
Time-Space Tradeoffs for Learning from Small Test Spaces:
Learning Low Degree Polynomial Functions

Paul Beame∗

University of Washington
beame@cs.washington.edu

Shayan Oveis Gharan†

University of Washington
shayan@cs.washington.edu

Xin Yang∗

University of Washington
yx1992@cs.washington.edu

August 8, 2017

Abstract

We develop an extension of recently developed methods for obtaining time-space tradeoff
lower bounds for problems of learning from random test samples to handle the situation where
the space of tests is signficantly smaller than the space of inputs, a class of learning problems
that is not handled by prior work. This extension is based on a measure of how matrices
amplify the 2-norms of probability distributions that is more refined than the 2-norms of these
matrices.

As applications that follow from our new technique, we show that any algorithm that learns
m-variate homogeneous polynomial functions of degree at most d over F2 from evaluations on
randomly chosen inputs either requires space Ω(mn) or 2Ω(m) time where n = mΘ(d) is the
dimension of the space of such functions. These bounds are asymptotically optimal since they
match the tradeoffs achieved by natural learning algorithms for the problems.

∗Research supported in part by NSF grant CCF-1524246
†Research supported in part by NSF grant CCF-1552097 and ONR-YI grant N00014-17-1-2429

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 120 (2017)

1 Introduction

The question of how efficiently one can learn from random samples is a problem of longstanding
interest. Much of this research has been focussed on the number of samples required to obtain
good approximations. However, another important parameter is how much of these samples need
to be kept in memory in order to learn successfully. There has been a line of work improving the
memory efficiency of learning algorithms, and the question of the limits of such improvement has
begun to be tackled relatively recently. Shamir [15] and Steinhardt, Valiant, and Wager [17] both
obtained constraints on the space required for certain learning problems and in the latter paper,
the authors asked whether one could obtain strong tradeoffs for learning from random samples
that yields a superlinear threshold for the space required for efficient learning. In a breakthrough
result, Ran Raz [13] showed that even given exact information, if the space of a learning algorithm
is bounded by a sufficiently small quadratic function of the input size, then the parity learning
problem given exact answers on random samples requires an exponential number of samples
even to learn an unknown parity function approximately.

More precisely, in the problem of parity learning, an unknown x ∈ {0, 1}n is chosen uniformly
at random, and a learner tries to learn x from a stream of samples (a(1), b(1), (a(2), b(2)), · · · where
a(t) is chosen uniformly at random from {0, 1}n and b(t) = a(t) · x (mod 2). With high probability
n + 1 uniformly random samples suffice to span {0, 1}n and one can solve parity learning using
Gaussian elimination with (n + 1)2 space. Alternatively, an algorithm with only O(n) space can
wait for a specific basis of vectors a to appear (for example the standard basis) and store the
resulting values; however, this takes O(2n) time. Ran Raz [13] showed that either Ω(n2) space or
2Ω(n) time is essential: even if the space is bounded by n2/25, 2Ω(n) queries are required to learn
x correctly with any probability that is 2−o(n). In follow-on work, [9] showed that the same lower
bound applies even if the input x is sparse.

We can view x as a (homogeneous) linear function over F2, and, from this perspective, parity
learning learns a linear Boolean function from evaluations over uniformly random inputs. A nat-
ural generalization asks if a similar lower bound exists when we learn higher order polynomials
with bounded space.

For example, consider homogenous quadratic functions over F2. Let n = (m+1
2) and X =

{0, 1}n, which we identify with the space of quadratic polynomials in F2[z1, . . . , zm] or, equiva-
lently, the space of upper triangular Boolean matrices. Given an input x ∈ {0, 1}n, the learn-
ing algorithm receives a stream of sample pairs (a(1), b(1)), (a(2), b(2)), . . . where b(t) = x(a(t)) (or
equivalently b(t) = (a(t))Txa(t) when x is viewed as a matrix). A learner tries to learn x ∈ X with
a stream of samples (a(1), b(1)), (a2, b2), · · · where at is chosen uniformly at random from {0, 1}m

and b(t) = x(a(t)) := ∑i6j xija
(t)
i a(t)j mod 2.

Given a ∈ {0, 1}m and x ∈ {0, 1}n, we can also view evaluating x(a) as computing aaT ·
x mod 2 where we can interpret aaT as an element of {0, 1}n. For O(n) randomly chosen a ∈
{0, 1}m, the vectors aaT almost surely span {0, 1}n and hence we only need to store O(n) samples
of the form (a, b) and apply Gaussian elimination to determine x. This time, we only need m + 1
bits to store each sample for a total space bound of O(mn). An alternative algorithm using O(n)
space and time 2O(m) would be to look for a specific basis. One natural example is the basis

2

consisting of the upper triangular parts of

{eieT
i | 1 6 i 6 m} ∪ {(ei + ej)(ei + ej)

T | 1 6 i < j 6 m}.

We show that this tradeoff between Ω(mn) space or 2Ω(m) time is inherently required to learn x
with probability 2−o(m).

Another view of the problem of learning homogenous quadratic functions (or indeed any low
degree polynomial learning problem) is to consider it as parity learning with a smaller sample
space of tests. That is, we still want to learn x ∈ {0, 1}n with samples {(a(t), b(t))}t such that
b(t) = a(t) · x mod 2, but now a(t) is not chosen uniformly at random from {0, 1}n; instead, we
choose c(t) ∈ {0, 1}m uniformly at random and set a(t) to be the upper triangular part of c(t)(c(t))T.
Then the size of the space A of tests is 2m which is 2O(

√
n) and hence is much smaller than the size

2n space X.
Note that this is the dual problem to that considered by [9] whose lower bound applied when

the unknown x is sparse, and the tests a(t) are sampled from the whole space. That is, the space X
of possible inputs is much smaller than the space A of possible tests.

The techniques in [13, 9] were based on fairly ad-hoc simulations of the original space-bounded
learning algorithm by a restricted form of linear branching program for which one can measure
progress at learning x using the dimension of the consistent subspace. More recent papers of
Moshkovitz and Moshkovitz [11, 12] and Raz [14] consider more general tests and use a measure
of progress based on 2-norms. While the method of [11] is not strong enough to reproduce the
bound in [13] for the case of parity learning, the methods of [14] and later [12] reproduce the
parity learning bound and more.

In particular, [14] considers an arbitrary space of inputs X and an arbitrary sample space of
tests A and defines a±1 matrix M that is indexed by A×X and has distinct columns; M indicates
the outcome of applying the test a ∈ A to the input x ∈ X. The bound is governed by the
(expectation) matrix norm of M, which is is a function of the largest singular value of M, and the
progress is analyzed by bounding the impact of applying the matrix to probability distributions
with small expectation 2-norm. This method works fine if |A| > |X| - i.e., the space of tests is at
least as large as the space of inputs - but it fails completely if |A| � |X| which is precisely the
situation for learning quadratic functions. Indeed, none of the prior approaches work in this case.

In our work we define a property of matrices M that allows us to refine the notion of the
largest singular value and extend the method of [14] to the cases that |A| � |X| and, in particular,
to prove time-space tradeoff lower bounds for learning homogeneous quadratic functions over
F2. This property, which we call the norm amplification curve of the matrix on the positive orthant,
analyzes more precisely how ‖M · p‖2 grows as a function of ‖p‖2 for probability vectors p on X.
The key reason that this is not simply governed by the singular values is that such p not only have
fixed `1 norm, they are also on the positive orthant, which can contain at most one singular vector.
We give a simple condition on the 2-norm amplification curve of M that is sufficient to ensure that
there is a time-space tradeoff showing that any learning algorithm for M with success probability
at least 2−εm for some ε > 0 either requires space Ω(nm) or time 2Ω(m).

For any fixed learning problem given by a matrix M, the natural way to express the amplifica-
tion curve at any particular value of ‖p‖2 yields an optimization problem given by a quadratic pro-
gram with constraints on ‖p‖2

2, ‖p‖1 and p > 0, and with objective function ‖Mp‖2
2 = 〈MT M, ppT〉

3

that seems difficult to solve. Instead, we relax the quadratic program to a semi-definite program
where we replace ppT by a positive semidefinite matrix U with the analogous constraints. We can
then obtain an upper bound on the amplification curve by moving to the SDP dual and evaluating
the dual objective at a particular Laplacian determined by the properties of MT M.

For matrices M associated with low degree polynomials over F2, the property of the matrix
MT M required to bound the amplication curves for M correspond precisely to properties of the
weight distribution of Reed-Muller codes over F2. In the case of quadratic polynomials, we can
analyze this weight distribution exactly. In the case of higher degree polynomials, bounds on the
weight distribution of such codes proven by Kaufman, Lovett, and Porat [8] are sufficient to obtain
the properties we need to give strong enough bounds on the norm amplification curves to yield
the time-space tradeoffs for learning for all degrees d that are o(

√
m).

Our new method extends the potential reach of time-space tradeoff lower bounds for learning
problems to a wide array of natural scenarios where the sample space of tests is smaller than
the sample space of inputs. Low degree polynomials with evaluation tests are just some of the
natural examples. Our bound shows that if the 2-norm amplification curve for M has the required
property, then to achieve learning success probability for M of at least |A|−ε for some ε > 0,
either space Ω(log |A| · log |X|) or time |A|Ω(1) is required. This kind of bound is consistent even
with what we know for very small sample spaces of tests: for example, if X is the space of linear
functions over F2 and A is the standard basis {e1, . . . , en} then, even for exact identification, space
O(n) and time O(n log n) are necessary and sufficient by a simple coupon-collector analysis.

Thus far, we have assumed that the outcome of each random test in is one of two values.
We also sketch how to extend the approach to multivalued outcomes. (We note that, though the
mixing condition of [11, 12] does not hold in the case of small sample spaces of tests, [11, 12] do
apply in the case of multivalued outcomes.)

Independent of the specific applications to learning from random examples that we obtain, the
measure of matrices that we introduce, the 2-norm amplification curve on the positive orthant,
seems likely to have signficant applications in other contexts outside of learning.

Related work: Independently of our work, Garg, Raz, and Tal [6] have proven closely related re-
sults to ours. The fundamental techniques are similarly grounded in the approach of [14] though
their method is based on viewing the matrices associated with learning problems as 2-source ex-
tractors rather than on bounding the SDP relaxations of their 2-norm amplification curves. They
use this for a variety of applications including the polynomial learning problems we focus on
here.

1.1 Branching programs for learning

Following Raz [14], we define the learning problem as follows. Given two non-empty sets, a
set X of possible inputs, with a uniformly random prior distribution, and a set A of tests and a
matrix M : A× X → {−1, 1}, a learner tries to learn an input x ∈ X given a stream of samples
(a1, b1), (a2, b2), . . . where for every t, at is chosen uniformly at random from A and bt = M(at, x).
Throughout this paper we use the notation that n = log2 |X| and m = log2 |A|.

4

For example, parity learning is the special case of this learning problem where M(a, x) =

(−1)a·x.
Again following Raz [13], the time and space of a learner are modelled simultaneously by

expressing the learner’s computation as a layered branching program: a finite rooted directed
acyclic multigraph with every non-sink node having outdegree 2|A|, with one outedge for each
(a, b) with a ∈ A and b ∈ {−1, 1} that leads to a node in the next layer. Each sink node v is labelled
by some x′ ∈ X which is the learner’s guess of the value of the input x.

The space S used by the learning branching program is the log2 of the maximum number of
nodes in any layer and the time T is the length of the longest path from the root to a sink.

The samples given to the learner (a1, b1), (a2, b2), . . . based on uniformly randomly chosen
a1, a2, . . . ∈ A and an input x ∈ X determines a (randomly chosen) computation path in the branch-
ing program. When we consider computation paths we include the input x in their description.

The (expected) success probability of the learner is the probability for a uniformly random
x ∈ X that on input x a random computation path on input x reaches a sink node v with label
x′ = x.

1.2 Progress towards identification

Following [11, 14] we measure progress towards identifying x ∈ X using the “expectation 2-norm”
over the uniform distribution: For any set S, and f : S→ R, define

‖ f ‖2 =
(
Es∈RS f 2(s)

)1/2
=

(
1
|S| ∑s∈S

f 2(s)

)1/2

.

Define ∆X to be the space of probability distributions on X. Consider the two extremes for the
expectation 2-norm of elements of ∆X: If P is the uniform distribution on X, then ‖P‖2 = 2−n.
This distribution represents the learner’s knowledge of the input x at the start of the branching
program. On the other hand if P is point distribution on any x′, then ‖P‖2 = 2−n/2.

For each node v in the branching program, there is an induced probability distribution on X,
P′x|v which represents the distribution on X conditioned on the fact that the computation path
passes through v. It represents the learner’s knowledge of x at the time that the computation path
has reached v. Intuitively, the learner has made significant progress towards identifying the input
x if ‖P′x|v‖2 is much larger than 2−n, say ‖P′x|v‖2 > 2δn/2 · 2−n = 2−(1−δ/2)n.

The general idea will be to argue that for any fixed node v in the branching program that is
at a layer t that is 2o(m), the probability over a randomly chosen computation path that v is the
first node on the path for which the learner has made significant progress is 2−Ω(mn). Since by
assumption of correctness the learner makes significant progress with at least 2−εm probability,
there must be at least 2Ω(mn) such nodes and hence the space must be Ω(mn).

Given that we want to consider the first vertex on a computation path at which significant
progress has been made it is natural to truncate a computation path at v if significant progress
has been already been made at v (and then one should not count any path through v towards the
progress at some subsequent node w). Following [14], for technical reasons we will also truncate
the computation path in other circumstances.

5

Definition 1.1. We define probability distributions Px|v ∈ ∆X and the (δ, α, γ)-truncation of the compu-
tation paths inductively as follows:

• If v is the root, then Px|v is the uniform distribution on X.

• (Significant Progress) If ‖Px|v‖2 > 2−(1−δ/2)n then truncate all computation paths at v. We call
vertex v significant in this case.

• (High Probability) Truncate the computation paths at v for all inputs x′ for which Px|v(x′) > 2−αn.
Let High(v) be the set of such inputs.

• (High Bias) Truncate any computation path at v if it follows an outedge e of v with label (a, b) for
which |(M ·Px|v)(a)| > 2−γm. That is, we truncate the paths at v if the outcome b of the next sample
for a ∈ A is too predictable in that it is highly biased towards −1 or 1 given the knowledge that the
path was not truncated previously and arrived at v.

• If v is not the root then define Px|v to be the conditional probability distribution on x over all compu-
tation paths that have not previously been truncated and arrive at v.

For an edge e = (v, w) of the branching program, we also define a probability distribution Px|e ∈ ∆X,
which is the conditional probability distribution on X induced by the truncated computation paths that pass
through edge e.

With this definition, it is no longer immediate from the assumption of correctness that the
truncated path reaches a significant node with at least 2−εm probability. However, we will see that
a single assumption about the matrix M will be sufficient to prove both that this holds and that
the probability is 2−Ω(nm) that the path reaches any specific node v at which significant progress
has been made.

2 Norm amplification by matrices on the positive orthant

By definition, for P ∈ ∆X,
‖M · P‖2

2 = Ea∈R A[|(M · P)(a)|2].

Observe that for P = Px|v, the value |(M · Px|v)(a)| is precisely the expected bias of the answer
along a uniformly random outedge of v (i.e., the advantage in predicting the outcome of the ran-
domly chosen test).

If we have not learned the input x, we would not expect to be able to predict the outcome of a
typical test; moreover, since any path that would follow a high bias test is truncated, it is essential
to argue that ‖M ·Px|v‖2 remains small at any node v where there has not been significant progress.

In [14], ‖M · Px|v‖2 was bounded using the matrix norm ‖M‖2 given by

‖M‖2 = sup
f :X→R

f 6=0

‖M · f ‖2

‖ f ‖2
,

6

where the numerator is an expectation 2-norm over A and the denominator is an expectation 2-
norm over X. Thus

‖M‖2 =

√
|X|
|A| · σmax(M),

where σmax(M) is the largest singular value of M and
√
|X|/|A| is a normalization factor.

In the case of the matrix M associated with parity learning, |A| = |X| and all the singular
values are equal to

√
|X| so ‖M‖2 =

√
|X| = 2n/2. With this bound, if v is not a node of significant

progress then ‖Px|v‖2 6 2−(1−δ/2)n and hence ‖M · Px|v‖2 6 2−(1−δ)n/2 which is 1/|A|(1−δ)/2 and
hence small.

However, in the case of learning quadratic functions over F2, the largest singular value of
the matrix M is still

√
|X| (the uniform distribution on X is a singular vector) and so ‖M‖2 =

|X|/
√
|A|. But in that case, when ‖Px|v‖ is 2−(1−δ/2)n we conclude that ‖M‖2 · ‖Px|v‖2 is at most

2δn/2/
√
|A| which is much larger than 1 and hence a useless bound on ‖M · Px|v‖2.

Indeed, the same kind of problem occurs in using the method of [14] for any learning problem
for which |A| is |X|o(1): If v is a child of the root of the branching program at which the more
likely outcome b of a single randomly chosen test a ∈ A is remembered, then ‖Px|v‖2 6

√
2/|X|.

However, in this case |(M · Px|v)(a)| = 1 and so ‖(M · Px|v)‖2 > |A|−1/2. It follows that ‖M‖2 >

|X|/(2|A|)1/2 and when |A| is |X|o(1) the derived upper bound on ‖M · Px|v′‖2 at nodes v′ where
‖Px|v′‖2 > 1/|X|1−δ/2 will be larger than 1 and therefore useless.

We need a more precise way to bound ‖M · P‖2 as a function of ‖P‖2 than the single number
‖M‖2. To do this we will need to use the fact that P ∈ ∆X – it has a fixed `1 norm and (more
importantly) it is non-negative.

Definition 2.1. Let M : X × A → {−1, 1} be a ±1 matrix. The 2-norm amplification curve of M is a
map τM : [0, 1]→ R given by

τM(δ) = sup
P∈∆X

‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

In other words, for |X| = 2n and |A| = 2m, whenever ‖P‖2 is at most 2−(1−δ/2)n, ‖M · P‖2 is at
most 2τM(δ)m.

3 Theorems

Our lower bound for learning quadratic functions will be in two parts. First, we modify the
argument of [14] to use the function τM instead of ‖M‖2:

Theorem 3.1. Let M : X × A → {−1, 1}, n = log2 |X|, m = log2 |A| and assume that m 6 n. If M
has τM(δ′) < 0 for some fixed constant 0 < δ′ < 1, then there are constants ε, β, η > 0 depending only
on δ′ and τM(δ′) such that any algorithm that solves the learning problem for M with success probability
at least 2−εm either requires space at least ηnm or time at least 2βm.

7

(We could write the statement of the theorem to apply to all m and n by replacing each occur-
rence of m in the lower bounds with min(m, n). When m > n, we can use ‖M‖2 to bound τM(δ′)

which yields the bound given in [14].)
We then analyze the amplification properties of the matrix M associated with learning quadratic

functions over F2.

Theorem 3.2. Let M be the matrix for learning (homogenous) quadratic functions over F2[z1, . . . , zm].
Then τM(δ) 6 −(1−δ)

8 + 5+δ
8m for all δ ∈ [0, 1].

The following corollary is then immediate.

Corollary 3.3. Let m be a positive integer and n = (m+1
2). For some ε > 0, any algorithm for learning

quadratic functions over F2[z1, . . . , zm] that succeeds with probability at least 2−εm requires space Ω(mn)
or time 2Ω(m).

This bound is tight since it matches the resources used by the learning algorithms for quadratic
functions given in the introduction up to constant factors in the space bound and in the exponent
of the time bound.

We obtain similar bounds for all low degree polynomials over F2.

Theorem 3.4. Let 3 6 d and m > d2. Let M be the matrix for learning (homogenous) functions of degree
at most d over F2[z1, . . . , zm]. Then there is a constant λ′d > 0 depending on d such that τM(δ) 6 −λ′d for
all 0 < δ < 3/4.

Again we have the following immediate corollary which is also asymptotically optimal for
constant degree polynomials.

Corollary 3.5. Fix some integer d > 2. There is a εd > 0 such that for positive integers m > d and
n = ∑d

i=1 (
m
i), any algorithm for learning polynomial functions of degree at most d over F2[z1, . . . , zm] that

succeeds with probability at least 2−εdm requires space Ωd(mn) or time 2Ωd(m).

For the case of learning larger degree polynomials where the d can depend on the number of
variables m, we can derive the following somewhat weaker lower bound whose proof we only
sketch.

Theorem 3.6. There are constants ζ, ε > 0 such that for positive integer d 6 (1 − ζ) · m and n =

∑d
i=1 (

m
i). any algorithm for learning polynomial functions of degree at most d over F2[z1, . . . , zm] that

succeeds with probability at least 2−εm/d requires space Ω(mn/d) or time 2Ω(m/d).

We prove Theorem 3.1 in the next section. In Section 5 we give a semidefinite programming
relaxation of that provides a strategy for bounding the norm amplification curve and in Section 6
we give the applications of that method to the matrices for learning low degree polynomials.
Finally, in Section 7 we sketch how to extend the framework to learning problems for which the
tests have multivalued rather than simply binary outcomes.

8

4 Lower Bounds over Small Sample Spaces

In this section we prove Theorem 3.1. Let 2/3 < δ′ < 1 be the value given in the statement of the
theorem, To do this we define several positive constants that will be useful:

• δ = δ′/6,

• α = 1− 2δ,

• γ = −τM(δ′)/2,

• β = min(γ, δ)/8, and

• ε = β/2.

Let B be a learning branching program for M with length at most 2βm − 1 and success probability
at least 2−εm.

We will prove that B must have space 2Ω(mn). We first apply the (δ, α, γ)-truncation procedure
given in Definition 1.1 to yield Px|v and Pe|v for all vertices v in B.

The following simple technical lemmas are analogues of ones proved in [14], though we struc-
ture our argument somewhat differently. The first uses the bound on the amplification curve of M
in place of its matrix norm.

Lemma 4.1. Suppose that vertex v in B is not significant. Then

Pra∈R A[|(M · Px|v)(a)| > 2−γm] 6 2−2γm.

Proof. Since v is not significant ‖Px|v‖2 6 2−(1−δ/2)n. By definition of τM,

Ea∈R A[|(M · Px|v)(a)|2] = ‖M · Px|v‖2
2 6 22τM(δ)m 6 22τM(δ′)m = 2−4γm.

Therefore, by Markov’s inequality,

Pra∈R A[|(M · Px|v)(a)| > 2−γm] = Pra∈R A[|(M · Px|v)(a)|2 > 2−2γm] 6 2−2γm.

Lemma 4.2. Suppose that vertex v in B is not significant. Then

Prx′∼Px|v [x
′ ∈ High(v)] 6 2−δn.

Proof. Since v is not significant,

Ex′∼Px|v [Px|v(x′)] = ∑
x′∈X

(Px|v(x′))2 = 2n · ‖Px|v‖2
2 6 2−(1−δ)n = 2−(alpha+δ)n.

Therefore, by Markov’s inequality,

Prx′∼Px|v [x
′ ∈ High(v)] = Prx′∼Px|v [Px|v(x′) > 2−αn] 6 2−δn.

9

Lemma 4.3. The probability, over uniformly random x′ ∈ X and uniformly random computation path C
in B on input x′, that the truncated version T of C reaches a significant vertex of B is at least 2−βm/2−1.

Proof. Let x′ be chosen uniformly at random from X and consider the truncated path T. T will not
reach a significant vertex of B only if one of the following holds:

1. T is truncated at a vertex v where Px|v(x′) > 2−αn.

2. T is truncated at a vertex v because the next edge of C is labelled by (a, b) where |(M ·
Px|v)(a)| > 2−γm.

3. T ends at a leaf that is not significant.

By Lemma 4.2, for each vertex v on C, conditioned on the truncated path reaching v, the probability
that Px|v(x′) > 2−αn is at most 2−δn. Similarly, by Lemma 4.1, for each v on the path, conditioned
on the truncated path reaching v, the probability that |(M · Px|v)(a)| > 2−γm is at most 2−2γm.
Therefore, since T has length at most 2βm, the probability that T is truncated at v for either reason
is at most 2βm(2−2γm + 2−δn) < 2−βm+1 since m 6 n and β < min(γ, δ/2).

Finally, if T reaches a leaf v that is not significant then, conditioned on arriving at v, the prob-
ability that the input x′ equals the label of v is at most maxx′′∈X Px|v(x′′). Now

maxx′′∈X Px|v(x′′)
2n/2 6 ‖Px|v‖2 < 2−(1−δ/2)n

since v is not significant, so we have maxx′′∈X Px|v(x′′) < 2−(1−δ)n/2 = 2−(α+δ)n/2 and the probabil-
ity that B is correct conditioned on the truncated path reaching a leaf vertex that is not significant
is less than 2−(α+δ)n/2 6 2−βn 6 2−βm since m 6 n.

Since B is correct with probability at least 2−εm = 2−βm/2 and these three cases in which T does
not reach a significant vertex account for correctness at most 3 · 2−βm, which is much less than half
of 2−βm/2, T must reach a significant vertex with probability at least 2−βm/2−1.

The following lemma is the the key to the proof of the theorem.

Lemma 4.4. Let s be any significant vertex of B. There is an η > 0 such that for a uniformly random x
chosen from X and a uniformly random computation path C, the probability that its truncation T ends at s
is at most 2−ηmn.

The proof of Lemma 4.4 requires a delicate progress argument and is deferred to the next
subsection. We first show how Lemmas 4.3 and 4.4 immediately imply Theorem 3.1.

Proof of Theorem 3.1. By Lemma 4.3, for x chosen uniformly at random from X and T the truncation
of a uniformly random computation path on input x, T ends at a significant vertex with probability
at least 2−βm/2−1. On the other hand, by Lemma 4.4, for any significant vertex s, the probability
that T ends at s is at most 2−ηmn. Therefore the number of significant vertices must be at least
2ηmn−βm/2−1 and since B has length at most 2βm, there must be at least 2ηmn−3βm/2−1 significant
vertices in some layer. Hence B requires space Ω(mn).

10

4.1 Progress towards significance

In this section we prove Lemma 4.4 showing that for any particular significant vertex s a random
truncated path reaches s only with probability 2−Ω(mn). For each vertex v in B let Pr[v] denote
the probability over a random input x, that the truncation of a random computation path in B on
input x visits v and for each edge e in B let Pr[e] denote the probability over a random input x,
that the truncation of a random computation path in B on input x traverses e.

Since B is a levelled branching program, the vertices of B may be divided into disjoint sets Vt

for t = 0, 1, . . . , T where T is the length of B and Vt is the set of vertices at distance t from the root,
and disjoint sets of edges Et for t = 1, . . . , T where Et consists of the edges from Vt−1 to Vt. For
each vertex v ∈ Vt−1, note that by definition we only have

Pr[v] > ∑
(v,w)∈Et

Pr[(v, w)]

since some truncated paths may terminate at v.
For each t, since the truncated computation path visits at most one vertex and at most one

edge at level t, we obtain a sub-distribution on Vt in which the probability of v ∈ Vt is Pr[v]
and a corresponding sub-distribution on Et in which the probability of e ∈ Et is Pr[e]. We write
v ∼ Vt and e ∼ Et to denote random selection from these sub-distributions, where the outcome ⊥
corresponds to the case that no vertex (respectively no edge) is selected.

Fix some significant vertex s. We consider the progress that a truncated path makes as it moves
from the start vertex to s. We measure the progress at a vertex v as

ρ(v) =
〈Px|v,Px|s〉
〈Px|s,Px|s〉

.

Clearly ρ(s) = 1. We first see that ρ starts out at a tiny value.

Lemma 4.5. If v0 is the start vertex of B then ρ(v0) 6 2−δn.

Proof. By definition, Px|v0
is the uniform distribution on X. Therefore

〈Px|v0
,Px|s〉 = Ex′∈X[2−n · Px|s(x′)] = 2−2n · ∑

x′∈X
Px|v0

(x′) = 2−2n

since Px|s is a probability distribution on X. On the other hand, since s is significant, 〈Px|s,Px|s〉 =
‖Px|s‖2

2 > 2δn · 2−2n. The lemma follows immediately.

Since the truncated path is randomly chosen, the progress towards s after t steps is a random
variable. Following [14], we show that not only is the increase in this expected value of this
random variable in each step very small, its higher moments also increase at a very small rate.
Define

Φt = Ev∼Vt [(ρ(v))
γm]

where we extend ρ and define ρ(⊥) = 0. We will show that for s ∈ Vt, Φt is still 2−Ω(mn), which
will be sufficient to prove Lemma 4.4.

Therefore, Lemma 4.4, and hence Theorem 3.1, will follow from the following lemma.

11

Lemma 4.6. For every t with 1 6 t 6 2βm − 1,

Φt 6 Φt−1 · (1 + 2−2βm) + 2−γmn.

Proof of Lemma 4.4 from Lemma 4.6. By definition of Φt and Lemma 4.5 we have Φ0 6 2−δγmn. By
Lemma 4.6, for every t with 1 6 t 6 2βm − 1,

Φt 6
t

∑
j=0

(1 + 2−2βm)j · 2−δγmn < (t + 1) · (1 + 2−2βm)t · 2−δγmn.

In particular, for every t 6 2βm − 1,

Φt 6 2βm · (1 + 2−2βm)2βm · 2−δγmn 6 e1/2βm · 2−δγmn+βm.

Now fix t∗ to be the level of the significant node s. Every truncated path that reaches s will have
contribution (ρ(s))γm = 1 times its probability of occurring to Φt∗ . Therefore the truncation of
a random computation path reaches s with probability at most 2−ηmn for η = δγ/2 and m, n
sufficiently large, which proves the lemma.

We now focus on the proof of Lemma 4.6. Because Φt depends on the sub-distribution over
Vt and Φt−1 depends on the sub-distribution over Vt−1, it is natural to consider the analogous
quantities based on the sub-distribution over the set Et of edges that join Vt−1 and Vt. We can
extend the definition of ρ to edges of B, where we write

ρ(e) =
〈Px|e,Px|s〉
〈Px|s,Px|s〉

.

Then define
Φ′t = Ee∼Et [(ρ(e))

γm].

Intuitively, there is no gain of information in moving from elements Et to elements of Vt. More
precisely, we have the following lemma:

Lemma 4.7. For all t, Φt 6 Φ′t.

Proof. Note that for v ∈ Vt, since the truncated paths that follow some edge (u, v) ∈ Et are pre-
cisely those that reach v, by definition, Pr[v] = ∑(u,v)∈Et

Pr[(u, v)]. Since the same applies sepa-
rately to the set of truncated paths for each input x′ ∈ X that reach v, for each x′ ∈ X we have

Pr[v] · Px|v(x′) = ∑
(u,v)∈Et

Pr[(u, v)] · Px|(u,v)(x′).

Therefore,

Pr[v] ·
〈Px|v,Px|s〉
〈Px|s,Px|s〉

= ∑
(u,v)∈Et

Pr[(u, v)] ·
〈Px|(u,v),Px|s〉
〈Px|s,Px|s〉

;

i.e., Pr[v] · ρ(v) = ∑(u,v)∈Et
Pr[(u, v)] · ρ((u, v)). Since Pr[v] = ∑(u,v)∈Et

Pr[(u, v)], by the convexity
of the map r 7→ rγm we have

Pr[v] · (ρ(v))γm 6 ∑
(u,v)∈Et

Pr[(u, v)] · (ρ((u, v))γm.

12

Therefore

Φt = ∑
v∈Vt

Pr[v] · (ρ(v))γm 6 ∑
v∈Vt

∑
(u,v)∈Et

Pr[(u, v)] · (ρ((u, v)))γm = ∑
e∈Et

Pr[e] · (ρ(e))γm = Φ′t.

Therefore, to prove Lemma 4.6 it suffices to prove that the same statement holds with Φt re-
placed by Φ′t; that is,

Ee∈Et [(ρ(e))
γm] 6 (1 + 2−2βm) · Ev∈Vt−1 [(ρ(v))

γm] + 2−γmn

Et is the disjoint union of the out-edges Γout(v) for vertices v ∈ Vt−1, so it suffices to show that for
each v ∈ Vt−1,

∑
e∈Γout(v)

Pr[e] · (ρ(e))γm 6 (1 + 2−2βm) · Pr[v] · (ρ(v))γm + 2−γmn · Pr[v]. (1)

Since any truncated path that follows e must also visit v, we can write Pr[e|v] = Pr[e]/Pr[v].
Moreover, both ρ(v) and ρ(e) have the same denominator 〈Px|s,Px|s〉 and therefore, by definition,
inequality (1), and hence Lemma 4.6, follows from the following lemma.

Lemma 4.8. For v ∈ Vt−1,

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γm 6 (1 + 2−2βm) · 〈Px|v,Px|s〉γm + 2−γmn.

Before we prove Lemma 4.8, following [14], we first prove two technical lemmas, the first
relating the distributions for v ∈ Vt−1 and edges e ∈ Et and the second upper bounding ‖Px|s‖2.

Lemma 4.9. Suppose that v ∈ Vt−1 is not significant and e = (v, w) ∈ Et has Pr[e] > 0 and label (a, b).
Then for x′ ∈ X, Px|e(x′) > 0 only if x′ /∈ High(v) and M(a, x′) = b, in which case

Px|e(x′) = c−1
e · Px|v(x′)

where ce > 1
2 − 2−γm−1 − 2−δn.

Proof. If |(M · Px|v)(a)| > 2−γm then by definition of truncation we also will have Pr[e] = 0.
Therefore, since Pr[e] > 0, e is not a high bias edge – that is, |(M · Px|v)(a)| < 2−γm – and hence

Prx′∼Px|v [M(a, x′) = b] >
1
2
(1− 2−γm).

Let Ee(x′) be the event that both M(a, x′) = b and x′ /∈ High(v) and define

ce = Prx′∼Px|v [Ee(x′)].

If Ee(x′) fails to hold for all x′, i.e., x′ ∈ High(v) or M(a, x′) 6= b, then any truncated path on
input x′ that reaches v will not continue along e and hence Pr[e] = 0. On the other hand, since
Pr[e] > 0, if Ee(x′) holds for some x′ then any truncated path on input x′ that reaches v will

13

continue precisely if the test chosen at v is a, which happens with probability 2−m for each such x′.
The total probability over x′ ∈ X, conditioned that the truncated path on x′ reaches v, that the path

continues along e is then 2−m · ce. Therefore, if x′ ∈ Ee then Px|e(x′) =
2−m·Px|v(x′)

2−m·ce
= c−1

e · Px|v(x′).
Now by Lemma 4.2,

Prx′∼Px|v [x
′ ∈ High(v)] 6 2−δn

and so
ce = Prx′∼Px|v [M(a, x′) = b and x′ /∈ High(v)] >

1
2
− 2−γm−1 − 2−δn

as required.

We use this lemma together with an argument similar to that of Lemma 4.7 to upper bound
‖Px|s‖2 for our significant vertex s.

Lemma 4.10. ‖Px|s‖2 6 4 · 2−(1−δ/2)n.

Proof. The main observation is that s is the first significant vertex of any truncated path that
reaches it and so the probability distributions of each of the immediate predecessors v of s must
have bounded expectation 2-norm and, by Lemma 4.9 and the proof idea from Lemma 4.7, the
2-norm of the distribution at s cannot grow too much larger than those at its immediate predeces-
sors.

By Lemma 4.9, if e = (v, s) and Pr[e] > 0, then

‖Px|e‖2 6 c−1
e · ‖Px|v‖ 6 c−1

e 2−(1−δ/2)n 6 4 · 2−(1−δ/2)n

since v is not significant and ce > 1
2 − 2−γm−1 − 2−δn > 1

4 for m (and hence n) sufficiently large.
Let Γin(s) be the set of edges (v, s) in B. Pr[s] = ∑e=(v,s)∈Γin(s) Pr[e] and for each x′ ∈ X,

Pr[s] · Px|s(x′) = ∑
e=(v,s)∈Γin(s)

Pr[e] · Px|e(x′).

Since Pr[s] = ∑e=(v,s)∈Γin(s) Pr[e], by convexity of the map r 7→ r2, we have

Pr[s] · (Px|s(x′))2 = ∑
e=(v,s)∈Γin(s)

Pr[e] · (Px|e(x′))2.

Summing over x′ ∈ X we have

Pr[s] · ‖Px|s‖2
2 6 ∑

e=(v,s)∈Γin(s)
Pr[e] · ‖Px|e‖2

2 6 ∑
e=(v,s)∈Γin(s)

Pr[e] · (4 · 2−(1−δ/2)n)2 = Pr[s] · (4 · 2−(1−δ/2)n)2.

Therefore ‖Px|s‖ 6 4 · 2−(1−δ/2)n as required since Pr[s] > 0.

To complete the proof of Lemma 4.6, and hence Lemma 4.4, it only remains to prove Lemma 4.8.

14

4.1.1 Proof of Lemma 4.8

Since we know that if v ∈ Vt−1 is significant then any edge e ∈ Γout(v) has Pr[e] = 0, we can
assume without loss of generality that v is not significant.

Define g : X → R by
g(x′) = Px|v(x′) · Px|s(x′)

and note that 〈Px|v,Px|s〉 = Ex′∈X[g(x′)]. For x′ ∈ X define

f (x′) =

{
g(x′) x′ /∈ High(v)

0 otherwise

and let F = ∑x′∈X f (x′). For every edge e where 〈Px|e,Px|s〉 > 0, we have F > 0.
The function f induces a new probability distribution on X, P f , given by P f (x′) =

f (x′)/ ∑x∈X f (x) = f (x′)/F in which each point x′ ∈ X \ High(v) is chosen with probability
proportional to its contribution to 〈Px|v,Px|s〉 and each x′ ∈ High(v) has probability 0.

CLAIM: Let (a, b) be the label on an edge e, then

〈Px|e,Px|s〉 6 (2ce)
−1(1 + |(M · P f)(a)|) · F/2n 6 (2ce)

−1(1 + |(M · P f)(a)|) · 〈Px|v,Px|s〉

where ce is given by Lemma 4.9.
We first prove the claim. By Lemma 4.9 and the definition of f ,

Px|e(x′) · Px|s(x′) =

{
c−1

e · f (x′) if M(a, x′) = b

0 otherwise.

Therefore

〈Px|e,Px|s〉 = Ex′∈RX[Px|e(x′) · Px|s(x′)]

= Ex′∈RX[c−1
e f (x′) · 1M(a,x′)=b]

= Ex′∈RX[c−1
e f (x′) · (1 + b ·M(a, x′))/2]

= (2ce)
−1 ·

(
Ex′∈RX[f (x′)] + b · Ex′∈RX[M(a, x′) · f (x′)]

)
6 (2ce)

−1 ·
(
Ex′∈RX[f (x′)] +

∣∣Ex′∈RX[M(a, x′) · f (x′)]
∣∣)

= (2ce)
−1 · 2−n · F ·

(
1 +
|Ex′∈RX[M(a, x′) · f (x′)]|

F
]

)
= (2ce)

−1 · 2−n · F · (1 + |(M · P f)(a)|)
6 (2ce)

−1 · (1 + |(M · P f)(a)|) · 〈Px|v,Px|s〉

since 2−n · F = Ex′∈RX[f (x′)] 6 Ex′∈RX[g(x′)] = 〈Px|v,Px|s〉, which proves the claim.
By Lemma 4.9, 2ce > 1− 2−γm − 21−δn and so (2ce)−1 6 1 + 2−σm 6 2 for σ = min(γ, δ)/2

since m 6 n for m sufficiently large. We consider two cases:

CASE F 6 2−n : In this case, since P f is a probability distribution, for every a, |(M · P f)(a)| 6
maxx′∈X |M(a, x′)| = 1 and from the claim we obtain for every edge e ∈ Γout(v), 〈Px|e,Px|s〉 6
2 · (2ce)−1 · 2−2n. Therefore ∑e∈Γout(v) Pr[e|v] · 〈Px|e,Px|s〉γm is at most [4 · 2−2n]γm 6 2−γmn for n > 2.

15

CASE F > 2−n : In this case we will show that ‖P f ‖2 is not too large and use this together with
the bound on the 2-norm amplification curve of M to show that ‖M · P f ‖2 is small. This will be
important because of the following connection:

By the Claim, we have

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γm 6 ∑
e∈Γout(v)

Pr[e|v][(2ce)
−1(1 + |(M · P f)(ae)|)]γm · 〈Px|v,Px|s〉γm (2)

where ae is the test labelling edge e. By definition, for each a ∈ A there are precisely two edges
e, e′ ∈ Γout(v) with ae = ae′ = a and Pr[e|v] + Pr[e′|v] 6 1/|A| since the next test is chosen
uniformly at random from A. (It would be equality but some tests a have high bias and in that
case Pr[e|v] = Pr[e′|v] = 0.) Previously, we also observed that (2ce)−1 6 1 + 2−σm where σ =

min(γ, δ)/2. Therefore,

∑
e∈Γout(v)

Pr[e|v] · 〈Px|e,Px|s〉γm 6 ∑
a∈A

1
|A| [(1 + 2−σm) · (1 + |(M · P f)(a)|)]γm · 〈Px|v,Px|s〉γm

= (1 + 2−σm)γm · Ea∈R A[(1 + |(M · P f)(a)|)γm] · 〈Px|v,Px|s〉γm.

To prove the lemma we therefore need to bound Ea∈R A[(1 + |(M · P f)(a)|)γm]. We will bound this
by first analyzing ‖M · P f ‖2.

By definition,

‖ f ‖2
2 = Ex′∈RX1x′/∈High(v) · P2

x|v(x′) · P2
x|s(x′) 6 2−2αn · Ex′∈RXP2

x|s(x′) = 2−2αn · ‖Px|s‖2
2.

Therefore, by Lemma 4.10, and the fact that F > 2−n,

‖P f ‖2 =
‖ f ‖2

F
6

2−αn · ‖Px|s‖2

2−n 6 2(1−α)n · 4 · 2−(1−δ/2)n = 2(1−α+δ/2+2/n)n · 2−n.

Since, for sufficiently large n,

1− α + δ/2 + 2/n = 2δ + δ/2 + 2/n 6 3δ = δ′/2,

we have ‖P f ‖2 6 2−(1−δ′/2)n. So, ‖M · P f ‖2 6 2τM(δ′)m = 2−2γm. Thus Ea∈R A[|(M · P f)(a)|2] =
‖M · P f ‖2

2 6 2−4γm. So, by Markov’s inequality,

Pra∈R A[|(M · P f)(a)| > 2−γm] = Pra∈R A[|(M · P f)(a)|2 > 2−2γm] 6 2−2γm.

Therefore, since we always have |(M · P f)(a)| 6 1,

Ea∈R A[(1 + |(M · P f)(a)|)γm] 6 Ea∈R A[1|(M·P f)(a)|62−γm · (1 + 2−γm)γm] + Ea∈R A[1|(M·P f)(a)>2−γm · 2γm]

6 (1 + 2−γm)γm + 2−2γm · 2γm

6 (1 + 2−γm)γm + 2−γm

6 1 + 2−γm/2

for m sufficiently large. Therefore, the total factor increase over 〈Px|v,Px|s〉γm is at most (1 +

2−σm)γm · (1 + 2−γm/2) where σ = min(γ, δ)/2. Therefore, for sufficiently large m this is at most
1+ 2−min(γ,δ)m/4. Since β 6 min(γ, δ)/8 this is at most 1+ 2−2βm as required to prove Lemma 4.8.

16

5 An SDP Relaxation for Norm Amplification on the Positive Orthant

For a matrix M,
τM(δ) = sup

P∈∆X
‖P‖261/|X|1−δ/2

log|A|(‖M · P‖2).

That is, τM(δ) = 1
2 log|A|OPTM,δ where OPTM,δ is the optimum of the following quadratic pro-

gram:
Maximize ‖M · P‖2

2 = 〈M · P, M · P〉,
subject to:

∑
i∈X

Pi = 1,

∑
i∈X

P2
i 6 |X|δ−1,

Pi > 0 for all i ∈ X.

(3)

Instead of attempting to solve (3), presumably a difficult quadratic program, we consider the
following semidefinite program (SDP):

Maximize 〈MT M, U〉
subject to:

[V] U � 0,

[w] ∑
i,j∈X

Uij = 1,

[z] ∑
i∈X

Uii 6 |X|δ−1,

Uij > 0 for all i, j ∈ X.

(4)

Note that for any P ∈ ∆X achieving the optimum value of (3) the positive semidefinite matrix
U = P · PT has the same value in (4), and hence (4) is an SDP relaxation of (3). In order to upper
bound the value of (4), we consider its dual program:

Minimize w + z · |X|δ−1

subject to:

[U] V � 0,

[Uii] w + z > Vii + (MT M)ii/2m, for all i ∈ X

[Uij] w > Vij + (MT M)ij/2m, for all i 6= j ∈ X

z > 0

(5)

17

or equivalently,
Minimize w + z · |X|δ · |X|−1

subject to:

V � 0,

zI + wJ > V + MT M/2m,

z > 0.

(6)

where I is the identity matrix and J is the all 1’s matrix over X× X.
Any dual solution of (6) yields an upper bound on the optimum of (4) and hence OPTM,δ and

τM(δ). To simplify the complexity of analysis we restrict ourselves to considering semidefinite
matrices V that are suitably chosen Laplacian matrices. For any set S in X×X and any α : S→ R+

the Laplacian matrix associated with S and α is defined by L(S,α) := ∑(i,j)∈S α(i, j)Lij where Lij =

(ei − ej)(ei − ej)
T for the standard basis {ei}i∈X . Intuitively, in the dual SDP (6), by adding matrix

V = LS,α for suitable S and α depending on M we can shift weight from the off-diagonal entries of
MT M to the diagonal where they can be covered by the z + w entries on the diagonal rather than
being covered by the w values in the off-diagonal entries. This will be advantageous for us since
the objective function has much smaller coefficient for z which helps cover the diagonal entries
than coefficient for w, which is all that covers the off-diagonal entries.

Definition 5.1. Suppose that N ∈ RX×X is a symmetric matrix. For κ ∈ R+, define Wκ(N) =

maxi∈X ∑j∈X: Ni,j>κ(Ni,j − κ).

The following lemma is the basis for our bounds on τM(δ).

Lemma 5.2. Let κ ∈ R+. Then

OPTM,δ 6 (κ + Wκ(MT M) · |X|δ−1)/2m.

Proof. Let N = MT × M. For each off-diagonal entry of N with N(i, j) > κ, include matrix Lij
with coefficient (N(i, j)− κ)/2m in the sum for the Laplacian V. By construction, the matrix V +

MT M/2m has off-diagonal entries at most κ/2m and diagonal entries at most (κ +Wκ(MT M))/2m.
The solution to (6) with w = κ/2m and z = Wκ(MT M)/2m is therefore feasible, which yields the
bound as required.

For specific matrices M, we will obtain the required bounds on τM(δ) < 0 for some 0 < δ < 1
by showing that we can set κ = |A|γ for some γ < 1 and obtain that Wκ(MT M) is at most κ · |X|γ′

for some γ′ < 1.

6 Applications to Low Degree Polynomial Functions

6.1 Quadratic Functions over F2

In this section we prove Theorem 3.2 on the norm amplification curve of the matrix M associ-
ated with learning homogeneous quadratic functions over F2. (Over F2, x2

i = xi, so being ho-
mogeneous is equivalent in a functional sense to having no constant term.) Let m ∈ N and

18

n = (m+1
2). The learning matrix M : {0, 1}m × {0, 1}n → {−1, 1} for quadratic functions is the

partial Hadamard matrix given by M(a, x) = (−1)∑16i6j6m xijaiaj . We show that it has the following
properties:

Proposition 6.1. Let M be the matrix for learning homogeneous quadratic functions over F2[z1, . . . , zm]

and let N = MT ·M.

1. Every row of Nx for x ∈ X contains the same multi-set of values.

2. Nxx = 2m and Nxy ∈ {±2m−1,±2m−2, · · · ,±2d
m
2 e, 0} for x 6= y ∈ {0, 1}n.

3. For i > 0, let ci be the number of entries equal to 2m−i in each row of N; then

ci = (22i−1 + 2i−1)
∏2i−1

j=0 (2m − 2j)

∏i
j=1 22j−1(22j − 1)

6 22im

Given Proposition 6.1 we can derive Theorem 3.2.

Proof of Theorem 3.2. Let the threshold κ = 2m−k for some integer k to be determined later. By
Lemma 5.2 with X = {0, 1}n, for (3), we have OPTM,δ 6 (κ + Wκ(N)2(δ−1)n)/2m where N =

MT ·M. By definition of Wκ and Proposition 6.1, for any x ∈ X we have

Wκ(N) 6 ∑
y∈X:Nxy>2m−k

Nxy =
k−1

∑
t=0

ct · 2m−t 6
k−1

∑
t=0

22tm · 2m−t =
k−1

∑
t=0

2(2m−1)t+m < 2(2m−1)k.

Thus for any k,

OPTM,δ 6 (2m−k + 22m−1)k+(δ−1)n)/2m = 2−k + 2(2m−1)k−(1−δ)m(m+1)/2−m.

The first term is larger for k 6 (1− δ)m/4 + (3− δ)/4 so to balance them as much as possible
we choose k = b(1− δ)m/4 + (3− δ)/4c > (1− δ)m/4− (1 + δ)/4. Hence OPTM,δ 6 2 · 2−k 6

2−
1−δ

4 m+ 5+δ
4 Therefore, τM(δ) = 1

2 log2m OPTM,δ 6 − (1−δ)
8 + (5+δ)

8m as required.

The proof of Proposition 6.1 is in the appendix but in the next section we outline the connection
to the weight distribution of Reed-Muller codes over F2, and show how bounds on the weight
distribution of such codes allow us to derive time-space tradeoffs for learning larger degree F2

polynomials as well.

6.2 Connection to the Weight Distibution of Reed-Muller Codes

It remains to prove Proposition 6.1 and the bounds for larger degrees. Let d > 2 be an integer.
For any integer m > d, for the learning problem for (homogenous) F2 polynomials of degree at
most d, we have n = ∑d

i=1 (
m
d). Recall that N = MT · M. Let Mx denote the x-th column of

M where x ∈ {0, 1}n. Then Nxy = 2m · 〈Mx, My〉. Recall that for a ∈ {0, 1}m and x ∈ {0, 1}n,
x(a) = ∑S:16|S|6d xS ∏i∈S ai over F2.

Proposition 6.2. Let 0 = 0n. Then 〈Mx, My〉 = 〈M0, Mx+y〉.

19

Proof.

〈Mx, My〉 = Ea∈{0,1}m Mx(a)My(a) = Ea∈{0,1}m(−1)x(a)(−1)y(a) = Ea∈{0,1}m(−1)x(a)+y(a)

= Ea∈{0,1}m(−1)(x+y)(a) = Ea∈{0,1}m M0(a)Mx+y(a) = 〈M0, Mx+y〉

Since the mapping y 7→ x + y for x ∈ {0, 1}n is 1-1 on {0, 1}n, this immediately implies part 1
of Proposition 6.1.

Therefore, we only need to examine a fixed row N0 of N, where each entry

N0x = ∑
a∈{0,1}m

M(a, x) = ∑
a∈{0,1}m

(−1)x(a).

For x ∈ X, define weight(x) = |{a ∈ {0, 1}m : x(a) = 1}|. By definition, for x ∈ {0, 1}n,
N0x = ∑a∈{0,1}m(−1)x(a) = 2m − 2 ·weight(x). Thus, understanding the function Wκ(N) that we
use to derive our bounds, reduces to understanding the distribution of weight(x) for x ∈ {0, 1}n.
In particular, our goal of showing that for some κ for which (κ + Wκ(N))/2m is at most 22τm for
some τ < 0 follows by showing that the distribution of weight(x) is tightly concentrated around
2m/2.

We can express this question in terms of (a small variation of) the Reed-Muller error-correcting
code RM(d, n) (see, e.g.[2]).

Definition 6.3. The Reed-Muller code RM(d, m) over F2 is the set of vectors {G · x | x ∈ {0, 1}n} where
G is the 2m × n matrix for n = ∑d

t=0 (
m
t) over F2 with rows indexed by vectors a ∈ {0, 1}m and columns

indexed by subsets S ⊆ [m] with |S| 6 d given by G(a, S) = ∏i∈S ai.

Evaluating weight(x) for all x ∈ {0, 1}n is almost exactly that of understanding the distribution
of Hamming weights of the vectors in RM(m, d), a question with a long history.

Because we assumed that the constant term of our polynomials is 0 (in order to view the learn-
ing problem as a variant of the parity learning problem with a smaller set of test vectors), we need
to make a small change in the Reed-Muller code. Consider the subcode RM′(d, m) of RM(d, m)

having the generator matrix G′ that is the same as G but with the (all 1’s) column indexed by ∅
removed. In this case, for each x ∈ {0, 1}m, by definition, weight(x) is precisely the Hamming
weight of the vector G′ · x in RM′(d, m).

Now by definition

RM(d, m) = {y | y ∈ RM′(d, m) or y ∈ RM′(d, m)}

where y is the same as y with every bit flipped. In particular, RM′(d, m) ⊂ RM(d, m) and the
distribution of the weights for RM(d, m) is symmetric about 2m−1, whereas the distribution of
weights in RM′(d, m) is not necessarily symmetric.

For the special case that d = 2, Sloane and Berlekamp [16] derived an exact enumeration of the
number of vectors of each weight in RM(2, m).

20

Proposition 6.4. [16] The weight of every codeword of RM(2, m) is of the form 2m−1 ± 2m−i for some
integer i with 1 6 i 6 dm/2e or precisely 2m−1 and the number of codewords of weight 2m−1 + 2m−i or
2m−1 − 2m−i is precisely

2i(i+1)
i−1

∏
j=0

2m−2j(2m−2j−1 − 1)
22(j+1) − 1

.

The exact enumeration for the values of the weight function weight for RM′(2, m) that cor-
responds to the values in Proposition 6.1 are only slightly different from those for RM(2, m) in
Proposition 6.4 and Proposition 6.4 gives the same asymptotic bound we used in the proof of The-
orem 3.2 since words of weight 2m−1− 2m−i correspond to entries of value 2m−i+1 in the matrix N.
We give a proof of the exact counts of Proposition 6.1 in the appendix.

The minimum distance, the smallest weight of a non-zero codeword, in RM(d, m) is 2m−d but
for 2 < d < m− 2, no exact enumeration of the weight distribution of the code RM(d, m) is known.
It was a longstanding problem even to approximate the number of codewords of different weights
in RM(d, m). Relatively recently, bounds on these weights that are good enough for our purposes
were shown by Kaufman, Lovett, and Porat [8].

Proposition 6.5. [8] Let d 6 m be a positive integer and 1 6 k 6 d− 1. There is a constant Cd > 0 such
that for 0 6 ε 6 1/2 and 2m−d 6 Wk,ε = 2m−k(1− ε), the number of codewords of weight at most Wk,ε in
RM(d, m) is at most

(1/ε)Cdmd−k
.

Corollary 6.6. For 2 6 d and m > d2 there is a constant λd > 0 such that if M is the 2m × 2n matrix
associated with learning homogenous polynomials of degree at most d over F2 and N = MT ·M then for
κ = 2(1−λd)m we have Wκ(N) 6 2n/4.

Proof. Let Cd be the constant from Proposition 6.5, and λd = 1
20Cdd! . Then applying Proposition 6.5

with k = 1 and ε = 2−λdm, we obtain that the number of words of weight at most W1,ε = 2m−1 −
2(1−λd)m−1 in code RM(d, m) is at most

(1/ε)Cdmd−k
= 2λdCdmd

= 2
md
20d! .

Now for d 6
√

m, m(m − 1) . . . (m − d + 1) > md/e, and hence md

20d! < e
20 ∑d

i=1 (
m
i) = e

20 · n.
Therefore there are at most 2en/20 codewords of weight at most 2m−1 − 2(1−λd)m−1 in RM′(d, m).
As we have shown, the entries of value at least κ = 2(1−λd)m in each of the rows (the first row) of
N precisely correspond to these codewords. The total weight of these matrix entries in a row is at
most 2m · 2en/20 6 2n/4 since m 6 n/10 for 2 6 d 6

√
m and hence Wκ(N) 6 2n/4 as required.

We now have the last tool we need to prove Theorem 3.4.

Proof of Theorem 3.4. Let 0 < δ 6 3/4. Let M be the 2m × 2n matrix associated with learning
homogenous polynomials of degree at most d over F2, let N = MT ·M and let d, λd, and κ satisfy
the properties of Corollary 6.6. By Lemma 5.2 with X = {0, 1}n, we have

OPTM,δ 6 (κ + Wκ(N) · 2(δ−1)n)/2m 6 (2(1−λd)m + 1)/2m 6 2−λdm+1.

Therefore τM(δ) 6 −λd
2 + 1

2m which yields a λ′d as required.

21

A closer examination of the proof of the statement of Proposition 6.5 in [8] shows that the
following more precise statement is also true:

Proposition 6.7. Let d 6 m be a positive integer and 1 6 k 6 d− 1. For 0 6 ε 6 1/2 and 2m−d 6
Wk,ε = 2m−k(1− ε), the number of codewords of weight at most Wk,ε in RM(d, m) is at most

2c(d2+d log2(1/ε))∑d−k
i=0 (m

i)

for some absolute constant c > 0.

This allows us to sketch the proof of a weaker form of Theorem 3.6 with 1/d2 instead of 1/d
throughout.

Sketch of Proof of Weaker Form of Theorem 3.6. By applying the same method as in the proof of Corol-
lary 6.6 to Proposition 6.7 with k = 1. Since n > m

d · ∑
d−1
i=0 (m

i), in order to obtain a bound that
Wκ(N) 6 2n/4, it suffices to have c(d2 + d log2(1/ε)) 6 m

10d . In particular, there is a sufficiently
small ζ > 0 such that for d 6 ζm1/3 we can choose ε = 2−m/(20cd2) and κ = 2(1−1/(20cd2))m.

Applying Lemma 5.2 we obtain that for δ ∈ (0, 3/4) if M is the learning matrix for polynomials
of degree at most d over F2 then we have OPTM,δ 6 2−c′m/d2

for some constant c′ > 0 and hence
τM(δ) 6 −c”/d2 for some c” > 0 and 0 < δ < 3/4.

Now we cannot apply Theorem 3.1 as it is, because τM(δ) is not bounded away from 0 by
a constant independent of d since d may grow with m. However, if we examine the proof of
Theorem 3.1 we observe that it still goes through with α and δ constant and with γ, β, ε, σ > 0 all
of the form Θ(1/d2) which imply that η is Θ(1/d2).

To obtain Theorem 3.6 we use the following result proven by Ben-Eliezer, Hod, and Lovett [1].

Proposition 6.8. For ε > 0 there are constants c1, c2 with 0 < c1, c2 < 1 such that if p is a uniformly
random degree d polynomial over Fm

2 and d 6 (1− ε)m then

Pr[|Ea∈{0,1}m(−1)p(a)| > 2−c1m/d] 6 2−c2 ∑d
i=0 (

m
i).

From this form we can obtain the bound fairly directly.

Sketch of Proof of Theorem 3.6. Fix ε > 0 and let 0 < c1, c2 < 1 be the constants depending on ε from
Proposition 6.8. Let δ = c2/2 so 0 < δ < 1/2. Let M be the 2m× 2n matrix associated with learning
homogenous polynomials of degree at most d over F2, let N = MT ·M and Setting κ = 2(1−c1/d)m,
by Proposition 6.8 at most 2(1−c2)(n+1) polynomials p have entries N0p larger than κ. Each such
entry has value at most 2m so Wκ(N) 6 2m · 2(1−c2)(n+1). by Lemma 5.2 with X = {0, 1}n we have

OPTM,δ 6 (κ + Wκ(N) · 2(δ−1)n)/2m 6 2−c1m/d + 2(δ−c2)n+1 6 2−c1m/d + 21−δn

which is at most 2−c′m/d for some constant c′ > 0. Hence τM(δ) 6 c′/d.
Now we cannot apply Theorem 3.1 as it is, because τM(δ) is not bounded away from 0 by

a constant independent of d since d may grow with m. However, if we examine the proof of
Theorem 3.1 we observe that it still goes through with α and δ constant and with γ, β, ε, σ > 0 all
of the form Θ(1/d) which imply that η is Θ(1/d).

22

7 Multivalued Outcomes from Tests

We now extend the definitions to tests that can produce one of r different values rather than just
2 values. In this case, the learning problem can be expressed by learning matrix M : A × X →
{ω j | j ∈ {0, 1, . . . , r − 1}} where ω = e2πi/r is a primitive r-th root of unity and each node in
the learning branching program has r outedges associated with each possible a ∈ A, one for each
of the outcomes b. Thus M ∈ CA×X and M · P is a complex vector. In this case the lower bound
argument follows along very similarly to the proof of Theorem 3.1 with a few necessary changes
that we briefly outline here:

As usual, for z ∈ C, we replace absolute value by |z| given by |z|2 = z · z where z is the
complex conjugate of z. For a vector v ∈ CA, by definition ‖v‖2

2 = 〈v∗, v〉 = 1
|A|v

∗ · v, where v∗

is the conjugate transpose of v. Using this, we can define the matrix norm ‖M‖2 as well as the
2-norm amplification curve τM(δ) for δ ∈ [0, 1] as before.

Using these extended definitions, the notions of the truncated paths, significant vertices, and
high bias values are the same as before.

In the generalization of Lemma 4.9, the 1/2 in defining ce will be replaced by 1/r so that rce is
very close to 1. Also, in the proof of Lemma 4.8, the indicator function 1M(a,x′)=b is no longer equal
to 1 + b ·M(a, x′)/2 but rather equal to

[1 + b ·M(a, x′) + (b ·M(a, x′))2 + · · · (b ·M(a, x′))r−1]/r,

whose expectation we can bound in a similar way using the norm amplification curve for M since
the powers simply rotate these values on the unit circle.

Applications to learning polynomials The application to the degree 1 case of learning linear
functions over Fp for prime p follows directly since the amplification curve can be bounded by the
matrix norm.

For low degree polynomials over F2t we can also obtain a similar lower bound from the F2

case, though the lower bounds do not grow with t.
More generally, we can consider extending our results for F2 to the case of learning low degree

polynomials over prime fields Fp for p > 2. (It is natural to define m to be the number of variables
logp |A| and n = logp |X| in this case rather than log2 |A| and log2 |X| respectively.) After applying
the semidefinite relaxation in a similar way (using M∗M instead of MT M), we can reduce the
lower bound problem to understanding the distribution of the norms of values in each row of
M∗M. By similar arguments this reduces to understanding the distributions of ∑a∈Fm

p
ωp(a) where

ω = e2πi/p. Unfortunately, the natural extension of the bounds of [8] to Reed-Muller codes over Fp,
as shown in [4] are not sufficient here. We would need that all but a p−Θ(n) fraction of polynomials
p have |∑a∈Fm

p
ωp(a)| very small which means that almost all codewords are at most p(1−Ω(1))m out

of balance between the p values. By symmetry, in the case that p = 2 this is equivalent to showing
that only a 2−Θ(n) fraction of codewords lie at distance at most 1

2 (1− ε) of the all 0’s codeword for
ε = 2Ω(m). Indeed, [1] showed sharper bounds for the deviation from balance. In the case of larger
p, [4] show that few codewords lie within a p−1

p (1− ε) distance of the all 0’s codeword but this is
no longer enough to yield the balance we need and their bound does not allow ε to be as small as
in the analysis for p = 2 in [8] or [1]. Bhowmick and Lovett [3] also analyze the conditions under

23

which small deviations of the sort we wish to bound occur, but do not provide a bound on the
fraction of such occurrences.

24

References

[1] Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to
approximate. Computational Complexity, 21(1):63–81, 2012.

[2] Elwyn R Berlekamp. Algebraic Coding Theory. McGraw-Hill, 1968.

[3] Abhishek Bhowmick and Shachar Lovett. Bias vs structure of polynomials in large fields, and
applications in effective algebraic geometry and coding theory. CoRR, abs/1506.02047, 2015.

[4] Abhishek Bhowmick and Shachar Lovett. The list decoding radius of reed-muller codes over
small fields. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, pages 277–285, 2015.

[5] Leonard E. Dickson. Linear Groups with an Exposition of the Galois Field Theory. B.G. Trubner,
Leipzig, 1901.

[6] Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space tradeoffs for learning.
Manuscript. July 2017.

[7] Tadao Kasami. Weight distributions of Bose-Chaudhuri-Hocquenghem codes. Technical Re-
port R-317, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
1966.

[8] Tali Kaufman, Shachar Lovett, and Ely Porat. Weight distribution and list-decoding size of
Reed-Muller codes. IEEE Trans. Information Theory, 58(5):2689–2696, 2012.

[9] Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. Tech-
nical Report TR16-113, Electronic Colloquium on Computational Complexity (ECCC), 2016.

[10] Robert James McEliece. Linear recurring sequences over finite fields. PhD thesis, California
Institute of Technology, 1967.

[11] Michal Moshkovitz and Dana Moshkovitz. Mixing implies lower bounds for space bounded
learning. Technical Report TR17-24, Electronic Colloquium on Computational Complexity
(ECCC), 2017.

[12] Michal Moshkovitz and Dana Moshkovitz. Mixing implies strong lower bounds for space
bounded learning. Technical Report TR17-116, Electronic Colloquium on Computational
Complexity (ECCC), 2017.

[13] Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
In Proceeeings, 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016,
New Brunswick, New Jersey, USA, pages 266–275, October 2016.

[14] Ran Raz. A time-space lower bound for a large class of learning problems. Electronic Collo-
quium on Computational Complexity (ECCC), 24:20, 2017.

25

[15] Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, pages 163–171, Montreal, Quebec, Canada, 2014.

[16] Neil J. A. Sloane and Elwyn R. Berlekamp. Weight enumerator for second-order Reed-Muller
codes. IEEE Trans. Information Theory, 16(6):745–751, 1970.

[17] Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
pages 1490–1516, 2016.

26

A Proof of Proposition 6.1

In this section we prove Proposition 6.1. We already showed part 1 in Section 6 so we only need
to study the first row of N, where each entry

N0x = ∑
a∈{0,1}m

M(a, x) = ∑
a∈{0,1}m

(−1)x(a)

and x(a) = ∑i6j xijaiaj.
Part 2 was essentially shown by Kasami [7] and generalized by Sloane and Berlekamp [16]

to give the precise the weight distribution of RM(2, m), which can be used to derive Part 3 also.
We give a direct proof of both parts using a lemma of Dickson [5] characterizing the structure of
quadratic forms over F2n that seems to be related to the argument used by McEliece [10] to give
an alternative proof of Sloane and Berlekamp’s result.

Lemma A.1 (Dickson’s Lemma [5]). For every quadratic form q with coefficients in F2t in variables
z1, . . . , zm, there is an invertible linear transformation T over F2t such that for z′ = T · z, there is a unique
k 6 m/2 such that precisely one of the following holds:

q ≡ z′1 · z′2 + z′3 · z′4 + · · ·+ z′2k−1z′2k + (z′2k+1)
2

or

q ≡ z′1 · z′2 + z′3 · z′4 + · · ·+ z′2k−1z′2k + λ(z′2k−1)
2 + (z′2k)

2

where λ = 0 or z′2k−1z′2k + λ(z′2k−1)
2 + (z′2k)

2 is irreducible in F2t .

In the case that t = 1, the squared terms in Dickson’s Lemma become linear terms so the degree
2 parts can be assumed to be z′1 · z′2 + z′3 · z′4 + · · ·+ z′2k−1z′2k for some k 6 m/2.

Definition A.2. Write Qm := F2
2[z1, · · · , zm] to denote the set of all pure quadratic forms q over F2 with

m variables given by ∑i<j qijzizj. Write Lm := F1
2[z1, · · · , zm] to denote the set of all linear polynomials `

over F2t with m variables given by ∑i `izi.

We can write every homogeneous quadratic polynomial p over F uniquely as q + ` for q ∈ Qm

and ` ∈ Lm. For any p = q + ` write

val(p) = (−1)p(a) = (−1)∑a∈{0,1}m pijaiaj .

We will study the distribution of val(p) over all quadratic polynomials p by partitioning the set
of polynomials based on their purely quadratic part q.

For q ∈ Qm we say that the type of q, type(q), is the multiset of 2m values given by val(q + `)

over all ` ∈ Lm. We represent this as type as a set of pairs (v : j) where j = #{` ∈ Lm | val(q+ `) =

v}.

Lemma A.3. If q = z1z2 + . . . + z2k−1z2k then type(q) = {(2m−k : 22k−1 + 2k−1), (0 : 2m −
22k), (−2m−k : 22k−1 − 2k−1)}.

27

Proof. First observe that if the linear term ` has a non-zero coefficient of any zj for j > 2k then
val(q + `) = 0. Therefore there are only 22k of the 2m linear functions ` such that val(q + `) can be
non-zero.

Consider first the case that k = 1. z1z2 is 1 on precisely 1/4 of the inputs and so val(z1z2) =

2m(3/4− 1/4) = 2m−1. Observe that z1z2 + z1 = z1(z2 + 1) and z1z2 + z2 = (z1 + 1)z2 will be
equivalent under a 1-1 mapping of the space of inputs and also have val = 2m−1. Finally observe
that z1z2 + z1 + z2 = (z1 + 1)(z2 + 1) + 1 and hence val(z1z2 + z1 + z2) = −2m−1 since the final
+1 flips the signs after a 1-1 mapping of the inputs. This yields 3 values of 2m−1 and 1 value of
−2m−1 as required.

For larger k, observe that val/2m is fractional discrepancy on {0, 1}m which is therefore mul-
tiplicative over the sums of independent functions. Therefore val(q) = 2m−k. Furthermore, for `
supported on {z1, . . . , z2k}, we have val(q + `) = 2m−k if there are an even number of i such that `
contains z2i−1 + z2i and val(q + `) = −2m−k if there are an odd number of such i. Since there is 3
choices per value of i where ` does not contain z2i−1 + z2i for every choice that does, we can write
the number of ` such that val(q + `) = 2m−k minus the number of ` such that val(q + `) = −2m−k

as ∑k
i=0(−1)i3k−1 which equals 2k. This yields the claim.

The following lemma follows immediately from Lemma A.3 and Dickson’s Lemma.

Lemma A.4. For every q ∈ Qm there is some integer k with 0 6 k 6 m/2 such that type(q) = {(2m−k :
22k−1 + 2k−1), (0 : 2m − 22k), (−2m−k : 22k−1 − 2k−1)}.

Proof. By Dickson’s Lemma, there is an invertible linear transformation T that maps any element
q ∈ Qm to a polynomial whose quadratic part q′ is of the form z′1z′2 + · · · + z′2k−1z′2k. Since the
transformation T is invertible it preserves the val function and hence it preserves type. Using
Lemma A.3 we obtained the claimed result.

This proves the Part 2 of Proposition 6.1. Then the following lemma will complete the proof of
Proposition 6.1.

Lemma A.5. For 0 6 i 6 m/2, let ci(m) denote the number of q ∈ Qm such that type(q) = {(2m−i :
22i−1 + 2i−1), (0 : 2m − 22i), (−2m−i : 22i−1 − 2i−1)}. Then

ci(m) =
∏2i−1

j=0 (2m − 2j)

∏i
j=1 22j−1(22j − 1)

Proof. By induction. When m = 0, there is only one type, and c0(0) = 1.
Assume we that we have proved the claim for m. Let us consider the case for m+ 1. Lemma A.4

says all p = q + ` for q ∈ Qm+1 and ` ∈ Lm+1 such that |val(p)| = 2m+1−i have type(q) =

{(2m+1−i : 22i−1 + 2i−1), (0 : 2m+1 − 22i), (−2m+1−i : 22i−1 − 2i−1)}. So, the total count of
quadratic polynomials p on m + 1 variables with |val(p)| = 2m+1−i is precisely 22i · ci(m + 1).

For q ∈ Qm+1 we can uniquely write q = q′ + `′xm+1 where q′ ∈ Qm and `′ ∈ Lm and write
` = `′′ + bxm+1 where `′′ ∈ Lm and b ∈ {0, 1}. We can determine val(p) for p = q + ` by splitting
the space of assignments into two equal parts depending on the value assigned to xm+1. Therefore

val(p) = val(q + `) = val(q′ + `′′) + (−1)b · val(q′ + `′ + `′′).

28

Thus, by the inductive hypothesis, the only way that this can yield |val(p)| = 2m+1−i is if one of
the following 3 cases holds:

CASE 1, |val(q′ + `′′)| = 2m−i and val(q′ + `′ + `′′) = (−1)bval(q′ + `′′):
There are precisely ci(m) choices of such a q′ and for each q there 22i choices of an `′′ such that
|val(q′ + `′′)| = 2m−i. For each such choice there will be 22i choices of `′ such that |val(q′ + `′ +

`′)| = 2m−i and then only one choice of b that will yield equal signs so that |val(p)| = 2m+1−i.

CASE 2, |val(q′ + `′′)| = 2m+1−i and val(q′ + `′ + `′′) = 0:
There are precisely ci−1(m) choices of q′ and 22(i−1) choices of `′′ so that |val(q′ + `′′)| = 2m+1−i.
For each such choice there will be 2m − 22(i−1) choices of `′ such that val(q′ + `′ + `′′) = 0.

CASE 3, val(q′ + `′′) = 0 and |val(q′ + `′ + `′′)| = 2m+1−i:
This is symmetrical to the previous case and has the same number of choices.
So, by induction hypothesis, we have

22i · ci(m + 1) = 22i · 22i · ci(m) + 2 · 2 · 22(i−1) · (2m − 22(i−1)) · ci−1(m)

Now we can plug in the induction hypothesis to get

ci(m + 1) = 22i · ci(m) + (2m − 22(i−1)) · ci−1(m)

= 22i ·
∏2i−1

j=0 (2m − 2j)

∏i
j=1 22j−1(22j − 1)

+ (2m − 22(i−1)) ·
∏2i−3

j=0 (2m − 2j)

∏i−1
j=1 22j−1(22j − 1)

=
∏2i−3

j=0 (2m − 2j)

∏i
j=1 22j−1(22j − 1)

(22i(2m − 22i−2)(2m − 22i−1) + (2m − 22i−2)22i−1(22i − 1))

=
∏2i−3

j=0 (2m − 2j)

∏i
j=1 22j−1(22j − 1)

(22i−1(2m − 22i−2)(2m+1 − 1))

=
∏2i−1

j=0 (2m+1 − 2j)

∏i
j=1 22j−1(22j − 1)

as required.

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

