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Abstract

One of the important challenges in circuit complexity is proving strong lower bounds for
constant-depth circuits. One possible approach to this problem is to use the framework of
Karchmer-Wigderson relations: Karchmer and Wigderson [KW90] observed that for every
Boolean function f there is a corresponding communication problemKWf , called the Karchmer-
Wigderson relation of f , whose deterministic communication complexity is tightly related to the
depth complexity of f . In particular, if we could prove that every deterministic constant-round

protocol for KWf must transmit at least c bits, then this would imply a lower bound of 2Ω(c)

on the size of constant-depth circuits computing f .
In this work, we observe that there is a randomized two-round protocol that solves every

Karchmer-Wigderson relation KWf by transmitting only O(log2 n) bits. This means that if
we wish to use Karchmer-Wigderson relations in order to prove exponential lower bounds for
constant-depth circuits, then we cannot use techniques that work against randomized protocols.

1 Introduction

Proving circuit lower bounds is a central challenge of complexity theory. Unfortunately, proving
even super-linear lower bounds for general circuits seems to be beyond our reach at this stage. In
order to make progress and develop new proof techniques, much of the current research focuses on
proving lower bounds for restricted models of circuits. One of the simplest restricted models that
are not yet fully understood is circuits of constant depth (with unbounded fan-in).

By a standard counting argument, we know that there exists a non-explicit function that requires
such circuits of size Ω(2n). On the other hand, the strongest lower bound we have for an explicit
function [Ajt83, FSS84, Hås86] says that circuits of depth d computing the parity of n bits must

be of size 2Ω(n1/(d−1)). Hence, while strong lower bounds are known in this model, there is still a
signi�cant gap in our understanding. In particular, it is an outstanding open problem to prove a
lower bound of Ω(2n) even for depth-3 circuits computing an explicit function (or, indeed, any lower
bound that is better than 2Ω(

√
n)).

One possible approach for attacking this problem is a framework due to Karchmer and Wigder-
son [KW90]. This framework was originally developed for proving lower bounds on the depth of
circuits with bounded fan-in. Given a function f , we de�ne the depth complexity of f to be the
smallest depth of a circuit with fan-in 2 that computes f . Karchmer and Wigderson observed that
for every Boolean function f there is a corresponding communication problem KWf , called the
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Karchmer-Wigderson relation of f , such that the deterministic communication complexity of KWf

is exactly equal to the depth complexity of f . Hence, one can prove lower bounds on the depth
complexity of a function f by proving lower bounds on the communication complexity ofKWf . This
approach has proved very fruitful in the setting of monotone circuits [KW90, GS91, RW92, KRW95].

The framework of Karchmer and Wigderson could also be used to prove lower bounds on
constant-depth circuits with unbounded fan: it is implicit1 in the work of [KW90] that lower
bounds on the deterministic communication complexity of constant-round protocols for KWf imply
lower bounds for constant-depth circuits. More speci�cally, if every deterministic r-round protocol
for KWf must transmit at least c bits, then every depth-r circuit (with unbounded fan-in) that
computes f must be of size at least 2c/r. Hence, if we could �nd an explicit function f such that
every constant-round protocol for KWf must transmit Ω(n) bits, we would obtain a lower bound
of Ω(2n) on the size of circuits computing f .

Soon after the introduction of Karchmer-Wigderson relations, Karchmer observed a severe limi-
tation of this framework (see [RW89]): there is a randomized protocol that solves every Karchmer-
Wigderson relation by transmitting O(log n) bits. This means that if one wishes to use Karchmer-
Wigderson relations in order to prove super-logarithmic lower bounds on depth complexity, then one
has to use proof techniques that cannot prove lower bounds against randomized protocols. Since the
most powerful techniques in the �eld of communication complexity are e�ective against randomized
protocols, this limitation makes the use of Karchmer-Wigderson relations quite di�cult.

Karchmer's protocol uses a logarithmic number of rounds, so it is not clear a priori that this
limitation applies to proving constant-depth lower bounds. In this work, we observe that a similar
limitation applies in the setting of constant-depth lower bounds as well. Speci�cally, we show that
there is a randomized two-round protocol that solves every Karchmer-Wigderson relation KWf

by transmitting only O(log2 n) bits. This means that proof techniques that are e�ective against
randomized protocols can only prove lower bounds of at most nO(logn) for constant-depth circuits,
and in particular, cannot prove exponential lower bounds.

2 Preliminaries and Our Result

For n ∈ N, we denote [n]
def
= {1, . . . n}. For a string x ∈ {0, 1}n and a set of coordinates S ⊆ [n],

we denote by x|S the projection of x to the coordinates in S. We use the standard de�nitions of
communication complexity � see the book of Kushilevitz and Nisan [KN97] for more details.

Our proof uses the Hamming code, which we present next. Given two strings x, y ∈ {0, 1}n, the
(Hamming) distance between x and y is the number of coordinates on which they di�er. Given a
string x ∈ {0, 1}n and r ∈ N, the Hamming ball of radius r around x is the set of all strings whose
Hamming distance from x is at most r. The Hamming code is a partition of {0, 1}n to balls of
radius 1, and it exists for every n ∈ N for which n+ 1 is a power of 2 (see, e.g., Lecture 2 in [Sud01]
for the construction of the Hamming code).

2.1 Karchmer-Wigderson relations and the universal relation

Let f : {0, 1}n → {0, 1} be a Boolean function. The Karchmer-Wigderson relation KWf is de�ned
as follows: Alice gets an input x ∈ f−1(0), and Bob gets as input y ∈ f−1(1). Clearly, it holds that
x 6= y. The goal of Alice and Bob is to �nd a coordinate i such that xi 6= yi. Note that there may
be more than one possible choice for i, which means that KWf is a relation rather than a function.

1It follows more explicitly from the discussions of Karchmer-Wigderson relations in [Raz90, KKN95], and a similar
observation was also made in [KPPY84].
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As noted above, Karchmer and Wigderson observed that the communication complexity of KWf is
exactly equal to the depth complexity of f .

In order to study Karchmer-Wigderson relations, Karchmer, Raz, and Wigderson de�ned the
universal relation, which is the following computational problem: Alice and Bob as inputs two
distinct strings x, y ∈ {0, 1}n respectively, and their goal is to �nd a coordinate i ∈ [n] such that
xi 6= yi. It is easy to see that every Karchmer-Wigderson relation reduces to the universal relation.
Thus, in order to prove our result, it su�ces to devise an e�cient randomized protocol for the
universal relation2. Our result can now be stated as follows.

Theorem 1. There is a randomized two-round protocol that solves the universal relation over n bits

with probability at least 2
3 by transmitting at most O(log2 n).

We prove this theorem in two steps: In the �rst step, described in Section 3, we devise an
e�cient deterministic two-round protocol that solves the universal relation in the special case where
the inputs di�er only on one coordinate (i.e., the Hamming distance between the inputs is 1). In
the second step, described in Section 4, we reduce the general case to the foregoing special case
along the lines of the Valiant-Vazirani reduction [VV86].

3 The Case of Hamming Distance 1

In this section, we present a deterministic two-round protocol that solves the universal relation
in the special case where Alice and Bob get inputs that disagree on exactly one coordinate. The
protocol will transmit O(log n) bits. Let us denote by x, y ∈ {0, 1}n the inputs of Alice and Bob
respectively. Without loss of generality, we may assume that n+ 1 is a power of 2, so the Hamming
code exists over {0, 1}n: otherwise, the players pad their inputs with 0s in order to satisfy this
restriction, and this increases n by a factor of at most 2. The protocol is as follows:

1. In the beginning of the protocol, Alice �nds the ball in the Hamming code to which x belongs,
and denotes its center by cx ∈ {0, 1}n. Bob does similarly for y, thus obtaining a center cy ∈
{0, 1}n.

2. Alice sends the �rst message in the protocol, which is an integer from 0 to n that she determines
as follows:

(a) If x = cx, then Alice sends 0.

(b) Otherwise, Alice sends the unique coordinate j in [n] on which x and cx disagree.

3. If Alice sent 0:

(a) Observe that in this case it holds that cy = x = cx (since x and y are within distance 1
and x is the center of a ball).

(b) Thus, Bob sends to Alice the unique coordinate i on which y and cy = x disagree, and
this is the output of the protocol.

4. If Alice sent j ∈ [n] and y = cy:

(a) Observe that in this case, it holds that cx = y = cy (since x and y are within distance 1
and y is the center of a ball).

2We note that the aforementioned protocol of Karchmer solves the universal relation as well.
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(b) Thus, Bob can deduce that j is the coordinate on which x and y di�er.

(c) Hence, Bob sends j back to Alice, and this is the output of the protocol.

5. If Alice sent j ∈ [n] and y 6= cy:

(a) Let us denote by i ∈ [n] the unique coordinate on which x and y disagree.

(b) Observe that i 6= j, since otherwise it would follow that y = cy.

(c) This implies that y and cx disagree exactly on the coordinates i and j

(d) Bob computes the string y′ obtained by �ipping the j-th coordinate of y, so y′ disagrees
with cx only the coordinate i.

(e) Then, y′ is within Hamming distance 1 of cx, and therefore must be in the ball around cx
in the Hamming code.

(f) Bob now determines cx by �nding the ball of y′ in the Hamming code, and deduces i by
�nding the unique coordinate on which y′ and cx disagree.

(g) Bob sends i to Alice, and this is the output of the protocol.

The correctness of the protocol is explained within the foregoing description, and it is not hard to
see that it indeed sends O(log n) bits, as required.

Remark 2. By personal communication, we know that this protocol was discovered independently
by Avi Wigderson and Mauricio Karchmer, and by Benjamin Rossman. However, to the best of our
knowledge, this is the �rst time this protocol is published.

4 Proof of Theorem 1

In this section we describe a randomized two-round protocol that solves the universal relation in the
general case, thus proving Theorem 1. We describe a public-coin protocol, and it can be converted
into a private-coin protocol using Newman's lemma [New91].

The idea is to reduce the general case to the special case of Section 3 along the lines of the
Valiant-Vazirani reduction: For start, suppose that the parties knew that their inputs disagree on
exactly ` coordinates. In this case, the parties could choose a random set of coordinates of size n

2` ,
and with constant probability this set would contain exactly one coordinate on which they disagree.
Thus, the parties could project their inputs to this set and use the protocol of Section 3. The next
step in the argument is to observe that this idea works even if the parties only have an estimate of `
up to a factor of 2. Finally, since the parties do not have such an estimate of `, they try di�erent
values of ` = 1, 2, 4, 8, . . . , n and apply the foregoing protocol in parallel for each of those values.
Details follow.

Formally, the protocol is de�ned as follows. Suppose that Alice and Bob get as inputs the
strings x, y ∈ {0, 1}n respectively, so x 6= y. They perform the following steps for every t ∈
{1, . . . , dlog ne+ 1}:

1. Using the public coins, choose a random set of coordinates S ⊆ [n] by putting each coordinate
in S with probability 2−t independently.

2. Execute the protocol of Section 3 on x|S and y|S , thus obtaining a coordinate i ∈ [n].

3. If xi 6= yi, output the coordinate i and end the protocol.
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It is easy to see that the protocol indeed transmits O(log2 n) bits. Moreover, the protocol can be
implemented in two rounds, since the above steps can be performed in parallel for all values of t. It
remains to show that it outputs a coordinate i ∈ [n] on which xi 6= yi with good probability.

Fix speci�c inputs to the players x, y ∈ {0, 1}n, and let I ⊆ [n] be the set of coordinates on
which x and y di�er. Observe that the protocol succeeds whenever, in the foregoing steps, the
random set S contains exactly one coordinate on which x and y di�er (i.e., |S ∩ I| = 1). When
t = dlog |I|e+ 1, the probability that the latter event happens is

Pr [|S ∩ I| = 1] =
∑
i∈I

Pr [S ∩ I = {i}]

=
∑
i∈I

Pr [i ∈ S] ·
∏

j∈I\{i}

Pr [j /∈ S]

= |I| · 1

2t
·
(

1− 1

2t

)|I|−1

(Since |I| ≥ 2t−2) ≥ 1

4
·
(

1− 1

2t

)|I|
(Since |I| ≤ 2t−1) ≥ 1

4
·
(

1− 1

2 · |I|

)|I|
≥ 1

4
·
(

1− |I|
2 · |I|

)
≥ 1

8
.

It follows that the protocol succeeds with probability at least 1
8 . Note that the protocol is a zero-error

protocol, i.e., the parties always know whether they succeeded or not. Hence, th success probability
can be ampli�ed to 2

3 by repeating the protocol a constant number of times, while maintaining a
communication complexity of O(log2 n). This concludes the proof.
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