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Abstract

We construct a pseudorandom generator which fools read-k oblivious branching programs
and, more generally, any linear length oblivious branching program, assuming that the sequence
according to which the bits are read is known in advance. For polynomial width branching

programs, the seed lengths in our constructions are Õ(n1−1/2k−1

) (for the read-k case) and
O(n/ log log n) (for the linear length case). Previously, the best construction for these models
required seed length (1− Ω(1))n.
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1 Introduction

A Pseudorandom Generator (PRG, for short), for a class of boolean functions C, is a family of
efficiently computable functions Gn : {0, 1}s → {0, 1}n which fools functions in the class C, in the
sense that for all f : {0, 1}n → {0, 1} in C,∣∣∣∣ Pr

x∼Us

[f(x) = 1]− Pr
x∼Un

[f(x) = 1]

∣∣∣∣ ≤ ε,
where Uk denotes the uniform distribution on {0, 1}k, and s = s(n, ε) is called the seed length.

A long line of work in complexity theory studies construction of PRGs for restricted classes of
functions. One concrete motivation for these results is obtaining a “black box” derandomization
of randomized algorithms from these restricted classes. More generally, this research program is
aimed at shedding light on the power of randomness in computation in general, and on the limits
of the use of randomness in algorithms with bounded resources.

One notable example in this area in Nisan’s PRG for logarithmic space machines [Nis92]: Nisan
constructed a PRG with seed length O(log2(n)) which fools RL machines, that is, logarithmic space
machines with read-once access to its randomness. More generally, Nisan’s PRG also works in the
non-uniform setting, and fools any function which is computed by a small width read once oblivious
branching program (see Section 2.2 for a formal definition).

In this more general setting, the seed length of Nisan’s generator isO(log(n)·(log(n/ε)+log(w))),
where w denotes the width of the branching program. Impagliazzo, Nisan and Wigderson [INW94]
gave a different construction with matching parameters, but to this day, and despite a large body
of work on this topic, there is no better construction known for this model.

In the lack of better results, one possible avenue for improvement would be to obtain improved
bounds in more restricted settings. One such challenge is to obtain an improved seed length in
the bounded width case, i.e., when w = O(1). Indeed, some progress was made in this setting,
assuming more restrictive properties on the branching program ([BRRY14, De11, KNP11, RSV13,
Ste12, SVW14]).

Another way to extend these results is to obtain PRGs against stronger models of computation.
The saving in randomness in the works of Nisan [Nis92] and Impagliaazo, Nisan and Wigderson
[INW94] follows from the fact that in the execution of a read-once branching program on a specific
input, each bit is accessed only once, and furthermore, the order of access is known in advance to
the designer of the PRG. It is natural to ask to what extent these restrictions can be removed, en
route to constructing PRGs against more general classes of computation. In Section 1.3, we review
some of the progress made in this setting.

1.1 Algebraic vs. Boolean Pseudorandomness

We now make a small detour and review some relevant results from algebraic complexity. Poly-
nomial Identity Testing (PIT) is the problem of deciding, given an algebraic computation device
which computes a formal polynomial using the arithmetic operations + and ×, whether it computes
the zero polynomial. This problem admits an easy randomized algorithm which follows from the
Schwartz-Zippel-DeMillo-Lipton Lemma [Zip79, Sch80, DL78], and it is a major open problem to
find an efficient deterministic algorithm, even for restricted classes of algebraic computation.

The algebraic analog of constructing PRGs is black-box identity testing: here, the goal is to
construct a hitting set, which is a small and efficiently constructible set H such that for every
non-zero polynomial f in the class, there exists α ∈ H such that f(α) 6= 0. It is not hard to show
(see, e.g., [SY10]) that this is equivalent to constructing a generator, which is a polynomial map
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G : Fs → Fn of small degree, such that for every non-zero f , f ◦G is not the zero polynomial. The
quality of the generator is measured by the seed length s and the degree of the polynomial map G.

The algebraic analog of a read-once oblivious branching program is a model called read-once
oblivious algebraic branching programs (ROABPs). We omit the exact definition of this model from
this informal introduction. Forbes and Shpilka [FS13] obtained a hitting set of quasi-polynomial
size for this model, or equivalently, a generator whose number of variables s is O(log n), and whose
degree is polynomial in the number of variables n, the width w and the degree d of the ROABP.
Quantitatively, this is comparable to to Nisan’s generator, and indeed, the intuition behind the
Forbes-Shpilka generator is similar to Nisan’s proof.

However, it interesting to note that both the challenges that were mentioned earlier in the
context of boolean pseudorandomness have been met in the algebraic world: Forbes, Shpilka and
Saptharishi [FSS14] obtained a hitting set of quasi-polynomial size which works even when the
order in which the variables are read is unknown. The construction was later improved by Agrawal,
Gurjar, Korwar and Saxena [AGKS15], whose hitting set size matches the hitting set for the known
order case.

In the bounded width setting, Gurjar, Korwar and Saxena [GKS17] obtained a hitting set of
polynomial size (over characteristic 0, and assuming the order is known) by leveraging intuition for
the INW generator [INW94].

It is thus interesting to see to what extent the progress in the algebraic world can help in
obtaining improved PRGs for boolean computational devices.

1.2 Results and Techniques

In [AFS+16], Anderson et al. obtained a subexponential time PIT algorithm for the model of read-k
oblivious algebraic branching program. Here, we adapt their techniques to the boolean analog of
this model, and prove the following.

Theorem 1.1. For every k ≥ 2, there exists an efficiently computable function G : {0, 1}s →
{0, 1}n, where

s = O
(

exp(k2) · n1−1/2k−1 · log(n) · (log(n/ε) + k logw)
)
,

which ε-fools every function f which is computable by a width-w oblivious read-k branching program,
when the sequence according to which the variables are read in the branching program is known in
advance.

The saving in randomness is more noticeable when k is small. However, by exploiting the fact
that the bound on s remains sublinear even for slightly superconstant k, we can prove the following.

Theorem 1.2. There exists an efficiently computable function G : {0, 1}s → {0, 1}n, for s =
O(n/ log log n), which ε-fools every function f which is computable by an oblivious branching pro-
gram of length O(n) and width poly(n), when the sequence according to which the variables are read
in the branching program is known in advance.

Our techniques are mostly adaptation of the techniques used by [AFS+16] in the algebraic
setting. To illustrate them, consider first a branching program that reads its variables twice in the
order x1, x2, . . . , xn, x1, x2, . . . , xn. In the algebraic case, is it not very hard to show that such a
width w algebraic branching program can be simulated by a width poly(w) ROABP in the variable
order x1, . . . , xn, and this fact serves as the starting point of the construction in [AFS+16]. This
fact, however, is no longer true for boolean branching programs. As an example, consider the
“address function” which receives as an input y ∈ {0, 1}n and z ∈ {0, 1}logn, interprets z as an
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integer in [n] and outputs yz. In the variable order y1, y2, . . . , yn, z1, . . . , zlogn, this function requires
exponential width, since the branching program essentially has to remember all y bits before it sees
z bits. But if the branching program is allowed to read the input twice in this order, polynomial
width suffices.

Fortunately, it turns out that the generator by Impagliazzo, Nisan and Wigderon [INW94] also
fools branching programs that read their input twice in the same order. This is essentially because
this generator is useful against any model which can be simulated by a “low communication”
protocol on a “simple” network topology (see Section 2.4 for further discussion). Thus, this model
already has a PRG with seed length polylog(n) (assuming w = poly(n)).

Generalizing a bit further, we can consider branching programs that read their input in the order
x1, x2, . . . , xn, xπ(1), . . . , xπ(n) for some arbitrary permutation π. Here, the basic idea in [AFS+16]
was to argue, using the Erdős-Szekeres Theorem, that the sequence xπ(1), . . . , xπ(n) must contain
either a monotonically increasing sequence of length

√
n, or a monotonically decreasing sequence

of the same length. Assuming that the sequence is increasing (the decreasing case is handled
similarly), we obtain a set of

√
n variables y1, . . . , y√n such that the branching program, restricted

to only these variables, is exactly of the form required by the previous argument.
We continue inductively to find a (slightly shorter) monotone sequence in the remaining vari-

ables. This process can be shown to terminate after O(
√
n) applications of the Erdős-Szekeres

Theorem, and the final generator is obtained by applying the INW generator with an independent
seed to each of the O(

√
n) sets obtained in this process, for a total seed length of O(

√
n ·polylog(n)).

Similarly, one can consider read-k branching programs whose reading order is

x1, . . . , xn, xπ1(i), . . . , xπ1(n), . . . , xπk−1(1), . . . , xπk−1
(n), (1.3)

for k − 1 permutations π1, . . . , πk−1. By iteratively applying the Erdős-Szekeres Theorem, we can
find a sequence of length n1/2

k−1
which is monotone in each of the k reads, argue as before that the

branching program restricted to these variables is fooled by the INW generator, and continue the
argument as before. The iterative application of the Erdős-Szekeres argument accounts for most of
the loss in the parameters, but it is unfortunately unavoidable in this approach (see the discussion
in [AFS+16]).

More generally, we want to handle any sequence in which every variable appears at most k
times, even if it is not of the form (1.3). To do this, Anderson et al. [AFS+16] defined the notion
of a “k-regularly-interleaving sequence”, which we define in Section 2.3, and enables us to similarly
partition the set of variables X into t disjoint sets Y1, . . . , Yt, such that the INW fools every
branching programs in the variables of Yi under any restriction of the variables in all other sets,
while t remains sublinear in n.

1.3 Related Work

There are several works that consider the problem of constructing pseudorandom distributions for
related models. Here we review some of the related results.

Impagliazzo, Meka and Zuckerman [IMZ12] constructed a very general PRG that fools every
branching program with s vertices, with seed length s1/2+o(1). For the case of branching programs
of length O(n), the size is O(w · n), and thus this is meaningful only when w = o(n), whereas our
result remains non-trivial for any polynomial, and even super-polynomial, width.

Bogdanov, Papakonstantinou and Wan [BPW11, BPW12] constructed explicit PRGs for read-
once branching programs and more generally for oblivious branching programs of linear length.
In their construction, the seed length is (1 − Ω(1))n, whereas our seed length is sublinear in n.
However, an advantage of their construction is that it works even when the reading order of the
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bits is unknown, while we require it to be known in advance. Haramaty, Lee and Viola obtained
some improved bounds for the related model of product tests [HLV17].

Finally, we discuss the pseudorandom generator of Impagliazzo, Nisan and Wigderson [INW94],
which is also a useful tool in our construction. This work is often cited in the context of deran-
domizing logarithmic space or read-once oblivious branching programs, but is in fact applicable in
other contexts which can be modelled as a network of processors, each flipping its own random bit.
The parameters of the generator depend on the “simplicity” of the network graph, and the total
communication between the processors.

In the common setting of read-once oblivious branching programs, the network consists of n
processors, where the i-th processor reads the random bit xi, and the network graph is a simple
path. This graph is simple in the technical sense required by [INW94], and by the read-once
property, the computation of a width w branching program can be simulated by each processor
receiving at most one message and sending at most one message, each of length at most log(w).
The message basically encodes the index of a node in the next layer of the branching program.

Considering read-twice branching programs, it is clear that the communication remains bounded
if, for example, one considers branching programs which read their input twice in the same order
(i.e., x1, x2, . . . , xn, x1, x2, . . . , xn). However, the situation changes when one considers general read-
twice sequences: in this setting, it is always possible to bound the communication by allowing a
more complicated network structures, e.g., a clique between the n processors which will allow each
pair to communicate directly. However, in this case the network structure is no longer “simple” in
the sense required by [INW94].

We insist on the network being a path, in which case it is convenient to model the variable access
of the branching program as a Turing machine head, which can move at each step left or right (but
cannot “jump” many cells in one step). This approach is also taken by [INW94], which show that
their construction works as long as one can bound the number of times the Turing machine head
visit each cell (see Theorem 2.5 for a formal statement). Their seed length is proportional to the
maximum number of times a cell is visited.

To understand the subtleties, it is useful to consider the following read-twice sequence:

x1, x2, . . . , xn, x1, xn, x2, xn−1, . . . , xn/2, xn/2+1.

If the order on the Turing machine tape is (x1, x2, . . . , xn) then the Turing machine head reading the
sequence would have to visit the (n/2)-th cell Ω(n) times, even though each element only appears
twice in the sequence.

In this example, if the designer of the PRG is allowed to look at the sequence of bits —
which is the case in our setting — they can “imagine” that the order of the bits on the tape is
x1, xn, x2, xn−1, . . . , xn/2, xn/2+1, so that the above sequence can be handled by a Turing machine
head which reads each cell 3 times, and then instantiate the generator with this order.

Of course, in a more general case there is no guarantee that we can fix a order on the tape
which ensures each cell is visited only a small number of times. In fact, there exists a read-twice
sequence x1, x2, . . . , xn, xπ(1), . . . , xπ(n) for some permutation π, such that for any fixed order on
the tape, there will be a cell which would be visited Ω(n) times. Thus, one cannot hope to directly
apply the INW generator. To overcome this, we follow Anderson et al. [AFS+16] and partition the
set of variables X into t disjoint sets Y1, . . . , Yt (Theorem 2.3) using Erdős-Szekeres Theorem. The
partition has the property that the given sequence restricted to any part Yi can be traversed by
Turing machine head while visiting each cell a bounded number of times (Lemma 3.2). Thus, it
would suffice to plug in independent copies INW generator to each set Yi (Lemma 2.6).
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2 Preliminaries

2.1 Notation

Let [n] = {1, 2, . . . , n}. For a partition of [n] = A1 tA2 t · · · tAr with |Ai| = mi, and distributions
Di on {0, 1}mi , we denote by

DA1
1 ×D

A2
2 × · · · ×D

Ar
r

the distribution on {0, 1}n obtained by sampling independently a vector bi ∈ {0, 1}mi from Di, for
i ∈ [r], and obtaining a string b ∈ {0, 1}n by plugging bi in the coordinates indexed by Ai.

This notation is also used for functions in a natural way: if Gi : {0, 1}si → {0, 1}mi is any
function, GA1

1 × · · · × GAr
r is a function from {0, 1}s1+···+sr to {0, 1}n obtained by applying G1 to

the first s1 input bits and plugging the result in the coordinates of A1, and so on.
We often consider models which compute boolean functions over a variable setsX = {x1, . . . , xn}

and various partitions of the sets of variables Y1 t Y2 t · · · t Yr. By considering the indices of the
variables in each set, such a partition corresponds naturally to a partition of [n] and thus we use
similar notations as above with the Yi’s in the superscript.

2.2 Computational Models

A branching program B on a variable set X = {x1, . . . , xn} is a directed acyclic graph, with a
unique source vertex, two sink vertices labeled “accept” and “reject”, and where every non-sink
vertex is labeled by one of the n variables and has exactly two outgoing edges, labeled 0 and 1. B
naturally define a boolean function B : {0, 1}n → {0, 1} by considering the path an input x induces
in the graph. In our case, the branching programs will be layered, that is, the vertex set can be
partitioned into m layers, with every edge going from layer i− 1 to i.

Such a branching program is said to be oblivious if on every layer, all the vertices are labelled
by the same variable, namely, the program reads its input in a fixed order which is independent in
the value it has read so far. An oblivious branching program is said to be also read-once if every
variable appears as a label in at most one layer, and more generally read-k if every variable appears
in at most k layers.1 Without loss of generality, we may assume each variable is read exactly k
times.

2.3 Read-k sequences

Let X = {x1, . . . , xn}, and S ∈ Xm be a sequence of m elements from X. S is said to be a read-k
sequence over X if every element x ∈ X appears exactly k times (and in that case m = nk). For a
set Y ⊆ X we let S|Y denote the subsequence of S which is obtained by keeping only the elements
in Y , and erasing all other elements. For i ∈ [k], we denote by S(i) the subsequence of S which
consists of the i-th occurrences of the elements. In other words, S(i) ∈ Xn is a permutation of
X according to the order of their i-th occurrences. Without loss of generality and by renaming
variables, if necessary, we always assume S(1) = (x1, . . . , xn) is the identity permutation. Similarly,
for i 6= j ∈ [k], we use the notation S(i,j) for the subsequence of S which consists of the i-th
and j-th occurrences of all elements. We also associate a natural linear order on X by letting
x1 < x2 < · · · < xn.

We now cite relevant definitions from [AFS+16]. We begin with the definition of a per-read-
monotone sequence.

1The modifiers read-once and read-k can be used, and have been used, also in the context of non-oblivious branching
programs. In the more general context, one has to distinguish between a syntactic definition and a semantic definition.
As the two definitions coincide in the oblivious case, which is the only case we consider, we omit this discussion.
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Definition 2.1. A read-k sequence is said to be per-read-monotone if for all i ∈ [k], S(i) is either
monotonically increasing or monotonically decreasing. ♦

Similarly, a read-k sequence is said to be per-read-increasing (or per-read-decreasing) if for all
i ∈ [k], S(i) is monotonically increasing (or decreasing).

Definition 2.2. A read-2 sequence S over X = {x1, . . . , xn} is said to be 2-regularly-interleaving
if there exists a partition X = X1 t X2 t · · · t Xt, such that for every i ∈ [t], the following two
conditions hold:

1. The sequence S can be partition into t read-2 sequences {Si}i∈[t] such that Si ∈ X2|Xi|
i , and

S = (S1, . . . , St) is the concatenation of S1, . . . , St.

2. Each Si as above can be partitioned into two subsequences Si,1 and Si,2, such that for c ∈
{1, 2}, Si,c contains the c-th occurrences of Xi, and Si equals the concatenation of Si,1 and
Si,2.

A read-k sequence is k-regularly-interleaving if for all i 6= j ∈ [k], the subsequence S(i,j) is
2-regularly-interleaving. ♦

The following theorem was proved in [AFS+16]. Roughly, it says that for small k, every read-k
sequence can be partitioned into a sublinear number of subsequences, each of which is per-read-
monotone and k-regularly-interleaving.

Theorem 2.3 ([AFS+16]). Let S be a read-k sequences over X = {x1, . . . , xn}. Then, X can be
partitioned into t disjoint subsets Y1 t Y2 t · · · t Yt, such that

1. The subsequence Si = S|Yi is per-read-monotone and k-regularly interleaving.

2. t ≤ exp(k2) · n1−1/2k−1
.

Further, this partition can be computed, given S, in time poly(k, n).

The following observation about the structure of per-read-monotone sequences was also made
in [AFS+16]. Intuitively, it says that in a per-read-monotone sequence, increasing and decreasing
subsequences cannot intersect. That is, a per-read-monotone sequence can be partitioned into
subsequences, which are alternately per-read-increasing and per-read-decreasing.

Proposition 2.4. Let S be a read-k per-read-monotone sequence over X = {x1, . . . , xn}. Then S
is a concatenation of t ≤ k subsequences S = (T1, . . . , Tt) such that:

1. t ≤ k.

2. There exist 1 = i1 < i2 < i3 < . . . < it−1 < it ≤ k such that for all ij ≤ c < ij+1, S(c) is
contained in Tj.

3. For all odd j (even, respectively), all the subsequences S(c) that appear in Tj are monotonically
increasing (decreasing, respectively).

2.4 The Impagliazzo-Nisan-Wigderson Generator

As mentioned in Section 1.3, we use the INW generator as an important tool in our construction.
Here we cite their specific construction which we use, which can handle multiple reads of the input,
as long as the “total communication” is bounded.
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Theorem 2.5 ([INW94], Theorem 3). There exists a generator GINW
n,d,ε : {0, 1}s → {0, 1}n which

ε-fools every width w oblivious branching program, in which the reading order can be simulated by a
Turing machine head which visits every cell at most d times. The seed length s is O(log n ·(d logw+
log(n/ε))).

2.5 Combining Generators

For an oblivious branching program B over the variable set X, a subset Z ⊆ X, and a bit vector
b ∈ {0, 1}|Z|, let B|Z=b denote the branching program obtained by fixing the variables in Z
according to the values given by b. Observe that for all b, B|Z=b is an oblivious branching
program over the variable set X \ Z.

Lemma 2.6. Let B be an oblivious branching program of width w over the variable set X =
{x1, . . . , xn}. Let Y ⊆ X be such that |Y | = m and let Z := X \ Y . Let D be a distribution on
{0, 1}m that ε-fools B|Z=b, for all b ∈ {0, 1}n−m, and let D′ be any distribution on {0, 1}n−m.
Denote µ1 = UYm ×D′Z and µ2 = DY ×D′Z . Then, it holds that∣∣∣∣ Pr

x∼µ1
[B(x) = 1]− Pr

x∼µ2
[B(x) = 1]

∣∣∣∣ ≤ ε
Proof. From the lemma hypothesis,∣∣∣∣ Pr

y∼Um

[B|Z=b(y) = 1]− Pr
y∼D

[B|Z=b(y) = 1]

∣∣∣∣ ≤ ε, (2.7)

We observe that the distribution of B|Z=b(y) where y is chosen according to Um (or D, respec-
tively) is the same as the marginal distribution of B(x) conditioned on Z = b, where x is chosen
from µ1 (or µ2, respectively).

Under these notations,

Pr
x∼µ1

[B(x) = 1] =
∑
b

Pr
x∼Um

[B(x) = 1|Z = b] · Pr[Z = b] =
∑
b

Pr
y∼Um

[B|Z=b(y) = 1] · Pr[Z = b],

and similarly,

Pr
x∼µ2

[B(x) = 1] =
∑
b

Pr
y∼D

[B|Z=b(y) = 1] · Pr[Z = b].

Thus, using (2.7) it follows that∣∣∣∣ Pr
x∼µ1

[B(x) = 1]− Pr
x∼µ2

[B(x) = 1]

∣∣∣∣ =

∣∣∣∣∣∑
b

(
Pr

y∼Um

[B|Z=b(y) = 1]− Pr
y∼D

[B|Z=b(y) = 1]

)
· Pr[Z = b]

∣∣∣∣∣
≤
∑
b

∣∣∣∣ Pr
y∼Um

[B|Z=b(y) = 1]− Pr
y∼D

[B|Z=b(y) = 1]

∣∣∣∣ · Pr[Z = b]

≤ ε.

3 Pseudorandom Generator for Read-k Oblivious Branching Pro-
grams

We begin by showing that the generator GINW from Theorem 2.5 is pseudorandom against read-
k oblivious branching programs that read their inputs in a per-read-monotone and k-regularly-
interleaving fashion. To that end, we show that such sequences satisfy the properties required by
the theorem.
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Recall from Proposition 2.4, that any read-k, per-read-monotone sequence is a concatanation
of subsequences which are alternately per-read-increasing and per-read-decreasing. The following
Lemma from [AFS+16] says that in a per-read-increasing and k-regularly interleaving sequence
there are no upward jumps (the case of per-read-decreasing is analogous).

Lemma 3.1. Let S be a read-k, per-read-increasing, and k-regularly-interleaving sequence over
X = {x1, . . . , xn}. Let ` ∈ [kn] be an integer, and suppose that xi appears in the `-th position in
S, and for some j > i, xj appears in position `+ 1. Then j = i+ 1.

We use this lemma to show that a per-read-monotone and k-regularly-interleaving sequence
satisfies the properties required by Theorem 2.5.

Lemma 3.2. Let S be a read-k, per-read-monotone, and k-regularly-interleaving sequence over
X = {x1, . . . , xn}. Then, when modelling the variable access of S as a Turing machine head, the
head visits every cell at most 2k times.

Proof. We first argue that it is enough to consider the case when we the given sequence is per-
read-increasing. From Proposition 2.4, it follows that S is concatenation of t subsequences S =
(T1, . . . , Tt) such that for each r ∈ [t], Tr is a read-kr and kr-regularly-interleaving sequence over
X for some k1, . . . , kt with k1 + k2 + · · ·+ kt = k. Moreover, for all odd r (even, respectively), Tr
is per-read-increasing (decreasing, respectively). In particular, this means that for all odd r, Tr
starts with x1 and ends with xn. On the other hand for all even r, Tr starts with xn and ends with
x1. Thus, when moving from Tr to Tr+1 the Turing machine head does not visit any new cell. We
claim that while traversing Tr, the Turing machine head visits every cell at most 2kr times. This
would imply that while traversing S, the head visits every cell at most

∑t
r=1 2kr = 2k times.

Now, consider the sequence Tr, which is a read-kr, per-read-increasing (the decreasing case is
similar), and kr-regularly-interleaving sequence. Obviously, the head needs to visit the i-th cell
whenever xi appears in the sequence. This can happen, by assumption, at most kr times. However,
it also needs to pass through xi whenever, for j < i < h, xj appears in the sequence and followed
by xh, or xh is followed by xj , and thus our goal is bound the number of times these can happen.

We claim the first transition cannot happen at all in S. For suppose xj appears at position `,
and is immediately followed by xh in position `+ 1. Since h > i > j, this contradicts Lemma 3.1.

As for the second type of transition, we claim there can be at most kr of these. By Lemma 3.1,
for any h′ > i > j′ and for any appearance of xh′ after xj′ in Tr, the element xi must appear in
between them. Since xi can appear in Tr at most kr times, this establishes the claim.

We are now ready to present the construction of our pseudorandom generator for read-k obliv-
ious branching programs.

Construction 3.3. Let S be a read-k sequence over X = {x1, . . . xn}, and let Y1, . . . , Yt be as
promised by Theorem 2.3. Let ni = |Yi|, and si be the seed length of GINW

ni,2k,ε/n
(·) as given by

Theorem 2.5, that is, si = O(log(n) · (log(n/ε) + k logw)), and let s =
∑t

i=1 si. Define Gkε :
{0, 1}s → {0, 1}n, by

Gkε(y) =
(
GINW
n1,2k,ε/n

(y1)
)Y1
×
(
GINW
n2,2k,ε/n

(y2)
)Y2
× · · · ×

(
GINW
nt,2k,ε/n

(yt)
)Yt

,

where y = (y1, . . . ,yt) and yi ∈ {0, 1}si. ♦

Theorem 3.4. Let S be a read-k sequence. The generator Gkε from Construction 3.3 ε-fools every
read-k oblivious branching program which reads the variables in the order prescribed by S. The seed
length s is

O (t · log(n) · (log(n/ε) + k logw)) = O
(

exp(k2) · n1−1/2k−1 · log(n) · (log(n/ε) + k logw)
)
.

8



Proof. The bound of the seed length follows directly from the construction.
The proof that it indeed ε-fools read-k oblivious branching program is by a standard hybrid

argument, using Lemma 2.6.
Let B be any branching program as stated in the theorem, and let Y1, . . . , Yt be the partition

as described in Construction 3.3. Recall that |Yi| = ni. Denote by Uni the uniform distribution on
{0, 1}ni , and by Di the distribution of GINW

ni,2k,ε/n
(yi), with yi randomly and uniformly picked from

{0, 1}si .
Now observe that the distribution of a randomly and uniformly seeded Gkε is given by µt :=

DY1
1 ×D

Y2
2 × · · · ×D

Yt
t , whereas µ0 := Un = UY1n1

×UY2n2
× · · · ×UYnt

nt . Similarly, for every 0 ≤ j ≤ t,
define

µj = DY1
1 × · · · ×D

Yj
j × U

Yj+1
nj+1 × · · · × UYtnt

.

Consider any 1 ≤ j ≤ t. Let Zj = X \ Yj . Recall that for any bit vector b ∈ {0, 1}n−nj , the
restriction B|Zj=b is a width w oblivious branching program over variables Yj . From Theorem 2.3,
the sequence S|Yj is a read-k, per-read-monotone, k-regularly interleaving sequence. Thus, by
Lemma 3.2 and Theorem 2.5, the distribution Dj = GINW

nj ,2k,ε/n
(yj) ε-fools the branching program

B|Zj=b. Now, we apply Lemma 2.6 on B with D as Dj and D′ as DY1
1 ×· · ·×D

Yj−1

j−1 ×U
Yj+1
nj+1×· · ·×UYtnt

.
We get that for each 1 ≤ j ≤ t,∣∣∣∣ Pr

x∼µj−1

[B(x) = 1]− Pr
x∼µj

[B(x) = 1]

∣∣∣∣ ≤ ε/n,
which, by the triangle inequality, implies that∣∣∣∣ Pr

x∼µ0
[B(x) = 1]− Pr

x∼µt
[B(x) = 1]

∣∣∣∣ ≤ t · ε/n ≤ ε,
as in the statement of the theorem.

4 Pseudorandom Generator for Linear Length Oblivious Branch-
ing Programs

Our generator for general linear length oblivious branching programs is based on the simple obser-
vation that in the generator from Section 3, the seed length remains sublinear even for k = k(n)
which is slightly super-constant, whereas if the length of an oblivious branching program is at most
cn, the number of variables which appear more than k times is at most c

kn, which is sublinear.
Thus, these variables can be just sampled uniformly.

Construction 4.1. Let S ∈ Xcn be a sequence of length cn over X = {x1, . . . xn}, and set k =
k(n) = (log log n)/2. A variable is said to be frequent if it appears more than k times in S. Let F
be the set of frequent variables, so we know that |F | ≤ cn/k. Let s1 be the seed length of Gkε from
Construction 3.3, and s2 = |F |.

Define Glin : {0, 1}s → {0, 1}n, by

Glin(y) =
(
Gkε(y1)

)X\F
×
(
y2

)F
where y = (y1,y2) and yi ∈ {0, 1}si. ♦

Theorem 4.2. Let S ∈ Xcn be a sequence over X = {x1, . . . , xn} of length cn. The generator
Glin : {0, 1}s : {0, 1}n from Construction 4.1 ε-fools every oblivious branching program B of width w
that reads its variables in the order prescribed by S. The seed length s is O( n

log logn) for w = poly(n).
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Proof. Since S|X\F is a read-k sequence, from Theorem 3.4, the generator Gkε from Construction 3.3

ε-fools the branching program B|F=b for any b ∈ {0, 1}|F |. Thus, from Lemma 2.6, the generator
Glin from Construction 4.1 ε-fools B. The bound on the seed length follows from the seed length
of Construction 3.3.
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