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Abstract

In 1969, Strassen shocked the world by showing that two n×n matrices could be multiplied
in time asymptotically less than O(n3). While the recursive construction in his algorithm is very
clear, the key gain was made by showing that 2 × 2 matrix multiplication could be performed
with only 7 multiplications instead of 8. The latter construction was arrived at by a process of
elimination and appears to come out of thin air. Here, we give the simplest and most transparent
proof of Strassen’s algorithm that we are aware of, using only a simple unitary 2-design and a
few easy lines of calculation. Moreover, using basic facts from the representation theory of finite
groups, we use 2-designs coming from group orbits to generalize our construction to all n ≥ 2
(although the resulting algorithms aren’t optimal for n ≥ 3).

1 Introduction

The complexity of matrix multiplication is a central question in computational complexity, bearing
on the complexity not only of most problems in linear algebra, but also of myriad combinatorial
problems, e.g., various shortest path problems [Zwi02] and bipartite matching problems [San09].
The main question around matrix multiplication is whether two n×n matrices can be multiplied in
time O(n2+ε) for every ε > 0. The current best upper bound on this exponent is 2.3728639 [LG14],
narrowly beating [DS13, Wil12]. The best known lower bound is still only 3n2 − o(n) [Lan14].

Since Strassen’s 1969 paper [Str69], which showed how to beat the standard O(n3) time al-
gorithm, it has been understood that one way to get asymptotic improvements in algorithms for
matrix multiplication is to find algebraic algorithms for multiplying small matrices using only a
few multiplications, and then to apply these algorithms recursively.

While the recursive construction in Strassen’s algorithm is very clear—treat a 2n × 2n matrix
as a 2× 2 matrix each of whose entries is an n× n matrix—the base case, which accounts for how
Strassen was able to beat O(n3), seems to come out of thin air. Indeed, Strassen was trying to
prove, by process of (intelligently exhaustive) elimination, that such an algorithm could not exist
(e.g., [Lan08, Remark 1.1.1] or [LR13]). In his paper it is presented as follows, which “one easily
sees” [Str69, p. 355] correctly computes 2× 2 matrix multiplication C = AB:

C11 = I + IV − V + V II C12 = III + V
C21 = II + IV C22 = I + III − II + V I

,
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where
I = (A11 +A22)(B11 +B22) V = (A11 +A12)B22

II = (A21 +A22)B11 V I = (−A11 +A21)(B11 +B12)
III = A11(B12 −B22) V II = (A12 −A22)(B21 +B22)
IV = A22(−B11 +B21)

.

While verifying the above by calculation is not difficult—after all, it’s only seven multiplications
and four linear combinations—it is rather un-illuminating. In particular, the verification gives no
sense of why such a decomposition exists.

In this paper, we give a proof of Strassen’s algorithm that is the most transparent we are aware
of. The basic idea is to note that Strassen’s algorithm has a symmetric group of vectors lurking
in it, which form what is known as a (unitary) 2-design. Using the representation theory of finite
groups, we obtain generalizations to higher dimensions, which suggest further directions to explore
in our hunt for efficient algorithms.

1.1 Other explanations of Strassen’s algorithm

Landsberg [Lan08, Section 3.8] points out that Strassen’s algorithm could have been anticipated
because the border-rank of any 4 × 4 × 4 tensor is at most seven. Although this may lead one to
suspect the existence of an algorithm such as Strassen’s, it does not give an explanation for the
fact that the rank (rather than border-rank) of 2 × 2 matrix multiplication is at most seven, nor
does it give an explanation of Strassen’s particular construction.

Several authors have tried to make Strassen’s construction more transparent through various
calculations, e. g., [Gas71, Yuv78, Cha86, Ale97, Pat09, GK00, Min15, CILO16]. While these lend
some insight, and some provide proofs that are perhaps easier to remember (and teach) than
Strassen’s original presentation, each of them either involves some ad hoc constructions or some
un-illuminating calculations, which are often left to the reader. We feel that they do not really
offer conceptual explanations for the fact that the rank of MM2 is at most 7.

Clausen [Cla88] (see [BCS97, pp. 11–12] for a more widely available explanation in English)
showed how one can use group orbits to show that the rank of MM2 is at most 7. In fact, Clausen’s
beautiful construction was one of the starting points of our investigation. However, that construc-
tion relies on a seemingly magical property of a certain 4 × 4 multiplication table. More recently,
Ikenmeyer and Lysikov [IL17] gave a beautiful explanation of Clausen’s construction, but ultimately
their proof for Strassen’s algorithm still relies on the same magical property of the same 4× 4 mul-
tiplication table, and it is not immediately obvious how to generalize to all n. In contrast, our
result easily generalizes to all n, and more generally to orbits of any irreducible representation of
any finite group.

1.2 Related work

This paper is a simplified and self-contained version of Section 5 of [GM16], in which we explored
highly symmetric algorithms for multiplying matrices. Recently, there have been several papers
analyzing the geometry and symmetries of algebraic algorithms for small matrices [Bur14, Bur15,
LR16, LM16, CILO16]. In [GM16], we tried to take this line of research one step further by
using symmetries to discover new algorithms for multiplying matrices of small size. While those
algorithms did not improve the state-of-the-art bounds on the matrix multiplication exponent, they
suggested that we can use group symmetries and group orbits to find new algorithms for matrix
multiplication. In addition to their potential value for future endeavors, we believe that these
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highly symmetric matrix multiplication algorithms are beautiful in their own right, and deserve to
be shared simply for their beauty.

Although the method of construction suggested in [GM16], and independently in [CILO16], is
more general than this, the constructions we ended up finding in [GM16] were in fact all instances of
a single design-based construction yielding n3−n+1 multiplications for n×n matrix multiplication.
The proof that this construction works is the simplest and most transparent proof of Strassen’s
algorithm that we are aware of.

One may also reasonably wonder whether there is any relationship between our group-based
construction and the family of group-based constructions suggested by Cohn and Umans [CU03],
including the constructions given in [CKSU05] and generalizations in [CU13]. While there may be
a common generalization that captures both methods, at the moment we don’t know of any direct
relationship between the two. Indeed, one cannot use the group-theoretic approach of [CU03] to
explain Strassen’s result, even though the constructions of [CKSU05] get a better exponent: The
only way to use their approach for the 2 × 2 case is to embed MM2 into the cyclic group C7,
but Cohn and Umans showed that one could not beat n3 using only abelian groups. (Some of
their more complicated constructions can beat n3 in abelian groups, but those involve embedding
multiple copies of MM into the same group simultaneously, whereas here we are explicitly talking
about embedding a single copy of MM2.)

2 Complexity, symmetry, and designs

For general background on algebraic complexity, we refer the reader to the book [BCS97]. Bläser’s
survey article [Blä13], in addition to excellent coverage around matrix multiplication, has a nice
tutorial on tensors and their basic properties.

In the algebraic setting, since matrix multiplication is a bilinear map, it is known that it can
be reformulated as a tensor, and that the algebraic complexity of matrix multiplication is within a
factor of 2 of the rank of this tensor. The matrix multiplication tensor for n× n matrices is

MMabc
def = δae δ

b
fδ

c
d , (1)

where the indices range from 1 to n, and where δ is the Kronecker delta, δab = 1 if a = b and 0 if
a 6= b. This is also defined by the inner product

〈MM |A⊗B ⊗ C〉 = trABC .

Given vector spaces V1, . . . , Vk, a vector v ∈ V1⊗ · · · ⊗ Vk is said to have tensor rank one if it is
a separable tensor, that is, of the form v1 ⊗ v2 ⊗ · · · ⊗ vk for some vi ∈ Vi. The tensor rank of v is
the smallest number of rank-one tensors whose sum is v. In the case of MMn, we have k = 3 and
V1 ∼= V2 ∼= V3 ∼= Cn×n.

The matrix multiplication tensor MM is characterized by its symmetries (e.g., [BI11]). That
is, up to a constant, it is the unique operator fixed under the following action of GL(n)3: given
X,Y, Z ∈ GL(n), we have

MM = (X ⊗ Y ⊗ Z)MM(Z−1 ⊗X−1 ⊗ Y −1) , (2)

where, if the notation isn’t already clear, it will become so in the next equation. To see that MM
has this symmetry, note that

trABC = tr(Z−1AX)(X−1BY )(Y −1CZ) .
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The fact that MM is the only such operator up to a constant comes from a simple representation-
theoretic argument, which generalizes the fact that the only matrices which are invariant under
conjugation are scalar multiples of the identity.

This suggests that a good way to search for matrix multiplication algorithms is to start with
sums of separable tensors where the sum has some symmetry built in from the beginning. As we
will see, one useful kind of symmetry is the following. We say that a set of n-dimensional vectors
S is a unitary 2-design if it has the following two properties:∑

v∈S
v = 0 and

1

|S|
∑
v∈S
|v〉〈v| = 1

n
1 , (3)

where 1 denotes the identity matrix. Here we use the Dirac notation |u〉〈v| for the outer product
of u and v, i.e., the matrix whose i, j entry is uiv

∗
j where ∗ denotes the complex conjugate.

The following theorem shows how 2-designs can be used to construct matrix multiplication
algorithms.

Theorem 2.1. Let S ⊂ Cn be a unitary 2-design, and let s = |S|. Then the tensor rank of MMn

is at most s(s− 1)(s− 2) + 1.

Proof. Let S = {w1, . . . , ws}. We will show that the following is a decomposition of MMn:

MMn = 1⊗3 +
n3

s3

∑
i, j, k distinct

|wi〉〈wj − wi| ⊗ |wj〉〈wk − wj | ⊗ |wk〉〈wi − wk| . (4)

Since there are s(s − 1)(s − 2) distinct ordered triples i, j, k ∈ {1, . . . , s}, this decomposition has
s(s− 1)(s− 2) + 1 terms.

To prove (4), we use the fact (1) that MM can be written as a kind of twisted tensor product
of identity matrices or Kronecker deltas. By the second property in the definition (3) of a 2-design,
we have

MMn =
n3

s3

∑
i,j,k

|wi〉〈wj | ⊗ |wj〉〈wk| ⊗ |wk〉〈wi| (5)

At the same time, the un-twisted version of this identity is

1⊗3 =
n3

s3

∑
i,j,k

|wi〉〈wi| ⊗ |wj〉〈wj | ⊗ |wk〉〈wk| . (6)

Now we expand (4). We can sum over all s3 triples i, j, k, since if any of these are equal the
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summand is zero. Then∑
i,j,k

|wi〉〈wj − wi| ⊗ |wj〉〈wk − wj | ⊗ |wk〉〈wi − wk|

=
∑
i,j,k

|wi〉〈wj | ⊗ |wj〉〈wk| ⊗ |wk〉〈wi|

−
∑
i,j,k

[
|wi〉〈wi| ⊗ |wj〉〈wk| ⊗ |wk〉〈wi|+ |wi〉〈wj | ⊗ |wj〉〈wj | ⊗ |wk〉〈wi|+ |wi〉〈wj | ⊗ |wj〉〈wk| ⊗ |wk〉〈wk|

]
(7)

+
∑
i,j,k

[
|wi〉〈wj | ⊗ |wj〉〈wj | ⊗ |wk〉〈wk|+ |wi〉〈wi| ⊗ |wj〉〈wk| ⊗ |wk〉〈wk|+ |wi〉〈wi| ⊗ |wj〉〈wj | ⊗ |wk〉〈wi|

]
(8)

−
∑
i,j,k

|wi〉〈wi| ⊗ |wj〉〈wj | ⊗ |wk〉〈wk|

The mixed terms in lines (7) and (8) disappear because each product has an index that appears
only once, and the first property in the definition (3) of a 2-design implies that summing over that
index gives zero. Combining this with (5) and (6) leaves us with

n3

s3

∑
i,j,k

|wi〉〈wj − wi| ⊗ |wj〉〈wk − wj | ⊗ |wk〉〈wi − wk| = MMn − 1⊗3 ,

which completes the proof.

Now, in n = 2 dimensions the three corners of an equilateral triangle form a 2-design:

S =
{

(1, 0) , (−1/2,
√

3/2) , (−1/2,−
√

3/2)
}
. (9)

The outer products of these vectors with themselves are(
1 0
0 0

)
,

(
1/4 −

√
3/4

−
√

3/4 3/4

)
,

(
1/4

√
3/4√

3/4 3/4

)
,

and the average of these is 1/2. This design (9) has size s = 3, in which case Theorem 2.1 shows
that MM2 has a tensor rank of at most 7.

The reader might object that we haven’t really re-derived Strassen’s algorithm since our algo-
rithm doesn’t seem to yield the same equations as Strassen’s. However, de Groote [dG78] has shown
that all 7-term decompositions of MM2 are equivalent up to a change of basis, i.e., an instance of
the GL(n)3 action (2). Thus the algorithm based on the triangular design (9) is in fact isomorphic
to Strassen’s algorithm, and in any case, it gives a conceptual explanation for the fact that MM2

has tensor rank 7. (For the reader wondering about algorithms for matrix multiplication over rings
other than C, see Section 4.)

3 Generalizations to larger n from group orbits

The triangular design (9) has a pleasing symmetry. In this section we show how to find similar
designs in higher dimensions as the orbits of group actions. We assume basic familiarity with finite
groups, for which we refer the reader to any standard textbook such as [Art91]. We need a few
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facts from representation theory, which we spell out for completeness in the hopes of making the
paper self-contained for a larger audience. Everything we do will be over the complex numbers C,
but generalizes to other fields, with some modifications.

A representation of a finite group G is a vector space V together with a group homomorphism
ρ : G → GL(V ), where GL(V ) denotes the general linear group of V , namely, the group of all
invertible linear transformations from V to itself. By choosing a basis for V , we identify V ∼= CdimV ,
and each ρ(g) becomes a dimV × dimV matrix such that ρ(g)ρ(h) = ρ(gh) for all g, h ∈ G.

When the homomorphism ρ is understood from context, we refer to V as a representation of
G. In this case, for g ∈ G and v ∈ V we write gv instead of ρ(g)(v). The trivial representation is
the identity map on V , where gv = v for all g ∈ G.

A representation V of G is called unitary if each ρ(g) is a unitary matrix. Any representation
of a finite group over C is equivalent, up to change of basis, to a unitary representation. In this
basis we define the inner product 〈u |v〉 =

∑
i u
∗
i vi and the norm |v|2 = 〈v |v〉 =

∑
i |vi|2 as usual.

Note that 〈u |v〉 = 〈gu |gv〉 and |gv|2 = |v|2.
Given two representations ρ : G → GL(V ) and ρ′ : G → GL(V ′) of the same group G, their

direct sum is a representation (ρ⊕ ρ′) : G→ GL(V ⊕ V ′) given by the matrices

(ρ⊕ ρ′)(g) =

(
ρ(g) 0

0 ρ′(g)

)
.

A representation ρ : G → GL(V ) is irreducible if the only subspaces W ⊆ V that are sent to
themselves by every g ∈ G, i.e., such that ρ(g)(w) ∈ W for all g ∈ G and w ∈ W , are the trivial
subspaces W = 0 or W = V . In fields of characteristic zero such as C or R, a representation is a
direct sum if and only if it is not irreducible.

Given two representations V,W of G, a homomorphism of representations is a linear map
ϕ : V →W that commutes with the action ofG, in the sense that ϕ(gv) = gϕ(v) for all g ∈ G, v ∈ V .

Lemma (Schur’s Lemma). If V and W are two irreducible representations of a group G, then every
nonzero homomorphism V →W is invertible. In particular, over an algebraically closed field, every
homomorphism V → V is a scalar multiple of the identity 1V .

Schur’s Lemma implies that the orbit of any unit-length vector in an irreducible representation
is a 2-design in the sense defined above. We include a proof of this classical fact for completeness.

Corollary 3.1. If V is a nontrivial irreducible representation of G, and v ∈ V with |v|2 = 1, then
the orbit {gv | g ∈ G} is a 2-design.

Proof. First, the vector
∑

g∈G gv always spans a 1-dimensional trivial sub-representation W ⊆ V ,
since h · (

∑
gv) =

∑
g∈G(hg)v =

∑
g∈G gv. If V is irreducible, then either W = 0 or W = V , but

if V is nontrivial we cannot have W = V . Thus
∑

g gv = 0.
Second, let ϕ =

∑
g∈G |gv〉〈gv|. Then for any h ∈ G we have

hϕ(w) = h

(∑
g

|gv〉〈gv|

)
w =

∑
g

|hgv〉 〈gv |w〉 =
∑
g

|gv〉
〈
h−1gv |w

〉
=
∑
g

|gv〉 〈gv |hw〉 = ϕ(hw) .

Thus ϕ is a homomorphism of representations, and by Schur’s Lemma ϕ is a multiple of 1V . We
obtain the scaling factor by taking traces:

1

|G|
trϕ =

1

|G|
∑
g

|gv|2 = |v|2 = 1 =
1

dimV
tr1V ,

so ϕ/|G| = 1V / dimV .
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We can now combine Corollary 3.1 with Theorem 2.1 to produce matrix multiplication algo-
rithms in all dimensions, by considering families of finite groups and their irreducible representa-
tions. In particular, we have the following.

Corollary 3.2. For every n ≥ 1, the tensor rank of MMn is at most n3 − n+ 1.

Proof. Let G = Sn+1 be the symmetric group acting by permuting the coordinates on V = Rn+1.
As a representation of G, this splits into a direct sum of the trivial representation (spanned by the
all-ones vector) and the so-called “standard representation” V of Sn+1, of dimension n (consisting
of the vectors whose coordinates sum to zero). Let w ∈ V ⊂ Rn+1 be the unit vector

w =
1√

n(n+ 1)
(n,−1, . . . ,−1)

The orbit of w has size s = n+ 1, and consists of unit vectors pointing to the corners of a simplex.
Now apply Theorem 2.1.

4 Future directions

Highly symmetric algorithms? Since any design must span Cn, it has size s ≥ n. Indeed,
since its elements sum to zero, they are linearly dependent, so s ≥ n+ 1. Thus the simplex designs
of Corollary 3.2 are optimal in this context, and applying Theorem 2.1 to larger n cannot directly
improve the matrix multiplication exponent. This leaves open the question of whether there are
other families of highly symmetric algorithms. See [GM16, CILO16] for work in this direction, as
well as [Bur14, Bur15, LR16, LM16, IL17].

Using t-designs for t > 2? The key fact we used was that any orbit in an irreducible represen-
tation of a finite group is a unitary 2-design. Similarly, a unitary t-design in a vector space V is
a set of vectors S ⊆ V such that, for every polynomial f on V of degree at most t, the average
of f over S is the same as the average of f over the unit sphere in V . (Over the reals, these are
traditionally called “spherical t-designs,” but we are working in complex vector spaces.) Another
open question is then

Question 4.1. Can t-designs for t > 2 help us construct efficient matrix multiplication algorithms?

For example, one might hope for a similar construction to Theorem 2.1, in which one could leverage
the t-design property to get even more terms to cancel.

Working over arbitrary rings? One fact which is obvious from Strassen’s original construction,
but not from ours, is that the rank of MM2 is at most 7 over any ring. Strassen’s construction works
in all rings since it only uses coefficients in {0,±1}; ours uses coefficients in Z[

√
3, 1/2, 1/3], so it

works in any ring where the elements
√

3, 1/2, 1/3 exist. Note that 1/2 and 1/3 exist in any ring R
of characteristic m coprime to 6, since any such ring contains Z/mZ as a subring, in which 2 and 3
are units. If

√
3 doesn’t exist in R, we can formally adjoin it by considering R′ = R[x]/(x2− 3); by

a standard trick (e.g. [BCS97, Section 15.3]), this implies the same exponent over R itself (although
it may not actually yield an algorithm for MM2 over R).

Question 4.2. Is there a similarly transparent and conceptual proof of Strassen’s result that works
over arbitrary rings?
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providing a visiting position during which some of this work was carried out.

References

[Ale97] V. B. Alekseyev. Maximal extensions with simple multiplication for the algebra of
matrices of the second order. Disc. Math. Appl., 7:89–101, 1997. doi:10.1515/dma.

1997.7.1.89.

[Art91] Michael Artin. Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collabo-
ration of Thomas Lickteig. doi:10.1007/978-3-662-03338-8.

[BI11] Peter Bürgisser and Christian Ikenmeyer. Geometric complexity theory and tensor rank.
In STOC ’11: 43rd Annual ACM Symposium on Theory of Computing, pages 509–518.
ACM, New York, 2011. Preprint of the full version available as arXiv:1011.1350 [cs.CC].
doi:10.1145/1993636.1993704.
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[Cla88] M. Clausen. Beiträge zum Entwurf schneller Spektraltransformationen. Habilitation,
Universität Karlsruhe, 1988.

8

http://dx.doi.org/10.1515/dma.1997.7.1.89
http://dx.doi.org/10.1515/dma.1997.7.1.89
http://dx.doi.org/10.1007/978-3-662-03338-8
http://arxiv.org/abs/1011.1350
http://dx.doi.org/10.1145/1993636.1993704
http://dx.doi.org/10.4086/toc.gs.2013.005
http://arxiv.org/abs/1408.6273
http://arxiv.org/abs/1508.01110
http://dx.doi.org/10.1016/0020-0190(86)90033-5
http://arxiv.org/abs/1610.08364
http://arxiv.org/abs/math.GR/0511460
http://dx.doi.org/10.1109/SFCS.2005.39


[CU03] Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix mul-
tiplication. In FOCS ’03: 44th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 438–449. IEEE Computer Society, 2003. Preprint available as
arXiv:math.GR/0307321. doi:10.1109/SFCS.2003.1238217.

[CU13] Henry Cohn and Christopher Umans. Fast matrix multiplication using coherent con-
figurations. In SODA ’13: 24th ACM–SIAM Symposium on Discrete Algorithms, pages
1074–1087, 2013. Preprint available as arXiv:1207.6528 [math.NA]. doi:10.1137/1.

9781611973105.77.

[dG78] Hans F. de Groote. On varieties of optimal algorithms for the computation of bilinear
mappings. II. Optimal algorithms for 2 × 2-matrix multiplication. Theoret. Comput.
Sci., 7(2):127–148, 1978. doi:10.1016/0304-3975(78)90045-2.

[DS13] A. M. Davie and A. J. Stothers. Improved bound for the complexity of matrix mul-
tiplication. Proc. Roy. Soc. Edinburgh Sect. A, 143:351–369, 2013. doi:10.1017/

S0308210511001648.

[Gas71] N. Gastinel. Sur le calcul des produits de matrices. Numer. Math., 17:222–229, 1971.
doi:10.1007/BF01436378.

[GK00] Ann Q. Gates and Vladik Kreinovich. Strassen’s algorithm made (somewhat) more
natural: A pedagogical remark. Technical Report 502, University of Texas at El Paso,
Department of Computer Science, 2000. URL: http://digitalcommons.utep.edu/cs_
techrep/502.

[GM16] Joshua A. Grochow and Cristopher Moore. Matrix multiplication algorithms from group
orbits. arXiv:1612.01527 [cs.CC], 2016.

[IL17] Christian Ikenmeyer and Vladimir Lysikov. Strassen’s 2× 2 matrix multiplication algo-
rithm: a conceptual perspective. arXiv:1708.08083v1 [csDS], 2017.

[Lan08] J. M. Landsberg. Geometry and the complexity of matrix multiplication. Bull. Amer.
Math. Soc. (N.S.), 45(2):247–284, 2008. doi:10.1090/S0273-0979-08-01176-2.

[Lan14] J. M. Landsberg. New lower bounds for the rank of matrix multiplication. SIAM J.
Comput., 43:144–149, 2014. doi:10.1137/120880276.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation, IS-
SAC ’14, pages 296–303, New York, NY, USA, 2014. ACM. Full version available
as arXiv:1401.7714 [cs.DS]. doi:10.1145/2608628.2608664.

[LM16] J. M. Landsberg and Mateusz Micha lek. On the geometry of border rank algorithms for
matrix multiplication and other tensors with symmetry. arXiv:1601.08229 [math.AG],
2016.

[LR13] Richard J. Lipton and Kenneth W. Regan. Volker Strassen: Amaz-
ing results. In People, Problems, and Proofs: Essays from Gödel’s Lost
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