

Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces

Rohit Gurjar¹, Thomas Thierauf*², and Nisheeth K. Vishnoi³

¹Tel Aviv University, Israel ²Aalen University, Germany ³École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

We deterministically construct quasi-polynomial weights in quasi-polynomial time, such that in a given polytope with totally unimodular constraints, one vertex is *isolated*, i.e., there is a unique minimum weight vertex. More precisely, the property that we need is that every face of the polytope lies in an affine space defined by a totally unimodular matrix. This derandomizes the famous *Isolation Lemma* by Mulmuley, Vazirani, and Vazirani for this setting, generalizes the recent derandomization results for bipartite perfect matching and matroid intersection, and resolves the problem of derandomizing the isolation lemma for polytopes with totally unimodular constraints.

We prove our result by associating a *lattice* to each face of the polytope and showing that if there is a totally unimodular kernel matrix for this lattice, then the number of near-shortest vectors in it is polynomially bounded. The proof of this latter geometric fact is combinatorial and follows from a polynomial bound on the number of near-shortest circuits in a regular matroid. This is the technical core of the paper and relies on Seymour's decomposition theorem for regular matroids. It generalizes an influential result by Karger on the number of minimum cuts in a graph to regular matroids. Both of our results, on lattices and matroids, should be of independent interest.

^{*}Supported by DFG grant TH 472/4.

Contents

1	Introduction	3
2	Our Results2.1 Isolating a Vertex in a Polytope	6
3	Isolation via the Lattices Associated to the Polytope: Proof of Theorem 2.4	7
4	Matroids and Circuits 4.1 Matroids preliminaries	
5	A Bound on the Number of Short Vectors in Lattices: Proof of Theorem 2.5	14
6	A Bound on the Number of Short Circuits in Regular Matroids: Proof of Theorem 2.6 6.1 Base Case: Graphic and cographic matroids	1 5 15
\mathbf{A}	Proof of Theorem 4.18	25

1 Introduction

The Isolation Lemma by Mulmuley, Vazirani, and Vazirani [MVV87] states that for any given family of subsets of a ground set E, if we assign random weights (bounded in magnitude by poly(|E|) to the elements of E then, with high probability, the minimum weight set in the family is unique. Such a weight assignment is called an isolating weight assignment. The lemma was introduced in the context of parallel algorithms for the matching problem. Since then it has found numerous other applications: a reduction from CLIQUE to UNIQUE-CLIQUE [MVV87], NL/poly ⊆ ⊕L/poly [Wig94], NL/poly = UL/poly [RA00], an RNC-algorithm for linear matroid intersection [NSV94], and an RP-algorithm for disjoint paths [BH14]. In all these results, the Isolation Lemma is the only place where they need randomness (or advice string). Thus, if the Isolation Lemma can be derandomized, i.e., a polynomially bounded isolating weight assignment can be deterministically constructed, then so can the aforementioned results that rely on it. Unfortunately, it is easy to see that it is impossible to design a polynomially bounded isolating weight assignment for all possible families of subsets of E. This is because there are exponentially many subsets and the weights are polynomially bounded. For any polynomially bounded weight assignment, there will be two subsets of E with the same weights. These two subsets form a family where the weight assignment fails. Even a relaxed task – of constructing a poly-size list of poly-bounded weight functions such that for each family $\mathcal{B} \subseteq 2^E$, one of the weight functions in the list is isolating is impossible. This can be shown via arguments involving the polynomial identity testing (PIT) problem. The PIT problem, that is another important consequence of derandomizing the Isolation Lemma, asks if an implicitly given multivariate polynomial is identically zero. Here, the family of sets one needs to consider comes from the family of monomials that have nonzero coefficients in the polynomial. In essence, construction of such a list would imply that there exists a small set of points in \mathbb{R}^E such that any |E|-variate polynomial of small degree is nonzero on at least one of the points in the set. One can rule this out by designing a small degree polynomial that vanishes on all the points in the set. Hence, a natural question is to solve the isolation question for families \mathcal{B} , that have a succinct representation.

In this work, we derandomize the Isolation Lemma for a large class of families via a geometric approach. For a family of sets $\mathcal{B} \subseteq 2^E$, define the polytope $P(\mathcal{B}) \subseteq \mathbb{R}^E$ to be the convex hull of the characteristic vectors of the sets in \mathcal{B} . We show that there exists an $m^{O(\log m)}$ -sized family of weights, with weights bounded by $m^{O(\log m)}$ that isolates any family \mathcal{B} whose corresponding polytope $P(\mathcal{B})$ satisfies the following property: the affine space spanned by any face of $P(\mathcal{B})$ is parallel to the null space of some totally unimodular (TU) matrix; see Theorem 2.3. Our weight construction is black-box in the sense that it does not need the description of the family or the polytope.

A large variety of polytopes satisfy this property and, as a consequence, have been extensively studied in combinatorial optimization. The simplest class of polytopes that satisfy this property is when the polytope $P(\mathcal{B})$ has a description $Ax \leq b$ with A being a TU matrix. Thus, a simple consequence of our main result is a resolution to the problem of derandomizing the isolation lemma for polytopes with TU constraints raised in a recent work [ST17]. Further, our results significantly generalize recent work for the family of perfect matchings in a bipartite graph [FGT16] and for the family of common bases of two matroids [GT17]. In the case of perfect matchings in bipartite graphs, the perfect matching polytope can be described by the incidence matrix of a given graph which is a TUM. In the matroid intersection problem, the constraints of the common base polytope are a rank bound on every subset of the ground set. These constraints, in general, do not form a TUM. However, for every face of the polytope there exist two laminar families of subsets that form a basis for the tight constraints of the face. The incidence matrix for the union of two laminar

families is TU (see [Sch03b, Theorem 41.11]). Other examples of families whose polytopes are defined by TU constraints are vertex covers of a bipartite graph, independent sets of a bipartite graph, edge covers of a bipartite graph. Since the constraint matrix defining the polytope (or any of its face) itself does not have to be TU for it to satisfy the condition above, the condition required in Theorem 2.3 on the polytope $P(\mathcal{B})$ is quite weak and is well studied. Schrijver [Sch03a, Theorem 5.35] shows that this condition is sufficient to prove that the polytope is box-totally dual integral. The second volume of Schrijver's book [Sch03b] is gives excellent overview on polytopes that satisfy the condition of Theorem 2.3:

- up hull of an r-arborescence polytope [Sch03b, Section 52.4]
- R-S bibranching polytope [Sch03b, Section 54.6]
- directed cut cover polytope [Sch03b, Section 55.2]
- submodular flow polyhedron [Sch03b, Theorem 60.1]
- lattice polyhedron [Sch03b, Theorem 60.4]
- For a submodular set function f on a set E, the polytope defined by

$$\sum_{e \in S} x_e \le f(S) \text{ for } S \subseteq E \quad [Sch03b, Section 44.3].$$

Schrijver [Sch03b] also shows that the condition required by Theorem 2.3 holds for other polytopes defined via submodular set functions [Sch03b, (46.1), (48.1), (48.23)], submodular and supermodular set functions [Sch03b, (46.13), (46.28), (46.29)], submodular functions on a lattice family [Sch03b, (49.3), (49.12)], intersecting submodular functions [Sch03b, (49.33), (49.39)], and intersecting supermodular functions [Sch03b, (49.53)].

Our starting point is a reformulation of the approach for bipartite perfect matching and matroid intersection [FGT16,GT17] in terms of certain lattices associated to polytopes. For each face F of $P(\mathcal{B})$, we consider the lattice L_F of all integer vectors parallel to F. We show that, if for each face F of $P(\mathcal{B})$, the number of near-shortest vectors in L_F is polynomially bounded then we can construct an isolating weight assignment for \mathcal{B} with quasi-polynomially bounded weights; see Theorem 2.4. Our main technical contribution is to give a polynomial bound on the number of vectors whose length is no more than 3/2 times that of the shortest vector in L_F when this lattice is the set of integral vectors in the null space of a TUM; see Theorem 2.5. This is in contrast for general lattices where the number of such near-shortest vectors could be exponential in the dimension.

The above result can be reformulated using the language of matroid theory: the number of near-shortest circuits in a regular matroid is polynomially bounded; see Theorem 2.6. In fact we show how Theorem 2.4 can be deduced from Theorem 2.6. One crucial ingredient in the proof of Theorem 2.6 is Seymour's decomposition theorem for regular matroids [Sey80]. Theorem 2.6 answers a question raised by Subramanian [Sub95] and can be viewed as a generalization of known results in case of graphic and cographic matroids, that is, the number of near-minimum length cycles in a graph is polynomially bounded (see [TK92, Sub95]) and the number of near-mincuts in a graph is polynomially bounded (see [Kar93]).

Thus, not only do our results make significant progress in derandomizing the isolation lemma for combinatorial polytopes, our structural results about the number of near-shortest vectors in lattices and near-shortest matroids should be of independent interest and raise the question: to what extent are they generalizable?

2 Our Results

In this section we explain and state our main theorems. The proofs are given in the subsequent sections.

2.1 Isolating a Vertex in a Polytope

For a weight function $w \colon E \to \mathbb{Z}$, consider its extension to the any subset $S \subseteq E$ as follows:

$$w(S) := \sum_{e \in E} w(e).$$

A weight function $w: E \to \mathbb{Z}$ is called *isolating for a family* $\mathcal{B} \subseteq 2^E$ of subsets of E, if the minimum weight set in \mathcal{B} , with respect to w, is unique. In other words, the set $\arg \min_{S \in \mathcal{B}} w(S)$ is unique. The Isolation Lemma of Mulmuley, Vazirani, and Vazirani [MVV87] asserts that a random weight function is isolating with a good probability for any \mathcal{B} .

Lemma 2.1 (Isolation Lemma). Let w be a random weight function on the set E where for each $e \in E$, the weight w(e) is chosen independently and uniformly at random from the set $\{1, 2, \ldots, 2|E|\}$. Then for any family \mathcal{B} of subsets of E, the weight function w is isolating with probability at least 1/2.

The question of derandomizing the Isolation Lemma asks for a deterministic construction of an isolating weight function with weights polynomially bounded in the set size |E|. Here, we view the isolation question for \mathcal{B} as an isolation over a corresponding polytope $P(\mathcal{B})$, which is defined as follows. For a set $S \subseteq E$, its characteristic vector $x^S \in \mathbb{R}^E$ is defined as

$$x_e^S := \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$

For any family of sets $\mathcal{B} \subseteq 2^E$, the polytope $P(\mathcal{B}) \subset \mathbb{R}^E$ is defined as the convex hull of the characteristic vectors of the sets in \mathcal{B} ,

$$P(\mathcal{B}) := \operatorname{conv}\{x^S \mid S \in \mathcal{B}\}.$$

The isolation question for a family \mathcal{B} is equivalent to constructing a weight vector $w \in \mathbb{Z}^E$ such that $\langle w, x \rangle$ has a unique minimum over $P(\mathcal{B})$. The property we need for our isolation approach is in terms of a totally unimodular matrix.

Definition 2.2 (Totally unimodular matrix). A matrix $A \in \mathbb{R}^{n \times m}$ is said to be totally unimodular (TU), if every square submatrix has determinant 0 or ± 1 .

Our main theorem gives an efficient quasi-polynomial isolation for a family \mathcal{B} when each face of the polytope $P(\mathcal{B})$ lies in the affine space defined by a TU matrix.

Theorem 2.3 (Main Result). Given a set E with |E| = m, we can construct a set W of $m^{O(\log m)}$ weight assignments on E with weights bounded by $m^{O(\log m)}$ with the following property: Let $\mathcal{B} \subseteq 2^E$ be a family of sets. Suppose that for any face F of the polytope $P(\mathcal{B})$ there exists a TU matrix A_F such that the affine space spanned by F is given by $A_F x = b_F$ for some $b_F \in \mathbb{R}^E$. Then for the family \mathcal{B} , one of the weight assignments in W is isolating.

2.2 Short vectors in lattices associated to polytopes

Our starting point towards proving Theorem 2.3 is a reformulation of the isolation approach for bipartite perfect matching and matroid intersection [FGT16, GT17]. We define a lattice corresponding to each face of the polytope $P(\mathcal{B})$. The isolation approach works when this lattice has a small number of short vectors. For any face F of $P(\mathcal{B})$, consider the lattice of all integral vectors parallel to F,

$$L_F := \{ v \in \mathbb{Z}^E \mid v = \alpha(x_1 - x_2) \text{ for some } x_1, x_2 \in F \text{ and } \alpha \in \mathbb{R} \}.$$

The length of the shortest nonzero vector of a lattice is denoted by

$$\lambda(L_F) := \min \{ ||v|| : 0 \neq v \in L_F \},$$

where $\|\cdot\|$ denotes the ℓ_1 -norm. We prove the following theorem that asserts that if, for all faces F of $P(\mathcal{B})$, the number of near-shortest vectors in L_F is small, then we can efficiently isolate over $P(\mathcal{B})$.

Theorem 2.4. Let $P(\mathcal{B}) \subset \mathbb{R}^E$ be a 0-1 polytope such that there exists a constant c > 1, such that for any face F of $P(\mathcal{B})$, we have

$$|\{v \in L_F : ||v|| \le c (\lambda(L_F) - 1)\}| \le m^{O(1)},$$

where m = |E|. Then one can construct a set of $m^{O(\log m)}$ weight functions with weights bounded by $m^{O(\log m)}$ such that at least one of them is isolating for \mathcal{B} .

The main ingredient of the proof of Theorem 2.3 is to show that the hypothesis of Theorem 2.4 is true when the lattice L_F is the set of all integral vectors in the nullspace of a TU matrix. For any $n \times m$ matrix A we define a lattice L(A) as follows:

$$L(A) := \{ v \in \mathbb{Z}^m \mid Av = 0 \}.$$

Theorem 2.5. For any TU matrix A,

$$|\{v \in L(A) : ||v|| \le 3/2 (\lambda(L(A)) - 1)\}| = O(m^5).$$

Theorem 2.5 together with Theorem 2.4 implies Theorem 2.3.

Proof of Theorem 2.3. Let F be a face of the polytope $P(\mathcal{B})$ and let A_F be the TU matrix associated with F. Thus $A_F x = b_F$ defines the affine span of F. In other words, the set of vectors parallel to F is precisely the solution set of $A_F x = 0$ and the lattice L_F is given by $L(A_F)$. Theorem 2.5 implies the hypothesis of Theorem 2.4 for any $L_F = L(A_F)$, when the matrix A_F is TU.

2.3 Short circuits in regular matroids

The proof of Theorem 2.5 is combinatorial and uses the language and result from matroid theory. We refer the reader to Section 4 for preliminaries on matroids; here we just recall a few basic definitions. A matroid is said to be represented by a matrix A, if its ground set is the column set of A and its independent sets are the sets of linearly independent columns of A. A matroid represented by a TU matrix is said to be a regular matroid. A circuit of a matroid is a minimal dependent set. The following is one of our main results which gives a bound on the number of short circuits in a regular matroid, which, in turn, implies Theorem 2.5. Instead of size, we allow weights to the elements of the ground set and present a more general result.

Theorem 2.6. Let $M = (E, \mathcal{I})$ be a regular matroid with $m = |E| \ge 2$ and $w : E \to \mathbb{N}$ be a weight function. Let r be an even number. Suppose M does not have any circuit C with $w(C) \le r$. Then

$$|\{C: C \text{ circuit in } M \text{ and } w(C) \leq 3r/2\}| \leq 150 \, m^5.$$

Remark 2.7. An extension of this result would be to give a polynomial bound on the number of circuits of weight at most αr for any constant α . Our current proof does not extend to this setting. This will be the subject of an upcoming work.

Organization of the rest of the paper

In Section 3, we present a proof of Theorem 2.4. In Section 4.1, we present a basic introduction to matroids. In Section 4.2, we describe some well-known properties of regular matroids which will be key to the proof of Theorem 2.6. Section 5 describes how Theorem 2.5 follows from Theorem 2.6. Finally, in Section 6, we prove Theorem 2.6.

3 Isolation via the Lattices Associated to the Polytope: Proof of Theorem 2.4

This section is dedicated to a proof of Theorem 2.4. That is, we give a construction of an isolating weight assignment for a family $\mathcal{B} \subseteq 2^E$ assuming that for each face F of the corresponding polytope $P(\mathcal{B})$, the lattice L_F has small number of short vectors. First, let us see how the isolation question for a family \mathcal{B} translates in the polytope setting. For any weight function $w: E \to \mathbb{Z}$, we view w as a function on $P(\mathcal{B})$. That is, we define an extension of the weight function w to \mathbb{R}^E . For $x \in \mathbb{R}^E$,

$$w(x) := \langle w, x \rangle = \sum_{e \in E} w(e) x_e.$$

That is, we can consider w as a vector in \mathbb{Z}^E , and the weight of a vector x is the inner product with w. Note that $\langle w, x^B \rangle = w(B)$, for any $B \subseteq E$. Thus, we get the following.

Claim 3.1. A weight function $w: E \to \mathbb{Z}$ is isolating for a family \mathcal{B} if and only if the function $\langle w, x \rangle$ has a unique minimum over the polytope $P(\mathcal{B})$.

Observe that for any $w: E \to \mathbb{Z}$, the points that minimize $\langle w, x \rangle$ in $P(\mathcal{B})$ will form a face of the polytope $P(\mathcal{B})$. The idea is to build the isolating weight function in rounds. In every round, we slightly modify the current weight function to get a smaller minimizing face. Our goal is to significantly reduce the dimension of the minimizing face in every round. We stop when we reach a zero-dimensional face, i.e., we have a unique minimum weight point in $P(\mathcal{B})$.

The following claim asserts that if we modify the current weight function on a small scale, then the new minimizing face will be a subset of the current minimizing face. In the following, we will denote the size of set E by m.

Claim 3.2. Let $w : E \to \mathbb{Z}$ be a weight function and F being the face of $P(\mathcal{B})$ that minimizes $\langle w, x \rangle$. Then, for any weight function $w' : E \to \{0, 1, \dots, N-1\}$, the face F' that minimizes the function $\langle mN \ w + w', x \rangle$ is contained in F.

Proof. Consider any vertex $x \in P(\mathcal{B})$ of the face F'. Since it minimizes the function $\langle mN w + w', x \rangle$, we can say for any other vertex y of $P(\mathcal{B})$,

$$\langle mN w + w', x \rangle \le \langle mN w + w', y \rangle.$$

In other words,

$$\langle mN \, w + w', x - y \rangle \le 0. \tag{1}$$

Since x and y are vertices of $\mathcal{P}(\mathcal{B})$, we know $x_i, y_i \in \{0, 1\}$ for each $i \in E$. Thus, $|\langle w', x - y \rangle| < mN$. On the other hand, if $|\langle mN w, x - y \rangle|$ is nonzero then it is at least mN and thus dominates $|\langle w', x - y \rangle|$. Hence, for (1) to hold, it must be that

$$\langle mN w, x - y \rangle \le 0.$$

In other words, $\langle w, x \rangle \leq \langle w, y \rangle$. Thus, x belongs to the face F. We have shown that every vertex of F' is in F. Thus, F' is contained in F.

Thus, in each round, we will add a new weight function to the current function using a smaller scale and try to get a subface with significantly smaller dimension. Henceforth, N will be sufficiently large number bounded by poly(m).

Definition 3.3. For a face F of the polytope $P(\mathcal{B})$, a vector $v \in \mathbb{R}^E$ is parallel to F if $v = \alpha(x_1 - x_2)$ for some $x_1, x_2 \in F$ and $\alpha \in \mathbb{R}$.

The following claim will be useful for designing the new weight function.

Claim 3.4. Let F be the face of $P(\mathcal{B})$ minimizing a function $\langle w, x \rangle$. Let v be a vector parallel to F. Then $\langle w, v \rangle = 0$.

Proof. Since v is parallel to F, we have $v = \alpha(x_1 - x_2)$, for some $x_1, x_2 \in F$ and $\alpha \in \mathbb{R}$. Hence,

$$\langle w, v \rangle = \langle \alpha w, x_1 - x_2 \rangle = 0.$$

The last equality holds because x_1 and x_2 lie on the face minimizing w and thus, $\langle w, x_1 \rangle = \langle w, x_2 \rangle$.

Let F_0 be the face minimizing the current weight function w_0 . Let v be a vector parallel to F_0 . Now, we choose a new weight function $w' \in \{0, 1, ..., N-1\}^E$ such that

$$\langle w', v \rangle \neq 0.$$

Let us define $w_1 := mN \ w_0 + w'$ and let F_1 be the face minimizing w_1 . Clearly, $\langle w_1, v \rangle \neq 0$ and thus from Claim 3.4, v is not parallel to F_1 . This implies that F_1 is strictly contained in F_0 . To ensure that F_1 is significantly smaller than F_0 , we choose a many vectors parallel to F_0 , say v_1, v_2, \ldots, v_k , and construct a weight function w' such that for all $i \in [k]$ we have $\langle w', v_i \rangle \neq 0$. The following well-known lemma says that such a w' can be constructed easily (see, for example, [FKS84]). It actually constructs a list of weight functions such that one of them has the desired property.

Lemma 3.5. Given m, k, t, let $q = mk \log t$. In time $poly(m, k, \log t)$ one can construct a set of weight vectors $w_1, w_2, \ldots, w_q \in \{0, 1, 2, \ldots, q\}^m$ such that for any set of vectors $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$ there exists a $j \in [q]$ such that for all $i \in [k]$ we have $\langle w_j, v_i \rangle \neq 0$.

Proof. First define $w := (1, t, t^2, \dots, t^{m-1})$. Clearly, $\langle w, v_i \rangle \neq 0$ for each i, because each coordinate of v_i is less than t. To get a weight vector with small coordinates, we go modulo small numbers. We consider the following weight vectors w_j for $1 \leq j \leq q$:

$$w_j := w \mod j$$
.

We claim that this set of weight vectors has the desired property. We know that

$$W = \prod_{i=1}^{k} \langle w, v_i \rangle \neq 0.$$

Note that the product W is bounded by t^{mk} . On the other hand, it is known that $lcm(2,3,\ldots,q) >$ $2^q = t^{mk}$ for all $q \ge 7$ [Nai82]. Thus, there must exist a $2 \le j \le q$ such that j does not divide W. In other words, for all $i \in [k]$

$$\langle w, v_i \rangle \not\equiv 0 \pmod{j}$$

which is the desired property.

There are two things to note about this lemma: (i) it is black-box in the sense that we do not need to know the set of vectors $\{v_1, v_2, \dots, v_k\}$. (ii) We do not know a priori which function will work in the given set of functions. So, one has to try all possibilities.

The lemma tells us that we can ensure $\langle w', v \rangle \neq 0$ for polynomially many vectors v whose coordinates are polynomially bounded. It is the foundation of our strategy that was also used previously [FGT16, GT17]. Below, we formally give the weight construction. Recall that for a face F, the lattice L_F is the set of all integral vectors parallel to F.

To prove Theorem 2.4, let c be the constant in the assumption of the theorem. Let $N=m^{O(1)}$ be a large enough number and $p = \log_c m - 1$. Let $w_0 \in \mathbb{Z}^E$ be a weight vector such that $\langle w_0, v \rangle \neq 0$ for all vector $v \in \mathbb{Z}^E$ with $||v|| \le c$. For i = 1, 2, ..., p, define

 F_{i-1} : the face of $P(\mathcal{B})$ minimizing w_{i-1}

 w_i' : a weight vector in $\{0, 1, \dots, N-1\}^E$ such that $\langle w_i', v \rangle \neq 0$ for all $v \in L_{F_{i-1}}$ with $||v|| \leq c^{i+1}$. w_i : $mNw_{i-1} + w'_i$.

We argue the face F_p of $P(\mathcal{B})$ that minimizes w_p is a point. First observe that $F_i \subset F_{i-1}$, for each i (Claim 3.2). By definition, it follows that $L_{F_i} \subset L_{F_{i-1}}$.

Claim 3.6. For i = 0, 1, 2, ..., p, for all $v \in L_{F_i}$, we have

$$||v|| > c^{i+1}.$$

Proof. Suppose there exists a $v \in L_{F_i}$ with $||v|| \leq c^{i+1}$. Since F_i is the face minimizing w_i and v is parallel to F_i , we know $\langle w_i, v \rangle = 0$. This is same as

$$\langle mNw_{i-1} + w_i', v \rangle = 0. (2)$$

By the choice of p, we have $||v|| \le c^{i+1} \le m$. Thus, we get $|\langle w_i', v \rangle| < mN$. This together with (2) implies that

$$\langle w_i', v \rangle = 0.$$

Since v is in L_{F_i} , it is also in $L_{F_{i-1}}$. Thus, the above equation contradicts the definition of w'_i .

The following claim proves that w_p is isolating.

Claim 3.7. The face F_p is a point.

Proof. Suppose not then there will be at least two vertices of F_p , say $y_1, y_2 \in \{0,1\}^E$. Clearly, $y_1 - y_2 \in L_{F_p}$ and $||y_1 - y_2|| \le m \le c^{p+1}$. This contradicts Claim 3.6.

Bound on the weights. To bound the weights in vector w_p , we bound w_i' for each i. From Claim 3.6, we have that $\lambda(L_{F_{i-1}}) \geq c^i + 1$ for each $1 \leq i \leq p$. Thus, from the lemma hypothesis,

$$\left|\left\{v \in L_{F_{i-1}} : \|v\| \le c^{i+1}\right\}\right| \le m^{O(1)}.$$

Recall that we have to ensure $\langle w_i', v \rangle \neq 0$ for vectors v in the above set. From Lemma 3.5, one can construct w_i' with weights bounded by $m^{O(1)}$ (the parameter t is less than m here). Clearly, the weights in w_p are bounded by $m^{O(p)} = m^{O(\log m)}$.

Recall that Lemma 3.5 actually gives a set of $m^{O(1)}$ weight vectors for possible choices of w'_i and one of them has the desired property. Thus, we try all possible combinations for each w'_i . This gives us a set of $m^{O(\log m)}$ possible choices for w_p such that one of them is isolating for \mathcal{B} . This proves Theorem 2.4.

4 Matroids and Circuits

In Section 4.1 we recall some basic definitions and well-known facts about matroids (see, for example, [Oxl06]). In Section 4.2 we describe Seymour's decomposition theorem for regular matroids.

4.1 Matroids preliminaries

In this section, we recall some basic definitions and well-known facts about matroids (see [Oxl06, Sch03b]).

Definition 4.1 (Matroid). A pair $M = (E, \mathcal{I})$ is a matroid if E is a finite set and \mathcal{I} is a nonempty collection of subsets of E satisfying

- 1. if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$,
- 2. if $I, J \in \mathcal{I}$ and |I| < |J|, then $I \cup \{z\} \in \mathcal{I}$, for some $z \in J \setminus I$.

A subset I of E is said to be independent, if I belongs to \mathcal{I} and dependent otherwise. An inclusionwise maximal independent subset of E is a base of M. An inclusionwise minimal dependent set is a circuit of M.

We define some special classes of matroids.

Definition 4.2 (Linear, binary, and regular matroid). A matroid $M = (E, \mathcal{I})$ with m = |E| is linear or representable over some field \mathbb{F} , if there is a matrix $A \in \mathbb{R}^{n \times m}$ over \mathbb{F} , for some n, such that the collection of subsets of the columns of A that are linearly independent over \mathbb{F} is identical to \mathcal{I} .

A matroid M is binary, if M is representable over GF[2]. A matroid M is regular, if M is representable over any field.

It is well known that regular matroids can be characterized in terms of TU matrices. Moreover, the two definitions of circuits, Definition 5.1 for TU matrices and Definition 4.1 for regular matroids, coincide.

Theorem 4.3 (See [Oxl06, Sch03b]). Let M be a matroid.

1. Matroid M is regular if, and only if, M can be represented by a TU matrix over R.

2. Let M be regular, represented by a TU matrix A. Then there is a one to one correspondence between the circuits of M and the circuits of A (up to change of sign).

Proof. We show the second claim. If $u \in \mathbb{R}^E$ is a circuit of A, then the columns in A corresponding to the set supp(u) are minimally dependent. Thus, the set supp(u) is a circuit of matroid M.

In the other direction, a circuit $C \subseteq E$ of matroid M is a minimal dependent set. Thus, the set of columns of A corresponding to C is minimally dependent. Hence, there is a unique vector u (up to sign) in L(A) with its support being C.

Two special classes of regular matroids are graphic matroids and their duals, cographic matroids.

Definition 4.4 (Graphic and cographic matroid). A matroid $M = (E, \mathcal{I})$ is said to be a graphic, if there is an undirected graph G = (V, E) whose edges correspond to the ground set E of M, such that $I \in \mathcal{I}$ if and only if I forms a forest in G. By M(G) we denote the graphic matroid corresponding to G.

The dual of M is the matroid $M^* = (E, \mathcal{I}^*)$ over the same ground set such that a set $I \subseteq E$ is independent in M^* if and only if $E \setminus I$ contains a base set of M. A cographic matroid is the dual of a graphic matroid.

For G = (V, E), we can represent M(G) by the vertex-edge incidence matrix $A_G \in \{0, 1\}^{V \times E}$,

$$A_G(v, e) = \begin{cases} 1 & \text{if } e \text{ is incident on } v, \\ 0 & \text{otherwise.} \end{cases}$$

Recall that an edge cut of a graph G = (V, E) is a set $C \subseteq E$ such that G - S has more connected components than G.

Fact 4.5. Let G = (V, E) be a graph.

- 1. The circuits of M(G) are exactly the simple cycles of G.
- 2. The circuits of $M^*(G)$ are exactly the minimal edge cuts of G.

The symmetric difference to two cycles in a graph is a disjoint union of cycles. The analogous statement is true for binary matroids.

Fact 4.6. Let M be binary. If C_1 and C_2 are circuits of M, then the symmetric difference $C_1 \triangle C_2$ is a disjoint union of circuits.

A crucial role in our argument is to bound the number of short circuits. The following theorem is a version of Theorem 2.6 applied to the cases of graphic and cographic matroids.

Theorem 4.7. Let G = (V, E) be a graph with $m \ge 1$ edges. Then

- 1. If G has no cycles of length $\leq r$ then number of cycles in G with length at most $\alpha r/2$ is bounded by $(2m)^{\alpha}$ for $\alpha \geq 2$ [Sub95].
- 2. If G has no cuts of size $\leq r$ then number of cuts in G with size at most $\alpha r/2$ is bounded by m^{α} for $\alpha \geq 2$ [Kar93].

We define two operations on matroids.

Definition 4.8 (Deletion, contraction, minor). Let $M = (E, \mathcal{I})$ be a matroid and $e \in E$. The matroid obtained from M by deleting e is denoted by $M \setminus e$. Its independent sets are given by the collection $\{I \in \mathcal{I} \mid e \notin I\}$.

The the matroid obtained by contracting e is denoted by M/e. Its independent sets are given by the collection $\{I \subseteq E \setminus \{e\} \mid I \cup \{e\} \in \mathcal{I}\}.$

A matroid obtained after a series of deletion and contraction operations on M is called a minor of M.

Fact 4.9. Let $M = (E, \mathcal{I})$ be a matroid and $e \in E$.

- 1. The circuits of $M \setminus e$ are those circuits of M that do not contain e.
- 2. The classes of regular matroids, graphic matroids, and cographic matroids are minor closed.

For a characterization of regular matroids, we will need a specific matroid R_{10} , first introduced by [Bix77]. It is a matroid with 10 elements in the ground set represented over GF(2) by the following matrix.

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Fact 4.10 ([Sey80]). Any matroid obtained by deleting some elements from R_{10} is a graphic matroid.

4.2 Seymour's Theorem and its variants

The main ingredient for the proof of Theorem 2.6 is a theorem of Seymour [Sey80, Theorem 14.3] that shows that every regular matroid can be constructed from piecing together three kinds of matroids – graphic matroids, cographic matroids, and a certain matroid R_{10} of size 10. This piecing together is done via a matroid operations called 1-sum, 2-sum and 3-sum. These operations are defined for binary matroids.

Definition 4.11 (Sum of two matroids [Sey80], see also [Oxl06]). Let $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$ be two binary matroids, and let $S = E_1 \cap E_2$. The sum of M_1 and M_2 is the matroid denoted by $M_1 \triangle M_2$. It is defined over the ground set $E_1 \triangle E_2$ such that the circuits of $M_1 \triangle M_2$ are minimal non-empty subsets of $E_1 \triangle E_2$ that are of the form $C_1 \triangle C_2$, where C_i is a (possibly empty) disjoint union of circuits of M_i , for i = 1, 2.

From the characterization of the circuits of a matroid [Oxl06, Theorem 1.1.4], it can be verified that the sum $M_1 \triangle M_2$ is indeed a matroid.

We are only interested in three special sums:

Definition 4.12 (1, 2, 3-sums). Let $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$ be two binary matroids and $E_1 \cap E_2 = S$. Let $m_1 = |E_1|$, $m_2 = |E_2|$, and s = |S|. Let furthermore $m_1, m_2 < |E_1 \triangle E_2| = m_1 + m_2 - 2s$. The sum $M_1 \triangle M_2$ is called a

- 1-sum, if s = 0.
- 2-sum, if s = 1 and S is not a circuit of M_1, M_2, M_1^* or M_2^* ,
- 3-sum, if s = 3 and S is a circuit of M_1 and M_2 that does not contain a circuit of M_1^* or M_2^* .

Note that the condition $m_1, m_2 < m_1 + m_2 - 2s$ implies that

$$m_1, m_2 \ge 2s + 1 \tag{3}$$

To get an intuition, we describe how the sum operation looks like for graphic matroids. For two graphs G_1 and G_2 , their 2-sum G is obtained as follows: for an edge (u_1, v_1) in G_1 and an edge (u_2, v_2) in G_2 , identify the two edges, that is, identify u_1 with u_2 and v_1 with v_2 . Finally, G is the union of G_1 and G_2 where the edge $(u_1, v_1) = (u_2, v_2)$ is removed. Here, S is the set containing the single edge $(u_1, v_1) = (u_2, v_2)$.

It is instructive to see how a cycle C in G looks like. Either C is a cycle in G_1 or G_2 that avoids nodes u_1, v_1, u_2, v_2 , or it is a union of a path $u_1 \rightsquigarrow v_1$ in G_1 and a path $v_2 \rightsquigarrow u_2$ in G_2 . Equivalently, it is a symmetric difference $C = C_1 \triangle C_2$, for two cycles C_1 in G_1 and C_2 in G_2 , such that C_1 and C_2 both contain the common edge $(u_1, v_1) = (u_2, v_2)$. Analogously, the sum operation for two binary matroids is defined such that any circuit C of the sum $M_1 \triangle M_2$ is either a circuit in M_1 or M_2 that avoids the elements in S, or it is $C = C_1 \triangle C_2$, for circuits C_1 and C_2 of M_1 and M_2 , respectively, such that both C_1 and C_2 contain a common element from S.

From the definition of $M_1 \triangle M_2$ the following fact follows easily.

Fact 4.13. Let C_i be a disjoint union of circuits of M_i , for i = 1, 2. If $C_1 \triangle C_2$ is a subset of $E_1 \triangle E_2$ then it is a disjoint union of circuits of $M_1 \triangle M_2$.

In particular, it follows that for i = 1, 2, any circuit C_i of M_i with $C_i \subseteq E_i \setminus S$ is a circuit of M. Further, for 1-sums, circuits are easy to characterize.

Fact 4.14 (Circuits in a 1-sum). If M is a 1-sum of M_1 and M_2 then any circuit of M is either a circuit of M_1 or a circuit of M_2 .

Thus, if one is interested in the number of circuits, one can assume that the given matroid is not a 1-sum of two smaller matroids.

Definition 4.15 (Connected matroid). A matroid M is connected if it cannot be written as a 1-sum of two smaller matroids.

A characterization of circuits in a 2-sum or 3-sum is not as easy. Seymour [Sey80, Lemma 2.7] provides a unique representation of the circuits for these cases.

Lemma 4.16 (Circuits in a 2- or 3-sum, [Sey80]). Let C_1 and C_2 be the set of circuits of M_1 and M_2 , respectively. Let M be a 2- or 3-sum of M_1 and M_2 . For $S = E_1 \cap E_2$, we have |S| = 1 or |S| = 3, respectively. Then for any circuit C of M, one of the following holds:

- 1. $C \in \mathcal{C}_1$ and $S \cap C = \emptyset$, or
- 2. $C \in \mathcal{C}_2$ and $S \cap C = \emptyset$, or
- 3. there exist unique $e \in S$, $C_1 \in C_1$ and $C_2 \in C_2$ such that

$$S \cap C_1 = S \cap C_2 = \{e\} \text{ and } C = C_1 \triangle C_2.$$

Seymour proved the following decomposition theorem for regular matroids.

Theorem 4.17 (Seymour's Theorem, [Sey80]). Every regular matroid can be obtained by means of 1-sums, 2-sums and 3-sums, starting from matroids that are graphic, cographic or R_{10} .

However, to prove Theorem 2.6, we need a refined version of Seymour's theorem that was proved by Truemper [Tru98]. The difference from Seymour's theorem is that it decomposes a regular matroid as a sum of a smaller regular matroid and a graphic, cographic, or the R_{10} matroid. In contrast, Seymour's theorem just guarantees a decomposition into two regular matroids neither of which may be graphic, cographic or R_{10} . The theorem we write here slightly differs from the one by Truemper [Tru98, Lemma 11.3.18]. A proof of Theorem 4.18 can be found in Appendix A.

Theorem 4.18 (Truemper's decomposition for regular matroids, [Tru98]). Let M be any connected regular matroid, that is not graphic or cographic and is not isomorphic to R_{10} . Let \tilde{e} be a fixed element of the ground set of M. Then M is a 2-sum of 3-sum of M_1 and M_2 , where M_1 is a graphic or cographic matroid, or a matroid isomorphic to R_{10} and M_2 is a regular matroid that contains \tilde{e} .

5 A Bound on the Number of Short Vectors in Lattices: Proof of Theorem 2.5

In this section, we show that Theorem 2.5 follows from Theorem 2.6. We define a circuit of a matrix and show that it is sufficient to upper bound the number of short circuits of a TU matrix. We argue that this, in turn, is implied by a bound on the number of short circuits of a regular matroid.

Definition 5.1 (Circuit). For a matrix A, a vector $u \in L(A)$ is a circuit of A if

- there is no nonzero $v \in L(A)$ with $supp(v) \subseteq supp(u)$, and
- $gcd(u_1, u_2, \ldots, u_m) = 1.$

We have the following properties of circuits.

Fact 5.2. Let A be a matrix.

- 1. Any vector $v \in L(A)$ is either a multiple of a circuit of A or there is a circuit u of A with $supp(u) \subseteq supp(v)$.
- 2. Let A be a TU matrix. Then every circuit of A has its coordinates in $\{-1,0,1\}$ (see [Onn10, Lemma 3.18]).

Now, we define a notion of conformality, which will allow us to show that any sufficiently small vector in L(A) is a circuit.

Definition 5.3 (Conformal [Onn10]). Let $u, v \in \mathbb{R}^m$. We say that u is conformal to v, denoted by $u \sqsubseteq v$, if $u_i v_i \ge 0$ and $|u_i| \le |v_i|$, for each $1 \le i \le m$.

Observe that for vectors u and v with $u \sqsubseteq v$, we have

$$||v - u|| = ||v|| - ||u||. (4)$$

The following lemma follows from [Onn10, Lemma 3.19].

Lemma 5.4. Let A be a TU matrix. Then for any nonzero vector $v \in L(A)$, there is a circuit u of A that is conformal to v.

We use the lemma to argue that any small enough vector in L(A) must be a circuit.

Lemma 5.5. Let A be a TU matrix. Then any nonzero vector $v \in L(A)$ with $||v|| < 2\lambda(L(A))$ is a circuit of A.

Proof. Suppose for contradiction that v is not a circuit. From Lemma 5.4, there is a circuit u of A with $u \sqsubseteq v$. Since v is not a circuit, $v - u \neq 0$. From Equation (4), we have

$$||v|| = ||v - u|| + ||u||. (5)$$

Since both u and v-u are nonzero vectors in L(A), we know that $||u|| \ge \lambda(L(A))$ and $||v-u|| \ge \lambda(L(A))$. This together with Equation (5) implies that $||v|| \ge 2\lambda(L(A))$, which is contradiction. \square

To prove Theorem 2.5, let A be TU matrix. By Lemma 5.5, it suffices to bound the number of near-shortest circuits of A. Further, from Theorem 4.3, the two definitions of circuits, for a TU matrix and for a corresponding regular matroid, coincide. Moreover, the size of a circuit of a regular matroid is same as the ℓ_1 -norm of the corresponding circuit of the associated TU matrix. Now Theorem 2.5 follows by from Theorem 2.6 when we define the weight of each element being 1.

6 A Bound on the Number of Short Circuits in Regular Matroids: Proof of Theorem 2.6

In this section, we prove our main technical tool: in a regular matroid, the number of circuits that are close to the shortest circuit is polynomially bounded (Theorem 2.6). The proof argues along the decomposition provided by Theorem 4.18. First, we need to show a bound on the number of circuits for the two special cases – graphic and cographic matroids.

6.1 Base Case: Graphic and cographic matroids

We actually prove a lemma for graphic and cographic matroids that does more – it gives an upper bound on the number of circuits that contain a fixed element of the ground set.

Lemma 6.1. Let $M = (E, \mathcal{I})$ be a graphic or cographic matroid, where $|E| = m \geq 2$, and $w : E \to \mathbb{N}$ be a weight function. Let $R \subseteq E$ with $|R| \leq 1$ (possibly empty) and r be an even number.

If there is no circuit C in M such that $w(C) \le r$ and $C \cap R = \emptyset$, then, for any integer $\alpha \ge 2$, the number of circuits C such that $R \subseteq C$ and $w(C) \le \alpha r/2$ is at most $(2(m-|R|))^{\alpha}$.

Proof. Part 1: M graphic. (See [TK92, Sub95] for a similar argument as in this case.) Let G = (V, E) be the graph corresponding to the graphic matroid M. By the assumption of the lemma, any cycle C in G such that $C \cap R = \emptyset$ has weight w(C) > r. Consider a cycle C in G with $R \subseteq C$ and $w(C) \le \alpha r/2$. Let the edge sequence of the cycle C be $(e_1, e_2, e_3, \ldots, e_q)$ such that if R is nonempty then $R = \{e_1\}$. We choose α edges of the cycle C as follows: Let $i_1 = 1$ and for $j = 2, 3, \ldots, \alpha$, define i_j to be the least index (if one exists) such that

$$\sum_{a=i_{j-1}+1}^{i_j} w(e_a) > r/2. \tag{6}$$

If such an index does not exists then define $i_j = q$. Removing the edges $e_{i_1}, e_{i_2}, \dots, e_{i_{\alpha}}$ from C gives us α paths: for $j = 1, 2, \dots, \alpha - 1$

$$p_j := (e_{i_j+1}, e_{i_j+2}, \dots, e_{i_{j+1}-1}),$$

and

$$p_{\alpha} := (e_{i_{\alpha}+1}, e_{i_{\alpha}+2}, \dots, e_q).$$

Note that some of these paths might be empty. By the choice of i_j we know that $w(p_j) \leq r/2$ for $j = 1, 2, ..., \alpha - 1$. Combining (6) with the fact that $w(C) \leq \alpha r/2$, we obtain that $w(p_\alpha) < r/2$. We associate the ordered tuple of oriented edges $(e_{i_1}, e_{i_2}, ..., e_{i_\alpha})$ with the cycle C.

Claim 6.2. For two distinct cycles C, C' in G, such that both contain R and $w(C), w(C') \leq \alpha r/2$, the two associated tuples (defined as above) are different.

Proof. For the sake of contradiction, assume that the associated tuples are same for both the cycles. Thus, C and C' pass through $(e_{i_1}, e_{i_2}, \ldots, e_{i_{\alpha}})$ with the same orientation of these edges. Further, there are α paths connecting them, say $p_1, p_2, \ldots, p_{\alpha}$ from C and $p'_1, p'_2, \ldots, p'_{\alpha}$ from C'. Since C and C' are distinct, for at least one j, it must be that $p_j \neq p'_j$. However, since the starting points and the end points of p_j and p'_j are same, $p_j \cup p'_j$ contains a cycle C''. Moreover, since $w(p_j), w(p'_j) \leq r/2$, we can deduce that $w(C'') \leq r$. Finally, since neither of p_j and p'_j contain e_1 , we get $C'' \cap R = \emptyset$. This is a contradiction.

Since, each cycle C with $w(C) \leq \alpha r/2$ and $R \subseteq C$ is associated with a different tuple, the number of such tuples upper bounds the number of such cycles. We bound the number of tuples depending on whether R is empty or not.

- When R is empty, the number of tuples of α oriented edges is at most $(2m)^{\alpha}$.
- When $R = \{e_1\}$, the number of choices for the rest of the $\alpha 1$ edges and their orientation is a most $(2(m-1))^{\alpha-1}$.

Part 2: M cographic. Let G = (V, E) be the graph corresponding to the cographic matroid M and let n = |V|. Recall from Fact 4.5 that circuits in cographic matroids are minimal edge cuts in G. By the assumption of the lemma, any cut C in G with $R \cap C = \emptyset$ has weight w(C) > r. We want to give a bound on the number of cuts $C \subseteq E$ such that $w(C) \le \alpha r/2$ and $R \subseteq C$.

We argue similar to the probabilistic construction of a minimum cut of Karger [Kar93]. The basic idea is to contract randomly chosen edges. Contraction of an edge e = (u, v) means that all edges between u and v are deleted and then u is identified with v. Note that we get a multi-graph that way: if there were two edges (u, w) and (v, w) before the contraction, they become two parallel edges after identifying u and v. The contracted graph is denoted by G/e. The intuition behind contraction is, that randomly chosen edges are likely to avoid the minimum cut edges.

The following algorithm implements the idea. It does $k \leq n$ contractions in the first phase and then chooses a random cut within the remaining nodes of the contracted graph in the second phase that contains the edges of R.

```
SMALL CUT (G = (V, E), R, \alpha)

Contraction

Repeat k = n - \alpha - |R| times

randomly choose e \in E \setminus R with probability w(e)/w(E \setminus R)

G \leftarrow G/e

R \leftarrow R \cup \{\text{new parallel edges to the edges in } R\}

Selection
```

5 Among all possible cuts C in the obtained graph G with $R \subseteq C$, choose one uniformly at random and return it.

Let $C \subseteq E$ be a cut with $w(C) \leq \alpha r/2$ and $R \subseteq C$. We want to give a lower bound on the probability that SMALL CUT outputs C.

Let $G_0 = G$ and $G_i = (V_i, E_i)$ be the graph after the *i*-th contraction, for i = 1, 2, ..., k. Note that G_i has $n_i = n - i$ nodes since each contraction decreases the number of nodes by 1. Let R_i denote the set R after the *i*-th contraction. That is, if $R = \{e_1\}$, then R_i contains all edges parallel to e_1 in G_i . In case that $R = \emptyset$, also $R_i = \emptyset$. Note that in either case $R_i \subseteq C$.

Conditioned on the event that no edge in C has been contracted in iterations 1 to i, the probability that an edge from C is contracted in the (i + 1)-th iteration is at most

$$w(C \setminus R_i)/w(E_i \setminus R_i)$$
.

We know that $w(C \setminus R_i) \leq w(C) \leq \alpha r/2$. For a lower bound on $w(E_i \setminus R_i)$, consider the graph G_i' obtained from G_i by contracting the edges in R_i . The number of nodes in G_i' will be $n_i' = n - i - |R|$ and its set of edges will be $E_i \setminus R_i$. For any node v in G_i' , consider the set $\delta(v)$ of edges incident on v in G_i' . The set $\delta(v)$ forms a cut in G_i' and also in G. Note that $\delta(v) \cap R = \emptyset$, as the edge in R has been contracted in G_i' . Thus, we can deduce that $w(\delta(v)) > r$. By summing this up for all nodes in G_i' , we obtain

$$w(E_i \setminus R_i) > r n_i'/2.$$

Hence,

$$w(E_i \setminus R_i) > r(n-i-|R|)/2.$$

Therefore the probability that an edge from C is contracted in the (i + 1)-th iteration is

$$\leq \frac{w(C \setminus R_i)}{w(E_i \setminus R_i)} \leq \frac{\alpha r/2}{r(n-i-|R|)/2} = \frac{\alpha}{n-i-|R|}.$$

This bound becomes greater than 1, when $i > n - \alpha - |R|$. This is the reason why we stop the contraction process after $k = n - \alpha - |R|$ iterations.

The probability that an edge from C is not contracted in any of the rounds is

$$\geq \prod_{i=0}^{k-1} \left(1 - \frac{\alpha}{n-i-|R|} \right)$$

$$= \prod_{i=0}^{k-1} \left(1 - \frac{\alpha}{k+\alpha-i} \right)$$

$$= \prod_{i=0}^{k-1} \frac{k-i}{k+\alpha-i}$$

$$= \frac{1}{\binom{k+\alpha}{k}}$$

$$= \frac{1}{\binom{n-|R|}{k}}.$$

After $n-\alpha-|R|$ contractions we are left with $\alpha+|R|$ nodes. We claim that the number of possible cuts on these nodes that contain R is $2^{\alpha-1}$. This is obvious in case when $R=\emptyset$. When $R=\{e_1\}$, then the number of possible cuts on $\alpha+1$ nodes that contain e_1 is again $2^{\alpha-1}$. We choose one of these cuts randomly. Thus, the probability that C survives the *contraction* process and is also chosen in the *selection* phase is at least

$$\frac{1}{2^{\alpha-1}\binom{n-|R|}{\alpha}} \ge \frac{1}{(n-|R|)^{\alpha}}.$$

Note that in the end we get exactly one cut. Thus, the number of cuts with weight $\leq \alpha r/2$ and $R \subseteq C$ must be at most $(n-|R|)^{\alpha}$, which is bounded by $(2(m-|R|))^{\alpha}$.

6.2 General regular matroids

In this section, we prove our main result about regular matroids.

Theorem (Theorem 2.6). Let $M = (E, \mathcal{I})$ be a regular matroid with $m = |E| \ge 2$ and $w : E \to \mathbb{N}$ be a weight function. Let r be an even number. Suppose M does not have any circuit C such that $w(C) \le r$. Then

$$|\{C: C \text{ circuit in } M \text{ and } w(C) \leq 3r/2\}| \leq 150 \, m^5.$$

Proof. The proof is by an induction on m, the size of the ground set. For the base case, let $m \le 10$. There are at most 2^m circuits in M. This number is bounded by $150 \, m^5$, for any $2 \le m \le 10$.

For the inductive step, let $M = (E, \mathcal{I})$ be a regular matroid with |E| = m > 10 and assume that the theorem holds for all smaller regular matroids. Note that M cannot be R_{10} since m > 10. We can also assume that matroid M is neither graphic nor cographic, otherwise the bound follows from Lemma 6.1. By Theorem 4.17, matroid M can be written as a 1-, 2-, or 3-sum of two regular matroids $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$. We define

$$S := E_1 \cap E_2,$$

 $s := |S|,$
 $m_i := |E_i|, \text{ for } i = 1, 2,$
 $C_i := \{C : C \text{ is a circuit of } M_i\}.$

In case that M is the 1-sum of M_1 and M_2 , we have $S = \emptyset$, and therefore $m = m_1 + m_2$. By Fact 4.14, the set of circuits of M is the union of the circuits of M_1 and M_2 . From the induction hypothesis, we have $|\mathcal{C}_i| \leq 150 \, m_i^5$, for i = 1, 2. For the number of circuits in M we get

$$|\mathcal{C}_1 \cup \mathcal{C}_2| \le 150 \, m_1^5 + 150 \, m_2^5 \le 150 \, m^5.$$

This proves the theorem in case of a 1-sum. Hence, in the following it remains to consider the case that M cannot be written as a 1-sum. In other words, we may assume that M is connected (Definition 4.15).

Now we can apply Theorem 4.18 and assume that M is a 2- or 3-sum of M_1 and M_2 , where M_1 is a graphic, cographic or the R_{10} matroid, and M_2 is a regular matroid.

We define for i = 1, 2 and $e \in S$

$$\begin{array}{lll} \mathcal{C}_{i,e} &:= & \left\{ \, C : C \text{ is a circuit of } M_i \text{ and } C_i \cap S = \{e\} \, \right\}, \\ M_i' &:= & M_i \setminus S, \\ \mathcal{C}_i' &:= & \left\{ \, C : C \text{ is a circuit of } M_i' \, \right\}. \end{array}$$

By Facts 4.9 and 4.10, matroid M'_1 is graphic or cographic, and M'_2 is regular. Recall from Lemma 4.16 that any circuit C of M can be uniquely written as $C_1 \triangle C_2$ such that one of the following holds:

- $C_1 = \emptyset$ and $C_2 \in \mathcal{C}'_2$.
- $C_2 = \emptyset$ and $C_1 \in \mathcal{C}'_1$.

• $C_1 \in \mathcal{C}_{1,e}$, and $C_2 \in \mathcal{C}_{2,e}$, for some $e \in S$.

Thus, we will view each circuit C of M as $C_1 \triangle C_2$ and consider cases based on how the weight of C is distributed among C_1 and C_2 . Recall that the weight function w is defined on $E = E_1 \triangle E_2$. We extend w to a function on $E_1 \cup E_2$ by defining

$$w(e) = 0$$
, for $e \in S$.

Now, for the desired upper bound, we will divide the set of circuits of M with weight at most 3r/2 into three cases.

Case 1. $C_1 \in \mathcal{C}'_1$.

Case 2. $w(C_1) \leq r/2$. This includes the case that $C_1 = \emptyset$.

Case 3. $w(C_1) > r/2$ and $C_2 \neq \emptyset$.

In the following, we will derive an upper bound for the number of circuits in each of the three cases. Then the sum of these bounds will be an upper bound on the number of circuits in M. We will show that the sum is less than $150 \, m^5$.

Case 1: $C_1 \in \mathcal{C}'_1$

We have $C_2 = \emptyset$ and $C = C_1 \in \mathcal{C}'_1$. That is, we need to bound the number of circuits of M'_1 . Recall that any circuit of M'_1 is also a circuit of M. Hence, we know there is no circuit C_1 in M'_1 with $w(C_1) \leq r$. Since M'_1 is graphic or cographic, from Lemma 6.1, the number of circuits C_1 of M'_1 with $w(C_1) \leq 3r/2$ is at most $(2(m_1 - s))^3$. Recall from (3) that $m_1 \geq 2s + 1$. For any $m_1 \geq 2s + 2$, one can verify that

$$(2(m_1 - s))^3 \le 150 (m_1 - 2s)^5 =: T_0.$$

On the other hand, when $m_1 = 2s + 1$, the number of circuits can be at most $2^{m_1 - s} \le 2^4$, which is again bounded by T_0 .

Case 2: $w(C_1) < r/2$

The main point why we distinguish case 2 is that here C_1 is uniquely determined.

Claim 6.3. For any $e \in S$, there is at most one circuit $C_1 \in C_{1,e}$ with $w(C_1) \leq r/2$.

Proof. For the sake of contradiction, assume that there are two circuits $C_1, C'_1 \in \mathcal{C}_{1,e}$, with $w(C_1), w(C'_1) \leq r/2$. By Fact 4.6, we know that $C_1 \triangle C'_1$ is a disjoint union of circuits in M_1 . Note that $C_1 \cap S = C'_1 \cap S = \{e\}$, and hence $(C_1 \triangle C'_1) \cap S = \emptyset$. Thus, $C_1 \triangle C'_1$ is in fact a disjoint union of circuits in M. Let \widetilde{C} be a subset of $C_1 \triangle C'_1$ that is a circuit. For the weight of \widetilde{C} we have

$$w(\widetilde{C}) \le w(C_1 \triangle C_1') \le w(C_1) + w(C_1') \le r/2 + r/2 = r.$$

This is a contradiction because M has no circuit of weight r.

Thus, as we will see, it suffices to bound the number of circuits C_2 in M_2 . Let C_e^* be the unique choice of a circuit provided by Claim 6.3 (if one exists) for element $e \in S$. For the ease of notation, we assume in the following that there is a C_e^* for every $e \in S$. Otherwise we would delete any element $e \in S$ from M_2 for which no C_e^* exists, and then would consider the resulting smaller matroid. It might actually be that we thereby delete all of S from M_2 .

We define a weight function w' on E_2 as follows:

$$w'(e) := \begin{cases} w(C_e^*), & \text{if } e \in S, \\ w(e), & \text{otherwise.} \end{cases}$$

We now have that any circuit C of Case 2 can be written as $C_e^* \triangle C_2$, for some $e \in S$, or $C = C_2$ when $C_1 = \emptyset$. Because C_e^* is unique, the mapping $C \mapsto C_2$ is injective for circuits C of Case 2. Moreover, we have $w(C) = w'(C_2)$. This follows from the definition in case that $C = C_2$. In the other case, we have

$$w(C) = w(C_e^* \triangle C_2) = w(C_e^*) + w(C_2) = w'(C_2). \tag{7}$$

For the equalities, recall that w(e) = 0 for $e \in S$.

We conclude that the number of circuits C_2 in M_2 with $w'(C_2) \leq 3r/2$ is an upper bound on the number of Case 2 circuits C of M with $w(C) \leq 3r/2$. Now, to get an upper bound on the number of circuits in M_2 , we want to apply induction hypothesis. We need the following claim.

Claim 6.4. There is no circuit C_2 in M_2 with $w'(C_2) \leq r$.

Proof. For the sake of contradiction let C_2 be such a circuit. We show that there exists a circuit C' in M with $w(C') \leq r$. This would contradict the assumption of the lemma.

Case(i): $C_2 \cap S = \emptyset$. Then $C_2 \in \mathcal{C}'_2$ itself yields the contradiction because it is a circuit of M and $w(C_2) = w'(C_2) \leq r$.

Case(ii): $C_2 \cap S = \{e\}$. By Fact 4.13, the set $C_2 \triangle C_e^*$ is a disjoint union of circuits of M. Let $C' \subseteq C_2 \triangle C_e^*$ be a circuit of M. Then, because w(e) = 0, we have

$$w(C') \le w(C_e^* \triangle C_2) = w(C_e^*) + w(C_2) = w'(C_2) \le r.$$

Case(iii): $C_2 \cap S = \{e_1, e_2\}$. By Fact 4.13, similar as in case (ii), there is a set $C' \subseteq C_2 \triangle C_{e_1}^* \triangle C_{e_2}^*$ that is a circuit of M. Then, because $w(e_1) = w(e_2) = 0$, we have

$$w(C') \le w(C_2 \triangle C_{e_1}^* \triangle C_{e_2}^*) \le w(C_2) + w(C_{e_1}^*) + w(C_{e_2}^*) = w'(C_2) \le r.$$

Case(iv): $C_2 \cap S = \{e_1, e_2, e_3\}$. Since S is a circuit, it must be the case that $C_2 = S$. Since $C_{e_1}^*, C_{e_2}^*, C_{e_3}^*$ and S constitute all the circuits of M_1 , the set $C_{e_1}^* \triangle C_{e_2}^* \triangle C_{e_3}^* \triangle S$ contains a circuit C' of M_1 (Fact 4.13). Since $\{e_i\} = C_{e_i}^* \cap S$, for i = 1, 2, 3, we know that $S \cap C' = \emptyset$. Thus, $C' \in C'_1$ is a circuit of M. Since $w(e_1) = w(e_2) = w(e_3) = 0$, we obtain that

$$w(C') \le w(C_{e_1}^*) + w(C_{e_2}^*) + w(C_{e_3}^*) = w'(S) = w'(C_2) \le r.$$

This proves the claim.

By Claim 6.4, we can apply the induction hypothesis for M_2 with the weight function w'. We get that the number of circuits C_2 in M_2 with $w'(C_2) \leq 3r/2$ is bounded by

$$T_1 := 150 \, m_2^5.$$

As mentioned above, this is an upper bound on the number of circuits C in M with $w(C) \leq 3r/2$ in Case 2.

Case 3: $w(C_1) > r/2$

Since $w(C) = w(C_1) + w(C_2) \le 3r/2$, we have $w(C_2) < r$ in this case. We also assume that $C_2 \ne \emptyset$. Hence, there is an $e \in S$ such that $C_1 \in \mathcal{C}_{1,e}$ and $C_2 \in \mathcal{C}_{2,e}$.

Let T_2 be an upper bound on the number of circuits $C_1 \in \mathcal{C}_{1,e}$ with $w(C_1) \leq 3r/2$, for each $e \in S$. Let T_3 be an upper bound on the number of circuits $C_2 \in \mathcal{C}_{2,e}$ with $w(C_2) < r$, for each $e \in S$. Because there are s choices for the element $e \in S$, the number of circuits $C = C_1 \triangle C_2$ with $w(C) \leq 3r/2$ in Case 3 will be at most

$$s T_2 T_3. (8)$$

To get an upper bound on the number of circuits in $C_{1,e}$ and $C_{2,e}$, consider two matroids $M_{1,e}$ and $M_{2,e}$. These are obtained from M_1 and M_2 , respectively, by deleting the elements in $S \setminus \{e\}$. The ground set cardinalities of these two matroids are $m_1 - s + 1$ and $m_2 - s + 1$.

We know that for i = 1, 2, any circuit C_i of $M_{i,e}$ with $e \notin C_i$ is in C'_i and hence, is a circuit of M. Therefore, there is no circuit C_i of $M_{i,e}$ with $e \notin C_i$ and $w(C_i) \le r$. Using this fact, we want to bound the number of circuits C_i of $M_{i,e}$ with $e \in C_i$. We start with $M_{1,e}$.

Claim 6.5. An upper bound on the number of circuits C_1 in $M_{1,e}$ with $e \in C_1$ and $w(C_1) \leq 3r/2$ is

$$T_2 := \min\{8(m_1 - s)^3, 2^{m_1 - s}\}\tag{9}$$

Proof. Recall that the decomposition of M was such that M_1 is graphic, cographic or the R_{10} matroid.

Case(i). When M_1 is graphic or cographic, the matroid $M_{1,e}$ falls into the same class by Fact 4.9. In this case, we apply Lemma 6.1 to $M_{1,e}$ with $R = \{e\}$ and $\alpha = 3$ and get a bound of $8(m_1 - s)^3$. The number of circuits containing e is also trivially bounded by the number of all subsets that contain e, which is 2^{m_1-s} . Recall that the ground set of $M_{1,e}$ has cardinality $m_1 - s + 1$. Thus, we get Equation (9).

Case(ii). When M_1 is the R_{10} matroid, then the cardinality of $M_{1,e}$, that is $m_1 - s + 1$, is at most 10. In this case again, we use the trivial upper bound of 2^{m_1-s} . One can verify that when $m_1 - s + 1 \le 10$ then $2^{m_1-s} \le 8(m_1 - s)^3$. Thus, we get Equation (9).

Next, we want to bound the number of circuits C_2 in $M_{2,e}$ with $e \in C_2$ and $w(C_2) < r$. This is done in Lemma 6.7 below, where we get a bound of $T_3 := 32(m_2 - s)^2$.

To finish Case 3, we now have

$$T_2 = \min\{8(m_1 - s)^3, 2^{m_1 - s}\},\$$

 $T_3 = 32(m_2 - s)^2.$

By Equation (8), the number of circuits in Case 3 is bounded by sT_2T_3 .

Claim 6.6. For s = 1, 3 and $m_1 \ge 2s + 1$,

$$s T_2 T_3 \le 1500 (m_1 - 2s)^3 (m_2 - s)^2$$
.

Proof. We consider $s T_2$. For $m_1 - 2s \ge 12$, we have

$$s \cdot 8(m_1 - s)^3 \le (1500/32)(m_1 - 2s)^3.$$

On the other hand, when $m_1 - 2s \le 11$,

$$s \cdot 2^{m_1 - s} \le (1500/32)(m_1 - 2s)^3.$$

This proves the claim.

Summing up Cases 1, 2 and 3

Finally we add the bounds on the number of circuits of Case 1, 2 and 3. The total upper bound we get is

$$T_0 + T_1 + s T_2 T_3 \le 150 (m_1 - 2s)^5 + 150 m_2^5 + 150 {5 \choose 2} (m_1 - 2s)^3 (m_2 - s)^2$$

 $\le 150 (m_2 + m_1 - 2s)^5$
 $< 150 m^5$

This completes the proof of Theorem 2.6, except for the bound on T_3 that we show in Lemma 6.7.

Now we move on to prove Lemma 6.7, which completes the proof of Theorem 2.6. The lemma is similar to Theorem 2.6, but differs in two aspects: (i) we want to count circuits up to a smaller weight bound, that is, r, and (ii) we have a weaker assumption that there is no circuit of weight at most r that does not contain a fixed element e.

Lemma 6.7. Let $M = (E, \mathcal{I})$ be a connected, regular matroid with ground set size $m \geq 2$ and $w : E \to \mathbb{N}$ be a weight function on E. Let r be an even number and let $\tilde{e} \in E$ be any fixed element of the ground set. Assume that there is no circuit C in M such that $\tilde{e} \notin C$ and $w(C) \leq r$. Then, the number of circuits C in M such that $\tilde{e} \in C$ and $w(C) \leq r$ is bounded by $32(m-1)^2$.

Proof. We closely follow the proof of Theorem 2.6. We proceed again by an induction on m, the size of the ground set E.

For the base case, let $m \le 10$. There are at most 2^{m-1} circuits that contain \tilde{e} . This number is bounded by $32(m-1)^2$, for any $2 \le m \le 10$.

For the inductive step, let $M = (E, \mathcal{I})$ be a regular matroid with |E| = m > 10 and assume that the theorem holds for all smaller regular matroids. Since m > 10, matroid M cannot be R_{10} . If M is graphic or cographic, then the bound of the lemma follows from Lemma 6.1. Thus, we may assume that M is neither graphic nor cographic.

By Theorem 4.17, matroid M can be written as a 1-, 2-, or 3-sum of two regular matroids $M_1 = (E_1, \mathcal{I}_1)$ and $M_2 = (E_2, \mathcal{I}_2)$. We use the same notation as Theorem 2.6,

$$S = E_1 \cap E_2,$$

 $s = |S|,$
 $m_i = |E_i|, \text{ for } i = 1, 2,$
 $C_i = \{C : C \text{ is a circuit of } M_i \}.$

The case that M is a 1-sum of M_1 and M_2 is again trivial. Hence, we may assume that M is connected. By Theorem 4.18, M is a 2-sum or a 3-sum of M_1 and M_2 , where M_1 is a graphic, cographic or the R_{10} matroid, and M_2 is a regular matroid containing \tilde{e} . For i=1,2 and $e\in S$, define

$$C_{i,e} := \{C: C \text{ is a circuit of } M_i \text{ and } C_i \cap S = \{e\} \}.$$

Also the weight function w is extended on S by w(e) = 0, for any $e \in S$.

We consider again cases based on how the weight of C is distributed among C_1 and C_2 . Note that \tilde{e} is in M_2 and we are only interested in circuits C that contain \tilde{e} . Hence, we have $\tilde{e} \in C_2$. Therefore we do not have the case where $C_2 = \emptyset$.

Case (i). $w(C_1) \le r/2$.

Case (ii).
$$w(C_1) > r/2$$
.

We will give an upper bound for the number of circuits in each of the two cases.

Case (i):
$$w(C_1) \le r/2$$

Since $\tilde{e} \notin C_1$, we can literally follow the proof for Case 2 from Theorem 2.6 for this case. We have again Claim 6.3, that C_1 is uniquely determined as $C_1 = C_e^*$, for $e \in S$, or $C_1 = \emptyset$. Therefore the mapping $C \mapsto C_2$ is injective. The only point to notice now is that the mapping maintains that $\tilde{e} \in C$ if and only if $\tilde{e} \in C_2$. With the same definition of w', we also have $w(C) = w'(C_2)$. Therefore it suffices to get an upper bound on the number of circuits C_2 in M_2 with $w'(C_2) \leq r$ and $\tilde{e} \in C_2$.

To apply the induction hypothesis, we need the following variant of Claim 6.4. It has a similar proof.

Claim 6.8. There is no circuit C_2 in M_2 such that $w'(C_2) \leq r$ and $\tilde{e} \notin C_2$.

By the induction hypothesis applied to M_2 , the number of circuits C_2 in M_2 with $w'(C_2) \leq r$ and $\tilde{e} \in C_2$ is bounded by

$$T_0 := 32(m_2 - 1)^2$$
.

Case (ii):
$$w(C_1) > r/2$$

Since $w(C) = w(C_1) + w(C_2) \le r$, we have $w(C_2) < r/2$ in this case. This is the major difference to Case 3 from Theorem 2.6 where the weight of C_2 was only bounded by r. Hence, now we have again a uniqueness property similar as in Claim 6.3, but for C_2 this time. A difference comes with \tilde{e} . But the proof remains the same.

Claim 6.9. For any $e \in S$, there is at most one circuit $C_2 \in \mathcal{C}_{2,e}$ with $w(C_2) < r/2$ and $\tilde{e} \in C_2$.

We conclude that any circuit C in case (ii) can be written as $C = C_1 \triangle C_e^*$, for a $e \in S$ and the unique circuit $C_e^* \in \mathcal{C}_{2,e}$. Therefore the mapping $C \mapsto C_1$ is injective for the circuits C of case (ii). Thus, it suffices to count circuits $C_1 \in \mathcal{C}_{1,e}$ with $w(C_1) \leq r$, for every $e \in S$.

Let $e \in S$ and consider the matroid $M_{1,e}$ obtained from M_1 by deleting the elements in $S \setminus \{e\}$. It has $m_1 - s + 1$ elements. Since M_1 is a graphic, cographic or R_{10} , the matroid $M_{1,e}$ is graphic or cographic by Facts 4.9 and 4.10. The circuits in $C_{1,e}$ are also circuits of $M_{1,e}$.

Any circuit C_1 of $M_{1,e}$ with $e \notin C_1$ is also a circuit of M. Thus, there is no circuit C_1 of $M_{1,e}$ with $e \notin C_1$ and $w(C_1) \leq r$. Therefore we can apply Lemma 6.1 to $M_{1,e}$ with $R = \{e\}$. We conclude that the number of circuits $C_1 \in \mathcal{C}_{1,e}$ with $w(C_1) \leq r$ is at most

$$T_1 := 4(m_1 - s)^2.$$

Since there are s choices for $e \in S$, we obtain a bound of sT_1 .

There is also a trivial bound of $s \, 2^{m_1-s}$ on the number of such circuits. We take the minimum of the two bounds. Recall from the definition of 2-sum and 3-sum that $m_1 \geq 2s + 1$.

Claim 6.10. For s = 1 or 3 and $m_1 \ge 2s + 1$,

$$\min\{s \, 2^{m_1 - s}, 4s \, (m_1 - s)^2\} \le 32(m_1 - 2s)^2.$$

Proof. One can verify that when $m_1 - 2s \le 4$ then

$$s \, 2^{m_1 - s} \le 32(m_1 - 2s)^2.$$

On the other hand, when $m_1 - 2s \ge 5$ then

$$4s(m_1 - s)^2 \le 32(m_1 - 2s)^2.$$

This proves the claim.

Hence, we get a bound of $32(m_1 - 2s)^2$ on the number circuits in case (ii). Now we add the number of circuits of case (i) and (ii) and get a total upper bound of

$$32(m_2 - 1)^2 + 32(m_1 - 2s)^2 \le 32(m_2 - 1 + m_1 - 2s)^2 \le 32(m - 2s)^2.$$

This gives us the desired bound and completes the proof of Lemma 6.7.

References

- [BH14] Andreas Björklund and Thore Husfeldt. Shortest two disjoint paths in polynomial time. In Automata, Languages, and Programming 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 211–222, 2014.
- [Bix77] Robert E Bixby. Kuratowski's and Wagner's theorems for matroids. *Journal of Combinatorial Theory*, Series B, 22(1):31 53, 1977.
- [FGT16] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-NC. In *Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016*, pages 754–763, 2016.
- [FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1) worst case access time. *J. ACM*, 31(3):538–544, June 1984.
- [GT17] Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-NC. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2017, pages 821–830, New York, NY, USA, 2017. ACM.
- [Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-out algorithm. In *Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA '93, pages 21–30, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics.
- [MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. *Combinatorica*, 7:105–113, 1987.
- [Nai82] Mohan Nair. On Chebyshev-type inequalities for primes. *The American Mathematical Monthly*, 89(2):126–129, 1982.
- [NSV94] H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized parallel algorithms for matroid union and intersection, with applications to arboresences and edge-disjoint spanning trees. SIAM J. Comput., 23(2):387–397, 1994.

- [Onn10] S. Onn. Nonlinear Discrete Optimization: An Algorithmic Theory. Zurich lectures in advanced mathematics. European Mathematical Society Publishing House, 2010.
- [Oxl06] James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University Press, Inc., New York, NY, USA, 2006.
- [RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal on Computing, 29(4):1118–1131, 2000.
- [Sch03a] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. A., Paths, flows, matchings. Algorithms and combinatorics. Springer-Verlag, Berlin, Heidelberg, New York, 2003.
- [Sch03b] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. B., Matroids, trees, stable sets. Algorithms and combinatorics. Springer-Verlag, Berlin, Heidelberg, New York, N.Y., et al., 2003.
- [Sey80] Paul D. Seymour. Decomposition of regular matroids. *J. Comb. Theory, Ser. B*, 28(3):305–359, 1980.
- [ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-NC. CoRR, abs/1704.01929, 2017.
- [Sub95] Ashok Subramanian. A polynomial bound on the number of light cycles in an undirected graph. *Information Processing Letters*, 53(4):173 176, 1995.
- [TK92] C. P. Teo and K. M. Koh. The number of shortest cycles and the chromatic uniqueness of a graph. *Journal of Graph Theory*, 16(1):7–15, 1992.
- [Tru98] Klaus Truemper. Matroid Decomposition. Leibniz, Plano, Texas (USA), 1998.
- [Wig94] Avi Wigderson. NL/poly ⊆ ⊕ L/poly. In Proceedings of the Ninth Annual Structure in Complexity Theory Conference, Amsterdam, The Netherlands, June 28 July 1, 1994, pages 59–62, 1994.

A Proof of Theorem 4.18

It is known that the k-sum operations are associative in a certain sense. We give a proof here for completeness. The 2-sum operation is denoted by \oplus_2 .

Proposition A.1 (Associativity of k-sums). Let $M = M_1 \oplus_2 M_2$ with e being the common element in M_1 and M_2 . Let $M_2 = M_3 \triangle M_4$ be a k-sum for k = 2 or 3 with the common set S. Further, let $e \in M_3$. Then

$$M = M_1 \oplus_2 (M_3 \triangle M_4) = (M_1 \oplus_2 M_3) \triangle M_4,$$

where $M_1 \oplus_2 M_3$ is defined via the common element e and $(M_1 \oplus_2 M_3) \triangle M_4$ is defined via the common set S.

Proof. Recall from Fact 4.13 that if M is a 2-sum or a 3-sum of M_1 and M_2 , and C_1 and C_2 are disjoint unions of circuits in M_1 and M_2 respectively such that $C_1 \triangle C_2 \subseteq E_1 \triangle E_2$, then $C_1 \triangle C_2$ is a disjoint union of circuits of M. We show that this implies that the sets of circuits of the two

matroids $M_1 \oplus_2 (M_3 \triangle M_4)$ and $(M_1 \oplus_2 M_3) \triangle M_4$ are the same. Let E_i denote the ground set of M_i for i = 1, 2, 3, 4.

Consider a circuit C of $M_1 \oplus_2 (M_3 \triangle M_4)$. From Lemma 4.16, C must be of the form $C_1 \triangle C_2$, where C_1 and C_2 are circuits in M_1 and $M_3 \triangle M_4$, respectively. Further for C_2 there exist circuits C_3 and C_4 of M_3 and M_4 respectively such that $C_2 = C_3 \triangle C_4$ (from Lemma 4.16). Observe that $e \in C_1$ if and only if $e \in C_2$ and, thus, $e \in C_3$. Thus, $C_1 \triangle C_3 \subseteq E_1 \triangle E_3$ is a circuit of $M_1 \oplus_2 M_3$. Since C_4 is a circuit of M_4 , it follows that $(C_1 \triangle C_3) \triangle C_4$ is a disjoint union of circuits in $(M_1 \oplus_2 M_3) \triangle M_4$.

For the other direction, consider a circuit C of $(M_1 \oplus_2 M_3) \triangle M_4$. Thus, the circuit C must be of the form $C' \triangle C_4$, where C' and C_4 are circuits of $(M_1 \oplus_2 M_3)$ and M_4 respectively with $S \cap C' = S \cap C_4$ (Lemma 4.16). Further from Lemma 4.16, $C' = C_1 \triangle C_3$, where C_1 and C_3 are circuits in M_1 and M_3 , respectively. Since S is disjoint from M_1 , it must be that $S \cap C' = S \cap C_3$. Thus, $C_3 \triangle C_4 \subseteq E_3 \triangle E_4$ is a union of disjoint circuits in $M_3 \triangle M_4$. Since, C_1 is a circuit in M_1 , it follows that $C_1 \triangle (C_3 \triangle C_4)$ is a disjoint union of circuits in $M_1 \oplus_2 (M_3 \triangle M_4)$.

Thus, we have shown that a circuit of one matroid is a disjoint union of circuits in the other matroid and vice-versa. Consequently, by the minimality of circuits, it follows that their sets of circuits must be the same. \Box

Truemper proves the statement of Theorem 4.18 for a 3-connected matroid.

Definition A.2 (3-connected matroid [Tru98]). A matroid $M = (E, \mathcal{I})$ is said to be 3-connected if for $\ell = 1, 2$, and for any partition $E = E_1 \cup E_2$ with $|E_1|, |E_2| \ge \ell$ we have

$$rank(E_1) + rank(E_2) \ge rank(E) + \ell.$$

Lemma A.3 (Decomposition of a matroid [Tru98]). If a binary matroid is not 3-connected then it can be written as a 2-sum or 1-sum of two smaller binary matroids.

Theorem A.4 (Truemper's decomposition for 3-connected matroids, [Tru98]). Let M be a 3-connected, regular matroid, that is not graphic or cographic and is not isomorphic to R_{10} . Let \tilde{e} be a fixed element of the ground set of M. Then M is a 3-sum of M_1 and M_2 , where M_1 is a graphic or a cographic matroid and M_2 is a regular matroid that contains \tilde{e} .

From Theorem A.4, one can derive the same statement for any connected regular matroid, which proves Theorem 4.18.

Proof of Theorem 4.18. The proof is by induction on the ground set size of M. If M is 3-connected then the statement is true by Theorem A.4. If M is not 3-connected, then from Lemma A.3 it can be written as 2-sum of two matroids $M = M_1 \oplus_2 M_2$ (1-sum is not possible since M is connected). From the definition of a 2-sum, it follows that M_1 and M_2 are minors of M (see [Sey80, Lemma 2.6]), and thus are regular matroids (Fact 4.9). Without loss of generality, let the fixed element \tilde{e} be in M_2 . If M_1 is graphic, cographic or R_{10} then we are done.

Suppose, M_1 is neither of these. Let e' be the element common in the ground sets of M_1 and M_2 . By induction, M_1 is a 2-sum or a 3-sum $M_1 = M_{11} \triangle M_{12}$, where M_{12} is a regular matroid that contains e' and M_{11} is a graphic or cographic matroid, or a matroid isomorphic to R_{10} . Since M_{12} and M_2 share e', we can take the 2-sum of these two matroids using e'. From Proposition A.1, the matroid M is the same as $M_{11} \triangle (M_{12} \oplus_2 M_2)$. Thus, the two matroids M_{11} and $M_{12} \oplus_2 M_2$ satisfy the desired properties.

ECCC ISSN 1433-8092
https://eccc.weizmann.ac.il