An Almost Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits

Mrinal Kumar* Ben Lee Volk ${ }^{\dagger}$

Abstract

We prove a lower bound of $\Omega\left(n^{2} / \log ^{2} n\right)$ on the size of any syntactically multilinear arithmetic circuit computing some explicit multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$. Our approach expands and improves upon a result of Raz, Shpilka and Yehudayoff ([RSY08]), who proved a lower bound of $\Omega\left(n^{4 / 3} / \log ^{2} n\right)$ for the same polynomial. Our improvement follows from an asymptotically optimal lower bound, in a certain range of parameters, for a generalized version of Galvin's problem in extremal set theory.

[^0]
1 Introduction

An arithmetic circuit is one of the most natural and standard computational models for computing multivariate polynomials. They provide a succinct representation of multivariate polynomials, and in some sense, they can be thought of as algebraic analogs of boolean circuits. Formally, an arithmetic circuit over a field \mathbb{F} and a set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a directed acyclic graph in which every vertex has in-degree either zero or two. The vertices of in-degree zero (called leaves) are labeled by variables in X or elements of \mathbb{F}, and the vertices of in-degree two are labeled by either + (called sum gates) or \times (called product gates). A circuit can have one or more vertices of out degree zero, known as the output gates. The polynomial computed by a vertex in any ${ }^{1}$ given circuit is naturally defined in an inductive way: a leaf computes the polynomial which is equal to its label. A sum gate computes the polynomial which is the sum of the polynomials computed at its children and a product gate computes the polynomial which is the product of the polynomials at its children. The polynomials computed by a circuit are the polynomials computed by its output gates. The size of an arithmetic circuit is the number of vertices in it.

It is not hard to show (see, e.g., [CKW11]) that a random polynomial of degree $d=\operatorname{poly}(n)$ in n variables cannot be computed an arithmetic circuit of size poly (n) with overwhelmingly high probability. A fundamental problem in this area of research is to prove a similar super-polynomial lower bound for an explicit polynomial family. Unfortunately, the problem continues to remain wide open and the current best lower bound known for general arithmetic circuits ${ }^{2}$ is an $\Omega(n \log n)$ lower bound due to Strassen [Str73] and Baur and Strassen [BS83] from more than three decades ago. The absence of substantial progress on this general question has lead to focus on the question of proving better lower bounds for restricted and more structured subclasses of arithmetic circuits. Arithmetic formulas [Kal85], non-commutative arithmetic circuits [Nis91], algebraic branching programs [Kum17], and low depth arithmetic circuits [NW97, GK98, GR00, Raz10, GKKS14, FLMS14, KLSS14, KS14, KS15] are some such subclasses which have been studied from this perspective. For an overview of the definition of these models and the state of art for lower bounds for them, we refer the reader to the surveys of Shpilka and Yehudayoff [SY10] and Saptharishi [Sap16].

Several of the most important polynomials in algebraic complexity and in mathematics in general are multilinear. Notable examples include the determinant, the permanent, and the elementary symmetric polynomials. Therefore, one subclass which has received a lot of attention in the last two decades and will be the focus of this paper is the class of multilinear arithmetic circuits.

1.1 Multilinear arithmetic circuits

For an arithmetic circuit Ψ and a vertex v in Ψ, we denote by X_{v} the set of variables x_{i} such that there is a directed path from a leaf labeled by x_{i} to v; in this case, we also say that v depends on $x_{i}{ }^{3}$. A polynomial P is said to be multilinear if the individual degree of every variable in P is at most one.

An arithmetic circuit Ψ is said to be syntactically multilinear if for every multiplication gate v in Ψ with children u and w, the sets of variables X_{u} and X_{w} are disjoint. We say that Ψ is semantically multilinear if the polynomial computed at every vertex is a multilinear polynomial. Observe that if Ψ is a syntactically multilinear circuit, then it is also semantically multilinear. However, it is not clear if every semantically multilinear circuit can be efficiently simulated by a

[^1]syntactically multilinear circuit.
A multilinear circuit is a natural model for computing multilinear polynomials, but it is not necessarily the most efficient one. Indeed, it is remarkable that all the constructions of polynomial size arithmetic circuits for the determinant [Csa76, Ber84, MV97], which are fundamentally different from one another, nevertheless share the property of being non-multilinear, namely, they involve non-multilinear intermediate computations which eventually cancel out. There are no subexponential-size multilinear circuits known for the determinant, and one may very well conjecture these do not exist at all.

Multilinear circuits were first studied studied by Nisan and Wigderson [NW97]. Subsequently, Raz [Raz09] defined the notion of multilinear formulas ${ }^{4}$ and showed that any multilinear formula computing the determinant or the permanent of an $n \times n$ variable matrix must have superpolynomial size. In a follow up work [Raz06], Raz further strengthed the results in [Raz09] and showed that there is a family of multilinear polynomials in n variables which can be computed by a poly (n) size syntactically arithmetic circuits but require multilinear formulas of size $n^{\Omega(\log n)}$.

Building on the ideas and techniques developed in [Raz09], Raz and Yehudayoff [RY09] showed an exponential lower bound for syntactically multilinear circuits of constant depth. Interestingly, they also showed a super-polynomial separation between depth Δ and depth $\Delta+1$ syntactically multilinear circuits for constant Δ.

In spite of the aforementioned progress on the question of lower bounds for multilinear formulas and bounded depth syntactically multilinear circuits, there was no $\Omega\left(n^{1+\varepsilon}\right)$ lower bounds known for general syntactically multilinear circuits for any constant $\varepsilon>0$. In fact, the results in [Raz06] shows that the main technical idea underlying the results in [Raz09, Raz06, RY09] is unlikely to directly give a super-polynomial lower bound for general syntactically multilinear circuits. However, a weaker super-linear lower bound still seemed conceivable via similar techniques.

Raz, Shpilka and Yehudayoff [RSY08] showed that this is indeed the case. By a sophisticated and careful application of the techniques in [Raz09] along with many other ideas, they showed an $\Omega\left(\frac{n^{4 / 3}}{\log ^{2} n}\right)$ lower bound for an explicit n variate polynomial. Since then, this has remained the best lower bound known for syntactically multilinear circuits. In this paper, we improve this result by showing an almost quadratic lower bound for syntactically multilinear circuits for an explicit n variate polynomial. In fact, the family of hard polynomials in this paper is the same as the one used in [RSY08]. We now formally state our result.

Theorem 1.1. There is an explicit family of polynomials $\left\{f_{n}: n=4 p\right.$ for a prime $\left.p\right\}$ where f_{n} is an n variate multilinear polynomial such that any syntactically multilinear arithmetic circuit computing f_{n} must have size at least $\Omega\left(n^{2} / \log ^{2} n\right)$.

For our proof, we follow the strategy in [RSY08]. Our improvement comes from an improvement in a key lemma in [RSY08] which addresses the following combinatorial problem.

Question 1.2. What is the minimal integer $m=m(n)$ for which there is a family of subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq[n]$, each S_{i} satisfying $6 \log n \leq\left|S_{i}\right| \leq n-6 \log n$ such that for every $T \subseteq[n],|T|=$ $\lfloor n / 2\rfloor$, there exists an $i \in[m]$ with $\left|T \cap S_{i}\right| \in\left\{\left\lfloor\left|S_{i}\right| / 2\right\rfloor-3 \log n,\left\lfloor\left|S_{i}\right| / 2\right\rfloor-3 \log n+1, \ldots,\left\lfloor\left|S_{i}\right| / 2\right\rfloor+\right.$ $3 \log n\}$?

Stated informally, Raz, Shpilka and Yehudayoff [RSY08] showed that $m(n) \geq \Omega\left(n^{1 / 3} / \log n\right)$. For our proof, we essentially ${ }^{5}$ show that $m(n) \geq \Omega(n / \log n)$.

[^2]In addition to its application to the proof of Theorem 1.1, Question 1.2 seems to be a natural problem in extremal combinatorics and might be of independent interest, and special cases thereof were studied in the combinatorics literature. In the next section, we briefly discuss the state of art of this question and state our main technical result in Theorem 1.4.

1.2 Unbalancing Sets

The following question, which is of very similar nature to Question 1.2, is known as Galvin's problem (see [FR87, EFIN87]): What is the minimal integer $m=m(n)$, for which there exists a family of subsets $S_{1}, \ldots, S_{m} \subseteq[4 n]$, each of size $2 n$, such that for every subset $T \subseteq[4 n]$ of size $2 n$ there exists some $i \in[m]$ such that $\left|T \cap S_{i}\right|=n$?

It is not hard to show that $m(n) \leq 2 n$. Indeed, let $S_{i}=\{i, i+1, \ldots, i+2 n-1\}$, for $i \in$ $\{1,2, \ldots, 2 n+1\}$, and let $\alpha_{i}(T)=\left|T \cap S_{i}\right|-\left|([4 n] \backslash T) \cap S_{i}\right|$. Then $\alpha_{i}(T)$ is always an even integer, $\alpha_{1}(T)=-\alpha_{2 n+1}(T)$, and $\alpha_{i}-\alpha_{i+1}(T) \in\{0, \pm 2\}$ if $i \leq 2 n$. By a discrete version of the intermediate value theorem, it follows there exists $j \in[2 n]$ such that $\alpha_{j}(T)=0$, which implies that exactly n elements of S_{j} belong to T. Thus, the family $\left\{S_{1}, \ldots, S_{2 n}\right\}$ satisfies this property.

As for lower bounds, a counting argument shows that $m(n)=\Omega(\sqrt{n})$, since for each fixed S of size $[2 n]$ and random T of size $2 n$,

$$
\operatorname{Pr}[|T \cap S|=n]=\frac{\binom{2 n}{n} \cdot\binom{2 n}{n}}{\binom{4 n}{2 n}}=\Theta\left(\frac{1}{\sqrt{n}}\right) .
$$

Frankl and Rödl [FR87] were able to show that $m(n) \geq \varepsilon n$ for some $\varepsilon>0$ if n is odd, and Enomoto, Frankl, Ito and Nomura [EFIN87] proved that $m(n) \geq 2 n$ if n is odd, which implies that even the constant in the construction given above is optimal. The question is still open for even values of n : in fact, Markert and West (unpublished, see [EFIN87]) showed that for $n \in\{2,4\}$, $m(n)<2 n$.

For our purposes, we need to generalize Galvin's problem in two ways. The first is to lift the restriction on the set sizes. The second is to ask how small can the size of the family $\mathcal{F}=$ $\left\{S_{1}, \ldots, S_{m}\right\} \subseteq 2^{[n]}$ be if we merely assume each balanced partition T is " τ-balanced" on some $S \in \mathcal{F}$, namely, if $||T \cap S|-|S| / 2| \mid \leq \tau$ for some S (the main case of interest for us is $\tau=O(\log n)$). Of course, since T itself is balanced, very small or very large sets are always τ-balanced, and thus we impose the non-triviality condition $10 \tau \leq|S| \leq n-10 \tau$ for every $S \in \mathcal{F}$ (the constant 10 here is, of course, arbitrary).

Once again, by defining $S_{i}=\{i, i+1, \ldots, i+n / 2-1\}$ (n is always assumed to be even), the family $\mathcal{F}=\left\{S_{1}, S_{1+\tau}, S_{1+2 \tau}, \ldots, S_{1+\lfloor n /(2 \tau)\rfloor \cdot \tau}\right\}$ gives a construction of size $O(n / \tau)$ such that every balanced partition T is τ-balanced on some $S \in \mathcal{F}$.

We propose the conjecture that, perhaps up to a constant, this construction is optimal.
Conjecture 1.3. Let n be a positive even integer, and $1 \leq \tau \leq n / 20$. Let $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}$ be a family of subsets of n such that for all $i \in[m], 10 \tau \leq\left|S_{i}\right| \leq n-10 \tau$. Further suppose that for every set $T \subseteq[n]$ such that $|T|=n / 2$, there exists $i \in[m]$ such that $\| T \cap S_{i}\left|-\left\lfloor\left|S_{i}\right| / 2\right\rfloor\right| \leq \tau$. Then $m=\Omega(n / \tau)$.

We remark that the relevance of conjectures of the form of Conjecture 1.3 to lower bounds in algebraic complexity was also observed by Jansen [Jan08], who considered the problem of obtaining lower bound on homogenous syntactically multilinear algebraic branching program (which is a weaker model than syntactically multilinear circuits).

Alon, Bergmann, Coppersmith and Odlyzko [ABCO88] considered a very similar problem of balancing ± 1-vectors: they studied families of vectors $\mathcal{F}=\left\{v_{1}, \ldots, v_{m}\right\}$ such that $v_{i} \in\{ \pm 1\}^{n}$ for
$i \in[m]$, which satisfy the properties that for every $w \in\{ \pm 1\}^{n}$ (not necessarily balanced), there exists $i \in[m]$ such that $\left|\left\langle v_{i}, w\right\rangle\right| \leq d$. They generalized a construction of Knuth [Knu86] and proved a matching lower bound which together showed that $m=\lceil n /(d+1)\rceil$ is both necessary and sufficient for such a set to exist. Galvin's problem seems like "the $\{0,1\}$ version" of the same problem, but, to quote from [ABCO88], there does not seem to be any simple dependence between the problems.

While we do not prove Conjecture 1.3 in its full form, we are able to prove a special case which is enough to derive the lower bounds for syntactically multilinear circuits. We prove:

Theorem 1.4. Let p be a large enough prime, and let $\log p \leq \tau \leq p / 1000$. Let $S_{1}, \ldots, S_{m} \subseteq[4 p]$ be sets such that for all $i \in[m], 100 \tau \leq\left|S_{i}\right| \leq 4 p-100 \tau$. Further, assume that for every $Y \subseteq[4 p]$ of size $2 p$ there exists $i \in[m]$ such that $\left|\left|Y \cap S_{i}\right|-\left\lfloor\left|S_{i}\right| / 2\right\rfloor\right| \leq \tau$. Then, $m \geq \frac{1}{3} \cdot p / \tau$.

Apart from the constants, which we did not try to optimize, Theorem 1.4 is weaker than Conjecture 1.3 in two ways. The first is the requirement that n, the universe size, equals $4 p$ for some prime p. The second is the requirement that $\tau \geq \log p$. In fact, our proof implies something a bit stronger: the unbalancedness parameter τ can be picked to be even smaller, as long as we assume $\left|S_{i}\right| \geq C \log p$ for a large enough constant C.

Since Conjecture 1.3 is a fairly natural conjecture in extremal combinatorics, it will be interesting to remove either of these restrictions. However, this does not seem to imply any immediate improvements in our lower bound, even up to logarithmic factors.

1.3 Proof overview

In this section, we discuss the main ideas and give a brief sketch of the proofs of Theorem 1.1 and Theorem 1.4. Since our proof heavily depends on the proof in [RSY08] and follows the same strategy, we start by revisiting the main steps in their proof and noting the key differences between the proof in [RSY08] and our proof. We also outline the reduction to the combinatorial problem of unbalancing set families in Question 1.2.

Proof sketch of [RSY08]

The proof in [RSY08] starts by proving a syntactically multilinear analog of a classical result of Baur and Strassen [BS83], where it was shown that if an n variate polynomial f is computable by an arithmetic circuit Ψ of size $s(n)$, then there is an arithmetic circuit Ψ^{\prime} of size at most $5 s(n)$ with n outputs such that the i-th output gate of Ψ^{\prime} computes $f_{i}=\frac{\partial f}{\partial x_{i}}$. Raz, Shpilka and Yehudayoff show that if Ψ is syntactically multilinear, then the circuit Ψ^{\prime} continues to be syntactically multilinear. Additionally, there is no directed path from a leaf labeled by x_{i} to the output gate computing $f_{i} .{ }^{6}$

Once we have this structural result, it would suffice to prove a lower bound on the size of Ψ^{\prime}. For brevity, we denote the subcircuit of Ψ^{\prime} rooted at the output gate computing f_{i} by Ψ_{i}^{\prime}. As a key step of the proof in [RSY08], the authors identify certain sets of vertices $\mathcal{U}_{1}, \mathcal{U}_{2}, \ldots, \mathcal{U}_{n}$ in Ψ^{\prime} with the following properties.

- For every $i \in[n], \mathcal{U}_{i}$ is a subset of vertices in Ψ_{i}^{\prime}.
- For every $i \in[n]$ and $v \in \mathcal{U}_{i}$, the number of $j \neq i$ such that $v \in \mathcal{U}_{j}$ is not too large (at most $O(\log n))$.

[^3]Observe that at this point, showing a lower bound of $s^{\prime}(n)$ on the size of each \mathcal{U}_{i} implies a lower bound of $n s^{\prime}(n) / \log n$ on the size of Ψ^{\prime} and hence Ψ. In [RSY08], the authors show that there is an explicit f such that each \mathcal{U}_{i} must have size at least $\Omega\left(n^{1 / 3} / \log n\right)$, thereby getting a lower bound of $\Omega\left(n^{4 / 3} / \log ^{2} n\right)$ on the size of Ψ.

For our proof, we follow precisely this high level strategy. Our improvement in the lower bound comes from showing that each \mathcal{U}_{i} must be of size at least $\Omega(n / \log n)$ and not just $\Omega\left(n^{1 / 3} / \log n\right)$ as shown in [RSY08]. We now elaborate further on the main ideas in this step in [RSY08] and the differences with the proofs in this paper.

We start with some intuition into the definition of the sets \mathcal{U}_{i} in [RSY08]. Consider a vertex v in Ψ^{\prime} which depends on at least k variables. Without loss of generality, let these variables be $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. From item 4 in Theorem 4.2, we know that the variable x_{i} does not appear in the subcircuit Ψ_{i}^{\prime}. Therefore, the vertex v cannot appear in the subcircuits $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \ldots, \Psi_{k}^{\prime}$. So, if we define the set \mathcal{U}_{i} as the set of vertices in Ψ_{i}^{\prime} which depend on at least k variables, then \mathcal{U}_{i} must be disjoint from vertices in at least k of the subcircuits $\Psi_{1}^{\prime}, \Psi_{2}^{\prime}, \ldots, \Psi_{n}^{\prime}$. Picking $k \geq n-O(\log n)$ would give us the desired property. So, if we can prove a lower bound on the size of the set \mathcal{U}_{i}, we would be done. However, the definition of the set \mathcal{U}_{i} so far turns out to be too general, and we do not know a way of directly proving a lower bound on its size. ${ }^{7}$

To circumvent this obstacle, [RSY08] define the set \mathcal{U}_{i} (called the upper leveled gates in Ψ_{i}^{\prime}) as the set of all vertices in Ψ_{i}^{\prime} which depend on at least $n-6 \log n$ variables and have a child which depends on more than $6 \log n$ variables and less than $n-6 \log n$ variables. This additional structure is helpful in proving a lower bound on the size of \mathcal{U}_{i}. We now discuss this in some more detail.

For every $i \in[n]$, let \mathcal{L}_{i} be the set of vertices u in Ψ_{i}^{\prime}, such that $6 \log n<\left|X_{u}\right|<n-6 \log n$, and u has a parent in \mathcal{U}_{i}. These gates are referred to as lower leveled gates. Observe that $\left|\mathcal{U}_{i}\right| \geq \frac{\left|\mathcal{L}_{i}\right|}{2}$, since the in-degree of every vertex in ψ_{i}^{\prime} is at most 2 . The key structural property of the set \mathcal{L}_{i} is the following (see Proposition 5.5 in [RSY08]).

Lemma 1.5 ([RSY08]). Let $i \in[n]$, and let $h_{1}, h_{2}, \ldots, h_{\ell}$ be the polynomials computed by the gates in \mathcal{L}_{i}. Then, there exist multilinear polynomials $g_{1}, g_{2}, \ldots, g_{\ell}, g$ such that

$$
\begin{equation*}
f_{i}=\sum_{j \in[\ell]} g_{j} \cdot h_{j}+g \tag{1.6}
\end{equation*}
$$

where

- For every $j \in[\ell], h_{j}$ and g_{j} are variable disjoint.
- The degree of g is at most $O(\log n)$.

Observe that Equation 1.6 is basically a decomposition of a potentially-hard polynomial f_{i} in terms of the sum of products of multilinear polynomials in an intermediate number of variables. The goal is to show that for an appropriate explicit f_{i}, the number of summands on the right hand side of Equation 1.6 cannot be too small. A similar scenario also appears in the multilinear formula lower bounds and bounded depth multilinear formula lower bounds of [Raz09, Raz06, RY09] (albeit with some key differences). Hence, a natural approach at this point would be use the tools in [Raz09, Raz06, RY09], namely the rank of the partial derivative matrix, to attempt to prove this lower bound. We refer the reader to Section 2.1 for the definitions and properties of the partial derivative matrix and proceed with the overview. For each $j \in[\ell]$, let the polynomial h_{j} in Lemma 1.5 depend on the variables $S_{j} \subseteq X$. The key technical step in the rest of the proof is to

[^4]show that there is a partition of the set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ into Y and Z such that $|Y|=|Z|$ and for every $j \in[\ell],\left|\left|S_{j} \cap Y\right|-\left|S_{j} \cap Z\right|\right| \geq \Omega(\log n)$. In [RSY08], the authors show that there is an absolute constant $\varepsilon>0$ such that if $\ell \leq \varepsilon n^{1 / 3} / \log n$, then there is an equipartition of X which unbalances all the sets $\left\{S_{j}: j \in[\ell]\right\}$ by at least $\Omega(\log n)$. Our key technical contribution (Theorem 1.4) in this paper is to show that as long as $\ell \leq \varepsilon n / \log n$, there is an equipartition which unbalances all the S_{j} 's by at least $\Omega(\log n)$. This implies an $\Omega(n / \log n)$ on the size of each set \mathcal{U}_{i}, and thus an $\Omega\left(n^{2} / \log ^{2} n\right)$ lower bound on the circuit size.

Before we dive into a more detailed discussion on the overview and main ideas in the proof of Theorem 1.4 in the next section, we would like to remark that the lower bound question in Equation 1.6 seems to be a trickier question than what is encountered while proving multilinear formula lower bounds [Raz09, Raz06] or bounded depth syntactically multilinear circuit lower bounds [RY09]. The main differences are that in the proofs in [Raz09, Raz06, RY09], the sets S_{j} have a stronger guarantee on their size (at least $n^{\Omega(1)}$ and at most $n-n^{\Omega(1)}$), and each of the summands on the right has many variable disjoint factors and not just two factors as in Equation 1.6. For instance, in the formula lower bound proofs the number of variable disjoint factors in each summand on the right is $\Omega(\log n)$, and for constant depth circuit lower bounds it is $n^{\Omega(1)}$. Together, these properties make it possible to show much stronger lower bounds on ℓ. In particular, it is known that a random equipartition works for these two applications, in the sense that it unbalances sufficiently many factors in each summand, thereby implying that the rank of the partial derivative matrix of the polynomial is small. Hence, for an appropriate ${ }^{8} f_{i}$, the number of summands must be large. However, since a set of size $O(\log n)$ is balanced under a random equipartition with probability $\Omega(1 / \sqrt{\log n})$ and the identity in Equation 1.6 involves just two variable disjoint factors, taking a random equipartition would not enable us to prove any meaningful bounds.

Proof sketch of Theorem 1.4

Recall that our task is, given a small collection of subsets of $[n]$, to find a balanced partition which is unbalanced on each of the sets. Equivalently, we would like to prove if \mathcal{F} is a family of subsets such that every balanced partition balances at least one set in \mathcal{F}, then $|\mathcal{F}|$ must be large (of course, \mathcal{F} must satisfy the conditions in Theorem 1.4).

For the sake of simplicity, suppose all subsets $S \in \mathcal{F}$ are of even size, and assume further that for every subset $T \subseteq[n]$ of size $n / 2$ there exists $S \in \mathcal{F}$ such that T completely balances S, namely, $|T \cap S|=|S| / 2$. One possible approach to obtain lower bounds on $|\mathcal{F}|$ is via an application of the polynomial method. Define the following polynomial over, say, the rationals:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\prod_{S \in \mathcal{F}}\left(\left\langle x, \mathbb{1}_{S}\right\rangle-|S| / 2\right) .
$$

By the assumption on \mathcal{F}, the polynomial f evaluates to 0 over all points in $\{0,1\}^{n}$ with Hamming weight exactly $n / 2$. We can also argue, using the assumption on the set sizes in \mathcal{F}, that f is not identically zero, and clearly $\operatorname{deg}(f) \leq|\mathcal{F}|$. Thus, a lower bound on $\operatorname{deg}(f)$ translates to a lower bound on \mathcal{F}.

This idea, however, seems like a complete nonstarter, since there exists a degree 1 non-zero polynomial which evaluates to 0 over the middle layer of $\{0,1\}^{n}$, namely, $\sum_{i} x_{i}-n / 2$.

A very clever solution to this potential obstacle was found by Hegedủs [Heg10]. Suppose $n=4 p$ for some prime p. The main insight in $[\operatorname{Heg} 10]$ is to consider the polynomial f above over \mathbb{F}_{p}, and

[^5]to add the requirement that there exists some $z \in\{0,1\}^{4 p}$, of Hamming weight exactly $3 p$, such that $f(z) \neq 0$. This requirement rules out the trivial example $\sum_{i} x_{i}-n / 2$, and Hegedűs was able to show that the degree of any polynomial with these properties must be at least $p=n / 4$ (see Lemma 2.1 for the complete statement).

We are thus left with the task of proving that our polynomial evaluates to a non-zero value over some point $z \in\{0,1\}^{4 p}$ of Hamming weight $3 p$. This turns out to be not very hard to show, by choosing a random such vector z. Indeed, it is not surprising that it is much easier to directly show that a highly unbalanced partition of $[n]$ (into $3 n / 4$ vs $n / 4$) unbalances all the sets $\mathcal{F} .{ }^{9}$ The goal of Theorem 1.4 is to show that there is even a balanced partition of $[n]$ which is unbalanced on all these subsets, and this is potentially a more challenging task.

Even though Lemma 2.1 seems to be a fundamental statement about polynomials over finite fields and could conceivably have an elementary proof, the proof in [Heg10] uses more advanced techniques. It relies on the description of Gröbner basis for ideals of polynomials in $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which vanish on all points in $\{0,1\}^{n}$ of weight equal to $n / 2$. A complete description of the reduced Gröbner basis for such ideals was given by Hegedús and Rónyai [HR03] and their proof builds up on a number of earlier partial results [ARS02, FG06] on this problem.

To the best of our knowledge, the proof in [Heg10] is the only known proof of Lemma 2.1, and giving a self contained elementary proof of it seems to be an interesting question.

Organization of the paper

In the rest of the paper, we set up some notation and discuss some preliminary notions in Section 2, prove Theorem 1.4 in Section 3 and complete the proof of Theorem 1.1 in Section 4.

2 Preliminaries

For $n \in \mathbb{N}$, we denote $[n]=\{1,2, \ldots, n\}$. For a prime p, we denote by \mathbb{F}_{p} the finite field with p elements. The characteristic vector of a set $S \subseteq[n]$ is denoted by $\mathbb{1}_{S} \in\{0,1\}^{n}$.

As is standard, $\binom{[n]}{k}$ denotes the family $\{S \subseteq[n]:|S|=k\}$.
For an even $n \in \mathbb{N}$ and $Y \subseteq[n]$ such that $|Y|=n / 2$, we call Y a balanced partition of $[n]$, with the implied meaning that Y partitions $[n]$ evenly into Y and $[n] \backslash Y$. The imbalance of a set $S \subseteq[n]$ under Y is $d_{Y}(S):=||Y \cap S|-|S| / 2|$. Observe the useful symmetry $d_{Y}(S)=d_{Y}([n] \backslash[S])$, which follows from the fact that $|Y|=n / 2$. We say S is τ-unbalanced under Y if $d_{Y}(S) \geq \tau$.

We use the following lemma from [Heg10].
Lemma 2.1 ([Heg10]). Let p be a prime, and let $f \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{4 p}\right]$ be a polynomial. Suppose that for all $Y \in\binom{[4 p]}{2 p}$, it holds that $f\left(\mathbb{1}_{Y}\right)=0$, and that there exists $T \subseteq[4 p]$ such that $|T|=3 p$ and $f\left(\mathbb{1}_{T}\right) \neq 0$. Then $\operatorname{deg}(f) \geq p$.

2.1 Partial derivative matrix

For a circuit Ψ, we denote by $|\Psi|$ the size of Ψ, namely, the number of gates in it. For a gate v, we denote by X_{v} the set of variables that occur in the subcircuit rooted at v.

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables, $Y \subseteq X($ not necessarily of size $n / 2)$ and let $Z=X \backslash Y$. For a multilinear polynomial $f(X) \in \mathbb{F}[X]$, we define the partial derivative matrix of f with respect to Y, Z, denoted $M_{Y, Z}(f)$, as follows: the rows of M are indexed by multilinear monomials in Y.

[^6]the columns of M are indexed by multilinear monomials in Z. The entry which corresponds to $\left(m_{1}, m_{2}\right)$ is the coefficient of the monomial $m_{1} \cdot m_{2}$ in f. We define $\operatorname{rank}_{Y, Z}(f)=\operatorname{rank}\left(M_{Y, Z}(f)\right)$.

The following properties of the partial derivative matrix are easy to prove and well-documented (see, e.g., [RSY08]).

Proposition 2.2. The following properties hold:

1. For every multilinear polynomial $f(X) \in \mathbb{F}[X], Y \subseteq X$ and $Z=X \backslash Y$, $\operatorname{rank}_{Y, Z}(f) \leq$ $\min \left\{2^{|Y|}, 2^{|Z|}\right\}$.
2. For every two multilinear polynomials $f_{1}(X), f_{2}(X) \in \mathbb{F}[X]$ and for every partition $X=Y \sqcup Z$, $\operatorname{rank}_{Y, Z}\left(f_{1}+f_{2}\right) \leq \operatorname{rank}_{Y, Z}\left(f_{1}\right)+\operatorname{rank}_{Y, Z}\left(f_{2}\right)$.
3. Let $f_{1} \in \mathbb{F}\left[X_{1}\right]$ and $f_{2} \in \mathbb{F}\left[X_{2}\right]$ be multilinear polynomials such that $X_{1} \cap X_{2}=\emptyset$. Let $Y_{i} \subseteq X_{i}$ and $Z_{i}=X_{i} \backslash Y_{i}$ for $i \in\{1,2\}$. Set $Y=Y_{1} \cup Y_{2}, Z=Z_{1} \cup Z_{2}$. Then $\operatorname{rank}_{Y, Z}\left(f_{1} \cdot f_{2}\right)=$ $\operatorname{rank}_{Y_{1}, Z_{1}}\left(f_{1}\right) \cdot \operatorname{rank}_{Y_{2}, Z_{2}}\left(f_{2}\right)$.
4. Let $f(X) \in \mathbb{F}[X]$ be a multilinear polynomial such that $X=Y \sqcup Z$ and $|Y|=|Z|=n / 2$. Suppose $\operatorname{rank}_{Y, Z}(f)=2^{n / 2}$, and let $g=\partial f / \partial x$ for some $x \in X$. Then $\operatorname{rank}_{Y, Z}(g)=2^{n / 2-1}$.
5. Let $f(X) \in \mathbb{F}[X]$ be a multilinear polynomial of total degree d. Then for every partition $X=Y \sqcup Z$ such that $|Y|=|Z|=n / 2, \operatorname{rank}_{Y, Z}(f) \leq 2^{(d+1) \log (n / 2)}$.

3 Unbalancing sets under a balanced partition

In this section, we prove the following theorem.
Theorem 3.1. Let p be a large enough prime, and let $\log p \leq \tau \leq p / 1000$. Let $S_{1}, \ldots, S_{m} \subseteq[4 p]$ be sets such that for all $i \in[m], 100 \tau \leq\left|S_{i}\right| \leq 4 p-100 \tau$. Further, assume that for every balanced partition Y of $[4 p]$ there exists $i \in[m]$ such that $d_{Y}\left(S_{i}\right) \leq \tau$. Then, $m \geq \frac{1}{3} \cdot p / \tau$.

We start with the following lemma, which shows that a small collection of sets can be unbalanced (modulo p) by a partition which is very unbalanced.

Lemma 3.2. Let p be a large enough prime, and let $\log p \leq \tau \leq p / 1000$. Let $S_{1}, \ldots, S_{m} \subseteq[4 p]$ be sets such that for all $i \in[m], 100 \tau \leq\left|S_{i}\right| \leq 2 p$. Assume further $m \leq p$. Then, there exists $T \subseteq[4 p]$, $|T|=3 p$ such that for all $i \in[m]$ and for all $-\tau \leq t \leq \tau+1,\left|S_{i} \cap T\right| \not \equiv\left\lfloor\left\lfloor\left|S_{i}\right| / 2\right\rfloor+t \bmod p\right.$.

To prove Lemma 3.2, we use the following two technical claims. Let $\mu_{3 / 4}$ denote the probability distribution on subsets of [4p] obtained by putting each $j \in[4 p]$ in T with probability $3 / 4$, independently of all other elements.

Claim 3.3. For a random set $T \sim \mu_{3 / 4}, \operatorname{Pr}[|T|=3 p]=\Theta(1 / \sqrt{p})$.
Proof. The probability that $|T|=3 p$ is given by $\binom{4 p}{3 p} \cdot(3 / 4)^{3 p} \cdot(1 / 4)^{p}$, which is $\Theta(1 / \sqrt{p})$, by Stirling's approximation.

Claim 3.4. Let $\log p \leq \tau \leq p / 1000$ and let $S \subseteq[4 p]$ such that $100 \tau \leq|S| \leq 2 p$. For a random set $T \sim \mu_{3 / 4}$, the probability that for some $-\tau \leq t \leq \tau+1$ it holds that $\left|T \cap S_{i}\right|=\left\lfloor\left|S_{i}\right| / 2\right\rfloor+t \bmod p$ is at most $1 / p^{5}$.

Proof. Denote $s=|S|$. Then $\mathbb{E}[|T \cap S|]=3 s / 4$. We say T is bad for S if $|T \cap S|=\lfloor s / 2\rfloor+t+k p$ for some $-\tau \leq t \leq \tau+1$ and $k \in \mathbb{Z}$. We claim this in particular implies that $\left|\left|T \cap S_{i}\right|-3 s / 4\right| \geq s / 5$. Indeed, since $|T \cap S|$ is an integer in the interval $[0,2 p]$, and by the bounds on s, the only cases needed to be analyzed are $k=0, \pm 1$.

If $|T \cap S|=\lfloor s / 2\rfloor+t-p$, then clearly $|T \cap S| \leq\lfloor s / 2\rfloor$ which implies the statement.
If $|T \cap S|=\lfloor s / 2\rfloor+t+p$, then, as $s \leq 2 p$ and $\tau \leq s / 100$,

$$
|T \cap S|-3 s / 4 \geq-s / 4-1+t+p \geq p / 2+t-1 \geq s / 4+t-1 \geq s / 5
$$

(The " -1 " accounts for the fact that $s / 2$ might not be an integer).
Finally, if $|T \cap S|=\lfloor s / 2\rfloor+t$, it holds that

$$
|T \cap S| \leq s / 2+\tau+1 \leq s / 2+2 s / 100
$$

which again implies the statement.
By Chernoff Bound (see, e.g., [AS16]), $\operatorname{Pr}\left[\left|\left|T \cap S_{i}\right|-3 s / 4\right| \geq s / 5\right] \leq 2^{-|S| / 20} \leq 1 / p^{5}$, hence T is bad for S with at most that probability.

The proof of Lemma 3.2 is now fairly immediate.
Proof of Lemma 3.2. Pick $T \sim \mu_{3 / 4}$. By Claim 3.3, $|T|=3 p$ with probability $\Theta(1 / \sqrt{p})$. Recall that T is bad for S_{i} if $\left|T \cap S_{i}\right|=\left\lfloor\left|S_{i}\right| / 2\right\rfloor+t \bmod p$. By Claim 3.3, for each S_{i}, T is bad for S_{i} with probability at most $1 / p^{5}$. Hence, the probability that there exists $i \in[m]$ such that T is bad for S_{i} is at most $m / p^{5} \leq 1 / p^{4}$.

It follows that with probability at most $1-\Theta(1 / \sqrt{p})+1 / p^{4}<1$, either $|T| \neq 3 p$ or T is bad for some S_{i}, and hence there exists a selection of T such that $|T|=3 p$ and T is good for all S_{i} 's.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let S_{1}, \ldots, S_{m} be a collection of sets as stated in the theorem. Since $d_{Y}\left(S_{j}\right)=d_{Y}\left([n] \backslash S_{j}\right)$, we can assume without loss of generality, by possibly replacing a set with its complement, that $\left|S_{j}\right| \leq 2 p$ for all $j \in[m]$. We may further assume $m \leq p$ as otherwise the statement directly follows. For $j \in[m]$, define the following polynomials over \mathbb{F}_{p} :

$$
B_{j}\left(x_{1}, \ldots, x_{4 p}\right)=\prod_{t=-\tau}^{\tau+1}\left(\left\langle x, \mathbb{1}_{S_{j}}\right\rangle-\left\lfloor\left|S_{j}\right| / 2\right\rfloor-t\right)
$$

where $x=\left(x_{1}, \ldots, x_{4 p}\right)$ and $\langle u, v\rangle=\sum u_{i} v_{i}$ is the usual inner product. Further, define

$$
f\left(x_{1}, \ldots, x_{4 p}\right)=\prod_{j=1}^{m} B_{j}\left(x_{1}, \ldots, x_{4 p}\right)
$$

as a polynomial over \mathbb{F}_{p}.
By assumption, for every $Y \in\binom{[4 p]}{2 p}, f\left(\mathbb{1}_{Y}\right)=0$. This follows because $\left\langle\mathbb{1}_{Y}, \mathbb{1}_{S_{j}}\right\rangle=\left|Y \cap S_{j}\right|$, and by assumption, for some j is holds that $d_{Y}\left(S_{j}\right) \leq \tau$, so it must be that $\left|Y \cap S_{j}\right|-\left\lfloor\left|S_{j}\right| / 2\right\rfloor \in$ $\{-\tau, \ldots, 0, \ldots, \tau+1\}$, so that $B_{j}\left(\mathbb{1}_{Y}\right)=0$.

Furthermore, Lemma 3.2 guarantees the existence of a set $T \in\binom{[4 p]}{3 p}$ such that $f\left(\mathbb{1}_{T}\right) \neq 0$, as the set T from Lemma 3.2 satisfies the property that $\left(\left\langle\mathbb{1}_{T}, \mathbb{1}_{S_{j}}\right\rangle-\left\lfloor\left|S_{j}\right| / 2\right\rfloor-t\right) \neq 0 \bmod p$ for all $-\tau \leq t \leq \tau+1$ and for all $j \in[m]$.

By Lemma 2.1, $\operatorname{deg}(f) \geq p$, and by construction, $\operatorname{deg}(f) \leq 3 \tau \cdot m$, which implies the desired lower bound on m.

4 Syntactically Multilinear Arithmetic Circuits

In this section, for the sake of completeness, we review the arguments of Raz, Shpilka and Yehudayoff [RSY08], and show how Theorem 3.1 implies a lower bound of $\Omega\left(n^{2} / \log ^{2} n\right)$. We mostly refer for [RSY08] for the proofs.

Specifically, we will show the following.
Theorem 4.1. Let $n=4 p$ for a prime p, and $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Let $f(X) \in \mathbb{F}[X]$ be a multilinear polynomial such that for every balanced partition $X=Y \sqcup Z, \operatorname{rank}_{Y, Z}(f)=2^{n / 2}$. Let Ψ be a syntactically multilinear circuit computing f. Then $|\Psi|=\Omega\left(n^{2} / \log ^{2} n\right)$.

The first step in proof of Theorem 4.1 is to show that if f is computed by a syntactically mutilinear circuit of size s, then there exists a syntactically multilinear circuit of size $O(s)$ that computes all the first-order partial derivatives of f, with the additional important property that for each i, the variable x_{i} does not appear in the subcircuit rooted at the output gate which computes $\partial f / \partial x_{i}$.

Theorem 4.2 ([RSY08], Theorem 3.1). Let Ψ be a syntactically multilinear circuit over a field \mathbb{F} and the set of variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$. Then, there exists a syntactically multilinear circuit Ψ^{\prime}, over \mathbb{F} and X, such that:

1. Ψ^{\prime} computes all n first-order partial derivatives $\partial f / \partial x_{i}, i \in[n]$.
2. $\left|\Psi^{\prime}\right| \leq 5|\Psi|$.
3. Ψ^{\prime} is syntactically multilinear.
4. For every $i \in[n], x_{i} \notin X_{v_{i}}$, where v_{i} is the gate in Ψ^{\prime} computing $\partial f / \partial x_{i}$.

In particular, if v is a gate in Ψ^{\prime}, then it is connected by a directed path to at most $n-\left|X_{v}\right|$ output gates.

The proof of Theorem 4.2 appears in [RSY08], and mostly follows the classical proof of Baur and Strassen [BS83] of the analogous result for general circuits, with additional care in order to guarantee the last two properties.

Next we define two types of gates in a syntactically multilinear arithmetic circuits.
Definition 4.3. Let Φ be a syntactically multilinear arithmetic circuit. Define $\mathcal{L}(\Phi, k)$, the set of lower-leveled gates in Φ, by
$\mathcal{L}(\Phi, k)=\left\{u: u\right.$ is a gate in $\Phi, k<\left|X_{u}\right|<n-k$, and u has a parent v with $\left.\left|X_{v}\right| \geq n-k\right\}$.
Define $\mathcal{U}(\Phi, k)$, the set of upper-leveled gates in Φ, by

$$
\mathcal{U}(\Phi, k)=\left\{v: v \text { is a gate in } \Phi,\left|X_{v}\right| \geq n-k, \text { and } u \text { has a child } v \in \mathcal{L}(\Phi, k)\right\} .
$$

The following lemma shows that if the set of lower-leveled gates is small, then there exists a partition $X=Y \sqcup Z$ under which the polynomial computed by the circuit is not of full rank.

Lemma 4.4. Let Φ be a syntactically multilinear arithmetic circuit over \mathbb{F} and $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where $n=4 p$ for a prime p, computing f. Let $\tau=3 \log p$ and $\mathcal{L}=\mathcal{L}(\Phi, 100 \tau)$. If $|\mathcal{L}| \leq p /(4 \tau)$, then there exists a partition $X=Y \sqcup Z$ such that $\operatorname{rank}_{Y, Z}(f)<2^{n / 2-1}$.

We first sketch how Theorem 4.1 follows from Lemma 4.4. The proof is identical to the proof given in [RSY08] with slightly different parameters.

Proof of Theorem 4.1 assuming Lemma 4.4. Let Ψ^{\prime} be the arithmetic circuit computing all n firstorder partial derivatives of f, given by Theorem 4.2. Set $\tau=3 \log p$ and let $\mathcal{L}=\mathcal{L}\left(\Psi^{\prime}, 100 \tau\right)$ and $\mathcal{U}=\mathcal{U}\left(\Psi^{\prime}, 100 \tau\right)$ as in Definition 4.3.

Denote $f_{i}=\partial f / \partial x_{i}$ and let v_{i} be the gate in Ψ^{\prime} computing f_{i}, and Ψ_{i}^{\prime} be the subcircuit of Ψ^{\prime} rooted at v_{i}. Let $\mathcal{L}_{i}=\mathcal{L}\left(\Psi_{i}^{\prime}, 100 \tau\right)$. It is not hard to show (see [RSY08]) that $\mathcal{L}_{i} \subseteq \mathcal{L}$, and by Lemma 4.4 and item 4 in Proposition 2.2, it follows that $\left|\mathcal{L}_{i}\right| \geq p /(4 \tau)$.

For every gate v in Ψ^{\prime} define $C_{v}=\left\{i \in[n]: v\right.$ is a gate in $\left.\Psi_{i}\right\}$ to be the set of indices i such that there exists a directed path from v to the output gate computing f_{i}. For $i \in[n]$, let $\mathcal{U}_{i}=$ $\left\{u \in \mathcal{U}: u\right.$ is a gate in $\left.\Psi_{i}^{\prime}\right\}$, so that $\sum_{u \in \mathcal{U}} C_{u}=\sum_{i \in[n]}\left|\mathcal{U}_{i}\right|$.

Since the fan-in of each gate is at most two, $\left|\mathcal{L}_{i}\right| \leq 2\left|\mathcal{U}_{i}\right|$, and since every $u \in \mathcal{U}$ satisfies $\left|X_{u}\right| \geq n-100 \tau$, it follows by Theorem 4.2 that $\left|C_{u}\right| \leq 100 \tau$. Thus, we get

$$
n \cdot \frac{p}{4 \tau} \leq \sum_{i \in[n]}\left|\mathcal{L}_{i}\right| \leq 2 \sum_{i \in[n]}\left|\mathcal{U}_{i}\right|=2 \sum_{u \in U} C_{u} \leq 2|\mathcal{U}| \cdot 100 \tau
$$

By item 2 in Theorem 4.2, and since $p=n / 4$ and $\tau=3 \log p$,

$$
|\Psi|=\Omega\left(\left|\Psi^{\prime}\right|\right)=\Omega(|\mathcal{U}|)=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right) .
$$

It remains to prove Lemma 4.4. As the proof mostly appears in [RSY08], we only sketch the main steps.

Proof sketch of Lemma 4.4. Suppose $\mathcal{L} \leq p /(4 \tau)$. By applying Theorem 3.1 to the family of sets $\left\{X_{v}: v \in \mathcal{L}\right\}$, it follows that there exists a balanced partition $Y \sqcup Z$ of X such that X_{v} is τ unbalanced for every gate $v \in \mathcal{L}$.

The proof now proceeds in the exact same manner as the proof of Lemma 5.2 in [RSY08]. In Proposition 5.5 of [RSY08], it is shown that one can write

$$
f=\sum_{i \in[\ell]} g_{i} h_{i}+g
$$

where $\mathcal{L}=\left\{v_{1}, \ldots, v_{\ell}\right\}, h_{i}$ is the polynomial computed at v_{i}, and the set of variables appearing in g_{i} is disjoint from $X_{v_{i}}$.

In Claim 5.7 of [RSY08], it is shown that for every $i \in[\ell], \operatorname{rank}_{Y, Z}\left(g_{i} h_{i}\right) \leq 2^{n / 2-\tau}$. This uses the fact that $X_{v_{i}}$ is τ-unbalanced, the upper bound in item 1 in Proposition 2.2, and item 3 in the same proposition.

In Proposition 5.8 of [RSY08], it is shown (with the necessary change of parameters) that the degree of g is at most 200τ.

Thus, by the fact that $\tau=3 \log p$, item 5 and item 2 of Proposition 2.2 , it follows that for large enough n,

$$
\operatorname{rank}_{Y, Z}(f) \leq \ell \cdot 2^{n / 2-\tau}+2^{\tau^{3}}<2^{n / 2-1}
$$

4.1 An explicit full-rank polynomial

In this section, for the sake of completeness, we give a construction of a polynomial which is full-rank under any partition of the variables.

Construction 4.5 (Full rank polynomial, [RSY08]). Let n be an even integer, and let $\mathcal{W}=$ $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be sets of variables. For a set $B \in\binom{[n]}{n / 2}$, denote by $i_{1}<$ $\cdots<i_{n / 2}$ the elements of B in increasing order, and by $j_{1}<\cdots<j_{n / 2}$ the elements of $[n] \backslash B$ in increasing order. Define $r_{B}=\prod_{\ell \in B} \omega_{\ell}$, and $g_{B}=\prod_{\ell \in[n / 2]}\left(x_{i_{\ell}}+x_{j_{\ell}}\right)$.

Finally, define

$$
f=\sum_{B \in\binom{[n]}{n / 2}} r_{B} g_{B} .
$$

Claim 4.6 ([RSY08]). For f from Construction 4.5, it holds that for every balanced partition of $X=Y \sqcup Z, \operatorname{rank}_{Y, Z}(f)=2^{n / 2}$, where the rank is taken over $\mathbb{F}(\mathcal{W})$.

Corollary 4.7. For $n=4 p$ where p is prime, every syntactically multilinear circuit computing f has size at least $\Omega\left(n^{2} / \log ^{2} n\right)$.

The polynomial f in Construction 4.5 is in the class VNP of explicit polynomials, but it is not known whether there exists a polynomial size multilinear circuit for f.

Raz and Yehudayoff [RY08] constructed a full-rank polynomial $g \in \mathbb{F}\left[X, \mathcal{W}^{\prime}\right]$ that has a syntactically multilinear circuit of size $O\left(n^{3}\right)$. Their construction also uses a set of auxiliary variables \mathcal{W}^{\prime} of size $O\left(n^{3}\right)$. Thus, if one measures the complexity as a function of $|X| \cup \mid \mathcal{\mathcal { W } ^ { \prime } | \text { , the quadratic lower }}$ bound of Theorem 4.1 is meaningless, because a lower bound of $\Omega\left(n^{3}\right)$ holds trivially. However, we believe that since the rank is taken over $\mathbb{F}\left(\mathcal{W}^{\prime}\right)$, it is only fair to consider computations over $\mathbb{F}\left(\mathcal{W}^{\prime}\right)$, where any rational expression in the variables of \mathcal{W}^{\prime} is merely a field constant. Thus, in this setting, an input gate can be labeled by an arbitrarily complex rational function in the variables of \mathcal{W}^{\prime}, and the complexity is measured as a function of $|X|$ alone. In this model the lower bound of Theorem 4.1 is meaningful, and furthermore, this example shows that the partial derivative matrix technique cannot prove an $\omega\left(n^{3}\right)$ lower bound.

Acknowledgments

Part of this work was done while the first author was a visitor at Tel Aviv University. We thank Amir Shpilka for arranging the visit, for many insightful discussions, and for comments on an earlier version of this text. We are also thankful to Noga Alon for bringing [ABCO88] to our attention and to Andy Drucker for pointing out a correction in the statement of Question 1.2.

References

[ABCO88] Noga Alon, Ernest E. Bergmann, Don Coppersmith, and Andrew M. Odlyzko. Balancing sets of vectors. IEEE Trans. Information Theory, 34(1):128-130, 1988.
[ARS02] Richard P. Anstee, Lajos Rónyai, and Attila Sali. Shattering News. Graphs and Combinatorics, 18(1):59-73, 2002.
[AS16] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Information Processing Letters, 18(3):147-150, 1984.
[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theoretical Computer Science, 22:317-330, 1983.
[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic Complexity (and beyond). Foundation and Trends in Theoretical Computer Science, 2011.
[Csa76] László Csanky. Fast Parallel Matrix Inversion Algorithms. SIAM J. Comput., 5(4):618623, 1976.
[EFIN87] Hikoe Enomoto, Peter Frankl, Noboru Ito, and Kazumasa Nomura. Codes with given distances. Graphs Combin., 3(1):25-38, 1987.
[FG06] Jeffrey B. Farr and Shuhong Gao. Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 16th International Symposium, AAECC-16, Las Vegas, NV, USA, February 2024, 2006, Proceedings, pages 118-127, 2006.
[FLMS14] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for depth 4 formulas computing iterated matrix multiplication. In Proceedings of the 46 th Annual ACM Symposium on Theory of Computing (STOC 2014), pages 128-135, 2014. Pre-print available at eccc:TR13-100.
[FR87] Peter Frankl and Vojtěch Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259-286, 1987.
[GK98] Dima Grigoriev and Marek Karpinski. An Exponential Lower Bound for Depth 3 Arithmetic Circuits. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pages 577-582, 1998.
[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the Chasm at Depth Four. Journal of the ACM, 61(6):33:1-33:16, 2014. Preliminary version in the 28th Annual IEEE Conference on Computational Complexity (CCC 2013). Pre-print available at eccc:TR12-098.
[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. Appl. Algebra Eng. Commun. Comput., 10(6):465-487, 2000. Preliminary version in the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998).
[Heg10] Gábor Hegedűs. Balancing sets of vectors. Studia Sci. Math. Hungar., 47(3):333-349, 2010.
[HR03] Gábor Hegedűs and Lajos Rónyai. Gröbner bases for complete uniform families. J. Algebraic Combin., 17(2):171-180, 2003.
[Jan08] Maurice J. Jansen. Lower Bounds for Syntactically Multilinear Algebraic Branching Programs. In Proceedings of the 33rd Internationl Symposium on the Mathematical Foundations of Computer Science (MFCS 2008), volume 5162 of Lecture Notes in Computer Science, pages 407-418. Springer, 2008.
[Kal85] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM J. Comput., 14(3):678-687, 1985.
[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Circuits. In Proceedings of
the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), pages 61-70, 2014. Pre-print available at eccc:TR14-005.
[Knu86] Donald E. Knuth. Efficient balanced codes. IEEE Trans. Information Theory, 32(1):5153, 1986.
[KS14] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014), pages 364-373, 2014. Pre-print available at eccc:TR14-045.
[KS15] Mrinal Kumar and Ramprasad Saptharishi. An exponential lower bound for homogeneous depth-5 circuits over finite fields. Electronic Colloquium on Computational Complexity (ECCC), 2015. eccc:TR15-109.
[Kum17] Mrinal Kumar. A quadratic lower bound for homogeneous algebraic branching programs. Electronic Colloquium on Computational Complexity (ECCC), 24:28, 2017.
[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, Algorithms, and Complexity. Chicago J. Theor. Comput. Sci., 1997, 1997. Preliminary version in the 8 th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1997).
[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1991), pages 410-418, 1991. Available on citeseer:10.1.1.17.5067.
[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, 6(3):217-234, 1997. Available on citeseer:10.1.1.90.2644.
[Raz06] Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing, 2(1):121-135, 2006. Preliminary version in the 45 th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004). Pre-print available at eccc:TR04-042.
[Raz09] Ran Raz. Multi-Linear Formulas for Permanent and Determinant are of SuperPolynomial Size. J. ACM, 56(2):8:1-8:17, 2009. Preliminary version in the 36th Annual ACM Symposium on Theory of Computing (STOC 2004). Pre-print available at eccc:TR03-067.
[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of Computing, 6(1):135-177, 2010.
[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically multilinear arithmetic circuits. SIAM J. Comput., 38(4):1624-1647, 2008. Preliminary version in the 48 th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007). Pre-print available at eccc:TR06-060.
[RY08] Ran Raz and Amir Yehudayoff. Balancing Syntactically Multilinear Arithmetic Circuits. Computational Complexity, 17(4):515-535, 2008.
[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear Circuits. Computational Complexity, 18(2):171-207, 2009. Preliminary version in the 23rd Annual IEEE Conference on Computational Complexity (CCC 2008). Pre-print available at eccc:TR08-006.
[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github survey, https://github.com/dasarpmar/lowerbounds-survey/, 2016.
[Str73] Volker Strassen. Die Berechnungskomplexität Von Elementarsymmetrischen Funktionen Und Von Interpolationskoeffizienten. Numerische Mathematik, 20(3):238-251, June 1973.
[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5:207-388, March 2010.

[^0]: ${ }^{*}$ Center for Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts, USA. Email: mrinalkumar08@gmail.com. Part of this work was done while visiting Tel Aviv University.
 ${ }^{\dagger}$ Department of Computer Science, Tel Aviv University, Tel Aviv, Israel, Email: benleevolk@gmail.com.

[^1]: ${ }^{1}$ Throughout this paper, we will use the terms gates and vertices interchangeably.
 ${ }^{2}$ In the rest of the paper, when we say a lower bound, we always mean it for an explicit polynomial family.
 ${ }^{3}$ We remark that this is a syntactic notion of dependency, since it is possible that every monomial with x_{i} might get canceled in the intermediate computation and might not eventually appear in the polynomial computed at v.

[^2]: ${ }^{4}$ For formulas, it is known that syntactic multilinearity and semantically multilinearity are equivalent (See, e.g., [Raz09]).
 ${ }^{5}$ This is not true in its full generality. See Theorem 1.4 for a formal statement.

[^3]: ${ }^{6}$ See Theorem 4.2 for a formal statement.

[^4]: ${ }^{7}$ Indeed, it is not even immediately clear if the \mathcal{U}_{i} has any other gates apart from the output gate of Ψ_{i}^{\prime}.

[^5]: ${ }^{8} f_{i}$ is chosen so that the the partial derivative matrix for f_{i} is of full rank for every equipartition.

[^6]: ${ }^{9}$ In our case, we need to argue that the imbalance is non-zero modulo p, which adds an extra layer of complication, although again, one which is not hard to solve.

