Comment on Meir's paper "The Direct Sum of Universal Relations"

Alexander Kozachinskiy

September 3, 2017

Abstract

In [1] Meir proved that deterministic communication complexity of the m-fold direct sum of the universal relation is at least $m(n-O(\log m))$. In this comment we present a log-rank argument which improves Meir's lower bound to $m(n-1)-1$.

Abbreviate $[k]=\{1,2, \ldots, k\}$. By $D(T)$ we denote the deterministic communication complexity of the communication problem T.

Definition 1. Let $m, n \in \mathbb{N}$. The m-fold direct sum of the universal relation on n bits, denoted by $U_{n}^{\otimes m}$, is the communication problem in which Alice and Bob get matrices X and Y from $\{0,1\}^{m \times n}$ that differ on every row. They are required to output a tuple $\left(j_{1}, \ldots, j_{m}\right) \in[n]^{m}$, such that for every row $i \in[m]$ it holds that $X_{i, j_{i}} \neq Y_{i, j_{i}}$.

Definition 2. Let $m, n \in \mathbb{N}$. Let V_{n}^{m} denote the communication problem in which Alice and Bob get two matrices X and Y from $\{0,1\}^{m \times n}$. The goal is to output 1, if X and Y differ on every row, and 0 otherwise.

Proposition 1. $D\left(U_{n}^{\otimes m}\right)+m+1 \geq D\left(V_{n}^{m}\right)$.
Proof. If π is the protocol solving $U_{n}^{\otimes m}$, then π can be transformed into the protocol solving V_{n}^{m} at the expense of increasing communication complexity by at most $m+1$. The transformation is as follows. Let $X, Y \in\{0,1\}^{m \times n}$ be any two matrices. Alice and Bob run π on (X, Y). Let $\left(j_{1}, \ldots, j_{m}\right)$ be the output of π. Alice sends $X_{1, j_{1}}, \ldots, X_{m, j_{m}}$ to Bob. If for every $i \in[m]$ it holds that $X_{i, j_{i}} \neq Y_{i, j_{i}}$, Bob sends 1 to Alice. Otherwise he sends 0 . The last bit of Bob is the output of the protocol.

Proposition 2. $D\left(U_{n}^{\otimes m}\right) \geq m(n-1)-1$.
Proof. By proposition 1 it is enough to show that $D\left(V_{n}^{m}\right)$ is at least $n m$. Let A_{n}^{m} be communication matrix of V_{n}^{m}. The rows and the columns of A_{n}^{m} are labeled by $m \times n$ binary matrices. We consider each such matrix as the sequence of
m binary strings of length n. Let's assume that these sequences are ordered according to the lexicographic order. Then we have

$$
A_{n}^{m}=\left(\begin{array}{ccccc}
0 & A_{n}^{m-1} & \ldots & A_{n}^{m-1} & A_{n}^{m-1} \\
A_{n}^{m-1} & 0 & \ldots & A_{n}^{m-1} & A_{n}^{m-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
A_{n}^{m-1} & A_{n}^{m-1} & \ldots & A_{n}^{m-1} & 0
\end{array}\right)
$$

By the the induction on m this equality implies that $A_{n}^{m}=A \otimes A \otimes \ldots \otimes A(m$ times), where \otimes denotes the Kronecker product and A is $2^{n} \times 2^{n}$ matrix with the zeroes on the diagonal and ones elsewhere. As the rank of A (over the reals) is 2^{n}, the rank of A_{n}^{m} (over the reals) is $\left(2^{n}\right)^{m}=2^{n m}$ and hence by the log-rank lower bound $D\left(V_{n}^{m}\right) \geq n m$.

References

[1] Meir, O. The direct sum of universal relations. In Electronic Colloquium on Computational Complexity (ECCC) (2017).

