
Octahedral Tucker is PPA-Complete

Xiaotie Deng∗ Zhe Feng† Rucha Kulkarni‡

Abstract

Octahedral Tucker (a special case of the celebrated Tucker problem) is the natural
computational problem based on Octahedral Tucker’s lemma, a classical statement from alge-
braic topology. Like many fixed point results, this problem has been central to proving several
important results from diverse fields of theoretical computer science. [20, 19, 14, 10]. Resolving
the complexity of the natural computational problem associated with it was an important open
question, also raised in [16, 2]. PPA (Polynomial Partity Argument on Graphs) is a complexity
class defined in [17]. Computational versions of Tucker’s lemma and the Borsuk-Ulam theo-
rem were conjectured to be ideal candidates for PPA− Complete problems, as many problems
thought to belong in PPA were reduced from these. While there has been some progress in
finding PPA− Complete problems [9, 3, 2, 8], including 2-D Tucker1, the 2-dimensional ver-
sion based on Tucker’s lemma, the n-dimensional Octahedral Tucker problem has evaded
resolution.

In this paper, we resolve this decade old open question by proving n-dimensional Octa-
hedral Tucker PPA− Complete. Our reductions also contribute two stand-alone folding
techniques, Fold and Wrap, which are novel as far as we know and could be of broader interest.
Additionally, during the reduction process, we define a new PPA− Complete problem Gen-
eral Octahedral Tucker, another computational problem based on Tucker’s lemma that
generalizes Octahedral Tucker, adding to the growing list of PPA− Complete problems.

∗School of EECS, Peking University, Beijing, China. Email: xiaotie@pku.edu.cn.
†John A. Paulson School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge,

MA 02138, USA. Email: zhe feng@g.harvard.edu. This work was partly done when the author was an undergraduate
student in Shanghai Jiao Tong University, China.
‡Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N Goodwin Avenue, Urbana,

IL 61801. Email: ruchark2@illinois.edu. This work was done while visiting Shanghai Jiao Tong University, China.
1In the rest of the whole paper, for simplifying presentation, n-D means n-dimensional.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 118 (2017)

1 Introduction

Octahedral Tucker’s lemma, discovered in [20], is the following combinatorial statement:

Lemma 1 (Octahedral Tucker’s Lemma:). If an n-dimensional hyper grid of length 2 in all dimen-
sions is octahedrally triangulated (this is the first barycentric subdivision in [14] and we formally
define it in Definition 5), and every vertex is assigned a color from the set {±1,±2..,±(n−1),±n}
such that diametrically opposite vertices on the boundary of the hyper grid get assigned complemen-
tary colors (i.e colors that have the same magnitude and opposite sign), then there always exists an
edge (1-simplex) such that vertices adjacent to the edge have complementary colors.

Octahedral Tucker is the natural computation problem arising from the lemma: Given
an n-dimensional hyper grid satisfying the above constraints in the form of a polynomial time
algorithm that gives the color assigned to any vertex, is there a polynomial time algorithm to find
an edge with complementary colors on adjacent vertices. The formal definition of Octahedral
Tucker is given later in Definition 2.

The Octahedral Tucker’s lemma has been used to prove several results, the most widely used
of which are the Borsuk-Ulam theorem from algebraic topology and the set covering Lusternik-
Schnirelmann antipodal point theorems [20]. The computational Octahedral Tucker problem
has been used to prove several results in discrete geometry like the Ham-Sandwich theorem (proves
existence of a hyperplane that simultaneously bisects d point sets in Rd), and in combinatorics
like the Kneser-Lovasz theorem (proves chromatic number of Kneser graphs)[14], by describing
reductions from Octahedral Tucker to computational problems corresponding to the theorems.
These theorems in turn were central to proving numerous results in the respective areas. In more
applied areas, fair division methods in algorithmic game theory use Octahedral Tucker as the
core theorem to prove several results, for instance the necklace-splitting techniques [19].

Resolving the complexity of Octahedral Tucker will lead towards resolving that of all these
important problems in several areas of theoretical computer science. The problem was raised as an
open question by Pálvölgyi [16] and Aisenberg et al. [2] (and also referred to in the survey paper
by Loera et al. [13]). In this paper, we resolve the question by proving Octahedral Tucker
Complete for the complexity class PPA.

1.1 Related Work

PPA (Polynomial Parity Argument on Graphs) is a complexity class defined by Papadimitrou in [17].
In [17], the semantic complexity class TFNP (all Total search problems in NP) was divided into
several syntactic classes, based on the nature of the proof of existence of a solution. PPA is one
of these classes, and it contains all problems whose proof of existence of solution is the following
combinatorial lemma: Every graph has an even number of odd degree nodes. Tucker and various
other fixed point results, like the Sperner, Brouwer, Kakutani and Borsuk-Ulam theorems were
proved to belong to PPA [17], thus making them candidates for possible PPA− Complete problems.

The Sperner, Brouwer and Kakutani theorems proved complete for PPAD [17] (Polynomial
Parity Argument for Directed Graphs), a subclass of PPA. These led to completeness results for
other theorems from other areas (whose proofs reduced the problem to any of these fixed point
results). The most celebrated of these is perhaps the Nash Equilibrium theorem in Game Theory
[7, 6]. With the completeness result establishing probable hardness of computing equilibria in
general games, further investigations were then pursued in other directions, for example to find
subclasses of games or other equilibrium notions that might be easy to compute [1, 15, 5], analyze

1

the smoothed complexity of computing equilibria [6], analyze their cryptographic complexity [4] and
finding a PTAS for general Nash [18]. This has now led to a rich theory in equilibrium computation.

The Tucker and Borsuk-Ulam theorems however evaded resolution for several years. Other
completeness results for PPA were found, for example Grigni’s proof for the non-orientable 3-
dimensional version of Sperner [12], and the locally 2-dimensional version of the same by Friedl
et al. [11]. Deng et al. [8] characterized the Möbius band as a defining property of PPA− Complete
discrete fixed point problems, by providing a unified PPA− Complete proof for several problems,
including versions of Tucker and Sperner, defined on the möbius band2. Algebraic results were
recently added to the collection, with Chevalley’s theorem and the Combinatorial Nullstellensatz
set of results proven PPA− Complete by Belovs et al. [3].

Originally defined for the octahedrally triangulated n-dimensional ball, Tucker’s lemma holds
true for any antipodally symmetric triangulation (i.e. triangulation in which every vertex on the
simplex boundary has a diametrically opposite vertex). Different versions of Octahedral Tucker
were defined, by changing the nature of triangulation and/or the dimension of the space considered,
with the coloring constraints on the boundary retained. The computational complexity of these
versions was investigated. These attempts were succesful, with Pálvölgyi [16] first proving PPAD-
Hardness of 2-D Tucker, the 2-dimensional Tucker version of exponential side lengths and grid
based triangulation. Aisenberg et al. [2] then proved PPA-Completeness of the same problem3. As
a corollary, this leads to the Borsuk-Ulam theorem being PPA− Complete. Recently, Filos-Ratsikas
and Goldberg [9] proved the Consensus Halving problem PPA− Complete, by reducing 2-D
Tucker to Consensus Halving.

While these results have already increased the scope of PPA, resolving the complexity of the
original candidate problem Octahedral Tucker was an important gap to cover. Resolving this
question still leaves several more interesting avenues left to explore, for instance the complexity of:
The SMITH problem, of finding a second hamiltonian path in an odd degree graph, The Kneser
problem, of finding a monochromatic edge in a Kneser graph (given parameters n and k, vertices
are k-element subsets of a set of n-integers, with edges between disjoint sets) colored using n−2k+1
colors (which is one less than the chromatic number of these graphs), the Necklace Splitting
problem and the HamSandwich problem, all of which belong in PPA. The Necklace Splitting
problem has been partially resolved as PPAD− Hard, as a corollary of the PPA− Complete proof
of Consensus Halving [9]. Of the rest, Octahedral Tucker has been used in a constructive
proof of existence of a monochromatic edge in a Kneser graph [14]. Thus resolving the complexity
of Kneser could be the first direct step to pursue.

1.2 Technical Contribution

To prove Octahedral Tucker PPA− Hard, we define a new problem, General Octahedral
Tucker. As figure 1 shows, Octahedral Tucker is a special case of General Octahedral
Tucker. 2-dimensional (2-D) General Octahedral Tucker is a special case of 2-D Tucker.
Theorem 9 proves 2-D General Octahedral Tucker is PPA− Hard, following the same tech-
nique of [2]. We then reduce 2-D General Octahedral Tucker to Octahedral Tucker. The
reduction maps vertices of 2-D General Octahedral Tucker defined on a grid of size 2n× 2m

to vertices of O(m+ n)-dimensional Octahedral Tucker, such that solutions to Octahedral
Tucker can be mapped to solutions of 2-D General Octahedral Tucker in time polynomial
in m and n.

The main challenges in the reduction were:

2Until this point, PPA seemed to capture the complexity only of non orientable structures
3This was the first PPA− Complete problem based in Euclidean space

2

Figure 1: The new PPA− Complete problem General Octahedral Tucker, and its relation with
Tucker and Octahedral Tucker.

1. Reducing exponential side lengths to constant in polynomial steps: The main goal of
the reduction is to reduce the exponential side lengths of 2-D General Octahedral Tucker
to length 2 sides, at the cost of increase in the number of dimensions. The challenge was to
design a process that reduced side lengths exponentially, by allowing only a polynomial increase
in the number of dimensions.

2. Center Vertex: Octahedral triangulation is such that the center vertex of the hyper grid is
connected to every other vertex. In our reduction, we maintain the adjacencies between the
vertices of General Octahedral Tucker (no new edges are formed between their mapped
vertices in Octahedral Tucker, no edge gets deleted). As every vertex in 2-D General
Octahedral Tucker is adjacent to at most 8 vertices, the center vertex cannot be mapped
to some vertex of the General Octahedral Tucker grid. Further, if this vertex is assigned
a color that has also been assigned to some vertex in 2-D General Octahedral Tucker,
then the center vertex, along with the vertex diametrically opposite to the mapped vertex in
Octahedral Tucker form a complementary edge. Thus, in all coloring schemes, the center
vertex must be assigned a color distinct from that of every other vertex in the grid.

3. Interior vertices of 2-D General Octahedral Tucker: In 2-D General Octahedral
Tucker, only vertices on the boundary of the grid satisfy the valid property (every vertex has
a diametrically opposite vertex of complementary color). An exponential number of vertices
in the interior of the grid do not. Once an interior vertex of 2-D General Octahedral
Tucker is mapped to some vertex on the boundary of Octahedral Tucker, its diametrically
opposite vertex in the Octahedral Tucker hyper grid automatically gets colored using the
complementary color. This vertex should not be adjacent to any vertex mapped from the 2-D
General Octahedral Tucker, to ensure no false solution (new complementary edge) get
involved.

The reduction from 2-D General Octahedral Tucker to Octahedral Tucker involves
two main folding techniques, which focus to overcome separate challenges: (1) Fold : where we
recursively reduce an (n − 1)-dimensional General Octahedral Tucker instance to an n-
dimensional General Octahedral Tucker instance, by halving the length of one dimension
and adding one constant length 8 side in a new dimension. (2) Wrap: where we iteratively reduce
every length 8 dimension into 4 mutually orthogonal length 2 dimensions.

The Fold step targets the first challenge of ensuring a polynomial time reduction. By reducing
every side length to half (and adding another side of only constant length in the process), we ensure
every side length is a constant in a polynomial number of steps. Another aim here was to keep the
interior vertices of 2-D General Octahedral Tucker in the interior of the new instance too, to
avoid adding diametrically opposite vertices of complementary color. Thus, as figure 3 shows, we
fold a side twice in a snake-like fashion, add one layer of extra vertices between the folds to insulate
original grid vertices from becoming adjacent to each other, and pad the outer layers to keep the

3

vertices in the interior of the new instance. This results in length 8 in the new dimension added.
We describe the lemma and other details (coloring function and adjacencies of the new instance)
formally in section 2.

At the end of the Fold process, we have a General Octahedral Tucker instance of constant
length 8 in every dimension. While applying the Fold process, the length in every dimension is
more than 2, hence there is no center vertex to consider. A Wrap step reduces one side of length
8 into 4 mutually orthogonal sides of length 2. Intuitively, a length 8 dimension is folded along
orthogonal sides of a length 2 4-dimensional hyper grid. After applying Wrap even once, dimensions
of length 2 are introduced in the structure, hence there is a center vertex (intuitively the vertex at
the center of the hyper grid along which the length 8 side was wrapped) to color. With each length
8 reduction, a new center vertex gets introduced, which is connected to every vertex, including all
the previous center vertices. Also, reducing side lengths to two necessarily involves mapping every
vertex to some boundary vertex. Both the coloring center vertices and isolating complementarily
colored vertices of interior 2-D General Octahedral Tucker vertices problems are taken care
of simultaneously in every Wrap step. Adding three new dimensions adds 3 new complementary
color pairs. Two pairs of these colors are used to insulate the original vertices from each other and
from their diametrically opposite vertices, and one color of the new pair is used to color the center
vertex now formed. One color is left unused. Details of the reduction, with comments on why other
possibly simpler ideas do not work, are specified in section 3.

The Wrap and Fold are stand-alone folding techniques independent of the constraints imposed
by the Tucker lemma. These could be of independent interest in applications where problems have
geometric interpretations, are based in different dimensional spaces and need to be related to each
other.

Presentation: In the rest of the paper we describe the high level idea as clearly as possible.
Complete proofs to all new ideas are attached as Appendices. The next section starts with the
definitions of the complexity class PPA and Octahedral Tucker, with a proof of its membership
in PPA. We also define General Octahedral Tucker, required for the hardness reduction proof.
Section 3 then discusses the reduction from 2-D General Octahedral Tucker to Octahedral
Tucker. We conclude by remarks on applying our concepts to other problems in future.

2 Preliminaries

2.1 The PPA Class

PPA (Polynomial Parity Argument on graphs) is a complexity class introduced by Papadimitriou
in his seminal paper [17]. It is the set of all problems in NP ∩ coNP that are guaranteed to have a
solution, whose proof of existence is the following combinatorial statement:Every graph has an even
number of odd degree nodes That is, all problems that can be reduced to the problem of finding
another odd degree node in a graph (the first given as input), belong in PPA. An equivalent version
of PPA, more commonly used, assumes the degree of every node in the graph to be at most 2.

Every problem in PPA thus has a natural path following argument associated with it, the
description of which comprises the proof of membership of the problem in PPA. Octahedral
Tucker is one of these, defined in the proceeding section.

2.2 Octahedral Tucker: Definition and membership in PPA

Originally defined for octahedral triangulation of an n-dimensional Ball of diameter 2, Tucker’s
lemma holds true for antipodally symmetric triangulations (for every edge {x, y} on the boundary

4

of the triangulation, the negation {−x,−y} is also an edge of the triangulation) of n-Ball of any
diameter too.

Formally, antipodally symmetric triangulation T of the closed n-Dimensional ball Bn ⊂ Rn is
the triangulation such that if each simplex σ ∈ T ∩ Sn−1, then −σ ∈ T , where the negation of a
simplex is the negation of each of its vertices and Sn−1 is the boundary of Bn. We now define the
general lemma (which is required for the intermediate General Octahedral Tucker definition)
and all notation required for further discussion.

Lemma 2. (Tucker’s Lemma [20]): Let T be an antipodally symmetric triangulation of Bn, and
let g be a mapping (coloring function) from the vertices of T to {±1,±2...± n} which satisfies the
valid property: if vertex v is on the boundary, then g(−v) = −g(v), then there exists a 1-simplex
(edge) {v1, v2} in T with g(v1) = −g(v2), which is called complementary edge.

Tucker’s lemma directly leads to the computational Tucker problem: Given an antipodally
symmetric triangulated n-dimensional Ball, and a valid coloring function on its vertices, find a
complementary edge in the Ball. Equivalently, the lemma can be stated for any simplex on which
an antipodal symmetric triangulation can be realized. For simplicity, we define Tucker on a hyper
grid.

Definition 3 (Hyper Grid). Vn = {p = (p1, p2, ..., pn−1, pn) ∈ Zn, ∀i,−Ni
2 ≤ pi ≤ Ni

2 } is a hyper
grid, 4 where Ni is the length of ith dimension. The boundary of the hyper grid is

Boundary(Vn) =
{
p
∣∣∃i, s.t. pi ∈ {−Ni/2, Ni/2}

}
Let Kp = {q : qi ∈ {pi, pi + 1}} be the unit hyper grid in Vn associated with the vertex p ∈ Vn.

From now on, we focus on Tucker and its various versions (Octahedral Tucker, General
Octahedral Tucker) defined on Vn and corresponding triangulation of Vn (denoted Tn). As a
start point, n-D Tucker can be formally defined as:

Definition 4 (n-D Tucker). The input of n-D Tucker is a pair (G,Tn), where Tn is an
antipodally symmetric triangulation of n-dimensional hyper grid Vn centered at 0 and G is a
polynomial-time machine, which generates a valid coloring function (defined in Lemma 2) g : Vn →
{±1,±2, ...,±n}, i.e. ∀p ∈ Boundary(Vn), g(−p) = −g(p). The output of n-D Tucker is a
complementary 1-simplex, i.e an edge (p, q) s.t. g(p) = −g(q).

Octahedral Tucker is a special case of Tucker, defined on a hyper grid of length 2 in all
dimensions. The triangulation of the hyper cube is the standard first barycentric subdivision, but
we define the same in a form useful for the General Octahedral Tucker definition.

Definition 5 (Standard Octahedral Tucker Triangulation (SOTT)). In an n-D hyper grid Vn ={
p ∈ Zn

∣∣∣∀i ∈ [n], pi ∈ {−1, 0, 1}
}

we define a preference relation % s.t. 1 % 0, −1 % 0, 1 % 1, −1 %

−1 and 0 % 0. However, there is no relation between −1 and 1. Further, we say p % q,p, q ∈ Vn
iff ∀i ∈ [n], pi % qi. The Standard Octahedral Tucker Triangulation of Vn is defined as: ∀p, q ∈ Vn,
p and q are linked iff p % q or q % p.

On a high level, SOTT is a recursive triangulation, where we start with a 2-D (32 sized) grid,
and triangulate it as shown in figure 2. For a higher dimensional n-D grid (of 3n size), for all choices
of 3n−1 vertices, using the preference relation (defined for n-coordinates) we verify they form a valid
(n−1)-D instance, and if they do, apply the triangulation of the (n−1)-D grid between them. The
preference relation allows local determination of the triangulation in polynomial time (additionally,
without need of visualizing the structure).

4For simplicity, we assume Ni is even for each i.

5

(a) 2-D Octahedral Tucker (b) 3-D Octahedral Tucker

Figure 2: Instances of 2-D and 3-D Octahedral Tucker. For the 3-D instance, instead of drawing all
edges, the 15 2 × 2 facets in the 3-D hyper grid, each triangulated by 2-D Octahedral Triangulation, are
enumerated in the column to the right.

Definition 6 (n-D Octahedral Tucker). n-D Octahedral Tucker (n ≥ 2) is the special
case of n-D Tucker (G,Tn) defined on Vn that satisfies

1. The side length of each dimension is exactly 2, i.e. ∀p ∈ Vn,∀i ∈ [n], pi ∈ {−1, 0, 1}
2. Tn is the Standard Octahedral Tucker triangulation (SOTT) of Vn. Sample instances of 2-D

and 3-D Octahedral Tucker are shown in Figure 2.

Theorem 7 ([2, 17]). Octahedral Tucker is in PPA

The proof of this theorem closely resembles Aisenberg et al. [2] and Papadimitriou [17] of
membership of General Tucker in PPA, and for the completeness of presentation we include it in
appendix A. Proving Hardness was a more challenging task, and involves new ideas presented in
the next section.

2.3 General Octahedral Tucker

Towards proving the PPA-hardness of Octahedral Tucker, we define another special case of
n-D Tucker: General Octahedral Tucker and the corresponding triangulation called the
General Octahedral Tucker triangulation (GOTT).

Definition 8 (General Octahedral Tucker). General Octahedral Tucker is the special
case of n-D Tucker (G,Tn) defined on Vn which satisfies

1. Vn has lengths {N1, N2, ..., Nn−1, Nn} in the respective dimensions, such that ∀i ∈ [n], Ni =
2ki, ki ∈ N+;

2. Tn is the General Octahedral Tucker triangulation (GOTT) of Vn, where every length-2 hyper
grid Hp = {q : qi ∈ {pi−1, pi, pi+1}}, termed as Octahedral Hypergrid, centered at vertex
p such that for any i ∈ [n]

pi =

{
2mi + 1,mi ∈ N and − ki

2 ≤ mi ≤ ki
2 − 1 if Ni ≥ 4

0 if Ni = 2

is triangulated by Standard Octahedral Tucker Triangulation SOTT. Note, when Ni = 2 for all
i ∈ [n], General Octahedral Tucker is Octahedral Tucker.

Theorem 9. 2-D General Octahedral Tucker is PPA− Hard.

The proof follows the same technique of [2] with minor modifications. A sketch of the proof
is provided in Appendix B. Figure 1 uncovers the relationship among General Octahedral
Tucker, Octahedral Tucker and Tucker. With the necessary tools in hand, we can now
turn to the main result of the paper:

6

3 Octahedral Tucker is PPA− Hard

We prove Octahedral Tucker is PPA− Hard by reducing 2-D Tucker with size 2m × 2n to
O(m+ n)-D Octahedral Tucker5 in polynomial time, in two stages: the Fold and Wrap.

3.1 Reduction Stage 1: Reducing side lengths to 8

We divide this subsection into two parts: First, we introduce the Fold lemma: fold (n − 1)-D
Tucker into n-D Tucker by halving the length in one dimension and adding an extra dimension
of constant length 8. We then show how to use this lemma recursively to reduce 2-D Tucker to a
higher dimension Tucker instance with length in each dimension 8.

Lemma 10 (Fold Lemma). Given an (n−1)-D General Octahedral Tucker instance (G,Tn−1)
on Vn−1 with length of each dimension {N1, N2, ..., Nn−2, Nn−1}, where Nn−1 = 4kn−1, for some
kn−1 ≥ 4, we can reduce it to n-D General Octahedral Tucker (G′, Tn) on Vn, where Vn has
lengths of each dimension {N1, N2, ..., Nn−2, N

′
n−1, N

′
n}, where N ′n−1 = Nn−1

2 = 2kn−1, N
′
n = 8.

(a) Folding and embedding. (b) Adding colors.

Figure 3: Reduce (n − 1)-D General Octahedral Tucker on Vn−1 with length of each dimension
{N1, N2, · · · , Nn−2, Nn−1} to n-D General Octahedral Tucker. This is a 2-D projection of Vn along
with (n− 1)th dimension and nth dimension. (a): Embedding (n− 1)-D General Octahedral Tucker
on Vn−1 with Nn−1 = 4k (k > 2) in n-D General Octahedral Tucker with N ′i = Ni(1 ≤ i ≤ n − 2),
N ′n−1 = 2k and N ′n = 8. (b): Adding additional colors ±n in Tn.

The thousand words worth Figure 3 and Figure 4 show the folding technique. Speaking at a high
level, we fold one dimension in a snake-like fashion shown in Figure 3 and keep other dimensions
unchanged. This snake-like embedding of the (n − 1)-D instance (G,Tn−1) in the n-D instance
(G′, Tn), results in adding one extra dimension with constant length 8. To illustrate how this
works, we show the toy example of reducing 2-D Tucker (with 16 × 16 size) to 3-D Tucker (with
16 × 8 × 8 size) in Figure 4 (For better visibility, we do not show all edges of the triangulation).
Ideally, to keep the width of the new dimension small, we want to pack the vertices as close as
possible. We also want the size of the dimension being folded to reduce as much as possible.
Folding in half allows keeping the extra dimension’s length a constant 8, providing the required
exponentially fast reduction.

The proof of the Fold lemma is stated in Appendix D. To apply the Fold lemma to a 2-D
General Octahedral Tucker instance recursively, we require the lengths of all new dimensions
generated in the intermediate steps to be even. We state the following lemma that allows us to do
so by restricting attention to a specific class of 2-D General Octahedral Tucker:

5w.l.o.g., we refer to this as n-D Octahedral Tucker hence forth

7

Figure 4: Fold 2-D General Octahedral Tucker (both dash lines and solid lines are triangulation)
on 16× 16 grid into 3-D General Octahedral Tucker on 16× 8× 8 3-D hyper grid.The black edges in
the 3-D instance are mapped from the 2-D one. One can verify that the black triangulation, which is the
original 2-D triangulation, and the blue one, which is that of the 3-D instance, coincide, thus retaining all
adjacencies of original vertices

Lemma 11. Any 2-D General Octahedral Tucker instance (G,T2) on V2 can be reduced to a
2-D General Octahedral Tucker instance (G′, T ′2) on V ′2 whose lengths in the two dimensions
are 2m and 2n, for some m,n ∈ Z.

The complete proof of Lemma 11 is presented in Appendix C, and the following theorem now
immediately follows:

Theorem 12. Any 2-D General Octahedral Tucker instance (G,T2) defined on V2, where
the lengths of the two dimensions of V2 are N1 and N2 respectively, can be reduced to an O(logN1+
logN2)-D General Octahedral Tucker on VO(logN1+logN2) with length in each dimension 8.

Proof. Based on lemma 11, w.l.o.g. we assume length of two dimensions of 2-D General Octa-
hedral Tucker instance (G,T2) are 2m and 2n. Using Fold Lemma recursively, we can reduce the
2-D General Octahedral Tucker (G,T2) to an O(m+n)-D General Octahedral Tucker
with length in each dimension 8 in polynomial time6.

3.2 Reduction Stage 2: Reducing Side Lengths from 8 to 2

Theorems 9 and 12 summarize our work until now. We now present the final piece completing the
puzzle, the Wrap lemma:

Lemma 13. (Wrap Lemma) An n-D General Octahedral Tucker instance (G,Tn) on Vn
with length of each dimension {N1, N2, ..., Nn−1, 8}, can be reduced to an (n+ 3)-D General Oc-
tahedral Tucker instance (G,Tn+3) on Vn+3, where Vn+3 has lengths {N1, N2, ...Nn−1, 2,2,2,2}
in the respective dimensions.

Proof. We first describe the wrapping process, then argue its correctness.
In essence, the Wrap process embeds the n-D General Octahedral Tucker instance into an

(n+ 3)-D General Octahedral Tucker instance, by folding a length 8 side along 4 orthogonal
sides of a length-2 4-D hyper grid. To formally specify the embedding, note that vertices in these
Tucker instances have the same coordinates in almost all dimensions. The difference is in the
coordinate of one dimension (which is being folded), which has length 8 in the input instance and

6Actually, the order of dimensions doesn’t influence the correctness of Fold Lemma.

8

length 2 in the new one, and the 3 additional coordinates of new dimensions which are not present
in the input instance. We call these dimensions the differentiating dimensions. Table 2 in appendix
F specifies the coordinates in the differentiating dimensions of a vertex mapped from the old n-D
instance into the new (n + 3)-D instance (Without loss of generality, we assume the coordinates
of vertices of the dimension to be folded lie in {−4,−3, .., 4}). It is easy to verify that this is a
bijective map. Figure 5b is a visual representation of the map.

To complete the wrap process, the coloring function of the new instance remains to be specified.
To gain insight into the designing of the coloring function, and help visualise the wrap process,
we first illustrate a similar wrapping of a side of length 6 into three sides of length 2 each, in
Figure 5a. A 4-to-2 length reduction can also be done similarly: we have one new vertex added,
the origin, which gets assigned one of the new complementary color pair, now available due to the
added dimension. Wrapping a side of length 8 is an extension of this wrap process into one more
dimension.

While extending the reduction idea from 4-to-2 to 6-to-2 is natural, extending to 8-to-2 requires
careful assignment of the new colors. Intuitively, the 4 differentiating dimensions together can be
thought to form a 4-D hyper grid. Classifying all vertices of this hyper grid on the basis of their
first coordinate value, we divide the hyper grid into 3 cubes 〈−1, ∗, ∗, ∗〉, 〈0, ∗, ∗, ∗〉 and 〈1, ∗, ∗, ∗〉.
A valid coloring function that assigns colors without violating Tucker lemma conditions is shown
in Figure 5b.7 Here, vertices mapped from the old n-D General Octahedral Tucker instance
are assigned the same colors in the new instance. Those diametrically opposite to these vertices are
assigned their complementary colors. The new vertices of the (n+ 3)-D instance are colored using
the 3 new color pairs available, as shown in Figure 5b. The coloring function is formally specified
in Table 5 of appendix F.

This coloring function, by definition, is valid. To prove correctness, we need to prove this
coloring scheme retains all complementary edges of the n-D Tucker instance, and does not add new
ones. We prove three assertions to do so:

1. Edges of the form (u, v), where u is a vertex mapped from the n-D General Octahedral
Tucker instance, and v is not, are not complementary

2. Vertices colored with new colors {±(n+ 1),±(n+ 2), n+ 3} do not form complementary edges
(i.e., no new solutions are formed)8

3. The adjacencies of vertices embedded from the n-D General Octahedral Tucker instance
are retained (i.e., all old solutions are retained and no new extra solutions are formed)

The first statement is trivial, as all vertices mapped from the old Tucker instance are colored using
some color from {±1,±2, .. ± n}, while the other vertices are colored using one of the new colors
{±(n + 1),±(n + 2), (n + 3)}. These edges can never be complementary. The second and third
statements are proved separately as Lemma 14 and Lemma 15, thus completing the reduction.

Lemma 14. While wrapping a dimension of length 8 of a General Octahedral Tucker in-
stance as described in lemma 13, vertices colored with new colors {±(n + 1),±(n + 2), n + 3} do
not form complementary edges.

7To avoid working in 4-D, its natural to think of the following alternate ideas: (1) Reduce side lengths from 8 to
4, then to 2, both in 2-D. (2) Reduce side lengths from 8 to 6, then to 2, which keeps the reduction in 3-D space.
However, these ideas are not achievable using the current folding techniques: Fold lemma allows folding only until
length 8, and Wrap lemma requires a separating boundary between the new vertices added. Wrapping a length 8
side along a side-4 square adds all new vertices in the interior of the new structure.

8Note that −(n + 3) color is not used in the reduction anywhere. There may exist another wrap scheme that can
fully use the colors and reduce to lower-dimensional Octahedral Tucker. However, ”tightness” is not very crucial
to this work and we leave it to future work.

9

(a) Folding a dimension of length 6 into
three dimensions of length 2 each.

(b) Coloring scheme of new instance after folding one
side of length 8 into 4 sides of length 2 each

Figure 5: Wrapping constant length sides into length 2 hyper grids

Lemma 15. While wrapping a dimension of length 8 of a General Octahedral Tucker in-
stance as described in lemma 13, the adjacencies of vertices embedded from the n-D Tucker instance
are retained.

Combined with the above two lemmas (the detailed proof are shown in appendix E), the Wrap
lemma naturally leads to the following reduction:

Lemma 16. An n-D General Octahedral Tucker instance (G,Tn) defined on Vn that has
length 8 in all dimensions, can be reduced to an O(n)-D Octahedral Tucker instance.

Proof. The Wrap lemma, while reducing one dimension, does not constrain the lengths of other
dimensions. Each length 8 dimension can thus be independently wrapped by applying Wrap lemma,
resulting in a General Octahedral Tucker of higher dimension. Finally, the process ends in
a General Octahedral Tucker instance of length 2 in all dimensions, which by definition is
an Octahedral Tucker instance.

The picture is now complete. Theorems 9 and 12, and lemma 16 together prove n-D Octahe-
dral Tucker PPA− Hard. Along with the membership proof of theorem 7, this establishes:

Theorem 17. n-D Octahedral Tucker is PPA− Complete.

4 Remarks and Discussion

In this paper, we resolve a decade old open problem by proving Octahedral Tucker PPA− Complete.
The statement of the lemma from which it arises is more than 70 years old, thus the problem has

10

numerous applications. Additionally, as an interesting side note, Theorem 12 also proves higher
dimensional General Octahedral Tucker (under our defined General Octahedral Tucker Tri-
angulation) of constant lengths PPA− Hard.

In further work, the next problems to analyze are the Ham Sandwich and Kneser Lovasz theo-
rems. These problems are proved using Octahedral Tucker [13, 14], and this result, along with
that of [2], places them in PPA. We further ask if they are complete for the class too. There are
several other interesting problems in PPA, notably the Integer factoring problem, and the classical
SMITH problem (finding a second hamiltonian circuit in a 3-regular graph). We would like to know
if answers to the previous questions help resolve these. The final goal of resolving the computational
complexity of these specific problems would be to find a relation between PPA and PPAD.9

References

[1] Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind Sohoni. 2011. Rank-1 Bimatrix Games:
A Homeomorphism and a Polynomial Time Algorithm. Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing (STOC’11) (2011), 195–204.

[2] James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2015. 2-D Tucker is PPA-Complete. Tech-
nical Report ECCC-TR15-163, Electronic Colloquium on Computational Complexity (2015).

[3] Aleksandrs Belovs, Gábor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang. 2017. On
the Polynomial Parity Argument Complexity of the Combinatorial Nullstellensatz. 32nd Com-
putational Complexity Conference (CCC 2017) 79 (2017), 30:1–30:24.

[4] N. Bitansky, O. Paneth, and A. Rosen. 2015. On the Cryptographic Hardness of Finding
a Nash Equilibrium. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’15). 1480–1498.

[5] Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. 2009. Settling the Complexity of Arrow-
Debreu Equilibria in Markets with Additively Separable Utilities. Proceedings of the 50th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS ’09) (2009), 273–282.

[6] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the Complexity of Computing
Two-player Nash Equilibria. J. ACM 56, 3, Article 14 (May 2009), 14:1–14:57 pages.

[7] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. 2009. The Com-
plexity of Computing a Nash Equilibrium. SIAM J. Comput. 39, 1 (2009), 195–259.

[8] Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu. 2016. Un-
derstanding PPA-Completeness. 31st Conference on Computational Complexity (CCC 2016)
50 (2016), 23:1–23:25.

[9] Aris Filos-Ratsikas and Paul W. Goldberg. To appear. Consensus Halving is PPA-Complete.
Proceedings of the Fiftieth Annual ACM Symposium on Theory of Computing (STOC’18) (To
appear).

[10] Robert M Freund and Michael J Todd. 1981. A constructive proof of Tucker’s combinatorial
lemma. Journal of Combinatorial Theory, Series A 30, 3 (1981), 321 – 325.

9As of now, we only know the trivial relation PPAD ⊆ PPA.

11

[11] Katalin Friedl, Gábor Ivanyos, Miklos Santha, and Yves F. Verhoeven. 2006. Locally 2-
Dimensional Sperner Problems Complete for the Polynomial Parity Argument Classes. Algo-
rithms and Complexity: 6th Italian Conference, CIAC 2006, Rome, Italy, May 29-31, 2006.
Proceedings (2006), 380–391.

[12] Michelangelo Grigni. 2001. A Sperner Lemma Complete for PPA. Inf. Process. Lett. 77, 5-6
(March 2001), 255–259.

[13] Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa. 2017. The dis-
crete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. CoRR
abs/1706.05975 (2017).

[14] Jǐŕı Matoušek. 2004. A Combinatorial Proof of Kneser’s Conjecture. Combinatorica 24, 1
(2004), 163–170.

[15] Ruta Mehta. 2014. Constant Rank Bimatrix Games Are PPAD-hard. Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Computing (STOC’14) (2014), 545–554.

[16] Dömötör Pálvölgyi. 2009. 2D-TUCKER Is PPAD-Complete. Internet and Network Economics:
5th International Workshop, WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings
(2009), 569–574.

[17] Christos H. Papadimitriou. 1994. On the Complexity of the Parity Argument and Other
Inefficient Proofs of Existence. J. Comput. System Sci. 48, 3 (June 1994), 498–532.

[18] Aviad Rubinstein. 2017. Settling the Complexity of Computing Approximate Two-player Nash
Equilibria. SIGecom Exchanges. 15, 2 (Feb. 2017), 45–49.

[19] Forest W. Simmons and Francis Edward Su. 2003. Consensus-halving via theorems of Borsuk-
Ulam and Tucker. Mathematical Social Sciences 45, 1 (2003), 15 – 25.

[20] Albert W. Tucker. 1945. Some topological properties of disk and sphere.

A Octahedral Tucker is in PPA: A Complete Proof

Proof of Theorem 7. Octahedral Tucker is a special case of the General Octahedral Tucker
problem, which itself is a special case of Tucker. As Tucker is in PPA [17, 2], the theorem follows.
Nevertheless, for completeness, we present the proof here. The proof is based on Papadimitriou’s
proof [17], which in turn refers to ideas of Todd and Freund [10].

AEUL is a natural PPA− Complete computation problem based on the definition of PPA,
defined as follows:

Definition 18 (AEUL [8]). Suppose an input circuit Ln of size polynomial in n accepts inputs u
from the configuration space Cn = {0, 1}n and returns an output Ln(u) in the form 〈v, w〉, 〈v〉, or 〈〉,
where v > w and v, w ∈ Cn \ {u}. A pair u, v ∈ Cn is called valid, if v ∈ Ln(u) ⇔ u ∈ Ln(v).
0n is an input known to have |Ln(0n)| = 1. The search problem is to find another configuration v,
v 6= 0n such that |Ln(v)| = 1, or find an invalid pair.

To visualize, AEUL defines a graph of maximum degree at most two, with one single degree
vertex (0n) specified. It then asks to compute another odd degree vertex.

12

To prove its membership in PPA, we reduce Octahedral Tucker to AEUL. We first introduce
the concept of ’admissible simplices’, which are sets of vertices in the Octahedral Tucker hyper
grid, and create a sequence of these simplices where every admissible simplex can have at most two
neighbours. Additionally, the singleton set containing only the origin in it, is an admissible simplex
and has degree one. This sequence of simplices, with the singleton set, forms the input to the AEUL
graph. As required for membership in PPA, we then describe polynomial time algorithms that find
neighbours of any vertex (admissible simplex) in the AEUL graph, completing the reduction.

We now introduce the notation used in the proof:
Let Zn := {1, 2, · · · , n} be indices given to n dimensions and Z ⊆ Zn. We define TZ := {t ∈

R|Z| : ti ∈ {−1, 0, 1}∀i ∈ Z} as the hyper grid of 3|Z| vertices containing the origin 0|Q| in |Z|-
dimensional space, where the number of choices for possible lengths in each dimension is 2. We
denote T = TZn , the n-dimension hyper grid of length 2 that has the vertex set {−1, 0, 1}n. To
generalize the definition of TZ to orthants of Rn, we define Q ⊆ {±1,±2, · · · ,±n}, a subset of the
standard set of axes of Rn. Q is called a d-orthant index set if |Q| = d and ∀i ∈ Zn, |{i,−i}∩Q| ≤
1.

We define TQ, termed Q-orthant, as the set of all vertices t ∈ Rn such that:

∀t ∈ TQ ti ∈

{0, 1} if i ∈ Q
{0,−1} if − i ∈ Q
{0} else

.

Note that the Octahedral triangulation of TZn induces a (possibly lower dimensional) triangu-
lation on every Q − orthant TQ. Also, TQ and TZn have one difference: no boundary face of TZn

contains the origin, but half of the boundary faces of TQ do. We denote the boundaries of TQ
coincident to TZn its external boundaries, and the rest its internal boundaries.

Finally, let g be the given coloring function on T . We know that g is valid: ∀x ∈ T\{0n} g(x) =
−g(−x). Without of loss of generality, we assume the color of the origin 0n to be 1: g(0n) = 1.

We now describe the reduction of Octahedral Tucker to AEUL: To define the nodes for the
graph in the AEUL structure, we introduce the concept of admissible simplices of the Octahedral
triangulated grid T .

Definition 19 (Admissibility). A (d− 1)-simplex S = {v1, v2, · · · , vd} in the Octahedral triangu-
lation of T = TZn is admissible, if the following conditions hold:

• 0n ∈ S;
• Q(S) = {g(vi) : i = 1, 2, · · · , d}: Colors of S;
• S ⊆ TQ(S): S is located in the space indexed by its colors TQ(S).

Note an admissible (d− 1)-simplex S contains d vertices, at least (d− 1) of which are assigned
different colors. The set of non zero coordinates of any vertex in S is a subset of the set colors
assigned to all vertices of S i.e., ∃u ∈ S : tc(u) 6= 0 =⇒ ∃v ∈ S : c = g(v). Further, there is a
possibility that there is a d-simplex S′ in TQ(S) such that it contains a vertex z of color j = g(z)
but j /∈ TQ(S). Then S′ is admissible in TQ(S)∪{j} but not admissible in TQ(S).

Also, each admissible (d− 1)-simplex S can be a face for up to two d-simplices in TQ(S), or is a
face for one d-simplex of TQ(S) and S is a boundary face on TQ(S).

To define the neighbors of an admissible simplex, we take its dimension d to identify its orthant
TQ. Then the next steps become uniquely determined. Each admissible (d− 1)-simplex S is either
an interior face in the triangulation of TQ(S) or a face on the boundary of TQ(S).

In the former case, it is contained as a boundary of one admissible d-simplex S1 of TQ. Depen-
dent on the color of the vertex in {v} = S1\S, it divides into three cases. First, if g(v) /∈ Q(S), then
S1 is an admissible d-simplex in TQ(S1) which becomes the neighbour of S in the AEUL graph (a

13

case dimension rising). Second, if g(v) is not 1 and g(v) ∈ Q(S), then the other (d− 1)-simplex of
S1 with exactly the same color as S is also an admissible (d− 1)-simplex in TQ(S) and becomes the
neighbour node of S. Third, g(v) = 1. In this case, we S has a nil edge as a new vertex of color
1 is on the boundary which has an antipodal image −1, forming a complementary edge with the
origin.

In the latter case, the non-zero coordinates of vertices of S reduces by one, say the coordinate
cj . We mark the vertex of S of color cj as vcj . Then S\{vcj} will be an admissible (d− 2)-simplex,
which is a lower dimension neighbour of S, unless cj = 1. If cj = 1, −S will be an admissible
(d − 1)-simplex on T−Q which will be made the neighbour of S. The two admissible (d − 1)-
simplices are in two antipodal orthant of TZn : one Q(S)-orthant and another Q(−S)-orthant which
is a (−Q(S))-orthant.

In the above discussion, all go through except the case where the new node is ±1. In this case,
we have an 1-simplex of complementary edge which is what we want. We mark this creates a nil
edge and hence the admissible (d − 1)-simplex leading to this complementary edge is an AEUL
node of degree one.

With the above clarification, we complete the construction of the nodes and edges of the AEUL
graph, with the origin as the given degree one node, and every node has degree no more than two.

B Proof of Theorem 9: 2-D General Octahedral Tucker is PPA− Hard

Proof Sketch. [2] reduces the AEUL problem to 2-D Tucker by encoding the entire AEUL graph
on a 2-D Tucker instance of suitable size. The AEUL vertices are each mapped to 13×13 blocks
of vertices in 2-D Tucker, with one entrance and one exit possible in each block (denoted as the
’outgoing’ and ’incoming’ edge of the vertex). Edges of the AEUL graph are encoded by joining
one of these ’edges’ of each AEUL vertex to each other via 3-wide tubes, that have −1-colored
vertices at the center, +2-colored edges on one side and −2-colored vertices on the other side of
the tube. The remaining 2-D Tucker vertices (called the ’environment’) are not mapped to any
AEUL vertex/edge, and colored +1. Thus, one end of every single degree vertex will have an open
tube, with the center −1-colored vertex exposed to the environment, forming a complementary
edge. That is, every 2-D Tucker solution corresponds to a solution of the AEUL problem, and
given the 2-D Tucker solution, the solution for AEUL can be found in polynomial time.

We modify the proof of [2], to reduce General Octahedral Tucker to AEUL. The reason
why the exact proof does not apply here is the size of grids of the Tucker instances: 2-D General
Octahedral Tucker has GOTT, and has size 4p × 4q cells, for p, q ∈ N. [2] reduces AEUL
to a 2-D Tucker instance of size m×m lines10 where m = 4× 13× |G|. That is, the size of the
2-D Tucker grid is odd, and General Octahedral Tucker is defined only on instances with
even lengths in all dimensions11. We modify their proof as follows:

1. Use a 4-wide tube with the inner two lines colored −1, instead of the original 3-wide tubes with
only one center line

2. Map each AEUL vertex to a block of size 20× 20 cells (or 21× 21 lines), instead of the original
block size of 13× 13 lines

10Note that lengths are measured in number of lines in [2], whereas in number of cells in our paper. The number
of lines = 1 + number of cells

11This is because of Octahedral Triangulation’s asymmetry at odd and even coordinate vertices. This asymmetry
is explained more in Appendix C

14

That is, we follow the entire reduction procedure by mapping an AEUL instance to a 2-D
General Octahedral Tucker instance of size m × m where m = 4 × 21 × |G| lines. We
map each AEUL vertex to a block of size 20× 20 cells, and edges to 4-wide tubes connecting the
corresponding blocks in the General Octahedral Tucker grid. One cell in our reduction is
illustrated in figure 6.

Figure 6: Reducing 2-D General Octahedral Tucker to AEUL: the block assigned to every AEUL
vertex in General Octahedral Tucker. This is a modified version of the block used in the reduction of
[2]. The difference is the size, and is illustrated to show the proof remains the same when applied to these
blocks.

Our General Octahedral Tucker instance has GOTT. For an open end in a block corre-
sponding to a single degree AEUL vertex, having a 4-wide tube ensures at least one of the inner
−1-colored vertices has an edge incident on an environment vertex. A 4-wide tube also ensures
symmetric General Octahedral Tucker solutions generated for each AEUL solution, making
analysis easy.

Each block assigned to a AEUL vertex has a tube with a ’jump’ in the center to ensure antipodal
symmetry. As the width of the tube is now increased by 1, we need to add one more line in the
base grid for the extra inner wire. When two tubes cross, the crossings are resolved by ’bending’
the tubes slightly. The entire crossing is located in one block. We need to add 4 cells each at the
top and bottom of the center tube to ensure all crossings in General Octahedral Tucker too
get resolved in one block. This increases the grid side length to 8 + 4 + 8 = 20 cells, or 21 lines.

This modified reduction scheme reduces AEUL to 2-D General Octahedral Tucker, thus
proving 2-D General Octahedral Tucker PPA− Hard.

C Proof of Lemma 11

General Octahedral Tucker instances on which Fold lemma is applied are required to have
lengths in all dimensions powers of 2. Thus the input General Octahedral Tucker instance,
the starting step of the reduction process, should satisfy this condition. In this section, we prove:
every 2-D General Octahedral Tucker instance can be converted into another instance where
lengths of both dimensions are powers of 2.

Proof. Denote the lengths of the two dimensions of (G,T2) on V2 by N1, N2, where N1 and N2 are

15

both multiples of 4. Let m,n ∈ Z+ s.t. 2m−1 < N1 ≤ 2m and 2n−1 < N2 ≤ 2n. The reduction
simply pads extra vertices along all four boundaries to increase the lengths to the nearest powers
of two. Along every boundary, a layer of vertices, repeating the color assignment of that boundary,
are added. Then extra vertices are filled on all corners to make the new structure rectangular.
These vertices are assigned the same color of the nearest corner vertex of V2. Formally, we list
the construction below. The reduction is also illustrated in Figure 7. The new hyper grid V ′2 is
divided into 9 parts, and the mapping of vertices from V2 into V ′2 , along with the color assignment
of vertices in each part are specified separately:

I ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where p1 = q1
and p2 = q2.

II ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where p1 =
q1, p2 = N2/2.

III ∀q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where p1 =
N1/2, p2 = q2.

IV ∀q ∈ V ′2 with −N1/2 ≤ q1 ≤ N1/2 and −2n−1 ≤ q2 < −N2/2, then g′(q) = g(p) where
p1 = q1, p2 = −N2/2.

V ∀q ∈ V ′2 with −2m−1 ≤ q1 < −N1/2 and −N2/2 ≤ q2 ≤ N2/2, then g′(q) = g(p) where
p1 = −N1/2, p2 = q2.

VI For q ∈ V ′2 with −2m−1 ≤ q1 < N1/2 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where
p1 = −N1/2 and p2 = N2/2.

VII For q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and N2/2 < q2 ≤ 2n−1, then g′(q) = g(p) where p1 = N1/2
and p2 = N2/2.

VIII For q ∈ V ′2 with N1/2 < q1 ≤ 2m−1 and −2n−1 ≤ q2 < −N2/2, then g′(q) = g(p) where
p1 = N1/2 and p2 = −N2/2.

IX For q ∈ V ′2 with −2m−1 ≤ q1 < N1/2 and −2n−1 ≤ q2 < N2/2, then g′(q) = g(p) where
p1 = −N1/2 and p2 = −N2/2.

Figure 7: Converting a 2-D General Octahedral Tucker instance into one whose sides have length
{2m, 2n}, where m,n ∈ N.

For the correctness of the reduction, first, observe that there is a complementary edge existing in
part I if and only if it is a complementary edge in original General Octahedral Tucker (G,T2)
defined on V2. Next, there is no complementary edge in parts VI, VII, VIII, IX. Third, if there is
a complementary edge in part II, III, IV or V, it means there is a corresponding complementary
edge located in the original General Octahedral Tucker (G,T2), on the boundary of V2 and
we can find it in polynomial time. We summarize in Table 1, the corresponding complementary

16

edge {p,q} in (G,T2) of V2, for each complementary edge {p′,q′} in (G′, T ′2) on V ′2 where p′1 ≤ q′1.

Given Complementary edge in (G′, T ′2) defined on V2 Corresponding Complementary edge in (G,T2) defined on V2

p′ q′ p q

−N1

2 ≤ p
′
1 ≤ N1

2 , −N1

2 ≤ q
′
1 ≤ N1

2 , p1 = p′1 q1 = q′1

−N2

2 ≤ p
′
2 ≤ N2

2 −N2

2 ≤ q
′
2 ≤ N2

2 p2 = p′2 q2 = q′2

−N1

2 ≤ p
′
1 ≤ N1

2 , −N1

2 ≤ q
′
1 ≤ N1

2 p1 = p′1 q1 = q′1 = p′1 + 1

N2

2 < p′2 ≤ 2n−1 N2

2 < q′2 ≤ 2n−1 q1 = N1

2 q2 = N1

2

N1

2 < p′1 ≤ 2m−1 N1

2 < q′1 ≤ 2m−1 p1 = N1

2 q1 = N1

2

−N2

2 < p′2 <
N2

2 −N2

2 < q′2 <
N2

2 p2 = p′2 q2 = q′2

−N1

2 ≤ p
′
1 ≤ N1

2 , −N1

2 ≤ q
′
1 ≤ N1

2 p1 = p′1 q1 = q′1 = p′1 + 1

−2n−1 ≤ p′2 < −N2

2 −2n−1 ≤ q′2 < −N2

2 p2 = −N2

2 q2 = −N2

2

−2m−1 ≤ p′1 < −N1

2 −2m−1 ≤ q′1 < −N1

2 p1 = −N1

2 q1 = −N1

2

−N2

2 < p′2 <
N2

2 −N2

2 < q′2 <
N2

2 p2 = p′2 q2 = q′2

Table 1: Finding the corresponding complementary edge {p,q} in (G,T2) defined on V2, given a comple-
mentary edge {p′,q′} in (G′, T ′2) defined on V ′2 .

As we can find a complementary edge in the original 2-D General Octahedral Tucker
(G,T2) defined on V2 in polynomial time, given a complementary edge in (G′, T ′2) defined on V ′2 ,
the proof describes a valid reduction as asserted by the theorem.

D Proof of Lemma 10 and Theorem 12

On a high level, we fold a (n − 1)-D General Octahedral Tucker to n-D General Octa-
hedral Tucker by reducing the half length of one dimension and add one extra dimension of
constant length 8. With the help of GOTT and folding technique, we could show the correctness of
this folding scheme: (i) we maintain the original triangulation of (n−1)-D General Octahedral
Tucker when we embed it in a n-D General Octahedral Tucker instance. (ii) In the new
n-D General Octahedral Tucker, we don’t import any new complementary other than the
original complementary edge in (n− 1)-D General Octahedral Tucker.

Proof of Lemma 10. The proof structure is divided to the following two stages.

1. We first show how to fold (n− 1)-D General Octahedral Tucker to n-D General Oc-
tahedral Tucker,

2. Then we prove the correctness of the reduction.

First part of the proof. The goal is to shrink (n − 1)th dimension into half at the cost of
appending another new dimension (nth dimension) of small length (turns out, 8 is the smallest
possible length) simultaneously. The reduction embeds the input hyper grid Vn−1 into Vn, such
that the triangulations of both instances Tn−1 and Tn agree on the embedded vertices. Figure 4

17

illustrates this for an embedding of V2 into V3. Intuitively, as figure 3 shows, we fold Vn−1 along
one side twice in a snake-like fashion, add one layer of extra vertices between the folds to insulate
original grid vertices from becoming adjacent to each other, and pad the outer layers to keep the
vertices in the interior of the new instance. This results in length 8 in the new dimension added.
We now formalize the embedding of the hyper grid Vn−1 of (n − 1)-D General Octahedral
Tucker into Vn, while maintaining all adjacencies between vertices of Vn−1 as per Tn−1, and its
coloring function:

Embedding

• ∀p ∈ Vn−1 with −2k ≤ pn−1 ≤ −2k + 1, embed it to p′ = (p1, ..., pn−2, pn−1 + 2k − 4, 0) in Vn,
i.e. g′(p′) = g(p).
• ∀p ∈ Vn−1 with −2k + 2 ≤ pn−1 ≤ −k, embed it to p′ = (p1, ..., pn−2,−2, pn−1 + 2k − 2) in Vn,

i.e. g′(p′) = g(p).
• ∀p ∈ Vn−1 with pn−1 = −k+1, embed it to p′ = (p1, ..., pn−2,−1, k−2) in Vn, i.e. g′(p′) = g(p).
• ∀p ∈ Vn−1 with −k + 2 ≤ pn−1 ≤ k − 2, embed it to p′ = (p1, ..., pn−2, 0,−pn−1) in Vn, i.e.
g′(p′) = g(p).
• ∀p ∈ Vn−1 with pn−1 = k− 1, embed it to p′ = (p1, ..., pn−2, 1,−k+ 2) in Vn, i.e. g′(p′) = g(p).
• ∀p ∈ Vn−1 with k ≤ pn−1 ≤ 2k − 2, embed it to p′ = (p1, ..., pn−2, 2, pn−1 − 2k + 2) in Vn, i.e.
g′(p′) = g(p).
• ∀p ∈ Vn−1 with 2k − 1 ≤ pn−1 ≤ 2k, embed it to p′ = (p1, ..., pn−2, pn−1 − 2k + 4, 0) in Vn, i.e.
g′(p′) = g(p).

Now we show how to color the vertices of Vn such that the defined coloring function on Vn is
valid. The coloring function on Vn, because of the added dimension, has one extra pair of colors
{±n} available.

Adding Colors Based on the embedding strategy above, ∀ p in Vn−1, there is a corresponding
p′ in Vn, which we assign the same color in Vn as was asisgned in Vn−1. We define the set of these
corresponding vertices in Vn as S. For coloring vertices in Vn\S, we observe that S divides Vn into
two parts. One part is above S where we color all vertices with the new color n, while the other
part is below S where we color them with −n.

Formally, we define the coloring function for Vn\S as follows:

• For any q ∈ Vn\S which is above S,

– ∀q ∈ Vn with −4 ≤ qn−1 ≤ −3 and qn > 0, g′(q) = n.
– ∀q ∈ Vn with −2 ≤ qn−1 ≤ 0 and qn > k − 2, g′(q) = n.
– ∀q ∈ Vn with qn−1 = 1 and qn > −k + 2, g′(q) = n.
– ∀q ∈ Vn with 2 ≤ qn−1 ≤ 4, g′(q) = n.

• For any q ∈ Vn\S which is below S,

– ∀q ∈ Vn with −4 ≤ qn−1 ≤ −2 and qn < 0, g′(q) = −n.
– ∀q ∈ Vn with qn−1 = −1 and qn < k − 2, g′(q) = −n.
– ∀q ∈ Vn with 0 ≤ qn−1 ≤ 2 and qn < −k + 2, g′(q) = −n.
– ∀q ∈ Vn with 3 ≤ qn−1 ≤ 4, g′(q) = −n.

To illustrate, we show embedding and adding colors for the n = 3 case in Figure 3.

Second part of the proof. We now prove the correctness of this reduction. First, we can easily
check that (G′, Tn) on Vn satisfies the valid property (defined in Lemma 2), i.e, ∀q ∈ Boundary(Vn),
g′(−q) = −g′(q). Second, we show there is no other new complementary edge which is not in

18

original (n − 1)-D General Octahedral Tucker (G,Tn−1) on Vn−1. This is because under
GOTT: (a) the edge between S and Vn\S is not a complementary edge, (b) we can’t link two
vertices colored by n and −n, (c) we don’t link any new edge in original (n − 1)-D General
Octahedral Tucker.

• (a) is obviously correct since there are no ±n in S.
• For (b), ∀p,q ∈ Vn with g′(p) = n, g′(q) = −n, |pn−1 − qn−1| ≥ 2 or |pn − qn| ≥ 2 according

to our construction. Therefore, p,q cannot both belong to a same unit hyper grid. Thus, we
can’t link p,q together in Vn under GOTT.
• For (c), we show GOTT will guarantee this claim. We only need to prove the GOTT in Vn

maintains the original GOTT in Vn−1 for S. For any Octahedral Hypergrid (Definition
8) Hp in Vn−1, Hp is embedded in S which is denoted by H ′p. Based on our construction, any
H ′p is the boundary surface of a Octahedral Hypergrid in Vn. Following the definition of
GOTT, H ′p is triangulated by SOTT. Therefore, the triangulation of Vn for S is the original
general Octahedral triangulation for Vn−1.

Claims (a), (b) and (c) show that there is no other new complementary edge added by our
construction. Combined with the satisfication of valid property, we have thus proved the correctness
of this reduction.

One natural thought to optimize the lemma is to add just one layer of vertices instead of two
along the boundaries, resulting in the length of new dimension 6 instead of 8. The argument
for why this cannot be done is subtle. Our definition of GOTT has the same triangulation for
unit hyper grids centered around vertices of odd coordinates. In the reduction, every General
Octahedral Tucker instance has the origin at the center of the hyper grid, and even lengths
in each dimension. Thus, when reducing (n − 1)-D General Octahedral Tucker into n-D
General Octahedral Tucker, to retain the triangulation of Vn−1, the first vertex (vertex of
lowest all-odd coordinates) of Vn−1 must have all odd coordinates in Vn too. Thus, to keep interior
vertices inside again, the Fold has to add an even number of vertices along boundaries. This results
in the added layer’s length along the new dimension being at least 2 on both sides. With one extra
layer of vertices between folds, the net length of the new dimension thus can only be at least 8.
For similar reasons, it is also interesting to note that the octahedral triangulation allows folds only
after even length intervals, else as Figure 8 shows, we do not retain the triangulation, and add extra
adjacencies and delete existing ones.

E Proof of Lemma 14 and Lemma 15

We prove two claims to complete the proof of correctness of the Wrap lemma in this section. The
coloring function of the new General Octahedral Tucker instance formed by applying the
Wrap lemma on an n-D General Octahedral Tucker instance, was described by the set of
differentiating dimension coordinates of each vertex. The differentiating dimensions together are
thought to form a 4-D hyper grid, further divided into 3 3-D cubes based on the coordinate value
of the first dimension in this set.

For better exposition, the set of vertices of each cube is further divided into two groups of
vertices, so called the ’separating’ vertices and the ’environment vertices’. The coordinates of
vertices belonging to each set, denoted by 〈s1, s2, s3〉 and 〈e1, e2, e3〉 respectively, are enumerated
in Tables 3 and 4 respectively. Figure 9 marks these sets in a cube.

Proof of Lemma 14. We make the following observations on the new instance from Figure 5b:

19

Figure 8: Attempt to fold 2-D 16 × 16 General Octahedral Tucker into 16 × 8 × 4 3-D General
Octahedral Tucker by folding after odd lengths.

Figure 9: Separating and Environment vertex sets in a 3-D cube

1. No vertex belonging to the top cube is adjacent to any vertex in the bottom cube, as these
have coordinate values −1 and 1 respectively in the first differentiating dimension, thus violate
SOTT requirements.

2. Vertices belonging to the environment vertex set of the top cube are of the form

〈−1,−1/0, 0/1,−1/0〉\〈−1, 0, 0, 0〉

Vertices belonging to the separating vertex set of the middle cube are of the form 〈0,−1,−1, ∗〉
or 〈0,−1, ∗, 1〉 or 〈0, 0, 1,1〉. Each of these vertices has some pair of dimensions (highlighted in
bold in each case), which together has coordinate values that conflicts SOTT requirements when
compared with the values of the environment set vertices in the top cube. Thus, environment
set vertices in the top cube (and similarly those in the bottom cube) cannot be adjacent to
separating set vertices in the middle cube.

3. Similar to the reasoning in the second point, separating vertices in the top and bottom cube
cannot be adjacent to environment vertices in the middle cube.

4. Environment Vertices and the set of their diametrically opposite vertices in the same cube facet
have coordinate values 1 and −1, or vice versa, in some differentiating dimension, thus cannot
be adjacent to each other.

To prove the lemma, we prove the correctness of the statement for vertices colored using distinct

20

new colors separately. Vertices colored using (n + 1): These are the environment vertices in the
top and bottom cube, and the vertices diametrically opposite to the separating set vertices in the
middle cube. The observations made previously affirm that the top environment vertices cannot
be adjacent to −(n+ 1) colored vertices in the middle cube (point 2), or those in the bottom cube
(point 1). Also, −(n + 1) colored vertices in the top cube cannot be adjacent to these vertices
(point 4). Thus, n + 1 colored vertices in the top cube are not adjacent to any −(n + 1) colored
vertex. Similarly, we prove the lemma for n + 1 colored vertices in the middle and bottom cubes,
and for the n + 2 colored vertices in the middle cube. The n + 2 colored vertex in the top cube
has the form 〈−1, 0, 0, 0〉. Thus by SOTT conditions, apart from vertices in the top cube, it is only
adjacent to the center vertex in the middle cube, hence not adjacent to any −(n+2) colored vertex.
Similarly we prove the lemma for the −(n+ 2) colored vertex in the bottom cube. Also, no vertex
in the hyper grid has color −(n+ 3), thus invalidating the existence of a ±(n+ 3) complementary
edge. Thus, no complementary edges exist with adjacent vertices of colors ±(n + 1), ±(n + 2) or
±(n+ 3)

Proof of Lemma 15. To prove this lemma, we need to prove all edges that existed in the n-D
General Octahedral Tucker instance exist in the (n+3)-D General Octahedral Tucker
instance, and any edge that did not exist still doesnt. We prove these two parts separately. First,
assume two vertices u and v in the n-D instance are adjacent to each other. Then, by the definition
of general Octahedral triangulation, all coordinates of these vertices differ at most by 1, i.e.

|ui − vi| ≤ 1, ∀i ∈ [n] (1)

where ui (vi) is the coordinate of u (v) in the ith dimension.
After applying the fold described in lemma 13, all coordinates of these vertices remain the same,

except for those of the last dimension which is now shrunk. As the last coordinate differed by at-
most one, the new coordinates of this dimension, and the three new dimensions added, also differ
by atmost one, as can be verified by the list of new coordinates specified in the proof of lemma 13
(For instance, if the coordinate of u was −3 in the n-D graph, its coordinates in the changed and
new dimensions are 〈−1,−1,−1, 0〉 (and 〈−1, 0,−1,−1〉). The coordinate of v in the n-D graph
can only be one of {−4,−3,−2} as u and v are adjacent. In these cases, the new coordinates are
〈−1,−1,−1,−1〉, 〈−1,−1,−1, 0〉 or 〈−1,−1,−1, 1〉(and 〈−1, 0,−1,−1〉 or 〈−1, 1,−1,−1〉) respec-
tively, each of which is adjacent to u in the (n+ 3)-D graph.

On the other hand, suppose u and v are not adjacent in the n-D instance. Then, the difference
in at least one coordinate is greater than 1. If this coordinate was not shrunk by the lemma 13, then
it remains the same in the (n+ 3)-D instance too, implying u and v cannot be adjacent in the new
graph too. If this coordinate was shrunk, then as can be seen from the list mapping differentiating
coordinates in the two instances, they are still not adjacent. This can be verified by observing that
any two sets of new coordinates, that are mapped from old coordinates differing by atleast 2, have
a greater coordinate in one dimension in the first set and a smaller one in another dimension, or
there is at least one dimension with coordinate 1 in one set and −1 in the other. Either of these
cases contradicts General Octahedral Tucker conditions, implying these sets of coordinates
of the vertices u and v are not adjacent in the (n+ 3)-D instance too.

F Coloring Scheme used in reduction of lemma 13

Lemma 13 described a reduction process to fold a length 8 side in n-D General Octahedral
Tucker to 4 sides of length 2 in an (n + 3)-D General Octahedral Tucker instance. We

21

〈k〉 〈a,b, c,d〉
〈−4〉 〈−1,−1,−1,−1〉
〈−3〉 〈−1,−1,−1, 0〉and〈−1, 0,−1,−1〉
〈−2〉 〈−1,−1,−1, 1〉and〈−1, 1,−1,−1〉
〈−1〉 〈−1,−1, 0, 1〉and〈−1, 1, 0,−1〉
〈0〉 〈−1,−1, 1, 1〉and〈−1, 1, 1,−1〉
〈1〉 〈−1, 0, 1, 1〉and〈−1, 1, 1, 0〉
〈2〉 〈−1, 1, 1, 1〉
〈3〉 〈0, 1, 1, 1〉

Table 2: Mapping coordinates of the input instance in the output instance. 〈k〉 denotes the vertex that
has coordinate k in the dimension shrunk in the current iteration. 〈a,b, c,d〉 denotes the corresponding
coordinates of the differentiating dimensions in the output instance

Sr.No. 〈s1, s2, s3〉 Sr.No. 〈s1, s2, s3〉
1 〈−1,−1,−1〉 4 〈−1, 0, 1〉
2 〈−1,−1, 0〉 5 〈−1, 1, 1〉
3 〈−1,−1, 1〉 6 〈0, 1, 1〉

Table 3: Coordinate values of separating vertices in a 3-D cube

formally enumerate the coordinates of old vertices from n-D instance in the (n + 3)-D instance,
and the coloring scheme of the new (n + 3)-D instance in Tables 2 and 5 respectively below. We
also enumerate the coordinate values of ’separating vertices’ and ’environment vertices’, which are
definitions introduced to ease exposition, in Tables 3 and 4 respectively.

Sr.No. 〈e1, e2, e3〉 Sr.No. 〈e1, e2, e3〉
1 〈−1, 0,−1〉 5 〈0, 0,−1〉
2 〈−1, 0, 0〉 6 〈0, 1,−1〉
3 〈−1, 1,−1〉 7 〈0, 1, 0〉
4 〈−1, 1, 0〉

Table 4: Coordinate values of environment vertices in a 3-D cube

22

Sr.No. 〈a,b, c,d〉 〈k〉 Sr.No. 〈a,b, c,d〉 〈k〉 or
±(n + x),

x ∈ {1,2,3}
1 〈−1,−1,−1,−1〉 〈−4〉 10 〈−1, e1, e2, e3〉 (n+1)

2 〈−1,−1,−1, 0〉, 〈−1, 0,−1,−1〉 〈−3〉 11 〈−1,−e1,−e2,−e3〉 -(n+1)

3 〈−1,−1,−1, 1〉, 〈−1, 1,−1,−1〉 〈−2〉 12 〈−1, 0, 0, 0〉 (n+2)

4 〈−1,−1, 0, 1〉, 〈−1, 1, 0,−1〉 〈−1〉 13 〈1, ∗, ∗, ∗〉 −〈−1, ∗, ∗, ∗〉
5 〈−1,−1, 1, 1〉, 〈−1, 1, 1,−1〉 〈0〉 14 〈0, s1, s2, s3〉 (n+ 1)

6 〈−1, 0, 1, 1〉, 〈−1, 1, 1, 0〉 〈1〉 15 〈0,−s1,−s2,−s3〉 −(n+ 1)

7 〈−1, 1, 1, 1〉 〈2〉 16 〈0, e1, e2, e3〉 (n+ 2)

8 〈0, 1, 1, 1〉 〈3〉 17 〈0,−e1,−e2,−e3〉 −(n+ 2)

9 〈1, 1, 1, 1〉 〈4〉 18 〈0, 0, 0, 0〉 n+ 3

Table 5: Coloring function of the General Octahedral Tucker instance reduced from a lower di-
mension instance.〈a,b, c,d〉 denotes the color g′(a, b, c, d) assigned to vertices in the new instance that have
coordinates a, b, c, d in the dimension shrunk and the 3 new dimensions added. 〈k〉 denotes the color g(k)
of the vertex having coordinate k in the dimension shrunk. A number ±(n + x), x ∈ {1,2,3}, denotes the
new color ±(n+ x) assigned to the corresponding vertex in the new instance. ∗ denotes ’don’t care’, where
the coordinate of the vertex in the respective dimension can be any of {−1, 0, 1}.

23
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

