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Abstract

We study the problem of generalized uniformity testing [BC17] of a discrete probability
distribution: Given samples from a probability distribution p over an unknown discrete domain
Ω, we want to distinguish, with probability at least 2/3, between the case that p is uniform on
some subset of Ω versus ε-far, in total variation distance, from any such uniform distribution.

We establish tight bounds on the sample complexity of generalized uniformity testing. In
more detail, we present a computationally efficient tester whose sample complexity is optimal,
up to constant factors, and a matching information-theoretic lower bound. Specifically, we show
that the sample complexity of generalized uniformity testing is Θ

(
1/(ε4/3‖p‖3) + 1/(ε2‖p‖2)

)
.

1 Introduction

Consider the following statistical task: Given independent samples from a distribution over an
unknown discrete domain Ω, determine whether it is uniform on some subset of the domain versus

significantly different from any such uniform distribution. Formally, let CU
def
= {uS : S ⊆ Ω} denote

the set of uniform distributions uS over subsets S of Ω. Given sample access to an unknown
distribution p on Ω and a proximity parameter ε > 0, we want to correctly distinguish between

the case that p ∈ CU versus dTV (p, CU )
def
= minS⊆Ω dTV (p,uS) ≥ ε, with probability at least 2/3.

Here, dTV (p, q) = (1/2)‖p − q‖1 denotes the total variation distance between distributions p and
q. This natural problem, termed generalized uniformity testing, was recently studied by Batu and
Canonne [BC17], who gave the first upper and lower bounds on its sample complexity.

Generalized uniformity testing bears a strong resemblance to the familiar task of uniformity
testing, where one is given samples from a distribution p on an explicitly known domain of size n
and the goal is to determine, with probability at least 2/3, whether p is the uniform distribution un
on this domain versus dTV (p,un) ≥ ε. Uniformity testing is arguably the most extensively studied
problem in distribution property testing [GR00, Pan08, VV14, DKN15b, Gol16, DGPP16, DGPP17]
and its sample complexity is well understood. Specifically, it is known [Pan08, CDVV14, VV14,
DKN15b] that Θ(n1/2/ε2) samples are necessary and sufficient for this task.

∗Supported by NSF Award CCF-1652862 (CAREER) and a Sloan Research Fellowship.
†Supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellowship.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 132 (2017)



The field of distribution property testing [BFR+00] has seen substantial progress in the past
decade, see [Rub12, Can15] for two recent surveys. A large body of the literature has focused on
characterizing the sample size needed to test properties of arbitrary distributions of a given support
size. This regime is fairly well understood: for many properties of interest there exist sample-
efficient testers [Pan08, CDVV14, VV14, DKN15b, ADK15, CDGR16, DK16, DGPP16, CDS17,
DGPP17]. Moreover, an emerging body of work has focused on leveraging a priori structure of the
underlying distributions to obtain significantly improved samples complexities [BKR04, DDS+13,
DKN15b, DKN15a, CDKS17, DP17, DDK16, DKN17].

Perhaps surprisingly, the natural setting where the distribution is arbitrary on a discrete but
unknown domain (of unknown size) does not seem to have been explicitly studied before the recent
work of Batu and Canonne [BC17]. Returning to the specific problem studied here, at first sight
it might seem that generalized uniformity testing and uniformity testing are essentially the same
task. However, as shown in [BC17], the sample complexities of these two problems are significantly
different. Specifically, [BC17] gave a generalized uniformity tester with expected sample complexity
O(1/(ε6‖p‖3)) and showed a lower bound of Ω(‖p‖3). Since generalized uniformity is a symmetric
property, any tester should essentially rely on the empirical moments (collision statistics) of the
distribution [RRSS09, Val11]. The algorithm in [BC17] uses sufficiently accurate approximations
of the second and third moments of the unknown distribution. Their lower bound formalizes the
intuition that an approximation of the third norm is in some sense necessary to solve this problem.

1.1 Our Results and Techniques

An immediate open question arising from the work of [BC17] is to precisely characterize the sample
complexity of generalized uniformity testing, as a function of all relevant parameters. The main
result of this paper provides an answer to this question. In particular, we show the following:

Theorem 1.1 (Main Result). There is an algorithm with the following performance guarantee:
Given sample access to an arbitrary distribution p over an unknown discrete domain Ω and a
parameter 0 < ε < 1, the algorithm uses O

(
1/(ε4/3‖p‖3) + 1/(ε2‖p‖2)

)
independent samples from

p in expectation, and distinguishes between the case p ∈ CU versus dTV (p, CU ) ≥ ε with probability
at least 2/3. Moreover, for every 0 < ε < 1/0 and n > 1, any algorithm that distinguishes between
p ∈ CU and dTV (p, CU ) ≥ ε requires at least Ω(n2/3/ε4/3 + n1/2/ε2) samples, where p is guaranteed
to have ‖p‖3 = Θ(n−2/3) and ‖p‖2 = Θ(n−1/2).

In the following paragraphs, we provide an intuitive explanation of our algorithm and our
matching sample size lower bound, in tandem with a comparison to the prior work [BC17].

Sample-Optimal Generalized Uniformity Tester. Our algorithm requires considering two
cases based on the relative size of ε and ‖p‖22. This case analysis seems somewhat intrinsic to the
problem as the correct sample complexity branches into these cases.

For large ε, we use the same overall technique as [BC17], noting that p is uniform if and only

if ‖p‖3 = ‖p‖4/32 , and that for p far from uniform, ‖p‖3 must be substantially larger. The basic
idea from here is to first obtain rough approximations to ‖p‖2 and ‖p‖3 in order to ascertain the
correct number of samples to use, and then use standard unbiased estimators of ‖p‖22 and ‖p‖33
to approximate them to appropriate precision, so that their relative sizes can be compared with
appropriate accuracy.

We improve upon the work of [BC17] in this parameter regime in a couple of ways. First, we
obtain more precise lower bounds on the difference ‖p‖33 − ‖p‖42 in the case where p is far from
uniform (Lemma 2.4). This allows us to reduce the accuracy needed in estimating ‖p‖2 and ‖p‖3.

2



Second, we refine the method used for performing the approximations to these moments (`r-norms).
In particular, we observe that using the generic estimators for these quantities yields sub-optimal
bounds for the following reason: The error of the unbiased estimators is related to their variance,
which in turn can be expressed in terms of the higher moments of p (Fact 2.1). This implies for
example that the worst case sample complexity for estimating ‖p‖3 comes when the fourth and
fifth moments of p are large. However, since we are trying to test for the case of uniformity (where
these higher moments are minimal), we do not need to worry about this worst case. In particular,
after applying sample efficient tests to ensure that the higher moments of p are not much larger
than expected (Lemma 2.2 (ii)), the standard estimators for the second and third moments of p
can be shown to converge more rapidly than they would in the worst case (Lemma 2.5).

The above algorithm is not sufficient for small values of ε. For ε sufficiently small, we employ
a different, perhaps more natural, algorithm. Here we take m samples (for m appropriately chosen
based on an approximation to ‖p‖2) and consider the subset S of the domain that appears in the
sample. We then test whether the conditional distribution p on S is uniform, and output the
answer of this tester. The number of samples m drawn in the first step is sufficiently large so that
p(S), the probability mass of S under p, is relatively high. Hence, it is easy to sample from the
conditional distribution using rejection sampling. Furthermore, we can use a standard uniformity
testing algorithm requiring O(

√
|S|/ε2) samples.

To establish correctness of this algorithm, we need to show that if p is far from uniform, then the
conditional distribution p on S is far from uniform as well. To prove this statement, we distinguish
two further subcases. If ε is “very small”, then we can afford to set m sufficiently large so that
p(S) is at least 1− ε/10. In this case, our claim follows straightforwardly. For the remaining values
of ε, we can only guarantee that p(S) = Ω(1), hence we require a more sophisticated argument.
Specifically, we show (Lemma 2.6) that for any x in an appropriate interval, with high constant
probability, the random variable Z(x) =

∑
i∈S |pi−x| is large. It is not hard to show that this holds

with high probability for each fixed x, as p being far from uniform implies that
∑

i∈Ω min(pi, |pi−x|)
is large. This latter condition can be shown to provide a clean lower bound for the expectation of
Z(x). To conclude the argument, we show that Z(x) is tightly concentrated around its expectation.

Sample Complexity Lower Bound. The lower bound of Ω(1/(ε2‖p‖2)) follows directly from
the standard lower bound of Ω(n1/2/ε2) [Pan08] for uniformity testing on a given domain of size n.
Specifically, it is implied from the fact that the hard instances satisfy ‖p‖2 = Θ(n−1/2). The other
branch of the lower bound, namely Ω(1/(ε4/3‖p‖3)), is more involved. To prove this lower bound,
we use the shared information method [DK16] for the following family of hard instances: In the
“YES” case, we consider the distribution over (pseudo-)distributions on N bins, where each pi is
(1 + ε2)/N with probability n/(N(1 + ε2)), and 0 otherwise. (Here we assume that the parameter
N is sufficiently large compared to the other parameters.) In the “NO” case, we consider the
distribution over (pseudo-)distributions on N bins, where each pi is (1 + ε)/N with probability
n/(2N), (1− ε)/N with probability n/(2N), and 0 otherwise.

1.2 Notation

Let Ω denote the unknown discrete domain. Each probability distribution over Ω can be associated
with a probability mass function p : Ω → R+ such that

∑
i∈Ω pi = 1. We will use pi, instead of

p(i), to denote the probability of element i ∈ Ω in p. For a distribution (with mass function) p

and a set S ⊆ Ω, we denote by p(S)
def
=
∑

i∈S pi and by (p|S) the conditional distribution of p on

S. For r ≥ 1, the `r-norm of a function p : Ω→ R is ‖p‖r
def
=
(∑

i∈Ω |pi|r
)1/r

. For convenience, we
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will denote Fr(p)
def
= ‖p‖rr =

∑
i∈Ω |pi|r. For ∅ 6= S ⊆ Ω, let uS be the uniform distribution over

S. Let CU
def
= {uS : ∅ 6= S ⊆ Ω} be the set of uniform distributions over subsets of Ω. The total

variation distance between distributions p, q on Ω is defined as dTV (p, q)
def
= maxS⊆Ω |p(S)−q(S)| =

(1/2) · ‖p− q‖1. Finally, we denote by Poi(λ) the Poisson distribution with parameter λ.

2 Generalized Uniformity Tester

In this section, we give our sample-optimal generalized uniformity tester, Gen-Uniformity-Test.
Before we describe our algorithm, we summarize a few preliminary results on estimating the power
sums Fr(p) =

∑
i∈Ω |pi|r of an unknown distribution p. We present these results in Section 2.1.

In Section 2.2, we give a detailed pseudo-code for our algorithm. In Section 2.3, we analyze the
sample complexity, and in Section 2.4 we provide the proof of correctness.

2.1 Estimating the Power Sums of a Discrete Distribution

We will require various notions of approximation for the power sums of a discrete distribution. We
start with the following fact:

Fact 2.1 ([AOST17]). Let p be a probability distribution on an unknown discrete domain. For any
r ≥ 1, there exists an estimator F̂r(p) for Fr(p) that draws Poi(m) samples from p and satisfies

the following: E
[
F̂r(p)

]
= Fr(p) and Var

[
F̂r(p)

]
= m−2r

∑r−1
t=0 m

r+t
(
r
t

)
rr−tFr+t(p).

The estimator F̂r(p) is standard: It draws Poi(m) samples from p and mr · F̂r(p) equals the
number of r-wise collisions, i.e., ordered r-tuples of samples that land in the same bin. Using
Fact 2.1, we get the following lemma which will be crucial for our generalized uniformity tester:

Lemma 2.2. Let p be a probability distribution on an unknown discrete domain and r ≥ 1. We
have the following:

(i) There exists an algorithm that, given a parameter 0 < δ < 1 and sample access to p, draws
O( 1

δ2‖p‖r ) samples from p in expectation and outputs an estimate γ̂r that with probability at

least 19/20 satisfies: |γ̂r − Fr(p)| ≤ δ · Fr(p).

(ii) For any c ≥ 1, there exist an algorithm that draws Poi (O(m)) samples from p and correctly
distinguishes with probability at least 19/20 between the case that mrFr(p) ≥ 20c versus
mrFr(p) ≤ c/20.

Proof. Using Fact 2.1, it is shown in [AOST17] that if we draw m = O( 1
δ2‖p‖r ) samples from p,

then with high constant probability we have that |F̂r(p) − Fr(p)| ≤ δ · Fr(p). Since the value of
‖p‖r is unknown, this guarantee does not quite suffice for (i). We instead start by approximating
1/‖p‖rr within a constant factor. We do this by counting the number of samples we need to draw
from p until we see the first r-wise collision. By Fact 2.1 and Chebyshev’s inequality, this gives a
constant factor approximation to 1/‖p‖rr with expected sample size of O(1/‖p‖r). We thus get (i).

We now proceed to show (ii). The algorithm is straightforward: Draw Poi (O(m)) samples
from p and calculate F̂r(p). If mrF̂r(p) > c, output “large”; otherwise output “small”. Suppose
that mrFr(p) ≤ c/20. By Markov’s inequality, with probability at least 19/20 we will have that
mrF̂r(p) ≤ c, in which case we output “small”. Now suppose that mrFr(p) ≥ 20c. Since c ≥ 1, this
gives that ‖p‖r ≥ 1/m. Therefore, after we draw Poi(O(m)) samples from p, with probability at
least 19/20 we have that F̂r(p) is a factor 2 approximation to Fr(p). In other words, mrF̂r(p) ≥ 10c
and the algorithm outputs “large”.
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2.2 Pseudo-code for Gen-Uniformity-Test Algorithm

The algorithm is given in the following pseudo-code:

Algorithm 1 Sample-Optimal Algorithm for Generalized Uniformity Testing

1: procedure Gen-Uniformity-Test(p, ε)
input: Sample access to arbitrary distribution p on unknown discrete domain Ω and ε > 0.
output: “YES” with probability 2/3 if p ∈ CU , “NO” with probability 2/3 if dTV (p, CU ) ≥ ε.
2: Compute an estimate γ̂2 satisfying |γ̂2 − F2(p)| ≤ (1/2) · F2(p) with probability 19/20.
3: n← d2/γ2e.
4: if (ε ≥ n−1/4) then
5: Compute an estimate γ̂3 satisfying |γ̂3 − F3(p)| ≤ (1/2) · F3(p) with probability 19/20.
6: if (γ̂3 ≥ 8/n2 or γ̂3 ≤ 1/(8n2)) then return “NO”.

7: Let m← Θ(n2/3/ε4/3), for a sufficiently large constant in the Θ().
8: Let c4 = Θ(1 +m4/n3), for a sufficiently large constant in the Θ().
9: Draw Poi(O(m)) samples from p and let γ̂4 denote the value of F̂4(p) on this sample.

10: if m4γ̂4 > 20c4 then return “NO”.

11: Let c5 = Θ(1 +m5/n4), for a sufficiently large constant in the Θ().
12: Draw Poi(O(m)) samples from p and let γ̂5 denote the value of F̂5(p) on this sample.
13: if m5γ̂5 > 20c5 then return “NO”.

14: Compute the estimates F̂2(p), F̂3(p) on two separate sets of Poi(m) samples.

15: if
(
F̂3(p)− F̂2(p)2 ≤ ε2/(300n2)

)
then return “YES”.

16: else return “NO”.
17: if (n−1/4 log−1(n) ≤ ε < n−1/4) then
18: Let m1 ← Θ(n), for an appropriately large constant in the Θ().
19: Draw Poi(m1) samples from p. Let S be the subset of Ω that appears in the sample.
20: Verify the following conditions: (i) Each i ∈ S appears O(log n) times;
21: (ii) |S| ≥ n/2; (iii) p(S) ≥ 1/2.
22: if (any of conditions (20), (21) is violated) then return “NO”.

23: Using rejection sampling, draw m2 ← O(n1/2/ε2) samples from (p|S).
24: Test whether (p|S) = uS versus ε/10-far from uS with confidence probability 19/20.
25: return the answer of the tester in Step 24.

26: if (ε < n−1/4 log−1(n)) then
27: m1 ← Θ(n log n), for an appropriately large constant in the Θ().
28: Draw Poi(m1) samples from p. Let S be the subset of Ω that appears in the sample.
29: Draw m2 ← O(n1/2/ε2) samples from p.
30: if (any of the above samples lands outside S) then return “NO”.

31: Test whether (p|S) = uS versus ε/2-far from uS with confidence probability 19/20.
32: return the answer of the tester in Step 31.

2.3 Bounding the Sample Complexity

We start by analyzing the sample complexity of the algorithm. We claim that the expected sample
complexity is O

(
1/
(
ε4/3‖p‖3

))
for ε ≥ n−1/4 and O

(
1/
(
ε2‖p‖2

))
for ε < n−1/4.

By Lemma 2.2 (i), Step 2 can be implemented with expected sample complexity O(1/‖p‖2) and
Step 5 with expected sample complexity O(1/‖p‖3).
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We start with the case ε ≥ n−1/4. If Steps 2, 5, and 6 succeed, then we have that F2(p) = Θ(1/n)
and F3(p) = Θ(1/n2). Also note that no further steps are executed unless the condition of Step 6
holds. Note that all subsequent steps that draw samples (Steps 9, 12, and 14) by definition use at
most Poi(O(m)) additional samples. Since Step 14 is executed only if γ̂3 = Θ(1/n2), we have that

m = O(γ̂
−1/3
3 /ε4/3) = O(1/(ε4/3‖p‖3)). Therefore, for ε ≥ n−1/4, the expected sample complexity

of the algorithm is bounded by

O (1/‖p‖2) +O (1/‖p‖3) +O
(

1/
(
ε4/3‖p‖3

))
= O

(
1/
(
ε4/3‖p‖3

))
.

For the case of n−1/4 log−1(n) ≤ ε < n−1/4, the additional sample size drawn on top of Step 2
is O(n+ n1/2/ε2) = O(n1/2/ε2). Since n = Θ(1/‖p‖22), the total sample complexity in this case is

O (1/‖p‖2) +O
(
1/
(
ε2‖p‖2

))
= O

(
1/
(
ε2‖p‖2

))
.

Finally, for ε < n−1/4 log−1(n), the sample size drawn on top of Step 2 is O(n log n + n1/2/ε2) =
O(n1/2/ε2). Since n = Θ(1/‖p‖22), the total sample complexity in this case is O

(
1/
(
ε2‖p‖2

))
, as

before. This completes the analysis of the sample complexity.

2.4 Correctness Proof

This section is devoted to the correctness proof of Gen-Uniformity-Test. In particular, we will
show that if p ∈ CU , the algorithm outputs “YES” with probability at least 2/3 (completeness);
and if dTV (p, CU ) ≥ ε, the algorithm outputs “NO” with probability at least 2/3 (soundness).

We start with the following simple claim giving a useful condition for the soundness case:

Claim 2.3. If dTV (p, CU ) ≥ ε, then for all x ∈ [0, 1] we have that
∑

i∈Ω min{pi, |x− pi|} ≥ ε/2.

Proof. Let Sh be the set of i ∈ Ω on which pi > x/2. Let δ =
∑

i∈Ω min{pi, |x − pi|}. Note that
δ = ‖p− cx,Sh

‖1, where cx,Sh
is the pseudo-distribution that is x on Sh on 0 elsewhere. If ‖cx,Sh

‖1
were 1, cx,Sh

would be the uniform distribution uSh
and we would have δ ≥ ε. However, this need

not be the case. That said, it is easy to see that ‖uSh
− cx,Sh

‖1 = |1−‖cx,Sh
‖1| ≤ ‖p− cx,Sh

‖1 = δ.
Therefore, by the triangle inequality

2δ ≥ ‖p− cx,Sh
‖1 + ‖uSh

− cx,Sh
‖1 ≥ ‖p− uSh

‖1 ≥ ε .

This completes the proof of Claim 2.3.

We now proceed to analyze correctness for the various ranges of ε.

Case I: [ε ≥ n−1/4]. The following structural lemma provides a reformulation of generalized
uniformity testing in terms of the second and third norms of the unknown distribution:

Lemma 2.4. We have the following:

(i) If p ∈ CU , then F3(p) = F2
2(p).

(ii) If dTV (p, CU ) ≥ ε, then F3(p)− F2
2(p) > ε2F2

2(p)/64.

Proof. The proof of (i) is straightforward. Suppose that p = uS for some ∅ 6= S ⊆ Ω. It then
follows that F2(p) = 1/|S| and F3(p) = 1/|S|2, yielding part (i) of the lemma.
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We now proceed to prove part (ii). Suppose that dTV (p, CU ) ≥ ε. First, it will be useful to
rewrite the quantity F3(p)− F2

2(p) as follows:

F3(p)− F2
2(p) =

∑
i∈Ω

pi(pi − F2(p))2 . (1)

Note that (1) follows from the identity pi(pi−F2(p))2 = p3
i +piF2(p)2−2p2

iF2(p) by summing over
i ∈ Ω. Since dTV (p, CU ) ≥ ε, an application of Claim 2.3 for x = F2(p) ∈ [0, 1], gives that∑

i∈Ω
min{pi, |F2(p)− pi|} ≥ ε/2 .

We partition Ω into the sets Sl = {i ∈ Ω | pi < F2(p)/2} and its complement Sh = Ω\Sl. Note that∑
i∈Ω min{pi, |F2(p) − pi|} =

∑
i∈Sl

pi +
∑

i∈Sh
|F2(p) − pi| . It follows that either

∑
i∈Sl

pi ≥ ε/4
or
∑

i∈Sh
|F2(p)− pi| ≥ ε/4. We analyze each case separately. First, suppose that

∑
i∈Sl

pi ≥ ε/4.
Using (1) we can now write

F3(p)− F2
2(p) ≥

∑
i∈Sl

pi(pi − F2(p))2 > (F2(p)/2)2 ·
∑
i∈Sl

pi = εF2
2(p)/16 .

Now suppose that
∑

i∈Sh
|F2(p)− pi| ≥ ε/4. Note that 1 ≤ |Sh| ≤ 2/|F2(p)|. In this case, using (1)

we obtain

F3(p)− F2
2(p) ≥

∑
i∈Sh

pi(pi − F2(p))2

≥ (F2(p)/2) ·
∑
i∈Sh

(pi − F2(p))2

≥ (F2(p)/2) ·
(
∑

i∈Sh
|F2(p)− pi|)2

|Sh|
≥ (F2(p)/2)2 · (ε/4)2

= ε2F2
2(p)/64 ,

where the second inequality uses the definition of Sh, and the third inequality is Cauchy-Schwarz.
This completes the proof of Lemma 2.4.

By Lemma 2.4, the proof in this case boils down to proving that our estimates for F2(p) and
F3(p) obtained in Step 14 are sufficiently accurate to distinguish between the completeness and
soundness cases. We note that since Steps (6), (10), and (13) have succeeded, with probability
at least 19/20 each of the corresponding conditions is satisfied. Specifically, this implies that
the following conditions hold: F2(p) = Θ(1/n), F3(p) = Θ(1/n2), F4(p) = O(m−4 + n−3), and
F5(p) = O(m−5 + n−4).

We henceforth condition on this event. The following lemma shows that our approximations to
the second and third moments are appropriately accurate:

Lemma 2.5. Let c be an appropriately small universal constant (selecting c = 10−3 suffices). With
probability at least 9/10 over the samples, the estimates for F2(p) and F3(p) obtained in Step 14
satisfy the following conditions:

(i) |F̂2(p)− F2(p)| ≤ c · ε2F2(p).

(ii) |F̂3(p)− F3(p)| ≤ c · ε2F2
2(p).
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Proof. The lemma follows using Fact 2.1 and an application of Chebyshev’s inequality, crucially
exploiting the improved variance bounds that hold when the above conditions are satisfied.

To prove part (i), note that Var[F̂2(p)] = O
(
m−2F2(p) +m−1F3(p)

)
. We use that F3(p) =

Θ(1/n2) = Θ(F2
2(p)), where the second inequality uses the fact that 1/n = Θ(F2(p)) (as follows from

Steps 2 and 3 of the algorithm). Now recall that the sample size m is defined to be Θ(n2/3/ε4/3), for
a sufficiently large universal constant in the big-Θ. We can therefore bound the variance Var[F̂2(p)]
from above by

O
(
m−2n−1 +m−1n−2

)
= O

(
ε8/3n−7/3 + ε4/3n−8/3

)
= O(ε4/n2) ,

where we used the assumption that ε ≥ n−1/4. By Chebyshev’s inequality, we therefore get that

|F̂2(p)− F2(p)| ≤ O(ε2/n) , (2)

with probability at least 19/20. By selecting the constant factor in the definition of m appropriately,
we can make the RHS in (2) at most c · ε2F2(p), as desired.

Part (ii) is proved similarly. We have that Var[F̂3(p)] = O
(
m−3F3(p) +m−2F4(p) +m−1F5(p)

)
.

We use that F3(p) = Θ(1/n2), F4(p) = O(m−4 +n−3), and F5(p) = O(m−5 +n−4). Recalling that
the sample size m is defined to be Θ(n2/3/ε4/3), we can bound the variance Var[F̂3(p)] from above
by

O
(
m−3n−2 +m−6 +m−2n−3 +m−1n−4

)
= O

(
ε4/n4

)
,

where we used the assumption that m = Θ(n2/3/ε4/3) and ε ≥ n−1/4. By Chebyshev’s inequality,
we therefore get that

|F̂3(p)− F3(p)| ≤ O(ε2/n2) , (3)

with probability at least 19/20. By selecting the constant in the big-Θ defining m appropriately, it
is clear that we can make the RHS in (3) at most c · ε2F2

2(p), as desired. This completes the proof
of Lemma 2.5.

We now have all the necessary ingredients to establish completeness and soundness in Case I.
If p ∈ CU , it is easy to see that Steps (6), (10), and (13) succeed with high constant probability,
as follows from the fact that the norms are minimal in this case and Lemma 2.2. Moreover, if the
algorithm does not reject in any of these steps, the corresponding conditions on the magnitude of
these norms are satisfied. If the conditions of Lemma 2.5 hold, then we have that∣∣∣(F3(p)− F2

2(p)
)
−
(
F̂3(p)− F̂2(p)2

)∣∣∣ ≤ c · ε2F2
2(p) .

Therefore, the algorithm correctly distinguishes between the completeness and soundness cases, via
Lemma 2.4. This completes the correctness analysis of Case I.

Case II: [n−1/4 log−1(n) ≤ ε < n−1/4]. The correctness in the completeness case is straightforward.
If p ∈ CU , it is easy to see that Conditions 20 and 21 will be satisfied with high constant probability.
Moreover, the conditional distribution (p|S) equals uS , and therefore the overall algorithm outputs
“YES” with high constant probability.

The correctness of the soundness case is more involved. Suppose that dTV (p, CU ) ≥ ε. If the
algorithm does not output “NO” in Step 22, the following conditions hold with high probability:
(a) |S| ≥ n/2, (b) p(S) ≥ 1/2, and (c) pi = O(log n/n) for all i ∈ Ω. We will use these statements
to prove the following lemma:
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Lemma 2.6. If dTV (p, CU ) ≥ ε and the conditions in Steps 20, 21 hold, then with high constant
probability over the samples drawn in Step 19, we have that dTV ((p|S),uS) ≥ ε/10.

Proof. Suppose that dTV (p, CU ) ≥ ε. We want to show that with high probability over the samples
it holds

∑
i∈S |pi − p(S)/|S|| = Ω(ε). The main difficulty is that the value of p(S) is unknown,

hence we need a somewhat indirect argument. By Claim 2.3, for all x ∈ [0, 1] we have that∑
i∈Ω

min{pi, |pi − x|} ≥ ε/2 . (4)

To show that
∑

i∈S |pi − p(S)/|S|| = Ω(ε), it suffices to prove that the following holds:

Claim 2.7. With probability at least 19/20, for all x in an additive grid with step size O(ε/n) such

that 0 ≤ x ≤ log n/n, we have that Z(x)
def
=
∑

i∈S |pi − x| = Ω(ε).

First note that for x > 4/n or x < 1/(4n), the above claim is satisfied automatically. Indeed,
for x > 4/n, we have

∑
i∈S |pi − x| ≥ |S| · x − p(S) ≥ (n/2)x − 1 ≥ 1. For x < 1/(4n), we have∑

i∈S |pi − x| ≥ p(S)− |S| · x ≥ 1/2− nx ≥ 1/4.
We henceforth focus on the setting where 1/(4n) ≤ x ≤ 4/n. Here we show that E[Z(x)] is

large and that Z is tightly concentrated around its expectation.
Let Zi, i ∈ Ω, be the indicator of the event i ∈ S. Then, Z(x) =

∑
i∈Ω |pi− x|Zi. Note that Zi

is a Bernoulli random variable with E[Zi] = 1− e−pin and that the Zi’s are mutually independent.
Note that E[Z(x)] =

∑
i∈Ω(1− e−pin)|pi − x|. We recall the following concentration inequality for

sums of non-negative random variables (see, e.g., Exercise 2.9 in [BLM13]):

Fact 2.8. Let X1, . . . , Xm be independent non-negative random variables, and X =
∑m

j=1Xj.

Then, for any t > 0, it holds that Pr[X ≤ E[X]− t] ≤ exp
(
−t2/(2

∑m
i=1 E[X2

i ])
)
.

Since Z(x) =
∑

i∈Ω |pi − x|Zi where the Zi’s are independent Bernoulli random variables with
E[Z2

i ] = 1− e−pin, an application of Fact 2.8 yields that

Pr [Z(x) ≤ E[Z(x)]− t] ≤ exp

(
−t2

2
∑

i∈Ω(1− e−pin)(pi − x)2
.

)
(5)

Let Sl = {i ∈ Ω : pi ≤ x/2} and Sh = Ω \ Sl. By (4), we get that
∑

i∈Sl
pi +

∑
i∈Sh
|x− pi| ≥ ε/2 .

For i ∈ Sl, we have that (1 − e−pin)|pi − x| ≥ n · pi · |x/2| = Ω(pi). For i ∈ Sh, we have that
(1− e−pin) = Ω(1) and therefore (1− e−pin)|pi−x| = Ω(1)|pi−x|. We therefore get that E[Z(x)] =
Ω(ε). We now bound

∑
i∈Ω(1− e−pin)(pi − x)2 from above using the fact that pi ≤ log n/n, for all

i ∈ Ω. This assumption and the range of x imply that∑
i∈Ω

(1− e−pin)(pi − x)2 ≤ O(log n/n) ·E[Z] .

So, by setting t = E[Z]/2 in (5), we get that

Pr[Z(x) ≤ E[Z(x)]/2] ≤ exp (−Ω(εn/ log n)) = exp
(
−nΩ(1)

)
,

where the last inequality follows from the range of ε. Recalling that x lies in a grid of size O(n/ε),
Claim 2.7 follows by a union bound. This completes the analysis of Case II.

Case III: [ε < n−1/4 log−1(n)]. The correctness in this case is quite simple. In the completeness
case, conditioning on Step 2 succeeding, we know that p is uniform over a domain of size O(n).
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Therefore, after Θ(n log n) samples, we have seen all the elements of the domain with high probabil-
ity, i.e., the set S has p(S) = 1. Therefore, the conditional distribution p|S is identified with p, and
the final tester outputs “YES”. On the other hand, if p is ε-far from uniform. and the algorithm
does not reject in Step 30, then it follows that p(S) ≥ 1 − O(ε/n1/4) > 1 − ε/10. Therefore, p|S
should be at least ε/2-far from uS and the tester will output “NO.” This completes the proof of
correctness.

3 Sample Complexity Lower Bound

In this section, we prove a sample size lower bound matching our algorithm Gen-Uniformity-
Test. One part of the lower bound is fairly easy. In particular, it is known [Pan08] that Ω(

√
n/ε2)

samples are required to test uniformity of a distribution with a known support of size n. It is easy
to see that the hard cases for this lower bound still work when ‖p‖2 = Θ(n−1/2).

The other half of the lower bound is somewhat more difficult and we rely on the lower bound
techniques of [DK16]. In particular, for n > 0, and 1/10 > ε > n−1/4 and for N sufficiently large,
we produce a pair of distributions D and D′ over positive measures on [N ], so that:

1. A random sample from D or D′ has total mass Θ(1) with high probability.

2. A random sample from D or D′ has support of size Θ(n) with high probability.

3. A sample from µ ∈ D has µ/‖µ‖1 be the uniform distribution over some subset of [N ] with
probability 1.

4. A sample from µ ∈ D′ has µ/||µ‖1 be at least Ω(ε)-far from any uniform distribution with
high probability.

5. Given a measure µ taking randomly from either D or D′, no algorithm given the output
of a Poisson process with intensity kµ for k = o(min(n2/3/ε4/3, n)) can reliably distinguish
between a µ taken from D and µ taken from D′.

Before we exhibit these families, we first discuss why the above is sufficient. This Poissonization
technique has been used previously in various settings [VV14, DK16, WY16, DGPP17], so we only
provide a sketch here. In particular, suppose that we have such families D and D′, but that there is
also an algorithm A that distinguishes between a distribution p being uniform and being ε-far from
uniform in m = o(ε−4/3/‖p‖3) samples. We show that we can use algorithm A to violate property 5
above. In particular, letting p = µ/‖µ‖1 for µ a random measure taken from either D or D′, we
note that with high probability p has support of size Θ(n), and thus ‖p‖3 = O(n−2/3). Therefore,
m′ = o(n2/3/ε4/3) samples are sufficient to distinguish between p being uniform and being Ω(ε) far
from uniform. However, by properties 3 and 4, this is equivalent to distinguish between µ being
taken from D and being taken from D′. On the other hand, given the output of a Poisson process
with intensity Cm′µ, for C a sufficiently large constant, a random m′ of these samples (note that
there are at least m′ total samples with high probability) are distributed identically to m′ samples
from p. Thus, applying A to these samples distinguishes between µ taken from D and µ taken from
D′, thus contradicting property 5.

We now exhibit the families D and D′. In both cases, we want to arrange µi := µ({i}) to be
i.i.d. for different i. We also want it to be the case that the first and second moments of µi are the
same for D and D′. Combining this with requirements on closeness to uniform, we are led to the
following definitions:
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For µ taken from D′, we let

µi =


1+ε
n , with probability n

2N
1−ε
n , with probability n

2N

0 , otherwise .

For µ taken from D, we let

µi =

{
1+ε2

n , with probability n
N(1+ε2)

0 , otherwise .

Note that in both cases, the average total mass is 1, and it is easy to see by Chernoff bounds
that the actual mass of µ is Θ(1) with high probability. Additionally, the support size is always
Θ(n) times the total mass, and so is Θ(n) with high probability. For µ taken from D, all of the

µi are either 0 or 1+ε2

n , and thus µ/‖µ‖1 is uniform over its support. For µ taken from D′, with
high probability at least a third of the bins in its support have µi = 1+ε

n , and at least a third have
µi = 1−ε

n . If this is the case, then at least a constant fraction of the mass of µ/‖µ‖1 comes from
bins with mass off from the average mass by at least a (1± ε) factor, and this implies that µ/‖µ‖1
is at least Ω(ε)-far from uniform.

We have thus verified 1-4. Property 5 will be somewhat more difficult to prove. For this, let X
be a random {0, 1} random variable with equal probabilities. Let µ be chosen randomly from D if
X = 0, and randomly from D′ if X = 1. Let our Poisson process with intensity kµ return Ai samples
from bin i. We note that, by the same arguments as in [DK16], it suffices to show that the shared
information I(X;A1, . . . , AN ) = o(1). In order to prove this, we note that the Ai are conditionally
independent on X, and thus we have that I(X;A1, . . . , AN ) ≤

∑N
i=1 I(X;Ai) = NI(X;A1). Thus,

we need to show that I(X;A1) = o(1/N). For notational simplicity, we drop the subscript in A1.
This boils down to an elementary but tedious calculation. We begin by noting that we can

bound

I(X;A) =
∞∑
t=0

O

(
(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)

)
.

(This calculation is standard. See Fact 81 in [CDKS17] for a proof.) We seek to bound each of
these terms. The distribution of A conditioned on µ1 is Poisson with parameter kµ1. Thus, the
distribution of A conditioned on X is a mixture of two or three Poisson distributions, one of which
is the trivial constant 0. We start by giving explicit expressions for these probabilities.

Firstly, for the t = 0 term, note that

Pr(A = t|X = 1) = 1− n

N

(
1− e−k(1+ε)/n + e−k(1−ε)/n

2

)
,

Pr(A = t|X = 0) = 1− n

N(1 + ε2)
(1− e−k(1+ε2)/n) .

Note that Pr(A = 0) is at least 1 − n/N ≥ 1/2 and Pr(A = t|X = 1) − Pr(A = t|X = 0) ≤ n/N .

Thus, the contribution from this term, (Pr(A=0|X=0)−Pr(A=0|X=1))2

Pr(A=0) , is O(n/N)2 = o(1/N).
For t ≥ 1, there is no contribution from µ1 = 0. We can compute the probabilities involved

exactly as

Pr(A = t|X = 1) =
n

N

(k(1 + ε)/n)te−k(1+ε)/n + (k(1− ε)/n)te−k(1−ε)/n

2t!
,
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Pr(A = t|X = 0) =
n

N(1 + ε2)

(k(1 + ε2)/n)te−k(1+ε2)/n

t!
,

and obtain that (Pr(A=t|X=0)−Pr(A=t|X=1))2

Pr(A=t) is

O

(n1−tkt

2Nt!

) ((1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n − 2(1 + ε2)t−1e−k(1+ε2)/n
)2

(1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n + 2(1 + ε2)t−1e−k(1+ε2)/n

 .

Factoring out the e−k/n terms and noting that, since kε/n = o(1), the denominator is Ω(e−k/n)
yields that

O

((
n1−tkte−k/n

2Nt!

)(
(1 + ε)te−k(1+ε)/n + (1− ε)te−k(1−ε)/n − 2(1 + ε2)t−1e−k(1+ε2)/n

)2
)
.

Noting that k/n = o(1), we can ignore this e−kn term and Taylor expanding the exponentials, we
have that

(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)
=

O

((
n1−tkt

2Nt!

)(
(1 + ε)t(1− k(1 + ε)/n) + (1− ε)t(1 + k(1− ε)/n)

− 2(1 + ε2)t−1(1− k(1 + ε2)/n) +O((kε/n)2(1 + ε)t)
)2)

.

We deal separately with the cases t = 1, t = 2 and t > 2. For the t = 1 term, we have

O

((
k

N

)(
(1 + ε)(1− kε/n) + (1− ε)(1 + kε/n)− 2(1− kε2/n) +O((kε/n)2)

)2)
=O

((
k

N

)
O((kε/n)2)2

)
.

Since k = o(n2/3/ε4/3) and ε > n−1/4, εk/n = o(n−1/3/ε1/3) = o(n−1/4), and we find that this is

O

((
k

N

)
o(1/n)

)
= o(1/N) .

This appropriately bounds the contribution from this term.
When t = 2, we have

O

((
k2

nN

)(
(1 + ε)2(1− k(1 + ε)/n) + (1− ε)2(1− k(1− ε)/n)

−2(1 + ε2)(1− k(1 + ε2)/n) +O((kε/n)2)
)2)

.

Note that the terms without k/n factors cancel out, (1 + ε)2 + (1− ε)2 − 2(1 + ε2) = 0, yielding

O(k2/nN)(kε2/n+ o(n−1/2))2 = O(k4ε4/n3N) + o(k2/n2N) = o(k3ε4/n2N) + o(1/N) = o(1/N) ,

using both k = o(n2/3/ε4/3) and k = o(n).
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For t > 2, we let ft(x) = (1+x)t(1−kx/n). In terms of ft, we have that (Pr(A=t|X=0)−Pr(A=t|X=1))2

Pr(A=t)
is:

O

((
n1−tkt

2Nt!

)
(ft(ε) + ft(−ε))/2− ft(0)− (ft−1(ε2)− ft−1(0)) + o(n−1/2)2

)
.

Using the Taylor expansion of ft in terms of its first two derivatives and ft−1 in terms of its first,
we see that

(ft(ε) + ft(−ε))/2− ft(0) = ε2f ′′t (ξ)

and
ft−1(ε2)− ft−1(0) = ε2f ′t−1(ξ′) ,

for some ξ ∈ [−ε, ε] and ξ′ ∈ [0, ε2]. However, the derivatives are

f ′t(x) = (1 + x)t−1(t− (1 + x+ tx)k/n)

and
f ′′t (x) = (1 + x)t−2(t(t− 1)− t(t+ 1)xk/n) ,

and so |f ′′t (ξ)| ≤ O(t2(1 + ε)t−1) and f ′t−1(ξ′) ≤ O(t(1 + ε2)t−2). Hence, the term

(Pr(A = t|X = 0)− Pr(A = t|X = 1))2

Pr(A = t)

is at most

O(n1−tkt/Nt!)(ε4t4(1 + ε)2t−2) + o(1/n))

= O
(
(k3ε4/n2)(t4(1 + ε)2/N)(k(1 + ε)2/n)t−3/t!

)
+ o

(
(k/n)t/(Nt!)

)
= o(1/N)t4/t! ,

using both k = o(n2/3/ε4/3) and k = o(n). Since (t + 1)4/(t + 1)! ≤ t4/2t! for all t ≥ 4, even
summing the above over all t ≥ 3 still leaves o(1/N).

Thus, we have that I(X;A) = o(1/N), and therefore that I(X : A1, . . . , AN ) = o(1). This
proves that X = 0 and X = 1 cannot be reliably distinguished given A1, . . . , AN , and thus proves
property 5, completing the proof of our lower bound.

4 Conclusions

In this paper, we gave tight upper and lower bounds on the sample complexity of generalized
uniformity testing – a natural non-trivial generalization of uniformity testing, recently introduced
in [BC17]. The obvious research question is to understand the sample complexity of testing more
general symmetric properties (e.g., closeness, independence, etc.) for the regime where the domain
of the underlying distributions is discrete but unknown (of unknown size). Is it possible to obtain
sub-learning sample complexities for these problems? And what is the optimal sample complexity
for each of these tasks? It turns out that the answer to the first question is affirmative. These
extensions require more sophisticated techniques and will appear in a forthcoming work.
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