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Abstract

One of the important challenges in circuit complexity is proving strong lower bounds for
constant-depth circuits. One possible approach to this problem is to use the framework of
Karchmer-Wigderson relations: Karchmer and Wigderson [KW90] observed that for every
Boolean function f there is a corresponding communication problem KWf , called the Karchmer-
Wigderson relation of f , whose deterministic communication complexity is tightly related to the
depth complexity of f . In particular, if we could prove that every deterministic constant-round
protocol for KWf must transmit at least c bits, then this would imply a lower bound of 2Ω(c)

on the size of constant-depth circuits computing f .
Jowhari, Săglam, and Tardos [JST11] showed that there is a randomized two-round proto-

col that solve every Karchmer-Wigderson relation KWf by transmitting only O(log2 n) bits.
Furthermore, there is such a randomized four -round protocol that uses only O(log n). This
means that if we wish to use Karchmer-Wigderson relations in order to prove exponential lower
bounds for constant-depth circuits, then we cannot use techniques that work against randomized
protocols.

The protocols of [JST11] are based on a result from the sketching literature. In this note,
we replace this tool with a simple protocol that is based on the Hamming code. This results in
protocols that require no background in sketching to understand. The aforementioned simple
protocol is a deterministic two-round protocol that solves a special case of Karchmer-Wigderson
relations, and may be of indepedent interest.

1 Introduction

Proving circuit lower bounds is a central challenge of complexity theory. Unfortunately, proving
even super-linear lower bounds for general circuits seems to be beyond our reach at this stage. In
order to make progress and develop new proof techniques, much of the current research focuses on
proving lower bounds for restricted models of circuits. One of the simplest restricted models that
are not yet fully understood is circuits of constant depth (with unbounded fan-in).

By a standard counting argument, we know that there exists a non-explicit function that requires
such circuits of size Ω(2n). On the other hand, the strongest lower bound we have for an explicit
function [Ajt83, FSS84, H̊as86] says that circuits of depth d computing the parity of n bits must

be of size 2Ω(n1/(d−1)). Hence, while strong lower bounds are known in this model, there is still a
significant gap in our understanding. In particular, it is an outstanding open problem to prove
a lower bound of Ω(2n) even for depth-3 circuits computing an explicit function (or, indeed, any
lower bound that is better than 2Ω(

√
n)).
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One possible approach for attacking this problem is a framework due to Karchmer and Wigder-
son [KW90]. This framework was originally developed for proving lower bounds on the depth of
circuits with bounded fan-in. Given a function f , we define the depth complexity of f to be the
smallest depth of a circuit with fan-in 2 that computes f . Karchmer and Wigderson observed that
for every Boolean function f there is a corresponding communication problem KWf , called the
Karchmer-Wigderson relation of f , such that the deterministic communication complexity of KWf

is exactly equal to the depth complexity of f . Hence, one can prove lower bounds on the depth com-
plexity of a function f by proving lower bounds on the communication complexity of KWf . This
approach has proved very fruitful in the setting of monotone circuits [KW90, GS91, RW92, KRW95].

The framework of Karchmer and Wigderson could also be used to prove lower bounds on
constant-depth circuits with unbounded fan: it is implicit1 in the work of [KW90] that lower
bounds on the deterministic communication complexity of constant-round protocols for KWf imply
lower bounds for constant-depth circuits. More specifically, if every deterministic r-round protocol
for KWf must transmit at least c bits, then every depth-r circuit (with unbounded fan-in) that
computes f must be of size at least 2c/r. Hence, if we could find an explicit function f such that
every constant-round protocol for KWf must transmit Ω(n) bits, we would obtain a lower bound
of Ω(2n) on the size of circuits computing f .

Soon after the introduction of Karchmer-Wigderson relations, Karchmer observed a severe lim-
itation of this framework (see [RW89]): there is a randomized protocol that solves every Karchmer-
Wigderson relation by transmitting O(log n) bits. This means that if one wishes to use Karchmer-
Wigderson relations in order to prove super-logarithmic lower bounds on depth complexity, then
one has to use proof techniques that cannot prove lower bounds against randomized protocols.
Since the most powerful techniques in the field of communication complexity are effective against
randomized protocols, this limitation makes the use of Karchmer-Wigderson relations quite difficult.

Karchmer’s protocol uses a logarithmic number of rounds, so it is not clear a priori that this
limitation applies to proving constant-depth lower bounds. Jowhari, Săglam, and Tardos [JST11]
showed a similar limitation applies in the setting of constant-depth lower bounds as well. Specifi-
cally, we show that there is a randomized two-round protocol that solves every Karchmer-Wigderson
relation KWf by transmitting only O(log2 n) bits. This means that proof techniques that are ef-
fective against randomized protocols can only prove lower bounds of at most nO(logn) for constant-
depth circuits, and in particular, cannot prove exponential lower bounds. Moreover, they showed
that there is a randomized four-round protocol that uses only O(log n) bits. This means that one
cannot use Karchmer-Wigderson relations even to prove super-polynomial lower bounds for circuits
of depth 4 and above. Finally, [JST11] proved that their result for two-round protocols is tight —
there is no two-round protocol that uses less than Ω(log2 n) bits (the lower bound was improved
later in [KNP+17]).

The protocols of [JST11] are based on a result from the from the on-line sketching literature.
In particular, the crux of their protocols is a lemma that says that a random sparse real vector can
be reconstructed from a random linear sketch. In this note, we show that it is possible to replace
this lemma with a simple protocol that is based on the Hamming code. The resulting protocols
have the advantage that they can be understood without background in sketching. We note that
the aforementioned protocol is a deterministic two-round protocol that solves a special case of
Karchmer-Wigderson relations, and may be of independent interest.

1It follows more explicitly from the discussions of Karchmer-Wigderson relations in [Raz90, KKN95], and a similar
observation was also made in [KPPY84].
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Organization of this paper. In Section 2 we cover the required preliminaries and state the
results of [JST11] formally. In Section 3 we describe the aforementioned protocol for a special case
of Karchmer-Wigderson relations. Then, in Sections 4 and 5 we reprove use the latter protocol to
design randomized protocols for Karchmer-Wigderson relations along the lines of [JST11].

2 Preliminaries and Our Result

For n ∈ N, we denote [n]
def
= {1, . . . n}. For a string x ∈ {0, 1}n and a set of coordinates S ⊆ [n],

we denote by x|S the projection of x to the coordinates in S. We use the standard definitions of
communication complexity — see the book of Kushilevitz and Nisan [KN97] for more details.

Our proof uses the Hamming code, which we present next. Given two strings x, y ∈ {0, 1}n, the
(Hamming) distance between x and y is the number of coordinates on which they differ. Given a
string x ∈ {0, 1}n and r ∈ N, the Hamming ball of radius r around x is the set of all strings whose
Hamming distance from x is at most r. The Hamming code is a partition of {0, 1}n to balls of
radius 1, and it exists for every n ∈ N for which n+ 1 is a power of 2 (see, e.g., Lecture 2 in [Sud01]
for the construction of the Hamming code).

We also use the following two simple facts from probability theory.

Claim 1. Consider n independent Bernouli trials with success probability p such that 1
4n ≤ p ≤ 1

2n .
The probability of the number of successes being exactly 1 is at least 1

8 .

Proof. The probability of exactly one success is

n · p · (1− p)n−1 ≥ n · 1

4 · n
·
(

1− 1

2 · n

)n

≥ 1

4
·
(

1− n

2 · n

)
=

1

8
,

as required. �

Claim 2. Consider n independent Bernouli trials with success probability p such that p ≤ 1
2n .

Conditioned on an odd number of successes, the probability of the number of successes being exactly 1
is at least 3

8 .

Proof. Let p, n be as in the claim. For every odd number k, the probability of k successes is at
most (

n

k

)
· pk · (1− p)n−k ≤ nk

k!
· p ·

(
1

2n

)k−1

≤ n · p · 1

4k−2
,

where the second inequality is due to the fact that k! ≥ 2k−1. Therefore, the probability of an odd
number of successes is at most

n · p ·
n∑

k=1, k odd

1

4k−2
≤ n · p · 4 ·

∞∑
k=0

1

4k
≤ 4

3
· n · p.

On the other hand, the probability of exactly one success is

n · p · (1− p)n−1 ≥ n · p · (1− 1

2 · n
)n−1 ≥ n · p · (1− n− 1

2 · n
) ≥ 1

2
· n · p.

Combining the two inequalities, it follows that the probability of exactly one success conditioned
on an odd number of successes is at least

1
2 · n · p
4
3 · n · p

=
3

8
.

�
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2.1 Karchmer-Wigderson relations and the universal relation

Let f : {0, 1}n → {0, 1} be a Boolean function. The Karchmer-Wigderson relation KWf is defined
as follows: Alice gets an input x ∈ f−1(0), and Bob gets as input y ∈ f−1(1). Clearly, it holds that
x 6= y. The goal of Alice and Bob is to find a coordinate i such that xi 6= yi. Note that there may
be more than one possible choice for i, which means that KWf is a relation rather than a function.
As noted above, Karchmer and Wigderson observed that the communication complexity of KWf

is exactly equal to the depth complexity of f .
In order to study Karchmer-Wigderson relations, Karchmer, Raz, and Wigderson defined the

universal relation, which is the following computational problem: Alice and Bob as inputs two
distinct strings x, y ∈ {0, 1}n respectively, and their goal is to find a coordinate i ∈ [n] such that
xi 6= yi. It is easy to see that every Karchmer-Wigderson relation reduces to the universal relation.
Thus, in order to prove the results of [JST11], it suffices to devise an efficient randomized protocol
for the universal relation2. The results of [JST11] that we reprove in this note can now be stated
as follows.

Theorem 3. There is a randomized two-round protocol that solves the universal relation over n bits
with probability at least 2

3 by transmitting at most O(log2 n).

Theorem 4 (Goldreich, personal communication). There is a randomized four-round protocol that
solves the universal relation over n bits with probability at least 2

3 by transmitting at most O(log2 n).

As explained in the introduction, the crux of both protocols is a deterministic protocol that
solves a special case of the universal relation. Specifically, this protocol solves the universal relation
in the special case where the inputs differ only on one coordinate (i.e., the Hamming distance
between the inputs is 1), and is presented in Section 3. Theorem 3 is then derived from this
protocol in Section 4 by reducing the general case to the foregoing special case along the lines of
the Valiant-Vazirani reduction [VV86]. Theorem 5 is proved in Section 4 by using a slightly more
sophisticated version of the Valiant-Vazirani reduction.

We note that the protocol of Section 3 is the main point in which we deviate from [JST11],
while the proofs in Sections 4 and 5 follow more or less the same lines.

3 The Case of Hamming Distance 1

In this section, we present a deterministic two-round protocol that solves the universal relation
in the special case where Alice and Bob get inputs that disagree on exactly one coordinate. The
protocol will transmit O(log n) bits. Let us denote by x, y ∈ {0, 1}n the inputs of Alice and Bob
respectively. Without loss of generality, we may assume that n+1 is a power of 2, so the Hamming
code exists over {0, 1}n: otherwise, the players pad their inputs with 0s in order to satisfy this
restriction, and this increases n by a factor of at most 2. The protocol is as follows:

1. In the beginning of the protocol, Alice finds the ball in the Hamming code to which x belongs,
and denotes its center by cx ∈ {0, 1}n. Bob does similarly for y, thus obtaining a center cy ∈
{0, 1}n.

2. Alice sends the first message in the protocol, which is an integer from 0 to n that she deter-
mines as follows:

(a) If x = cx, then Alice sends 0.

2We note that the aforementioned protocol of Karchmer solves the universal relation as well.
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(b) Otherwise, Alice sends the unique coordinate j in [n] on which x and cx disagree.

3. If Alice sent 0:

(a) Observe that in this case it holds that cy = x = cx (since x and y are within distance 1
and x is the center of a ball).

(b) Thus, Bob sends to Alice the unique coordinate i on which y and cy = x disagree, and
this is the output of the protocol.

4. If Alice sent j ∈ [n] and y = cy:

(a) Observe that in this case, it holds that cx = y = cy (since x and y are within distance 1
and y is the center of a ball).

(b) Thus, Bob can deduce that j is the coordinate on which x and y differ.

(c) Hence, Bob sends j back to Alice, and this is the output of the protocol.

5. If Alice sent j ∈ [n] and y 6= cy:

(a) Let us denote by i ∈ [n] the unique coordinate on which x and y disagree.

(b) Observe that i 6= j, since otherwise it would follow that y = cy.

(c) This implies that y and cx disagree exactly on the coordinates i and j

(d) Bob computes the string y′ obtained by flipping the j-th coordinate of y, so y′ disagrees
with cx only on the coordinate i.

(e) Then, y′ is within Hamming distance 1 of cx, and therefore must be in the ball around cx
in the Hamming code.

(f) Bob now determines cx by finding the ball of y′ in the Hamming code, and deduces i by
finding the unique coordinate on which y′ and cx disagree.

(g) Bob sends i to Alice, and this is the output of the protocol.

The correctness of the protocol is explained within the foregoing description, and it is not hard to
see that it indeed sends O(log n) bits, as required.

Remark 5. By personal communication, we know that this protocol was discovered independently
by Mauricio Karchmer and Avi Wigderson, and by Benjamin Rossman. However, to the best of
our knowledge, this is the first time this protocol is published.

4 A Two-Round Protocol

In this section we describe a randomized two-round protocol that solves the universal relation in the
general case, thus proving Theorem 3. We describe a public-coin protocol, and it can be converted
into a private-coin protocol using Newman’s lemma [New91].

The idea is to reduce the general case to the special case of Section 3 along the lines of the
Valiant-Vazirani reduction: For start, suppose that the parties knew that their inputs disagree on
exactly ` coordinates. In this case, the parties could choose a random set of coordinates of size n

2` ,
and with constant probability this set would contain exactly one coordinate on which they disagree.
Thus, the parties could project their inputs to this set and use the protocol of Section 3. The next
step in the argument is to observe that this idea works even if the parties only have an estimate of `
up to a factor of 2. Finally, since the parties do not have such an estimate of `, they try different
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values of ` = 1, 2, 4, 8, . . . , n and apply the foregoing protocol in parallel for each of those values.
Details follow.

Formally, the protocol is defined as follows. Suppose that Alice and Bob get as inputs the
strings x, y ∈ {0, 1}n respectively, so x 6= y. They perform the following steps for every t ∈
{1, . . . , dlog ne+ 1}:

1. Using the public coins, choose a random set of coordinates S ⊆ [n] by putting each coordinate
in S with probability 2−t independently.

2. Execute the protocol of Section 3 on x|S and y|S , thus obtaining a coordinate i ∈ [n].

3. If xi 6= yi, output the coordinate i and end the protocol.

It is easy to see that the protocol indeed transmits O(log2 n) bits. Moreover, the protocol can be
implemented in two rounds, since the above steps can be performed in parallel for all values of t.
It remains to show that it outputs a coordinate i ∈ [n] on which xi 6= yi with good probability.

Fix specific inputs to the players x, y ∈ {0, 1}n, and let I ⊆ [n] be the set of coordinates on
which x and y differ. Observe that the protocol succeeds whenever, in the foregoing steps, the
random set S contains exactly one coordinate on which x and y differ (i.e., |S ∩ I| = 1). When
t = dlog |I|e+ 1, the probability that the latter event happens is at least 1

8 by Claim 1 (since there
are |I| Bernouli trials with success probability 2−t which is between 1

4·|I| and 1
2·|I|).

It follows that the protocol succeeds with probability at least 1
8 . Note that the protocol is a

zero-error protocol, i.e., the parties always know whether they succeeded or not. Hence, th success
probability can be amplified to 2

3 by repeating the protocol a constant number of times in parallel,
while maintaining a communication complexity of O(log2 n). This concludes the proof.

5 A Four-Round Protocol

In this section we present a modification which has communication complexity O(log n) and four
rounds, thus proving Theorem 4. The idea of this protocol is that instead of invoking the protocol
of Section 3 for every value of t, the parties would use the first two rounds to find the correct value
of t, and then invoke the protocol of Section 3 only for this value of t. Formally, the protocol is
defined as follows:

1. Suppose that Alice and Bob get as inputs the strings x, y ∈ {0, 1}n respectively, so x 6= y.

2. The parties perform the following steps in parallel for every t ∈ {1, . . . , dlog ne+ 1}:

(a) Using the public coins, choose a random set of coordinates S ⊆ [n] by putting each
coordinate in S with probability 2−t independently.

(b) Alice sends the parity of x|S .

(c) Bob sends the parity of y|S .

3. If the parities of x|S and y|S agree for all the values of t, the protocol fails.

4. Let t∗ be the maximal value of t on which the parity of x|S and y|S disagree, and let S∗be
the corresponding set.

5. The parties execute the protocol of Section 3 on x|S∗ and y|S∗ , thus obtaining a coordinate i ∈
[n].
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6. If xi 6= yi, the protocol outputs i, and otherwise the protocol fails.

Again, it is not hard to see that this protocol uses four rounds and that it transmits O(log n) bits.
It remains to show that it succeeds with constant probability.

We first observe that with probability at least 1
8 , the parities of x|S and y|S disagree for t =

dlog |I|e + 1. The reason is that for this value of t, the set S contains exactly one coordinate on
which x and y disagree with probability at least 1

8 , as we have shown in the previous section. Now,
let us condition on this event, and consider the value t∗ and set S∗ from the protocol, where t∗ may
be equal to or greater than dlog |I|e+1. Then, the set S∗ contains an odd number of coordinates on
which x and y differ, and the probability that it contains any such coordinate is 2−t ≤ 1

2·|I| . Hence,

by Claim 2, with probability at least 3
8 the set S∗ contains exactly one coordinate on which x and y

differ, in which case the protocol succeeds. It follows that the protocol succeeds with probability
at least 1

8 ·
3
8 = 3

64 , as required.
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