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Abstract

The universal relation is the communication problem in which Alice and Bob get as inputs
two distinct strings, and they are required to �nd a coordinate on which the strings di�er. The
study of this problem is motivated by its connection to Karchmer-Wigderson relations [KW90],
which are communication problems that are tightly related to circuit-depth lower bounds.

In this paper, we prove a direct sum theorem for the universal relation, namely, we prove that
solving m independent instances of the universal relation is m times harder than solving a single
instance. More speci�cally, it is known that the deterministic communication complexity of the
universal relation is at least n. We prove that the deterministic communication complexity of
solving m independent instances of the universal relation is at least m · (n−O(logm)).

1 Introduction

The direct sum question is a classical question that asks whether performing a task on m inde-
pendent inputs is m times harder than performing it on a single input. This natural question was
studied in a variety of computational models (see, e.g., [Uhl74, Pau76, GF81, Sto86, Bsh89, Bsh98]),
and the answer turns out to be positive in some models and negative in others. Karchmer, Raz, and
Wigderson [KRW95] initiated the study of this question in the setting of communication complex-
ity. One motivation was a connection that they observed between the direct-sum question for the
deterministic communication complexity of relations and the circuit-depth complexity of functions.

Later works have made considerable progress in the study of direct sum for randomized com-
munication complexity [BBCR10, GKR14] and for the deterministic communication complexity of
functions [FKNN95]. However, there is only one1 known result on the direct-sum question in the
original setting of [KRW95] � deterministic protocols for relations: a direct-sum theorem for a rela-
tion that is connected to the set covering problem, which appears in the original paper of [KRW95].
In this work, we provide another example for such a direct-sum theorem, namely, for the universal
relation.

∗Department of Computer Science, Haifa University, Haifa 31905, Israel. ormeir@cs.haifa.ac.il. Partially
supported by the Israel Science Foundation (grant No. 1445/16). Part of this research was done while Or Meir was
supported by Irit Dinur's ERC grant number 239986.

1There are also a few examples of relations for which direct-sum theorems on the deterministic complexity follow
trivially from the corresponding results on randomized complexity: This happens when the deterministic complexity
of the relation is equal to its randomized complexity, and there is a direct-sum theorem for the randomized com-
plexity. This is the case, for example, for the monotone Karchmer-Wigderson relations of the clique and matching
functions [RW92].
However, we are interested in direct-sum theorems on deterministic complexity that are �non-trivial� in the sense

that they do not follow directly from results on randomized complexity. This is the case for the universal relation,
whose randomized complexity is much smaller than its deterministic complexity (O(logn) vs. n [RW89]).
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The universal relation is the following communication problem: Alice and Bob get two distinct

strings x, y ∈ {0, 1}n, and they are required to �nd a coordinate j ∈ [n] such that xj 6= yj . This
problem is a simpli�ed version of Karchmer-Wigderson relations [KW90], which are communication
problems that are tightly related to circuit-depth lower bounds. The universal relation was intro-
duced by [KRW95] in the hope that a better understanding of the universal relation would lead
to progress in the study of Karchmer-Wigderson relations, and hence to better circuit-depth lower
bounds. It is known that the deterministic communication complexity of the universal relation is
at least n. We prove the following result.

Theorem 1. The deterministic communication complexity of solving m independent instances of

the universal relation over n bits is at least m · (n− 2 log(m)− 8).

Our proof is based on the works of Edmonds et. al. [EIRS01] and Raz and McKenzie [RM97]
on composition theorems. In this work, we show how their techniques can be applied to the setting
of direct-sum theorems. We hope that our ideas will lead to more direct-sum results in the future.

Remark 2. Note that Theorem 1 does not give a meaningful lower bound when m ≈ 2n, due to
the loss of the 2 log(m) term. This 2 log(m) term is an artifact of our techniques, and while it is
not very important in the context of Theorem 1, it becomes important if one tries to extend our
techniques to direct sums of other relations (e.g. the fork relation of [GS91]). It is an interesting
question whether this 2 log(m) term could be removed.

The paper is organized as follows: In Section 2 we discuss the universal relation and its direct
sum, as well as �totalized� versions of these problems which are important for our proof. We then
prove Theorem 1 in Section 3.

Preliminaries: For n ∈ N, we denote [n]
def
= {1, . . . n}. We denote by {0, 1}m×n the set of

m×n binary matrices. Given a set I ⊆ [m], we denote by {0, 1}I×n the set of |I|×n binary matrices
whose rows are labeled by the indices in I. Given a subset of rows I ′ ⊆ I and a matrix Z ∈ Z,
we denote by Z|I′ the projection of Z to the rows in I ′, and we say that Z is an extension of the

matrix Z|I′ (to Z). Given a set of matrices Z ⊆ {0, 1}m×n and a set of rows I ⊆ [m], we denote
by Z|I the set of projections of matrices in Z to rows in I. We use the standard de�nitions of
communication complexity � see the book of Kushilevitz and Nisan [KN97] for more details.

2 The universal relation, its direct sum, and their totalizations

As explained in the introduction, the universal relation (on n bits), denoted Un, is the following
communication problem: Alice and Bob get two distinct strings x, y ∈ {0, 1}n, and they are required
to �nd a coordinate j ∈ [n] such that xj 6= yj . It is not hard to prove that the deterministic
communication complexity of this problem is at least n. On the other hand, it is interesting to note
that its randomized communication complexity is at most O(log n) [RW89].

The direct sum of the universal relation consists of solving m independent instances of the
problem. In order to streamline the presentation, it is convenient to represent the inputs to the
direct sum by matrices. This leads to the following de�nition of the direct sum.

De�nition 3. Let m,n ∈ N. The m-fold direct sum of the universal relation on n bits, denoted
U⊗mn is the communication problem in which Alice and Bob get matrices X,Y ∈ {0, 1}m×n that
di�er on every row. They are required to output a tuple (j1, . . . , jm) ∈ [n]m, such that for every
row i ∈ [m] it holds that Xi,ji 6= Yi,ji .
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Håstad and Wigderson [HW93] observed that it is useful to consider a variant of the universal
relation, which is a total relation rather than a promise problem: In the totalized universal relation,
denoted U ′n , Alice and Bob may be given identical strings as inputs, and in this case they should
output a special �reject� symbol ⊥. The totalized universal relation is often easier to work with than
the non-totalized one. In particular, it is trivial to prove a lower bound of n on its deterministic
communication complexity by a reduction from the equality function.

It is not hard to see that this modi�cation does not decrease the complexity of the universal
relation by more than two bits: To see it, suppose that there is a protocol Π that solves Un. Then,
there is a protocol Π′ that solves U ′n using two more bits: given inputs x and y which may be equal,
the players invoke the protocol Π on x, y. Suppose Π outputs a coordinate j. Now, the players
check whether xj 6= yj by exchanging two more bits. If they �nd that xj = yj , they reject, and
otherwise they output j.

Similarly, it is useful to consider a �totalization� of the direct sum of the universal relation: Alice
and Bob get two arbitrary matrices X,Y ∈ {0, 1}m×n. The parties should reject if X and Y agree
on any single row, and otherwise they should output a tuple (j1, . . . , jm) as before.

De�nition 4. Let m,n ∈ N. The totalized m-fold direct sum of the universal relation on n bits,
denoted U⊗mn

′
, is the communication problem in which Alice and Bob get as inputs matrices X,Y ∈

{0, 1}m×n and behave as follows:

• If X and Y di�er on every row, then Alice and Bob behave as in the (non-totalized) direct
sum U⊗mn .

• Otherwise, Alice and Bob output the �reject� symbol ⊥.

It is not hard to see that this modi�cation does not decrease the complexity of the direct sum
by more than 2m bits. Hence, to prove Theorem 1, it su�ces to prove that the communication
complexity of the relation U⊗mn

′
is at least m · (n− 2 logm− 6).

Remark 5. It is tempting to attempt to prove Theorem 1 in a di�erent way. Consider the direct-
sum problem for the totalized universal relation U ′n: This is the problem where Alice and Bob get two
arbitrary matricesX,Y ∈ {0, 1}m×n. The parties should output a tuple (j1, . . . , jm) ∈ ([n] ∪ {⊥})m,
such that if ji ∈ [n] then Xi,ji 6= Yi,ji , and if ji = ⊥ then Xi = Yi. The di�erence between this
problem and U⊗mn

′
is that in the problem U⊗mn

′
, if the matrices agree on any single row, the players

reject the whole input and not just that row.
It is not hard to prove a lower bound of m ·n on the direct sum of U ′n by reduction to the direct

sum of the equality function. At �rst glance, it may seem as if we can use it to prove Theorem 1,
by reducing the latter direct sum to U⊗mn . The reduction would work as follows: Given X and Y ,
Alice and Bob would invoke the protocol for U⊗mn , thus obtaining a tuple (j1, . . . , jm). Then, Alice
and Bob would send Xi,ji and Yi,ji for each row, and output ji if Xi,ji 6= Yi,ji and ⊥ otherwise.

Unfortunately, this reduction fails. The reason is that if X and Y agree on any row, there is
no guarantee on the behavior of the protocol for U⊗mn . In particular, this protocol may output
coordinates ji for which Xi,ji = Yi,ji even if Xi 6= Yi. In such case, the above reduction would
output ⊥ for such rows even though it is not allowed to reject them.

3 Proof of Theorem 1

3.1 Proof overview

We prove that the totalized m-fold direct sum of the universal relation on n bits has communication
complexity at least m · (n − O(logm)). The proof is by an adversary argument: we describe an
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adversary that takes a protocol that is �too e�cient�, and constructs a transcript in which the
protocol errs. The adversary constructs the transcript bit by bit, while maintaining the following
invariant: at any given point, the adversary can choose an input matrix X for Alice and an input
matrix Y for Bob that disagree on all rows and are consistent with the partial transcript that was
constructed so far, and the adversary can also choose X and Y to agree on some rows. When the
protocol ends, this invariant implies that there are inputs X,Y on which the transcript errs: if the
transcript outputs ⊥ then there is an error since we can choose X and Y that disagree on all rows,
and if the output is a tuple (j1, . . . , jm), then there is an error since we can choose X and Y that
agree on some rows.

More speci�cally, throughout the protocol, the adversary maintains a set I ⊆ [m] of active rows,
which are rows on which the input matrices may agree or disagree. The adversary also maintains
a set Z ⊆ {0, 1}I×n of possible assignments to those rows, such that it is possible to �nd two
matrices Z1, Z2 ∈ Z that disagree on all rows. Finally, the adversary maintains two functions
X,Y : Z → {0, 1}m×n that have the following properties:

• For every Z ∈ Z, it is consistent with the transcript constructed so far to give Alice the input
matrix X(Z) and to Bob the input matrix Y (Z).

• For every Z ∈ Z, the matrices X(Z) and Y (Z) are extensions of Z

• For every two matrices Z1, Z2 ∈ Z (not necessarily distinct), the matrices X(Z1) and Y (Z2)
disagree on all the inactive rows in [m]− I.

Observe that given all these properties, the invariant that was discussed above is indeed maintained:
If the adversary wishes to give the parties two matrices that di�er on all the rows, she can choose
two such matrices Z1, Z2 ∈ Z, and give the parties the inputs X(Z1) and Y (Z2). Otherwise, the
adversary can choose a single matrix Z ∈ Z, and give the parties the inputs X(Z), Y (Z), which
agree on the active rows.

When the protocol starts, the set I of active rows is the set [m] of all rows, and the set Z is
the set {0, 1}m×n of all matrices. Then, the adversary constructs the transcript bit by bit. When
choosing the next bit to be added to the transcript, the adversary chooses the bit in {0, 1} such
that the set Z decreases by a factor of at most 2 (in other words, at most one bit of information is
transmitted). The adversary will continue in this way until almost n bits of information are revealed
about a particular row i ∈ I, which runs the risk of �xing the i-th row to a single value (and hence
preventing the adversary from choosing matrices that disagree on this row). At this point, the
adversary will remove the i-th row from the set of active rows, and will extend the functions X(Z)
and Y (Z) such that they always assign the i-th row two di�erent values. The adversary will proceed
as until the protocol halts.

It remains to show that if the protocol is �too e�cient�, then the adversary can maintain the
invariant until the protocol ends. To this end, we observe that the protocol has to communicate
about n bits in order to turn an active row into an inactive one (more precisely, n−O(logm) bits).
Thus, if the protocol transmitted less than m · (n − O(logm)) bits, then there is still at least
one active row when the protocol ends, and therefore the adversary can use the set Z to show to
construct inputs on which the transcript errs.

3.2 Setting up machinery

In order to implement the above argument, we use machinery that was introduced in the work of
Edmonds et. al. [EIRS01] on the composition of universal relations, and was further re�ned by
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Raz and McKenzie [RM97] in the proof of their simulation theorem. We now introduce the basic
notations and propositions of this machinery.

Given a set I of active rows and a set of matrices Z ⊆ {0, 1}I×n, we denote by δ(Z)
def
= |Z| /2|I|·n

the density of Z. We de�ne a sequence of bipartite graphs Gi (for each i ∈ I) that correspond to Z
as follows: The sets of vertices of Gi are Z|i and Z|I−{i}, and there is an edge between a row
z ∈ Z|i and a matrix Z ′ ∈ Z|I−{i} if and only if they form together a matrix in Z. We denote by

AvgDegi(Z) the average degree of a vertex Z̃ ∈ Z|I−{i} in Gi, i.e.,

AvgDegi(Z) =
|Z|∣∣Z|I−{i}∣∣ .

We denote by MinDegi(Z) the minimal degree of such a vertex Z̃ ∈ Z|I−{i}. Intuitively, AvgDegi(Z)
and MinDegi(Z) are two ways to measure the information that is known about the i-th row condi-
tioned on the other rows � the larger the degree, the less information is known. The advantage of
the average degree as a measure of information is that it behaves nicely when additional information
is revealed about Z, which is captured by the following easy observation.

Claim 6 ([EIRS01]). Let I ⊆ [m] and let Z ′ ⊆ Z ⊆ {0, 1}I×n be sets of matrices. Then for

every i ∈ I it holds that AvgDegi(Z ′) ≥
|Z′|
|Z| ·AvgDegi(Z).

Proof. Let i ∈ I. It holds that

AvgDegi(Z ′) =
|Z ′|∣∣Z ′|I−{i}∣∣ ≥ |Z ′|∣∣Z|I−{i}∣∣ =

|Z ′|
|Z|
· |Z|∣∣Z|I−{i}∣∣ =

|Z ′|
|Z|
·AvgDegi(Z),

as required. �

Another nice property of the average degree is that when we remove a row with a small average
degree from I (i.e., when we deactivate the row), the density of Z increases. Intuitively, this means
that when we deactivate a row, the information that Alice and Bob sent about this row becomes
useless.

Claim 7 ([RM97]). Let I ⊆ [m], let Z ⊆ {0, 1}I×n, and let i ∈ I. Let ∆ = AvgDegi(Z) denote the

average degree of the i-th row. Then

δ(Z|I−{i}) =
2n

∆
· δ(Z).

Proof. It holds that

δ(Z|I−{i}) =

∣∣Z|I−{i}∣∣
2|I−{i}|·n

=
|Z|

2|I|·n
· 2n ·

∣∣Z|I−{i}∣∣
|Z|

= δ(Z) · 2n · 1

AvgDegi(Z)
=

2n

∆
· δ(Z),

as required. �

The advantage of the minimal degree as a measure of information is that it is preserved when
we project the set Z to a subset of the rows, which is captured by the following observation.

Claim 8 ([RM97]). Let I ′ ⊆ I ⊆ [m] and let Z ⊆ {0, 1}I×n be a set of matrices. Then for every

i ∈ I ′ it holds that MinDegi(Z|I′) ≥ MinDegi(Z).
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Proof. Let G1, . . . , Gm be the graphs de�ned above, and for each i ∈ I ′ let G′i be the corresponding
graph for Z|I′ . Let i ∈ I ′ and let Z ′ ∈ Z|I′−{i} be a vertex of G′i. We prove that the degree of Z ′

in G′i is at least MinDegi(Z). Let Z̃ be any extension of Z ′ in Z|I−{i}. Then, it is easy to see that

any neighbor z| of Z̃ in Gi is also a neighbor of Z ′ in G′i. Therefore, the degree of Z ′ in G′i is at
least the degree of Z̃ in Gi, which is at least MinDegi(Z). �

The following useful lemma, due to [RM97], allows us to switch from the average degree to the
minimal degree.

Lemma 9 (The thickness lemma [RM97]). Let I ⊆ [m] and Z ⊆ {0, 1}I×n. Then, there exists a

set Z̃ ⊆ Z such that
∣∣∣Z̃∣∣∣ ≥ 1

2 · |Z|, and such that MinDegi(Z̃) ≥ 1
2m ·AvgDegi(Z) for every i ∈ [m].

Let ∆ = logm + 2. We say that a set Z ∈ {0, 1}I×n is thick if MinDegi(Z) ≥ ∆ for every
i ∈ I. This property is useful since it allows us to deactivate a row, as will be shown momentarily
in Lemma 10. Observe that Lemma 9 implies that any set Z ⊆ {0, 1}I×n can be transformed into
a thick set provided that AvgDegi(Z) ≥ 2 ·m ·∆ for every i ∈ I (at the cost of decreasing the size
of Z by a factor of 2). The adversary will strive to maintain the latter property. To this end, the
adversary will make sure that all the active rows have average degree at least 4 ·m ·∆ (in order to
have some slackness). If at any point in time, the average degrees of some rows drop below 4 ·m ·∆,
the adversary will remove these rows from the set of active rows. This is done using the following
lemma, whose proof combines ideas from [EIRS01] and [RM97].

Lemma 10. Let I ⊆ [m] and Z ⊆ {0, 1}I×n be a thick set. Then, there exists a set of rows I ′ ⊆ I,
a set Z ′ ⊆ Z|I′ and functions φ0, φ1 : Z ′ → Z that satisfy the following properties:

• For every i′ ∈ I ′, it holds that AvgDegi′(Z ′) ≥ 4 ·m ·∆.

• For every Z ′ ∈ Z ′, the matrices φ0(Z ′), φ1(Z ′) are extensions of Z ′.

• For every two matrices Z1′, Z2′ ∈ Z ′ (not necessarily distinct), it holds that φ0(Z1′), φ1(Z2′)
disagree on all rows in I − I ′.

• δ(Z ′) ≥ δ(Z) · 2(n−2 log(m)−4)·(|I|−|I′|).

Remark 11. The last property is used to capture the idea that in order to deactivate (|I|−|I ′|) rows,
Alice and Bob had to transmit (n−O(log(m))) · (|I| − |I ′|) bits of information.

Proof. We construct I ′ using the following iterative process: as long as there exists an index i ∈ I
such that AvgDegi(I) < 8 ·m ·∆, we remove it from I. We denote I ′ by the �nal set (and denote
by I the original set). Let I − I ′ = {i1, . . . , it} be the indices that were removed. We �rst observe
that

δ(Z|I′) ≥ 2(n−log(m)−log ∆−3)·t · δ(Z) ≥ 2(n−2 log(m)−3)·t · δ(Z),

which can be proved by an iterative application of Claim 7. Next, we construct the set Z ′ as follows:
We �rst choose uniformly distributed functions f1, . . . , ft : {0, 1}n → {0, 1}. We then put a matrix
Z ′ ∈ Z|I′ in Z ′ if and only if it has two extensions Z0 and Z1 in Z such that for every row ij ∈ I−I ′,
the function fj outputs 0 on the ij-th row of Z0, and outputs 1 on the ij-th row of Z1. For each
such matrix Z ′, we de�ne φ0(Z ′) = Z0 and φ1(Z ′) = Z1 (if there is more than one possible choice
for Z0, we choose arbitrarily, and the same for Z1).

It is easy to see that for every choice of f1, . . . , ft this choice of Z ′ and φ0, φ1 satis�es the second
and third requirements of the lemma. We show that there exists a choice of f1, . . . , ft for which
Z ′, φ0, φ1 satisfy the �rst and fourth requirements. To this end we use the following claim, whose
proof is deferred to the end of this section.
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Claim 12. Let Z ′ ∈ Z|I′ . The probability that Z ′ is put in Z ′ (over the choice of f1, . . . , ft) is at
least 1

2 .

The latter claim implies that there exists a choice of f1, . . . , ft for which |Z ′| ≥ 1
2 · |Z|I′ |. Now, for

this choice of f1, . . . , ft it holds that

δ(Z ′) ≥ 1

2
· δ(Z|I′) ≥ 2(n−2 log(m)−3)·(|I|−|I′|)−1 ≥ 2(n−2 log(m)−4)·(|I|−|I′|).

Furthermore, for every i ∈ I ′, it follows by Claim 6 that

AvgDegi(Z ′) ≥
1

2
·AvgDegi (Z|I′) ≥ 4 ·m ·∆,

where the last inequality holds since otherwise, i has average degree in Z|I′ that is less than 8 ·
m ·∆, and therefore it would have been removed in the process of constructing I ′. It follows that
there exists a subset Z ′ that satis�es all four requirements of the lemma, as required. �

Proof of Claim 12. We use the same notations as in the proof of Lemma 10. Let Z ′ ∈ Z|I′ .
For every set of indices I ⊆ I − I ′, we say that a matrix Z ∈ Z|I′∪I is a 0-extension of Z ′ to I
(respectively, 1-extension) if it is an extension of Z ′, and for every ij ∈ I it holds that fj outputs 0
(respectively 1) on the ij-th row of Z. Using this notation, our goal is to prove that with probability
at least 1

2 , there exists both a 0-extension and a 1-extension of Z ′ to I − I ′. We prove a stronger
claim: for every k ∈ [t], let Ej be the event that there exists both a 0-extension and a 1-extension
of Z ′ to {i1, . . . , ik}. We prove that the probability of Ej is at least (1 − 1

2·m)k. Observe that this
claim implies that for k = t this probability is at least

(1− 1

2 ·m
)t ≥ 1− t

2m
≥ 1

2
,

which is what we need to prove.
In order to lower bound the probability of Ek, it su�ces to show that Pr [Ek] ≥ 1 − 1

2·m and
that Pr [Ek+1|Ek] ≥ 1− 1

2·m for every k ∈ [t− 1]. We prove the latter lower bound, and the former
lower bound is similar.

Let k ∈ [t− 1]. Observe that the event Ek depends only on the choice of f1, . . . , fk � �x such
a choice for which Ek occurs. We prove that the probability that there is no 0-extension of Z ′

to {1, . . . , ik+1} is at most 1
4·m . The same argument shows that this holds for a 1-extension, and by

the union bound we deduce that the probability that Ek+1 occurs is at least 1− 1
2·m .

Let Z0,j be a 0-extension of Z ′ to {i1, . . . , ik} (such a 0-extension exists since Ek occurs). Let
G′ik+1

be the graph that corresponds to ik+1 and Z|I′∪{i1,...,ik+1}. Observe that Z0,k is a vertex

of G′ik+1
, and therefore its degree is at least

MinDegik+1
(Z|I′∪{i1,...,ik+1}) ≥ MinDegik+1

(Z) ≥ ∆,

where the �rst inequality is due to Claim 8 and the second inequality holds since Z is thick. This
means that there are at least ∆ possible values z ∈ Z|ik+1

that extend Z0,k to {i1, . . . , ik+1}. If fj+1

outputs 0 on at least one of these values, then we can add it to Z0,k to obtain a 0-extension of Z ′

to the ik+1-th row. Now, the probability that fk+1 does not output 0 on all these values is at most

2−∆ = 2−(logm+2) ≥ 1

4 ·m
,

and therefore the probability that there is no 0-extension of Z ′ to {i1, . . . , ik+1} is at most 1
4·m ,

which is what we need to prove. �
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3.3 The adversary argument

We �nally turn to prove our Theorem 1, restated next.

Theorem 1. The deterministic communication complexity of solving the m-fold direct sum of the

universal relation over n bits is at least m · (n− 2 log(m)− 8).

As noted in Section 2, in order to prove Theorem 1 it su�ces to prove a lower bound of m · (n−
2 log(m) − 6) on the totalized m-fold direct sum. Let m,n ∈ N and �x a protocol for the totalized

m-fold direct sum of the universal relation over n bits. Let c be the maximal number of bits that
the protocol transmits, and assume for the sake of contradiction that c < m · (n − 2 log(m) − 6).
We design an adversary that �nds a transcript π of the protocol and a pair of inputs (X,Y ) on
which this transcript errs. The adversary constructs the transcript π iteratively, bit by bit. Let πj

be the partial transcript that was constructed after j iterations (so
∣∣πj∣∣ = j). In each iteration, the

adversary constructs a set of active rows Ij ⊆ [m], a set of matrices Zj ⊆ {0, 1}Ij×n, and a pair of
functions Xj , Y j : Zj → {0, 1}m×n that satisfy the following invariants:

• For every Z ∈ Zj , it is consistent with πj to give Alice the input Xj(Z), and it is also
consistent with πj to give Bob the input Y j(Z).

• For every Z ∈ Zj , the matrices Xj(Z) and Y j(Z) are extensions of Z.

• For every two matrices Z1, Z2 ∈ Zj (not necessarily distinct), the matricesXj(Z1) and Y j(Z2)
disagree on all the rows in [m]− Ij .

• For every i ∈ Ij , it holds that AvgDegi(Zj) ≥ 4 ·∆ ·m.

• The density of Zj is at least 2−j+(m−|Ij |)·(n−2 log(m)−6).

The adversary stops when the protocol ends.
We turn to describe how the adversary performs a single iteration. Suppose that the adversary

has already performed the �rst j iterations, and it now performs the (j+1)-th iteration. Assume that
after the players transmitted the partial transcript πj , it is Alice's turn to speak (if it is Bob's turn
to speak, the adversary's behavior is similar). For every Z ∈ Zj , if we give Alice the input Xj(Z),
she speaks either 0 or 1. Let Zj,0 and Zj,1 the sets of matrices Z that correspond to the former and
latter cases. Without loss of generality, assume that

∣∣Zj,0
∣∣ ≥ ∣∣Zj,1

∣∣, which also implies that
∣∣Zj,0

∣∣ ≥
1
2 ·

∣∣Zj
∣∣. Then, the adversary appends 0 to the transcript πj to obtain the new transcript πj+1.

Now, if it holds that no average degree in Zj,0 is too low (i.e., AvgDegi(Zj,0) ≥ 4 ·∆ ·m for every
i ∈ Ij), then the adversary sets Zj+1 = Zj,0, Ij+1 = Ij , X

j+1 = Xj and Y j+1 = Y j , and proceeds
to the next iteration. It is not hard to check that the above invariants are maintained.

Suppose that this is not the case, i.e., that there is some row i ∈ Ij such that AvgDegi(Zj,0) <
4 ·∆ ·m. In this case, we are going to use the thickness lemma (Lemma 9) to transform Zj,0 into
a thick set, and then use Lemma 10 to deactivate the rows with low average degree. Speci�cally,
observe that since the average degrees were large enough in Zj (i.e., AvgDegi(Zj) ≥ 4 · ∆ · m
for every i ∈ Ij) and since

∣∣Zj,0
∣∣ ≥ 1

2 ·
∣∣Zj

∣∣, it follows by Claim 6 that all the average degrees

of Zj,0 are at least 2 ·∆ ·m. By the thickness lemma, there exists a thick subset Z̃ ⊆ Zj,0 such that
δ(Z̃) ≥ 1

2 ·δ(Z
j,0). Next, the adversary applies Lemma 10 to Z̃ to obtain a new set of rows Ij+1 ⊆ Ij ,

a new set of matrices Zj+1 ⊆ Z̃|Ij+1 , and functions φ0, φ1 : Zj+1 → Z̃ such that

• For every Z ∈ Zj+1, the matrices φ0(Z), φ1(Z) are extensions of Z.
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• For every two matrices Z1, Z2 ∈ Z ′ (not necessarily distinct), it holds that φ0(Z1), φ1(Z2)
disagree on all rows in Ij − Ij+1.

• For every i ∈ Ij+1, it holds that AvgDegi(Zj+1) ≥ 4 ·∆ ·m.

• δ(Zj+1) ≥ δ(Z̃) · 2(n−2 log(m)−4)·(|Ij |−|Ij+1|).

The adversary now chooses Xj+1, Y j+1 : Zj+1 → {0, 1}m×n by setting Xj+1(Z) = Xj(φ0(Z)) and
Y j+1(Z) = Y j(φ1(Z)) for every Z ∈ Zj+1. It is not di�cult to see that �rst four among the above
invariants are maintained. To see that the last invariant is maintained, observe that

δ(Zj+1) ≥ δ(Z̃) · 2(n−2 log(m)−4)·(|Ij |−|Ij+1|)

≥ 1

2
· δ(Zj,0) · 2(n−2 log(m)−4)·(|Ij |−|Ij+1|)

≥ 1

4
· δ(Zj) · 2(n−2 log(m)−4)·(|Ij |−|Ij+1|)

≥ δ(Zj) · 2(n−2 log(m)−6)·(|Ij |−|Ij+1|)

≥ 2−j+(m−|Ij |)·(n−2 log(m)−6)+(n−2 log(m)−7)·(|Ij |−|Ij+1|)

= 2−j+(m−|Ij |+|Ij |−|Ij+1|)·(n−2 log(m)−6)

= 2−j+(m−|Ij+1|)·(n−log(m)−9),

as required.
Finally, we show that when the protocol halts, the adversary can �nd a pair of inputs on which

the transcript π errs. Let us denote by π, I,Z, X, Y the appropriate objects when the protocol
halts. We �rst observe that I 6= ∅. To see why, recall that the density of Z is at least

2−c+(m−|I|)·(n−2 log(m)−6)

and at most 1. This implies that

2−c+(m−|I|)·(n−2 log(m)−6) ≤ 1

(m− |I|) · (n− 2 log(m)− 6) ≤ c

(m− |I|) · (n− 2 log(m)− 6) < m · (n− 2 log(m)− 6)

m− |I| < m

|I| > 0.

Hence, I is not empty. Next, we use the following claim, which we prove at the end of this section.

Claim 13. The set Z contains two matrices Z1, Z2 that disagree on all the rows in I.

Let Z1, Z2 ∈ Z be the matrices from the claim. Now, we consider two cases:

• If the transcript π outputs ⊥, then the adversary gives the input X(Z1) to Alice and the
input Y (Z2) to Bob. It can be veri�ed that these two matrices disagree on all the rows in [m],
and therefore the transcript π errs on this pair of inputs.

• Otherwise, the adversary gives the input X(Z1) to Alice and the input Y (Z1) to Bob. These
to matrices agree on the rows in I, which is a non-empty set of rows, and therefore the
transcript π errs on these inputs.

9



Thus, the adversary manages to �nd a transcript π that errs, as required.

Proof of Claim 13. Since all the average degrees of Z are at least 4 ·∆ ·m, it follows from the
thickness lemma 9 that Z contains a thick subset Z̃. We prove that Z̃ contains two matrices Z1, Z2

that disagree on all the rows in I. Let us denote I = {i1, . . . , it}. We construct Z1, Z2 iteratively,
where in the j-th iteration we choose the values of the ij-th row of Z1, Z2. We now describe the j-th

iteration: let us denote Ij−1 = {i1, . . . , ij−1} and Ij
def
= Ij−1 ∪ {ij}, and let Z1,j−1, Z2,j−1 ∈ Z̃|Ij−1

be the matrices constructed so far. For every i ∈ Ij , let G′ij denote the corresponding graph of Z̃|Ij .
Since Z̃ is thick, it follows from Claim 8 that the minimal degree of G′ij is

MinDegij (Z̃|Ij ) ≥ MinDegij (Z̃) ≥ ∆.

Observe that Z1,j−1, Z2,j−1 are vertices of G′ij , so their degree is at least 2. This means there are

two di�erent extensions of Z1,j−1 to the ij-th row, and the same holds for Z2,j−1. In particular, it
follows that we can extend Z1,j−1 and Z2,j−1 to the ij-th using di�erent strings, so they disagree
on the ij-th row. We choose these extensions to be the input Z1,j , Z2,j to the next iteration.

Clearly, when this iterative process ends, the resulting matrices Z1, Z2 disagree on all the rows
in I. �
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discussions.
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