side of
the tube. The rest of the Tucker vertices not mapped to any AEUL vertex/edge (called
the ’environment’) are colored +1. Thus, one end of every single degree vertex will have
an open tube, with the center (−1)-colored vertex exposed to the environment, forming a
complementary edge. That is, every Tucker solution corresponds to a solution of the AEUL
problem that can be found, given the Tucker solution, in polynomial time, thus completing
the reduction.

2-D Octahedral Tucker uses octahedral triangulation, and has size 4p × 4q cells, for
p, q ∈ N. As Aisenberg et al’s paper reduces AEUL to a Tucker instance of size m × m
lines2 where m = 4× 13× |G|, we modify their proof as follows:

2Lengths are measured in number of lines in [1], whereas in number of cells in our paper. Note that the
number of lines = 1 + number of cells
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1. Use a 4-wide tube with the inner two lines colored −1, instead of the original 3-wide
tubes with only one center line

2. Map each AEUL vertex to a grid of size 20× 20 cells (or 21× 21 lines), instead of the
original grid size of 13× 13 lines

That is, we follow the entire reduction procedure by mapping an AEUL instance to a
2-D Octahedral instance of size m×m where m = 4× 21× |G| lines. We map each AEUL
vertex to a grid of size 20× 20 cells, and edges to 4-wide tubes in the Tucker grid.

Our Tucker instance has General Octahedral triangulation. For an open end in a grid
corresponding to a single degree AEUL vertex, having a 4-wide tube ensures at least one
of the inner (−1)-colored vertices has an edge incident on an environment vertex. A 4-wide
tube also ensures symmetric Tucker solutions generated for each AEUL solution, making
analysis easy.

Each grid assigned to a AEUL vertex has a tube with a ’jump’ in the center to ensure
antipodal symmetry. As the width of the tube is now increased by 1, we need to add one
more line in the base grid for the extra inner wire. When two tubes cross, the crossings are
resolved by ’bending’ the tubes slightly. The entire crossing is located in one grid. We need
to add 4 cells each at the top and bottom of the center tube to ensure all crossings in the
2-D Octahedral Tucker instance too get resolved in one grid. This increases the grid side
length to 8 + 4 + 8 = 20 cells, or 21 lines.

This modified reduction scheme reduces AEUL to 2-D Octahedral Tucker, thus proving
2-D Octahedral Tucker PPA-Hard.

3 Octahedral Tucker is PPA-hard
We prove that Octahedral Tucker is PPA-hard by reducing 2-D General Octahedral Tucker
to Octahedral Tucker in polynomial time. The reduction algorithm folds each dimension
of the 2-D Tucker instance into multiple dimensions of smaller lengths iteratively, until we
reach a hypergrid whose length in all dimensions is two. Every step of the algorithm is
a polynomial time reduction from one general Octahedral Tucker instance to another in a
higher dimension. The final hypergrid, by definition is an instance of Octahedral Tucker,
thus completing the reduction from 2-D General Tucker to Octahedral Tucker.

The algorithm is discussed in detail in the subsequent subsections.

3.1 Wrapping Stage 1: Reducing side lengths to 8
We divide this subsection into two parts: First, we introduce the Stairwise lemma: fold (n−
1)D-Tucker to nD-Tucker and shrink the length of one dimension simultaneously. Second,
we show how to use this lemma recursively to reduce 2D-Tucker to a higher dimension
Tucker instance with length in each dimension 8.

Before we describe the Stairwise Lemma which is the main lemma in this subsection,
we give the following lemma to restrict our discussion to a specific class of 2-D General
Octahedral Tucker.
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Lemma 3.1. Any 2D General Octahedral Tucker instance (G, V2) can be reduced to a 2D
General Octahedral Tucker instance (G′, V ′2) whose lengthes in the two dimensions are 2m

and 2n, for some m, n ∈ Z.

Proof. Denote the lengthes of two dimensions of (G, V2) by N1, N2, where N1 and N2 are
both multiple of 4. Let m, n ∈ Z+ s.t. 2m−1 < N1 ≤ 2m and 2n−1 < N2 ≤ 2n. We list the
construction below, illustrated in Figure 3.

I ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where
p1 = q1 and p2 = q2.

II ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where
p1 = q1, p2 = N2/2.

III ∀q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where
p1 = N1/2, p2 = q2.

IV ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and −2n−1 ≤ q2 < −N2/2, then g′(q) = g(p) where
p1 = q1, p2 = −N2/2.

V ∀q ∈ V ′2 with −2m−1 ≤ q1 < −N1/2 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where
p1 = −N1/2, p2 = q2.

VI For q ∈ V ′2 with −2m−1 ≤ q1 < N1/2 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where
p1 = −N1/2 and p2 = N2/2.

VII For q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where
p1 = N1/2 and p2 = N2/2.

VIII For q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and −2n−1 ≤ q2 < −N2/2, then g′(q) = g(p)
where p1 = N1/2 and p2 = −N2/2.

IX For q ∈ V ′2 with −2m−1 ≤ q1 < N1/2 and −2n−1 ≤ q2 < N2/2, then g′(q) = g(p)
where p1 = −N1/2 and p2 = −N2/2.

Figure 3: Converting a general 2-D Tucker instance into one whose sides have length
{2m, 2n}, where m, n ∈ N.

For the correctness of the reduction, first, there is a complementary edge existing in
part I if and only if it is a complementary edge in original Tucker (G, V2). Next, there is
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no complementary edge in parts VI, VII, VIII, IX. Third, if there is a complementary edge
in part II, III, IV or V, it means there is a corresponding complementary edge located in
the original Tucker (G, V2) on the boundary and we can find it in polynomial time. We
summarize in Table 1, the corresponding complementary edge {p,q} in (G, V2), for each
complementary edge {p′,q′} in (G′, V ′2) where p′1 ≤ q′1.

Given Complementary edge in (G′, V ′2) Corresponding Complementary edge in (G, V2)

p′ q′ p q

−N1
2 ≤ p′1 ≤ N1

2 , −N1
2 ≤ q′1 ≤ N1

2 , p1 = p′1 q1 = q′1

−N2
2 ≤ p′2 ≤ N2

2 −N2
2 ≤ q′2 ≤ N2

2 p2 = p′2 q2 = q′2

−N1
2 ≤ p′1 ≤ N1

2 , −N1
2 ≤ q′1 ≤ N1

2 p1 = p′1 q1 = q′1 = p′1 + 1

N2
2 < p′2 ≤ 2n−1 N2

2 < q′2 ≤ 2n−1 q1 = N1
2 q2 = N1

2

N1
2 < p′1 ≤ 2m−1 N1

2 < q′1 ≤ 2m−1 p1 = N1
2 q1 = N1

2

−N2
2 < p′2 < N2

2 −N2
2 < q′2 < N2

2 p2 = p′2 q2 = q′2

−N1
2 ≤ p′1 ≤ N1

2 , −N1
2 ≤ q′1 ≤ N1

2 p1 = p′1 q1 = q′1 = p′1 + 1

−2n−1 ≤ p′2 < −N2
2 −2n−1 ≤ q′2 < −N2

2 p2 = −N2
2 q2 = −N2

2

−2m−1 ≤ p′1 < −N1
2 −2m−1 ≤ q′1 < −N1

2 p1 = −N1
2 q1 = −N1

2

−N2
2 < p′2 < N2

2 −N2
2 < q′2 < N2

2 p2 = p′2 q2 = q′2

Table 1: Finding the corresponding complementary edge {p,q} in (G, V2) given a comple-
mentary edge {p′,q′} in (G′, V ′2).

As we can find a complementary edge in the original 2D−Tucker (G, V2) instance in
polynomial time, given a complementary edge in (G′, V ′2), the proof describes a valid reduc-
tion as asserted by the theorem.

Lemma 3.2 (Stairwise Lemma). Suppose we have an (n−1)-D General Octahedral Tucker
instance (G, Vn−1) with length of each dimension {N1, N2, ..., Nn−1}, where Nn−1 = 4k(k >
2), we can reduce it to n-D General Octahedral Tucker (G′, Vn) with length of each dimen-
sion {N1, N2, ..., N ′n−1, N ′n} where N ′n−1 = 8, N ′n = Nn−1

2 = 2k under general Octahedral
triangulation.

Proof. The proof structure is divided to the following two stages.

1. we first show how to fold (n− 1)D-Tucker to nD-Tucker,

2. then we prove the correctness of the reduction.

First part of the proof. The idea is to shrink (n− 1)th dimension and append another
new dimension (nth dimension) simultaneously. First, we show how to embed the (n−1)D-
Tucker into Vn. We describe this process mathematically as follows:
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Embedding

• ∀p ∈ Vn−1 with −2k ≤ pn−1 ≤ −2k+1, embed it to p′ = (p1, ..., pn−2, pn−1 +2k−4, 0)
in Vn, i.e. g′(p′) = g(p).

• ∀p ∈ Vn−1 with −2k+2 ≤ pn−1 ≤ −k, embed it to p′ = (p1, ..., pn−2,−2, pn−1+2k−2)
in Vn, i.e. g′(p′) = g(p).

• ∀p ∈ Vn−1 with pn−1 = −k + 1, embed it to p′ = (p1, ..., pn−2,−1, k − 2) in Vn, i.e.
g′(p′) = g(p).

• ∀p ∈ Vn−1 with −k + 2 ≤ pn−1 ≤ k − 2, embed it to p′ = (p1, ..., pn−2, 0,−pn−1) in
Vn, i.e. g′(p′) = g(p).

• ∀p ∈ Vn−1 with pn−1 = k − 1, embed it to p′ = (p1, ..., pn−2, 1,−k + 2) in Vn, i.e.
g′(p′) = g(p).

• ∀p ∈ Vn−1 with k ≤ pn−1 ≤ 2k− 2, embed it to p′ = (p1, ..., pn−2, 2, pn−1 − 2k + 2) in
Vn, i.e. g′(p′) = g(p).

• ∀p ∈ Vn−1 with 2k − 1 ≤ pn−1 ≤ 2k, embed it to p′ = (p1, ..., pn−2, pn−1 − 2k + 4, 0)
in Vn, i.e. g′(p′) = g(p).

Then, we show how to add new color to satisfy antipodal boundary in Vn.

Adding Colors Based on the embedding strategy above, ∀ p in Vn−1, there is a corre-
sponding p′ in Vn. We define the set of these corresponding vertices in Vn as S. Next we
stipulate how to color vertices in Vn\S. Based on the above discussion, we find that we
divide Vn into two parts by S. One part is above S where we color all vertices with n, while
the other part is below S where we color them with −n.

Formally, we define adding colors as follows:

• For any q ∈ Vn\S which is above S,

– ∀q ∈ Vn with −4 ≤ qn−1 ≤ −3 and qn > 0, g′(q) = n.
– ∀q ∈ Vn with −2 ≤ qn−1 ≤ 0 and qn > k − 2, g′(q) = n.
– ∀q ∈ Vn with qn−1 = 1 and qn > −k + 2, g′(q) = n.
– ∀q ∈ Vn with 2 ≤ qn−1 ≤ 4, g′(q) = n.

• For any q ∈ Vn\S which is below S,

– ∀q ∈ Vn with −4 ≤ qn−1 ≤ −2 and qn < 0, g′(q) = −n.
– ∀q ∈ Vn with qn−1 = −1 and qn < k − 2, g′(q) = −n.
– ∀q ∈ Vn with 0 ≤ qn−1 ≤ 2 and qn < −k + 2, g′(q) = −n.
– ∀q ∈ Vn with 3 ≤ qn−1 ≤ 4, g′(q) = −n.

To illustrate, we show embedding and adding colors for the n = 3 case in Figure 4.
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Figure 4: Reduce 2D-Tucker with length of each dimension {N1, N2} to 3D−Tucker. (a):
Embedding 2D-Tucker with N2 = 4k (k > 2) in 3D−Tucker with N ′1 = N1, N ′2 = 8 and
N ′3 = 2k. We just plot the boundary face of V3 with p1 = −N1/2. (b): Adding colors in V3

Second part of the proof. We now show the correctness of this reduction. First, we
can easily check that (G′, Vn) satisfies the antipodal boundary condition, i.e, ∀q ∈ Vn,
g′(−q) = −g′(q). Second, we show there is no other complementary edge which is not in
original (n − 1)D-Tucker (G, Vn−1). This is because under Octahedral triangulation: (a)
the edge between S and Vn\S is not a complementary edge, (b) we can’t link two vertices
colored by n and −n, (c) we don’t link any new edge in original (n− 1)D-Tucker.

• (a) is obviously correct since there are no ±n in S, then we turn to see (b) and (c).

• For (b), ∀p,q ∈ Vn with g′(p) = n, g′(q) = −n, |pn−1 − qn−1| ≥ 2 or |pn − qn| ≥ 2
according to our construction. Therefore, p,q cannot both belong to a same unit
hypergrid. Thus, we can’t link p,q together using general Octahedral triangulation.

• For (c), we show general Octahedral triangulation will guarantee this claim. We
only need to prove the general Octahedral triangulation in Vn maintains the original
general Octahedral triangulation in Vn−1 for S. For any octahedral hypergrid (Def-
inition 2.7) Hp in Vn−1, Hp is embedded in S which is denoted by H ′p. Based on
our construction, any H ′p is the boundary surface of a octahedral hypergrid in Vn.
Following the definition of general Octahedral triangulation, H ′p is triangulated by
standard Octahedral triangulation. Therefore, the triangulation of Vn for S is the
original general Octahedral triangulation for Vn−1.

Claims (a), (b) and (c) show that there is no other new complementary edge added
by our construction. Combined with the satisfication of antipodal boundary condition, we
have thus proved the correctness of this reduction.

Given Lemma 3.1 and Lemma 3.2, we have the following Theorem of PPA-completeness
for constant side length Tucker.

Theorem 3.3. For any 2D General Octahedral Tucker instance (G, V2) where the length
of two dimensions are N1 and N2 respectively, it can be reduced to a O(log N1 + log N2)D
General Octahedral Tucker with length in each dimension 8.
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< k > < a, b, c, d >

< −4 > < −1,−1,−1,−1 >

< −3 > < −1,−1,−1, 0 > and < −1, 0,−1,−1 >

< −2 > < −1,−1,−1, 1 > and < −1, 1,−1,−1 >

< −1 > < −1,−1, 0, 1 > and < −1, 1, 0,−1 >

< 0 > < −1,−1, 1, 1 > and < −1, 1, 1,−1 >

< 1 > < −1, 0, 1, 1 > and < −1, 1, 1, 0 >

< 2 > < −1, 1, 1, 1 >

< 3 > < 0, 1, 1, 1 >

Table 2: Mapping coordinates of the input instance in the output instance. < k > de-
notes the vertex that has coordinate k in the dimension shrunk in the current iteration.
< a, b, c, d > denotes the corresponding coordinates of the differentiating dimensions in
the output instance

Proof. Based on lemma 3.1, w.l.o.g. we assume length of two dimensions of 2D General
Octahedral Tucker instance (G, V2) are 2m and 2n. Using Stairwise Lemma recursively, we
can reduce the 2D General Octahedral Tucker (G, V2) to an O(m + n)D General Octahedral
Tucker with length in each dimension 8 in polynomial time3.

3.2 Wrapping Stage 2: Reducing Side Lengths from 8 to 2
To summarize, we have until now reduced a 2-D General Tucker instance into a Tucker
instance having length 8 in a higher dimension(the dimension being in the order of the bits
required to specify one vertex in the 2-D Tucker instance). To complete the reduction, we
now describe the process to fold each side(of length 8) of this Tucker instance into four sides
of a 4-D hypergrid. This process retains the solution set of the original 2-D Tucker instance,
does not add new solutions to it, and maintains the antipodal symmetry property, making
it a valid reduction from 2-D Tucker.

Lemma 3.4. An n-D General Octahedral Tucker instance (G, Vn) with length of some
dimension 8, can be reduced to an (n + 3)-D Tucker instance (G, Vn+3), by folding the
length 8 dimension into 4 dimensions of length 2 each.

Proof. The proof is divided into two parts: first we describe the folding process of a dimen-
sion of length 8 into four dimensions of length 2 each, followed by the second part where
we prove that this process is a valid reduction from an n-D Tucker instance to an (n + 3)-D
Tucker instance.

We fold a dimension of length 8 into four dimensions of length 2 each, by embedding the
n-D Tucker instance into an (n + 3)-D Tucker instance. Vertices in these Tucker instances
have same coordinates in almost all dimensions. The difference is in the coordinate of one
old dimension(which is being folded), which has length 8 in the input instance and length 2
in the new one, and the 3 additional coordinates of new dimensions which are not present
in the input instance. We call these dimensions the differentiating dimensions.

3Actually, the order of dimensions doesn’t influence the correctness of Stairwise Lemma.
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Sr.No. < e1, e2, e3 > Sr.No. < e1, e2, e3 >

1 < −1, 0,−1 > 5 < 0, 0,−1 >

2 < −1, 0, 0 > 6 < 0, 1,−1 >

3 < −1, 1,−1 > 7 < 0, 1, 0 >

4 < −1, 1, 0 >

Table 3: Coordinate values of environment vertices in a 3-D cube

We embed the n-D graph in the (n + 3)-D graph. Table 2 specifies the coordinates in
the differentiating dimensions of a vertex mapped from the old n-D instance into the new
(n + 3)-D instance(Without loss of generality, we assume the coordinates of vertices of the
dimension to be folded lie in {−4,−3, .., 4}). The mapping of vertices is also shown as black
colored vertices in Figure 7.

To help visualise the fold process, we illustrate the folding of a side of length 6 into three
sides of length 2 each, in Figure 5. The separating and environment vertices are marked in
Figure 6.

Figure 5: Folding a dimension of length 6 into three dimensions of length 2 each.

Figure 6: Separating and Environment vertex sets in a 3-D cube

We extend the idea of the coloring scheme of the length-6 reduction to the length-
8 reduction, as shown in Figure 7. Intuitively, the 4 differentiating dimensions together
form a 4-D hypergrid. Classifying all vertices of this hypergrid on the basis of their first
coordinate value, we divide the hypergrid into 3 cubes < −1, ∗, ∗, ∗ >, < 0, ∗, ∗, ∗ > and
< 1, ∗, ∗, ∗ >. The coloring scheme of the new instance divided in this way is as shown
in Figure 7. Vertices mapped from the n-D Tucker instance are colored using the old
colors. Vertices diametrically opposite to these vertices are given the opposite colors. For
better exposition, the set of vertices of each cube is further divided into two groups of
vertices, so called the ’separating’ vertices and the ’environment vertices’. The coordinates

13



Figure 7: Coloring scheme of new instance after folding one side of length 8 into 4 sides
of length 2 each

Sr.No. < s1, s2, s3 > Sr.No. < s1, s2, s3 >

1 < −1,−1,−1 > 4 < −1, 0, 1 >

2 < −1,−1, 0 > 5 < −1, 1, 1 >

3 < −1,−1, 1 > 6 < 0, 1, 1 >

Table 4: Coordinate values of separating vertices in a 3-D cube

of vertices belonging to each set, denoted by < s1, s2, s3 > and < e1, e2, e3 > respectively,
are enumerated in Tables 4 and 3 respectively. Figure 7 marks these sets in a cube.

Formally, the coloring function of the new Tucker instance is as specified in the Table 5
also shown in Figure 7. The coloring functions of the (n+3)-D graph and the n-D graph are
denoted by g′(.) and g(.) respectively. < a, b, c, d > denotes the color of all vertices whose
coordinates in the dimension shrunk and the new ones added are a, b, c, d respectively, < k >
denotes the color of the vertex in the original instance that has coordinate k in the dimension
shrunk, and < a, b, c, d > mapped to < k > means g′(a, b, c, d) = g(k), when the coordinates
of all g′(a, b, c, d) and g(k) in all other dimensions are the same. In case of conflicting rules
for some vertex, the rule higher in the Table is given higher priority.

This coloring function, by definition, is antipodally symmetric. If this coloring scheme
now retains all complementary edges of the n-D Tucker instance, and does not add new
ones, then it will be a valid reduction. We now proceed to the second part of the proof to
argue the correctness of the reduction. We prove three assertions to do so:

1. Edges of the form (u, v), where u is a vertex mapped from the n-D Tucker instance,
and v is not, are not complementary
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Sr.No. < a, b, c, d > < k > Sr.No. < a, b, c, d > < k > or
±(n + x),

x ∈ {1, 2, 3}
1 < −1,−1,−1,−1 > <-4> 10 < −1, e1, e2, e3 > (n+1)
2 < −1,−1,−1, 0 >, < −1, 0,−1,−1 > <-3> 11 < −1,−e1,−e2,−e3 > -(n+1)
3 < −1,−1,−1, 1 >, < −1, 1,−1,−1 > <-2> 12 < −1, 0, 0, 0 > (n+2)
4 < −1,−1, 0, 1 >, < −1, 1, 0,−1 > <-1> 13 < 1, ∗, ∗, ∗ > − < −1, ∗, ∗, ∗ >

5 < −1,−1, 1, 1 >, < −1, 1, 1,−1 > <0> 14 < 0, s1, s2, s3 > (n + 1)
6 < −1, 0, 1, 1 >, < −1, 1, 1, 0 > <1> 15 < 0,−s1,−s2,−s3 > −(n + 1)
7 < −1, 1, 1, 1 > <2> 16 < 0, e1, e2, e3 > (n + 2)
8 < 0, 1, 1, 1 > <3> 17 < 0,−e1,−e2,−e3 > −(n + 2)
9 < 1, 1, 1, 1 > <4> 18 < 0, 0, 0, 0 > n + 3

Table 5: Coloring function of the Tucker instance reduced from a lower dimension
instance.< a, b, c, d > denotes the color g′(a, b, c, d) assigned to vertices in the new instance
that have coordinates a, b, c, d in the dimension shrunk and the 3 new dimensions added.
< k > denotes the color g(k) of the vertex having coordinate k in the dimension shrunk.
A number ±(n + x), x ∈ {1, 2, 3}, denotes the new color ±(n + x) assigned to the corre-
sponding vertex in the new instance. ∗ denotes ’don’t care’, where the coordinate of the
vertex in the respective dimension can be any of {−1, 0, 1}.

2. Vertices colored with new colors((±(n+1),±(n+2), n+3)) do not form complementary
edges(i.e., no new solutions are formed)

3. The adjacencies of vertices embedded from the n-D Tucker instance are retained(i.e.,
all old solutions are retained and no new solutions connecting old vertices are formed)

The first statement is trivial, as all vertices mapped from the old Tucker instance are
colored using some color from {±1,±2, ..±n}, while the other vertices are colored using one
of the new colors {±n + 1,±n + 2, n + 3}. These edges, thus, can never be complementary.
The second and third statements are proved separately in the lemmas 3.5 and 3.6, thus
completing the reduction.

Lemma 3.5. While folding a dimension of length 8 of a general Tucker instance as described
in lemma 3.4, vertices colored with new colors {±(n + 1),±(n + 2), n + 3} do not form
complementary edges.

Proof of Lemma 3.5. We make the following observations on the new instance from Figure
7:

1. No vertex belonging to the top cube is adjacent to any vertex in the bottom cube, as
these have coordinate values −1 and 1 respectively in the first differentiating dimen-
sion, thus violate SOTT requirements.

2. Vertices belonging to the environment vertex set of the top cube are of the form
< −1,−1/0, 0/1,−1/0 > \ < −1, 0, 0, 0 >. Vertices belonging to the separating
vertex set of the middle cube are of the form < 0,−1,−1, ∗ > or < 0,−1, ∗, 1 > or
< 0, 0, 1, 1 >. Each of these vertices has some pair of dimensions(highlighted in bold
in each case), which together has coordinate values that conflicts SOTT requirements
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when compared with the values of the environment set vertices in the top cube. Thus,
environment set vertices in the top cube(and similarly those in the bottom cube)
cannot be adjacent to separating set vertices in the middle cube.

3. Similar to the reasoning in the second point, separating vertices in the top and bottom
cube cannot be adjacent to environment vertices in the middle cube.

4. Environment Vertices and the set of their diametrically opposite vertices in the same
cube facet have coordinate values 1 and −1, or vice versa, in some differentiating
dimension, thus cannot be adjacent to each other.

To prove the lemma, we prove the correctness of the statement for vertices colored using
distinct new colors separately. Vertices colored using (n + 1): These are the environment
vertices in the top and bottom cube, and the vertices diametrically opposite to the sepa-
rating set vertices in the middle cube. The observations made previously affirm that the
top environment vertices cannot be adjacent to −(n + 1) colored vertices in the middle
cube(point 2), or those in the bottom cube(point 1). Also, −(n + 1) colored vertices in the
top cube cannot be adjacent to these vertices(point 4). Thus, n + 1 colored vertices in the
top cube are not adjacent to any −(n + 1) colored vertex. Similarly, we prove the lemma
for n + 1 colored vertices in the middle and bottom cubes, and for the n + 2 colored vertices
in the middle cube. The n + 2 colored vertex in the top cube has the form < −1, 0, 0, 0 >.
Thus by SOTT conditions, apart from vertices in the top cube, it is only adjacent to the
center vertex in the middle cube, hence not adjacent to any −(n + 2) colored vertex. Sim-
ilarly we prove the lemma for the −(n + 2) colored vertex in the bottom cube. Also, no
vertex in the hypergrid has color −(n + 3), thus invalidating the existence of a ±(n + 3)
complementary edge. Thus, no complementary edges exist with adjacent vertices of colors
±(n + 1), ±(n + 2) or ±(n + 3)

Lemma 3.6. While folding a dimension of length 8 of a general Tucker instance as de-
scribed in lemma 3.4, the adjacencies of vertices embedded from the n-D Tucker instance
are retained.

Proof of Lemma 3.6. To prove this lemma, we need to prove all edges that existed in the
n-D instance exist in the (n + 3)-D instance, and any edge that did not exist still doesnt.
We prove these two parts separately. First, assume two vertices u and v in the n-D instance
are adjacent to each other. Then, by the definition of general Octahedral triangulation, all
coordinates of these vertices differ at most by 1, i.e.

|ui − vi| ≤ 1, ∀i ∈ [n] (1)

where ui(vi) is the coordinate of u(v) in the ith dimension.
After applying the fold described in lemma 3.4, all coordinates of these vertices remain

the same, except for those of the last dimension which is now shrunk. As the last coordinate
differed by atmost one, the new coordinates of this dimension, and the three new dimensions
added, also differ by atmost one, as can be verified by the list of new coordinates specified in
the proof of lemma 3.4(For instance, if the coordinate of u was−3 in the n-D graph, it’s coor-
dinates in the changed and new dimensions are (−1,−1,−1, 0)(and < −1, 0,−1,−1 >). The

16



coordinate of v in the n-D graph can only be one of {−4,−3,−2} as u and v are adjacent. In
these cases, the new coordinates are (−1,−1,−1,−1), (−1,−1,−1, 0) or (−1,−1,−1, 1)(and
< −1, 0,−1,−1 > or < −1, 1,−1,−1 >) respectively, each of which is adjacent to u in the
(n + 3)-D graph.

On the other hand, suppose u and v are not adjacent in the n-D instance. Then, the
difference in at least one coordinate is greater than 1. If this coordinate was not shrunk
by the lemma 3.4, then it remains the same in the (n + 3)-D instance too, implying u and
v cannot be adjacent in the new graph too. If this coordinate was shrunk, then as can be
seen from the list mapping differentiating coordinates in the two instances, they are still
not adjacent. This can be verified by observing that any two sets of new coordinates, that
are mapped from old coordinates differing by atleast 2, have a greater coordinate in one
dimension in the first set and a smaller one in another dimension, or there is at least one
dimension with coordinate 1 in one set and −1 in the other. Either of these cases contradicts
general Octahderal Tucker conditions, implying these sets of coordinates of the vertices u
and v are not adjacent in the (n + 3)-D instance too.

Combing all lemmas in this section, we prove Octahedral Tucker is PPA-hard. Moreover,
we show the PPA-completeness of Octahedral Tucker based Section 2.2 and Section 3.

4 Remarks and Discussion
In this paper, we prove Octahedral TUCKER is PPA-complete, which has been open for
a long time. Several other problems like Kneser, Ham-Sandwich, Necklace-Splitting and
SMITH show promise to be complete for PPA. Specifically, the Kneser problem from graph
theory, if proved PPA-complete, would be to the best of our knowledge the first graph theo-
retical PPA-complete problem. Matousek in [12] has reduced Kneser to Octahedral Tucker.
We believe resolving the computational complexity of Octahedral Tucker will provide in-
sight for resolving that of Kneser too. The SMITH problem is a classical mystery that has
managed to remain unresolved for decades. We think resolving Kneser’s complexity will
provide pathways towards solving this. The ultimate goal of resolving the computational
complexity of specific problems would be to find a relation between PPA and PPAD. As of
now, we only know PPAD ⊆ PPA. We would like to resolve if the inclusion is strict.
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Appendix

A Complete Proof for Octahedral Tucker is in PPA.
Proof of Theorem 2.6. Octahedral Tucker is a special case of the General Octahedral Tucker
problem, which itself is a special case of General Tucker. As General Tucker is in PPA[13, 1],
the theorem follows.

For completeness of presentation, we have added a proof that n-D Octahedral Tucker
belongs to PPA here. The proof is based on Papadimitriou’s proof [13] who refers to an
idea started by Todd and Freund [6].

To prove Octahedral Tucker is in PPA, we reduce Octahedral Tucker to AEUL. We first
introduce the concept of ’admissible simplices’, which are sets of vertices in the Octahedral
Tucker hypergrid, and create a sequence of these simplices where every admissible simplex
can have at most two neighbours. Additionally, the singleton set containing only the origin
in it, is an admissible simplex and has degree one. This sequence of simplices, with the
singleton set, forms the input to the AEUL graph. As required for membership in PPA,
we then describe polynomial time algorithms that find neighbours of any vertex(admissible
simplex) in the AEUL graph, completing the reduction.

We now introduce the notation used in the proof:
Let Zn := {1, 2, · · · , n} are indices given to n dimensions and Q ⊆ {±1,±2, · · · ,±n}

is a set of axes in these dimensions. Q is called a d-orthant index set if |Q| = d and
∀i ∈ Zn, |{i,−i} ∩Q| ≤ 1. TQ := {t : ti ∈ {−1, 0, 1}∀i ∈ Q, Q is a d− orthant index set}
is a hypergrid of 2|Q| vertices containing the origin 0|Q| in |Q| dimension space, where the
number of choice for the values in each dimension is 2. We denote T = TZn , the n-dimension
hypergrid of length 2 that has the vertex set {−1, 0, 1}n.

We call TQ a Q-orthant if ∀t ∈ TQ ti ∈


{0, 1} if i ∈ Q

{0,−1} if − i ∈ Q

{0} else
.

Note that the Octahedral triangulation of TZn induces a (possibly lower dimensional)
triangulation on every Q− orthant TQ.

Note that TQ and TZn are different in that the boundary vertices of TZn are all non-zero
in every coordinate but only half of boundaries of TQ have that property. We should name
the boundaries of TQ coincident to TZn its external boundaries, and the rest its internal
boundaries.

Let g be the coloring function on T which is anti-symmetric on the boundary of T :
∀x ∈ T\{0n} g(x) = −g(−x). Without of loss of generality, we assume the color of the
origin 0n to be 1: g(0n) = 1.

To define the nodes for the graph in the AEUL structure, we now introduce the concept
of admissible simplices of the triangulation on the Octahedral grid T .

Definition A.1 (Admissibility). A (d− 1)-simplex S = {v1, v2, · · · , vd} in the Octahedral
triangulation of T = TZn is admissible, if the following conditions hold:

• 0n ∈ S;

• Q(S) = {g(vi) : i = 1, 2, · · · , d}: Colors of S;
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• S ⊆ TQ(S): S located in space index by its colors TQ(S).

Note an admissible (d − 1)-simplex S contains d vertices, each of which is assigned a
different color. The set of non zero coordinates of any vertex in S is a subset of the set
colors assigned to all vertices of S i.e., ∃u ∈ S : tc(u) 6= 0 =⇒ ∃v ∈ S : c = g(v). Further,
there is a possibility that there is a d-simplex S′ in TQ(S) such that it contains a vertex z
of color j = g(z) but j /∈ TQ(S). Then S′ is admissible in TQ(S)∪{j} but not admissible in
TQ(S).

Also, each admissible (d− 1)-simplex S can be a face for up to two d-simplices in TQ(S),
or is a face for one d-simplex of TQ(S) and S is a boundary face on TQ(S).

To define the neighbors of an admissible simplex, we take its dimension d to identify its
orthant TQ. Then the next steps become uniquely determined. Each admissible (d − 1)-
simplex S is either an interior face in the triangulation of TQ(S) or a face on the boundary
of TQ(S).

In the former case, it is contained as a boundary of one admissible d-simplex S1 of TQ.
Dependent on the color of the vertex in {v} = S1\S, it divides into three cases. First, if
g(v) /∈ Q(S), then S1 is an admissible d-simplex in TQ(S1) which becomes the neighbour of
S in the AEUL graph (a case dimension rising). Second, if g(v) is not 1 and g(v) ∈ Q(S),
then the other (d− 1)-simplex of S1 with exactly the same color as S is also an admissible
(d−1)-simplex in TQ(S) and becomes the neighbour node of S. Third, g(v) = 1. In this case,
we S has a nil edge as a new vertex of color 1 is on the boundary which has an antipodal
image −1, forming a complementary edge with the origin.

In the latter case, the non-zero coordinates of vertices of S reduces by one, say the
coordinate cj . We mark the vertex of S of color cj as vcj . Then S\{vcj} will be an admissible
(d − 2)-simplex, which is a lower dimension neighbour of S, unless cj = 1. If cj = 1, −S
will be an admissible (d− 1)-simplex on T−Q which will be made the neighbour of S. The
two admissible (d−1)-simplices are in two antipodal orthant of TZn : one Q(S)-orthant and
another Q(−S)-orthant which is a (−Q(S))-orthant.

In the above discussion, all go through except the case where the new node is ±1. In this
case, we have an 1-simplex of complementary edge which is what we want. We mark this
creates a nil edge and hence the admissible (d− 1)-simplex leading to this complementary
edge is an AEUL node of degree one.

With the above clarification, we complete the construction of the nodes and edges of
the AEUL graph, with the origin as the given degree one node, and every node has degree
no more than two.
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