
Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Eli Ben-Sasson∗ Iddo Bentov† Ynon Horesh∗ Michael Riabzev∗

November 21, 2017

Abstract

The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasi-
linear probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with per-
fect zero knowledge and polylogarithmic verifiers. The large concrete computational complexity
required to prove membership in RS codes is one of the biggest obstacles to deploying such
PCP/IOP systems in practice.

To advance on this problem we present a new interactive oracle proof of proximity (IOPP) for
RS codes; we call it the Fast RS IOPP (FRI) because (i) it resembles the ubiquitous Fast Fourier
Transform (FFT) and (ii) the arithmetic complexity of its prover is strictly linear and that of
the verifier is strictly logarithmic (in comparison, FFT arithmetic complexity is quasi-linear but
not strictly linear). Prior RS IOPPs and PCPs of proximity (PCPPs) required super-linear
proving time even for polynomially large query complexity.

For codes of block-length N , the arithmetic complexity of the (interactive) FRI prover is less
than 6 · N , while the (interactive) FRI verifier has arithmetic complexity ≤ 21 · logN , query
complexity 2 · logN and constant soundness — words that are δ-far from the code are rejected
with probability min {δ · (1− o(1)), δ0} where δ0 is a positive constant that depends only on the
code rate. The particular combination of query complexity and soundness obtained by FRI is
better than that of the quasilinear PCPP of [Ben-Sasson and Sudan, SICOMP 2008], even with
the tighter soundness analysis of [Ben-Sasson et al., STOC 2013; ECCC 2016]; consequently,
FRI is likely to facilitate better concretely efficient zero knowledge proof and argument systems.

Previous concretely efficient PCPPs and IOPPs suffered a constant multiplicative factor loss
in soundness with each round of “proof composition” and thus used at most O(log logN) rounds.
We show that when δ is smaller than the unique decoding radius of the code, FRI suffers only
a negligible additive loss in soundness. This observation allows us to increase the number of
“proof composition” rounds to Θ(logN) and thereby reduce prover and verifier running time
for fixed soundness.

∗Technion — Israel Institute of Technology, Haifa, Israel; supported by the Israel Science Foundation (grant
1501/14) and the US–Israel Binational Science Foundation

†Cornell University, Ithaca, NY, USA

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 134 (2017)

1 Introduction

The family of Reed-Solomon (RS) codes is a fundamental object of study in algebraic coding theory
and theoretical computer science [RS60]. For an evaluation set S of N elements in a finite field F
and a rate parameter ρ ∈ (0, 1], the code RS[F, S, ρ] is the space of functions f : S → F that are
evaluations of polynomials of degree d < ρN [RS60]. The RS proximity problem assumes a verifier
has oracle access to f : S → F, and asks that verifier to distinguish, with “large” confidence and
“small” query complexity, between the case that f is a codeword of RS[F, S, ρ] and the case that
f is δ-far in relative Hamming distance from all codewords. This problem has been addressed in
several different computational models (surveyed next and summarized in Table 1), and is also the
focus of this paper.

RS proximity testing: When no additional data is provided to the verifier, the RS proximity
problem is commonly called a testing problem, and has been first defined and addressed by Rubin-
feld and Sudan in [RS92] (cf. [FS95]). In this case, one can see that d+ 1 queries are necessary and
sufficient to solve the problem: codewords are accepted by their tester with probability 1 whereas
functions that are δ-far from the code are rejected with probability ≥ δ. Since no additional infor-
mation is provided to the verifier in this model, we may say that a prover attempting to convince
the verifier that f ∈ RS[F, S, ρ] spends zero computational effort, zero rounds of interaction and
produces a proof of length 0.

RS proximity verification — PCPP model: Probabilistically checkable proofs of proximity
(PCPP) [BGH+06, DR04] relax the testing problem to a setting in which the verifier is given
oracle access also to an auxiliary proof, called a PCPP and denoted π. This PCPP is produced by
the prover, which is given f ∈ RS[F, S, ρ] as input. The time required to produce π is the prover
complexity and |π| is called the proof length1; similarly, verifier complexity is the total time required
to generate queries and check query-answers. The techniques used to prove the celebrated PCP
Theorem [ALM+98, AS98] also show that the proximity problem can be solved with constant query
complexity and proof length and prover complexity NO(1), or with proof length N1+ε and query
complexity (logN)O(1/ε) [BFLS91]. The current state of the art in the PCPP model gives proofs of

length Õ(N)
4
= N · logO(1)N with constant query complexity [BS08, Din07] and prover complexity

Õ(N) [BCGT13]; verifier complexity is poly logN [BGH+05, Mie09].
RS proximity verification — IOPP model: Interactive oracle proofs of proximity (IOPP),

formally introduced in [BCG+16] and, independently, in [RRR16] (under the name “probabilis-
tically checkable interactive proofs of proximity”), generalize IPs, PCPs and interactive PCPs
(IPCP) [KR08]. As in an IP and IPCP, several rounds of interaction are used in which the prover
sends messages π1, π2, . . . , πr in response to successive verifier messages. As in a PCP and IPCP, the
verifier is not required to read prover messages in entirety but rather may query them at random
locations (in an IPCP, verifier must read the full messages π2, . . . but may query π1 randomly);
the query complexity is the total number of entries read from f and π1, π2, . . . , πr. The prover is
provided with f ∈ RS[F, S, ρ] as input and prover complexity is the total time required to produce
all (prover) messages2, while proof length is generalized from the PCPP setting to the IOPP set-
ting and defined as |π1| + . . . + |πr|. IOPPs can be used to “replace” PCPP proof composition
with more rounds of interaction, and thereby reduce proof length and prover complexity without
compromising soundness (see Section 1.3). In particular, the IOPP version of the aforementioned

1Typically π is a sequence of elements in F. Therefore, proof length is measured over the alphabet F.
2Notice that prover complexity does not include the time needed to produce f .

1

PCPP constructions reduces proof length to O(N) with no change to soundness and/or query com-
plexity [BBGR16a, BCG+16]. In spite of the shorter proof length, prover complexity in prior works
was Θ(Npoly logN) due to a limitation on the number of proof-composition rounds, explained in
Section 2.1.

prover

comp.

proof

length

verifier

comp.

query

comp.

round

comp.

1. Testing [RS92] 0 0 Õ(ρN) ρN 0

2. PCP [ALM+98, AS98] NO(1) NO(1) NO(1) O
(

1
δ

)
1

3. PCP [BFL90, BFLS91] N1+ε N1+ε 1
δ logO(1/ε)N 1

δ logO(1/ε)N 1

4. PCPP [BS08, BGH+06, BCGT13] ≥ N log1.5N ≥ N log1.5N ≥ 1
δ log5.8N 1

δ log5.8N 1

5. PCPP [Din07, Mie09] N logcN N logcN 1
δ logcN O

(
1
δ

)
1

6. IOPP [BCF+16, BBGR16b] N logcN > 4 ·N 1
δ logcN O

(
1
δ

)
log logN

7. This work < 6 ·N < N
3 ≤ 21 · logN 2 logN logN

2

Table 1: Comparison of RS proximity protocols. For concreteness, all results stated for binary additive RS codes
with rate ρ = 1/8 evaluated over a sufficiently large set S, |S| = N satisfying N/|F| < 0.001 with proximity parameter
δ < δ0 (cf. Theorem 1.3) and soundness at least 0.99δ; i.e., the rejection probability of δ-far words is at least 0.99δ
for δ < δ0 (in particular, smaller δ leads to smaller soundness). Exponents for the 4th row taken from [BCGT13]; the
various exponents c in the 5th and 6th row have not been estimated in prior works but are greater than the respective
exponents in the 4th row.

1.1 Main results

We present a new IOPP for RS codes, called the Fast RS IOPP (FRI) because of its resemblance to
the Fast Fourier Transform (FFT) [CT65]; its analysis relies on the quasi-linear RS-PCPP [BS08]
(see Section 2.1). FRI is the first RS-IOPP to have (i) strictly linear arithmetic complexity for the
prover with (ii) strictly logarithmic arithmetic complexity for the verifier and (iii) constant sound-
ness. We start by recalling IOPP systems as described in [BCF+16, Section 3.2], after informally
summarizing the main complexity parameters of IOPs (introduced and discussed thoroughly in
[BCS16]).

IOP An Interactive Oracle Proof (IOP) system S is defined by a pair of interactive randomized
algorithms S = (P,V), where P denotes the prover and V the verifier. On input x of length N , the
number of rounds of interaction is denoted by r(N) and called the round complexity of the system.
During a single round the prover sends a message to which the verifier is given oracle access, and
the verifier responds with a message to the prover. The proof length, denoted `(N), is the sum of
lengths of all messages sent by the prover. The query complexity of the protocol, denoted q(N),
is the number of entries read by V from the various prover messages; since the verifier has oracle
access to those messages, typically q(N) � `(N) (For the FRI system q(N) = O(log `(N))). We
denote by 〈P ↔ V〉(x) the output of V after interacting with P on input x; this output is either
accept or reject. An IOP is said to be transparent (or have public randomness) if all messages sent
from the verifier are public random coins and all queries are determined by public coins, which are
broadcast to the prover (such protocols are also known as Arthur-Merlin protocols [Bab85]).

2

IOPP As its name suggests, an IOP of proximity (IOPP) is the natural generalization of a PCP
of Proximity (PCPP) to the IOP model. An IOPP for a family of codes3 C is a pair (P,V) of
randomized algorithms, called prover and verifier, respectively. Both parties receive as common
input a specification of a code C ∈ C which we view as a set of functions C = {f : S → Σ} for
a finite set S and alphabet Σ. We also assume that the verifier has oracle access to a function
f (0) : S → Σ and that the prover receives the same function as explicit input. The number of
rounds of interaction, or round complexity, is denoted by r, query complexity is denoted by q.

Definition 1.1 (Interactive Oracle Proof of Proximity (IOPP)). An r-round Interactive Oracle
Proof of Proximity (IOPP) S = (P,V) is a (r + 1)-round IOP. We say S is an (r-round) IOPP
for the error correcting code C = {f : S → Σ} with soundness s− : (0, 1] → [0, 1] with respect to
distance measure ∆, if the following conditions hold:

• First message format: the first prover message, denoted f (0), is a purported codeword of
C, i.e., f (0) : S → Σ

• Completeness: Pr
[
〈P↔ V〉 = accept|∆

(
f (0), C

)
= 0
]

= 1

• Soundness: For any P∗, Pr
[
〈P∗ ↔ V〉 = reject|∆

(
f (0), C

)
= δ
]
≥ s−(δ)

The sum of lengths of all prover messages, except for f (0), is the IOPP proof length; the time
required to generate all messages except for f (0) is the prover complexity. The IOPP query com-
plexity is the total number of queries to all messages, including f (0) and the decision complexity
is the computational complexity (see following remark) required by the verifier to reach it’s verdict,
once the queries and query-answers are provided as inputs.

Remark 1.2 (Computational model for decision complexity). The computational model in which
decision complexity is computed is left undefined. A natural default is to use boolean circuit com-
plexity. However, later we study families of linear codes in which each IOPP query is answered
by a field element. The natural computational model in this case is that of arithmetic complexity,
i.e., for a linear code C over finite field F, it is the number of arithmetic operations in F made by
the verifier to reach its.

Main Theorem The finite field of size q is denoted here by Fq; when q is clear from context we
omit it. A field is called binary if q = 2m,m ∈ N. A subset S of a binary field is an additive coset
if it is a coset of a subgroup of the additive group F+, i.e., if S is an additive shift of an F2-linear
space contained in Fq. The binary additive RS code family is the collection of codes RS[F, S, ρ]
where F is a binary field and S an additive coset. This family of codes is one for which quasilinear
PCPP were defined in [BS08], and our main theorem is stated for it (see Table 1).

Theorem 1.3 (Main — FRI properties). The binary additive RS code family of rate ρ = 2−R,R ≥
2,R ∈ N has an IOPP (FRI) with the following properties, where N denotes blocklength (which
equals Prover’s input length for a fixed RS[F, H, ρ] code):

• Prover: prover complexity is less than 6N arithmetic operations in F; proof length is less
than N/3 field elements and round complexity is at most logN

2 ;

3The definition of an IOPP can be generalized to arbitrary languages; we study an IOPP for a specific family of
codes so prefer to limit the scope of our definition accordingly.

3

• Verifier: query complexity is 2 logN ; the verifier decision is computed using at most 21 logN
arithmetic operations over F

• Soundness: There exists δ0 ≥ 1
4 (1− 3ρ) − 1√

N
such that every f that is δ-far in relative

Hamming distance from the code, is rejected with probability at least min {δ, δ0} − 3N
|F|

• Parallelization: Each prover-message can be computed in O(1) time on a Parallel Random
Access Machine (PRAM) with common read and exclusive write (CREW), assuming a single
F arithmetic operation takes unit time.

Generalizing Theorem 1.3 to arbitrary rate ρ ∈ (0, 1] can be done as described in [BS08, Propo-
sition 6.13] (cf. remark 6.2 there); this leads to slightly larger constants in the prover and verifier
complexity. For practical applications like ZK-IOPs [BCGV16, BCF+16], rates of the form stated
in the theorem above suffice.

Remark 1.4 (FRI for “smooth codes”). We call a multiplicative group H ⊂ Fq smooth if its order
(|H|) is 2k for k ∈ N. The family of smooth RS codes and rate ρ is the set of RS[Fq, H, ρ] with
smooth H. Theorem 1.3 holds also with respect to the family of smooth RS codes, with somewhat
smaller constants than 6 and 21 for the prover and verifier arithmetic complexity (as explained in
Remark 4.8); see Section 2.1 for a high-level overview of the smooth case and Remark 3.1 for more
details on modifying the protocol to this case. The protocol can be further generalized to groups of
order ck for constant c (perhaps with different arithmetic complexity constants), details omitted.

The soundness bound of Theorem 1.3 is nearly tight for δ ≤ δ0. We conjecture that a similar
bound holds for all δ.

Conjecture 1.5. The soundness upper bound in Theorem 1.3 is nearly tight, i.e., the rejection
probability of any f that is δ-far from the code is at least δ − (N/|F|)O(1).

The following claim shows that the conjecture above cannot be improved significantly.

Claim 1.6 (Upper bound on soundness). For all δ > 0 there exists f : H → F and a randomized
prover satisfying both (i) f is δ-far from RS[F, H, ρ], and (ii) the probability verifier rejects f and
the pseudo-provers oracles is at most δ + 4

|F| .

1.2 Applications to transparent zero knowledge implementations

Prover-efficient IOPPs of the kind presented here are crucially needed to facilitate practical ZK
argument systems that are (i) transparent (public randomness), (ii) universal — apply to any
computation — and (iii) succinctly verifiable, meaning that verification time is negligible compared
to näıve execution time (as will be reported in a follow up paper [BBHR17]). In this section we
explain how our system could be incorporated in a larger practical ZK system, and in Section 1.3
briefly discuss the range of blocklengths that might be relevant in applications and the resulting
communication complexity arising from their use.

The seminal works of Babai et al. [BFL90, BFLS91] showed that verifying the correctness of
an arbitrary nondeterministic computation running for T (N) steps can be achieved by a verifier
running in time poly(N, log T (N)) in the PCP model. Kilian’s construction transforms such PCPs
into a 4-round ZK argument in which the total communication complexity and verifier running

4

time are bounded by poly log T (N) [Kil92] (cf. [KPT97, IMSX15, IW14]), assuming a family of
collision-resistant hash functions. Micali further compressed this system into a noninteractive
computationally sound (CS) proof system, assuming both prover and verifier share access to the
same random function [Mic00a]; this is typically realized in practice using a hash function like
SHA2 and relying on the Fiat-Shamir heuristic [FS86]. No implementation of these marvelous
techniques has appeared during the quarter century that has passed since they were first published.
This is explained, in part, by concerns about the efficiency of these constructions for concrete
programs and run-times. Among the numerous components involved in building these systems,
a significant computational bottleneck is that of computing solutions to the Reed-Muller (RM)
proximity problem, also known as “low degree testing” of multivariate polynomials.

Quasilinear PCPs based on RS codes have prover complexity that is asymptotically more effi-
cient than RM codes, and a number of works have explored the concrete efficiency of these protocols
[BCGT13, BBGR16a]. Recently, Ben-Sasson et al. suggested an IOP with perfect zero knowledge
(PZK) for NP [BCGV16], later extended to NEXP [BCF+16], in which prover complexity is quasi-
linear and verifier complexity is poly(N, log T (N)); this PZK-IOP can be compiled, using Kilian’s
technique, into an interactive ZK argument with succinct4 communication complexity, or, using
Micali’s technique (cf. [Val08]), into a non-interactive random oracle proof (NIROP) as defined in
[BCS16]. In light of this, the practicality of Kilian- and Micali-type ZK argument systems with
polylogarithmic verifiers should be reconsidered.

To add motivation, a number of interesting practical succinct argument systems (with and
without zero-knowledge) have been reported recently (see [WB15] for an excellent updated survey
of the subject and [BBC+16] for a comparison of PCP/IOP-based solutions to other approaches).
A particular system based on the quadratic span programs (QSP) of Gennaro et al. [GGPR13] (cf.
[BCG+13]) has been used by Ben-Sasson et al. to build a decentralized anonymous payment (DAP)
system called “Zerocash” [BCG+14], later deployed as a practical commercial crypto-currency called
“ZCash” [Pec16, HBHW17]. However, the QSP based ZK system used in Zerocash/Zcash, called
a “preprocessing SNARK” [BCCT12], requires a setup phase that involves private randomness;
additionally, it relies on rather strong cryptographic “knowledge of exponent” assumptions, and
quantum computers can create pseudo-proofs of falsities in polynomial time for such systems [Sho94]
(cf. [PZ03]). In contrast, the aforementioned succinct interactive and non-interactive (NIROP)
systems based on quasilinear PZK-IOPs require only public randomness for their setup, and the only
cryptographic assumption required to realize them5 is the existence of a family of collision resistant
hash functions [Kil92], in particular, they are not known to be breakable by quantum computers in
polynomial time. Therefore, there is great interest in understanding whether succinct (interactive
and non-interactive) ZK argument systems which require only public randomness (and resistant
to known polynomial time quantum algorithms) can be practically built and used, say, by ZCash.
Ben-Sasson et al. [BBC+16] describe such an implemented system, called “succinct computational
integrity (SCI)” which is not ZK and has comparatively large communication complexity6. As
mentioned above, we hope to incorporate the RS proximity solution described in Theorem 1.3
within practical ZK systems [BBHR17].

4Here, as in past works, “succinct” is synonymous to “polylogarithmic”.
5To reach a (noninteractive) computationally sound (CS) proof [Mic00b], the “random oracle” is assumed, and

realized in practice by relying on the Fiat-Shamir heuristic. In particular, this approach as well is not know to be
breakable by quantum computers in polynomial time.

6Communication complexity in SCI is on the order of tens of megabytes long, compared with QSP based zk-
SNARKs that are shorter than 300 Bytes.

5

1.3 Concrete degree, communication, and round complexity

In this section we briefly discuss the “size” of RS codes that would be needed for various practical
applications and the effect of logarithmic round complexity on security. Due to space limitations,
and because the focus of this paper is theoretical (within the information theoretic IOP model),
we omit implementation details and point the interested reader to Appendix B and [BBC+16,
BCGV16].

The message length of RS codes of degree d = ρ ·N − 1 is precisely d, so we start by recounting
the range of degrees (message sizes) that seem practically relevant. Later we calculate the commu-
nication complexity arising from using the FRI protocol to argue proximity to codes of practically
relevant block-lengths, and end by discussing the practical implications of an IOPP with log d
rounds. Throughout this section ρ = 1/8 (N = 8 ·d) because this setting is used in prior [BBC+16]
and future [BBHR17] works.

RS block-length of systems realized in code The recently realized IOP-based argument
system called SCI (“Scalable Computational Integrity”) reduces computational statements, like
“the output of program P on input x equals y after T steps” to a pair of RS-proximity testing
problems. SCI uses an IOP version of the quasilinear PCP of [BS08], which could be replaced with
FRI. Programs bench-marked by SCI were executed on a simple MIPS-like virtual machine called
TinyRAM [BSCG+]. Generally speaking, RS degree increases in size with the number of TinyRAM
machine cycles T . Figure 1.A plots the degree d as a function of T for a specific simple program,
showing that d ≈ T · 221.

For crypto-currency applications requiring zero knowledge, block-length will be dominated by
the type of cryptographic primitives required, and the number of times they are invoked within a
computational statement. For instance, ZK contingent payments [Max11] require a single hash, and
Zerocash’s Pour circuit [BCG+14] uses 64 hash invocations, leading in that work to RS codewords
(over a prime field) with degree (=number of gates) approximately 222. Our new work in progress
shows that a single hash invocation requires RS block-length between 212 = 4096 (for a Davies–
Meyer hash based on AES128) to 219 (for SHA2), meaning that degrees in the range d ∈ [212, 226]
are relevant for existing crypto-currency (ZK) applications [BBHR17].

210 212 214 216 218 220
220

223

226

229

220

cycles

A. RS degree as function of # cycles

28 215 222 229 236 243
23

25

27

29

211

deg

B. CC in KB as function of degree

Figure 1: A. Degree of RS code arising from the exhaustive subset sum program [BBC+16, Appendix C], as a
function of the number of TinyRAM machine cycles. B. Communication complexity (CC) as a function of degree,
using λ = 160 bits, field size 264, soundness error ε = 2−80, and maximal proximity parameter δ = 1 − ρ. The
higher (red) graph corresponds to proven soundness (Theorem 3.3) and the lower (blue) corresponds to conjectured
soundness (Conjecture 1.5). Both plots use code rate ρ = 1/8.

6

Estimated communication complexity and argument length The practical realization of
interactive argument systems (see Section 1.2) into interactive argument systems [Kil92] and CS
proofs [Mic00b] can be extended to the IOPP model, in which multiple rounds of interaction are
used [BCS16]. Using Kilian’s scheme [Kil92], during the ith round the prover sends the root root(i)

of a Merkle hash tree Tree(i) whose leaves are labeled by entries of f (i), and the verifier replies
with randomness. Using Micali’s scheme[Mic00b], the (non-interactive) prover queries the random
oracle with root(i) to “simulate” the verifier’s ith message. When verifier queries to f (i) are answered
by the prover, each answer is accompanied by an authentication path (AP) that shows the query
answer is consistent with root(i). Let CCδ,ε(N) denote the prover-side communication complexity
(in bits) of an argument/CS proof realized by applying the Kilian/Micali scheme to FRI, where δ is
the proximity parameter and ε is the error bound, i.e., words that are δ-far from the RS code are
rejected with probability < ε. Then

CCδ,ε(N) = qδ,ε · log |F|+ APδ,ε · λ (1)

where qδ,ε denotes total query complexity in the IOP model to reach soundness ≥ 1−ε for proximity

parameter δ, APδ,ε is the number of nodes in the sub-forest of the Merkle trees Tree(0), . . . ,Tree(r)

induced by all authentication paths, and λ is the number of output bits of the hash function used
to construct the Merkle trees. In our preliminary results [BBHR17] we use λ = 160, ε = 2−80 and
|F| = 264 (and ρ = 1/8). Figure 1.B plots the communication complexity for this setting under the
proven soundness of Theorem 1.3 and the (better) soundness of Conjecture 1.5. In both cases we
use maximally large distance δ = 1 − ρ = 7/8 to show the concrete difference in communication
complexity between the proven and conjectured soundness. This plot also motivates the quest for
improving the soundness analysis of Theorem 1.3.

Round complexity considerations Assuming that a crypto-currency blockchain serves as
a timestamping service for public messages and a public beacon of randomness, one may use
blockchains to simulate verifier messages. Several blockchains (including Zcash) generate blocks
every 2.5 minutes, which means that a FRI proof for d = 2k will take roughly k · 5

4 minutes to
complete, or less than 1 hour7 for d < 240.

For fixed d, the round complexity stated in Theorem 1.3 is d/2, but the more refined Theorem 3.3
gives a tradeoff between query (q) and round (r) complexity, of the form r = d/ log q, allowing further
reduction in round complexity in exchange for larger communication complexity.

Finally, the Random Oracle model used by Micali to “compress” interactive argument systems
(like Kilian’s) into CS proofs applies equally to multi-round IOPs like FRI, with negligible impact
on argument length; see [BCS16, Remark 1.6] for a detailed discussion. Practically speaking, those
who treat hash functions like SHA2 as realizations of the RO model (a position shared by Bitcoin
and other crypto-currency miners), might feel comfortable compiling IOP protocols like FRI into
succinct non-interactive arguments, as described in [BCS16].

1.4 Related works

High-rate LTCs Locally testable codes (LTCs) are error correcting codes for which — by definition
— prover complexity and proof length equal 0 (as stated for the case of RS codes by Rubinfeld

7Compare this with Bitcoin’s “best practice” of waiting 1 hour for confirmations, or 3 days required to clear
standard cheques.

7

and Sudan [RS92]); in other words, when focusing solely on prover complexity, LTCs offer an
optimal solution (zero complexity). Nevertheless, as discussed in Section 1.2, the specific question
of small prover complexity for RS codes is highly relevant because of the its applications to practical
ZK-IOPs.

Classical “direct” constructions of LTCs, such as the Hadamard code studied by Blum, Luby
and Rubinfeld [BLR93] and the logN -variate RM codes used early PCP constructions [ALM+92,
BFLS91] have sub-constant rate, thus lead to long proofs and large PCP prover complexity.

More recently, there has been remarkable progress on constructing locally testable codes (LTCs)
with small query complexity and large soundness. Kopparty et al. obtained such codes with rate
approaching 1 [KMRS16] and Gopi et al. presented LTCs that reach the Gilbert Varshamov bound
[GKdO+17]. These LTCs have super-polylogarithmic query complexity. Additionally, in contrast
to RS codes, we are not aware of PCP constructions with similar parameters nor do we know how
to convert these LTCs into PCPs.

PCPs and IOPs: A number of recent works have considered PCP constructions with small
proof length and query complexity. In addition to the aforementioned works on quasilinear PCPs,
Moshkovitz and Raz constructed PCPs with optimally small query complexity (measured in bits)
and proofs of length N1+o(1) [MR10], where N denotes the length of the NP statement (like a
3CNF) for which the PCP is constructed, achieving better soundness than H̊astad’s result [H̊as01].
A different line of works attempts to optimize the bit-length of PCP proofs; the state of the art,
due to Ben-Sasson et al., achieves PCPs of bitlength O(N) and query complexity N ε [BKK+16].
In the IOP model, which generalizes PCPs by allowing more rounds of interaction, Ben-Sasson
et al. presented a 2-round IOP with bit-length O(N), constant query complexity (measured in
bits) and constant soundness [BCG+16]. (Prover arithmetic complexity in all of these systems is
super-linear.)

Soundness amplification: A number of results in the PCP literature have suggested techniques
for improving soundness of general PCP constructions, including the parallel repetition theorem
of Raz [Raz95], the gap amplification technique of Dinur [Din07] and direct-product testing, in-
troduced by Goldreich and Safra [GS00] (cf. [DG08, IKW12]). These techniques lead to excellent
soundness bounds with small query complexity. The concrete prover complexity of PCPs and
PCPPs associated with these methods has not been studied in prior works but prover complexity
is at least super-linear, and often polynomially large.

Doubly-efficient “proofs for muggles”: A recent line of works, initiated by Goldwasser, Kalai
and Rothblum [GKR08], revisits the IP model which is equivalent to PSPACE [LFKN92, Sha92],
focusing on doubly efficient systems in which the prover runs in polynomial time (as opposed to
polynomial space, as in the aforementioned results) and verifier runs in nearly linear time. The
state of the art along this line is due to Reingold et al. [RRR16], they construct doubly-efficient IP
protocols with a constant number of rounds for a family of languages in P. Prover complexity in
this line of works is at least super-linear, and typically polynomially large and verifier complexity
is super-polylogarithmic, and often super-linear as well (cf. [CMT12, RRR16]).

2 Overview of the FRI IOPP and its soundness

In this section we consider the task of building an IOPP for a “smooth” RS code (defined below).
We start in Section 2.1 by considering the completeness case, where We describe the interaction
between the verifier and an honest prover attempting to prove membership in the RS code of a valid

8

codeword f (0). The IOPP protocol is explained in similarity to the Inverse Fast Fourier Transform
(IFFT) [CT65]. Then, in Section 2.2, we consider the soundness case, where we assume f (0) is far in
relative Hamming distance from the code and need to prove lower bounds on the verifier’s rejection
probability. Soundness analysis is the most challenging aspect of our work (as it is for all prior
PCPP/IOPP works). Our analysis uses the soundness analysis of the quasilinear RS-PCPP [BS08]
for the case of “large” Hamming distance (beyond the unique decoding radius of the code), and
presents a novel, tighter, analysis for “small” Hamming distance (below that radius).

2.1 FRI overview and similarity to the Fast Fourier Transform (FFT)

Let ω(0) generate a smooth multiplicative group of order N = 2n (see Remark 1.4), denoted L(0),
that is contained in a field F; in signal processing applications ω(0) is a complex root of unity of
order 2n and F is the field of complex numbers (we shall use a different setting). Assume the prover
claims that f (0) : L(0) → F is a member of RS[F, L(0), ρ], i.e., f (0) is the evaluation of an unknown
polynomial P (0)(X) ∈ F[X], deg(P) < ρ2n; for simplicity we assume ρ = 2−R and R is a positive
integer. The task of the verifier is to distinguish between truisms (f (0) ≡ P (0) for some low degree
P (0)) and cases where f (0) is far from all polynomials of degree < ρ2n. Recalling the IFFT, if

f (0) ≡ P (0) there exist polynomials P
(1)
0 , P

(1)
1 ∈ F[Y],deg

(
P

(1)
0 , P

(1)
1

)
< 1

2ρ2n such that

∀x ∈ L(0) f (0)(x) = P (0)(x) = P
(1)
0 (x2) + x · P (1)

1 (x2),

or, letting Q(1)(X,Y)
4
= P

(1)
0 (Y) +X · P (1)

1 (Y) and defining q(0)(X)
4
= X2, we have

P (0)(X) ≡ Q(1)(X,Y) mod Y − q(0)(X) (2)

where degX
(
Q(1)

)
< 2 and degY

(
Q(1)

)
< 1

2ρ2n. The map x 7→ q(0)(x) is 2-to-1 on L(0) and the

output of this map is a multiplicative group of order 2n−1 that we shall denote by L(1). Moreover,
for every x(0) ∈ F and y ∈ L(1), the value of Q(x(0), y) can be computed by querying two entries of
f (0) because degX(Q) < 2 (the two entries are the two roots of the polynomial y − q(0)(X)).

Our verifier thus samples x(0) ∈ F uniformly at random and requests the prover to send as its
first oracle a function f (1) : L(1) → F that is supposedly the evaluation of Q(1)

(
x(0), Y

)
on L(1).

Assuming f (0) ∈ RS[F, L(0), ρ], the discussion above shows that f (1) ∈ RS[F, L(1), ρ]. Notice that
there exists a 3-query test for the consistency of f (0) and f (1), we call it the round consistency test :

1. sample a pair of distinct elements s0, s1 ∈ L(0) such that s2
0 = s2

1 = y; in other words, sample
a uniform y ∈ L(1) and let s0, s1 be the two roots of the polynomial y −X2;

2. query f (0)(s0), f (0)(s1) and f (1)(y), denote the query answers by α0, α1 and β, respectively;

3. interpolate the “line” through (s0, α0) and (s1, α1), i.e., find the polynomial p(X) of degree at
most 1 that satisfies p(s0) = α0 and p(s1) = α1; notice p is unique and well-defined because
s0 6= s1;

4. accept if and only if p
(
x(0)

)
= β and otherwise reject;

Tallying the costs of the first round, the verifier sends a single field element (x(0)) and the prover
responds with a message (oracle) f (1) : L(1) → F evaluated on a domain that is half the size of L(0);

9

testing the consistency of f (0) and f (1) requires three field elements per test (repeating the test
boosts soundness). We thus reduced a single proximity problem of size 2n and rate ρ to a single
analogous problem of size 2n−1 and same rate. Repeating the process for r = n−R rounds leads to
a function f (r) that is supposedly of constant degree and evaluated over a domain of constant size
2R, so at this point the prover sends the single constant that describes the function, and verifier
uses it as f (r) in the last round consistency test, the one that tests consistency of f (r−1) and f (r).

Applying inductive analysis to all r rounds, if f (0) ∈ RS[F, L(0), ρ] (and the prover is honest)
then all r round consistency tests pass with probability 1 and f (r) is indeed a constant function. In
other words, the protocol we described has perfect completeness.

Differences between informal and actual protocol are mostly technical; we list them now.
The field F is finite and binary, i.e., of characteristic 2; nevertheless the construction and analysis
can be immediately applied to RS codes evaluated over smooth multiplicative groups (of order 2n),
as explained informally above (cf. Remarks 1.4 and 3.1). In binary fields, the natural evaluation
domains (like L(0), L(1) above) are cosets of additive groups (not multiplicative ones), i.e, L(i) is
an affine shift of a linear space over F2. The map q(0)(X) = X2 is not 2-to-1 on L(0) (in binary
fields it is a 1-to-1 map, a Frobenius automorphism of F over F2) so we use a different polynomial
q(0)(X) that is many-to-one on L(0) and such that the set L(1) =

{
y = q(0)(x) | x ∈ L(0)

}
is a coset

of an additive group, like L(0), but of smaller size (|L(1)| � |L(0)|); the polynomial q(0) is known
as an affine subspace polynomial, belonging to the class of linearized polynomials (cf. Section 3.1).
We use q(0) of degree 4 instead of 2 because this reduces the number of rounds from n to n/2
with no increase in total query complexity; notice that a similar reduction could be applied in the
multiplicative setting by using q(0) = X4 (but we preferred simplicity to efficiency in the informal
exposition above). Finally, the actual protocol performs all queries only after the prover has sent
all of f (1), . . . , f (r). Thus, we construct a protocol with two phases. The first phase, called the
COMMIT phase, involves r rounds. At the beginning of the ith round the prover has sent oracles
f (0), . . . , f (i−1), and during this (ith) round the verifier samples and sends x(i) and the prover
responds by sending the next oracle f (i). During the second phase, called the QUERY phase, the
verifier applies the round consistency test to all r rounds. To save query complexity and boost
soundness, the query s(i) ∈ L(i) is used to test both consistency of f (i−1) vs. f (i) and consistency
of f (i) vs. f (i+1).

2.2 Soundness analysis — overview

Proof composition is a technique introduced by Arora and Safra [AS98] in the context of PCPs,
adapted to PCPPs in [BGH+06, DR04] and optimized for the special case of the RS code in [BS08].
Informally, it reduces proximity testing problems over a large domain to similar proximity testing
problems over significantly smaller domains. The process reducing f (0) to f (1) above is a special
case of proof composition, and each invocation of it incurs two costs on behalf of the verifier. The
first is the query complexity needed to check consistency of f (0) and f (1) (the “round consistency
test”) and the second is the reduction in distance, which affects the soundness of the protocol.
Assuming f (0) is δ(0)-far from all codewords in relative Hamming distance, for proof composition
to work one should prove that with high probability f (1) is δ(1)-far from all codewords where δ(1)

depends on δ(0); larger values of δ(1) imply higher (better) soundness and smaller communication
complexity. A benefit of the FRI protocol is that with high probability δ(1) ≥ (1 − o(1))δ(0), i.e.,
the reduction in distance in our protocol is negligible. In contrast, prior RS proximity PCPP

10

and IOPP solutions follow the construction and analysis of [BS08] which in turn is based on the
bivariate testing Theorem of Polischuk and Spielman [PS94] and incur a constant multiplicative loss
in distance per round of proof composition (δ(1) ≤ δ(0)/2). This loss limited the number of proof
composition rounds to ≤ logN and thus required replacing q(0)(X) = X2 with a higher degree

polynomial, like q(0)(X) = X2n/2 . The higher degree of q(0) results in Q(1)(X,Y) having balanced
X- and Y -degrees, namely

degX

(
Q(1)

)
≈ degY

(
Q(1)

)
≈ 2n/2.

Moving to q(0)(X) of constant degree as in FRI gives a biased RS-IOPP (because degX(Q(1))�
degY (Q(1))). The main benefit of this bias is that one side of the recursive process (that of X)
terminates immediately and consequently removes the constant multiplicative soundness loss in-
curred in prior works, replacing it with a negligible additive loss. More to the point, we show that
for δ(0) less than the unique decoding radius of the code (δ(0) < (1 − ρ)/2), with high probability

(namely, 1− O(1)
|F|) the sum of (i) the round consistency error and (ii) the “new” distance δ(1) is at

least as large as the “old” distance δ(0). This statement is relatively straightforward to prove in
case the prover is honest, i.e., when f (1)(y) = Q(1)

(
x(0), y

)
for all y ∈ L(1) (in this case there is no

round consistency error). The challenging part of the proof is to show this also holds for non-honest
provers and arbitrary f (1); see Lemma 4.4 and Section 4.2 for more details.

Acknowledgements

We thank Peter Manohar and Nicholas Spooner for helping clarify the presentation and for pointing
out and correcting errors in an earlier manuscript.

11

3 FRI— detailed description and main properties

In this section we give a formal and detailed description of the FRI protocol, expanding on what was
explained in the previous section. We start by providing additional needed definitions, followed by
the description of the COMMIT and QUERY phases; we continue by listing the properties obtained
by the protocol (Theorem 3.3), and conclude the section with a proof of Main Theorem 1.3. The
next section is then devoted to the proof of Theorem 3.3.

3.1 Definitions and notation

Interpolant For a function f : S → F, S ⊂ F, let interpolantf denote the interpolant of f , defined

as the unique polynomial P (X) =
∑|S|−1

i=0 aiX
i of degree less than |S| whose evaluation on S equals

f |S , i.e., ∀x ∈ S f(x) = P (x). We assume the interpolant P (X) is represented as a formal sum,
i.e., by the sequence of monomial coefficients a0, . . . , a|S|−1.

Subspace polynomials Given a set L0 ⊂ F let ZeroL0

4
=
∏
x∈L0

(X − x) be the unique non-zero
monic polynomial of degree |L0| that vanishes on L0. When L0 is an additive coset contained
in a binary field, the polynomial ZeroL0(X) is an affine subspace polynomial, a special type of a
linearized polynomial [Ore33, Ore34]. We shall use the following properties of such polynomials,
referring the interested reader to [LN97, Chapter 3.4] for proofs and additional background:

1. The map x 7→ ZeroL0(x) maps each additive coset S of L0 to a single field element, which
will be denoted by yS

2. If L ⊃ L0 is an additive coset, then ZeroL0(L)
4
= {ZeroL0(z) | z ∈ L} is an additive coset and

dim (ZeroL0(L)) = dim (L)− dim (L0).

Subspace specification Henceforth, the letter L always denotes an additive coset in a binary
field F, we assume all mentioned additive cosets are specified by an additive shift α ∈ F and a basis

β1, . . . , βk ∈ Fk so that L =
{
α+

∑k
i=1 biβi | b1, . . . , bk ∈ F2

}
; we assume α and ~β = (β1, . . . , βk)

are agreed upon by prover and verifier.

3.2 The COMMIT phase

The protocol is parameterized by an integer η � k(0); to prove Theorem 1.3 we set η = 2 but in other

settings a different value may be more beneficial. The number of rounds is r
4
= bk(0)−Rη c (recall that

R = log(1/ρ), where ρ is the rate). During the ith round of the COMMIT phase, i ∈ {0, . . . , r − 1},
the verifier has oracle access to a function f (i) : L(i) → F, where dim(L(i)) = k(i) = k(0) − η · i
submitted by the prover and the spaces L(i) are fixed in advance and, in particular, do not depend
on verifier messages.

A single COMMIT round We assume verifier and prover have also agreed upon a fixed “small”

L
(i)
0 ⊂ L(i),dim

(
L

(i)
0

)
= η. Let S(i) denote all cosets of L

(i)
0 in L(i). Let

q(i)(X)
4
= Zero

L
(i)
0

(X)

12

be the subspace polynomial vanishing on L
(i)
0 . Let L(i+1) 4= q(i)

(
L(i)

)
. The verifier’s ith message

is a uniformly random x(i) ∈ F. The Prover’s next message (or oracle) is f (i+1) : L(i+1) → F
computed for each yS ∈ L(i+1), yS = q(i)(S), S ∈ S(i), by interpolating the function f (i)|S to obtain

a polynomial P
(i)
S (X), deg

(
P

(i)
S

)
< 2η and then setting f (i+1) (yS)

4
= P

(i)
S

(
x(i)
)
.

Termination — COMMIT During the last round (i = r), the prover sends the interpolant

P (r)(X) = interpolantf
(r)

of f (r) rather than f (r) itself. By this point deg
(
P (r)(X)

)
< ρ · |L(r)| ≤ 2η

(recall η ∈ N is a constant).

13

FRI-COMMIT:
Common input:

• Parameters R, η, i, all are positive integers:

– rate parameter R: logarithm of RS code rate (ρ = 2−R)

– localization parameter η: dimension of L
(i)
0 (i.e., |L(i)

0 | = 2η); let r
4
= bk(0)−Rη c denote

round complexity

– i ∈ {0, . . . , r}: round counter

• A parametrization of RS(i) 4= RS
[
F, L(i), ρ = 2−R

]
, denote k(i) = log2

∣∣L(i)
∣∣ (notice k(i) =

dim
(
L(i)

)
);

• L
(i)
0 ⊂ L(i), dim

(
L

(i)
0

)
= η; Let q(i)(X) = Zero

L
(i)
0

(X) and denote L(i+1) = q(i)
(
L(i)

)
Prover input: f (i) : L(i) → F, a purported codeword of RS(i)

Loop: While i ≤ r:

1. Verifier sends a uniformly random x(i) ∈ F
2. Prover defines the function f

(i+1)

f(i),x(i) with domain L(i+1) thus, for each y ∈ L(i+1):

• Let Sy =
{
x ∈ L(i) | q(i)(x) = y

}
be the coset of L

(i)
0 mapped by q(i) to {y};

• P
(i)
y (X)

4
= interpolantf

(i)|Sy ;

• f
(i+1)

f(i),x(i)(y)
4
= P

(i)
y

(
x(i)
)
;

3. If i = r then:

• let f (r) = f
(r)

f(r−1),x(r−1) for f
(r)

f(r−1),x(r−1) defined in step 2 above;

• let P (r)(X) =
∑
j≥0 a

(r)
j X

j 4= interpolantf
(r)

(X);

• let d = ρ · |L(r)| − 1;

• prover commits to first d+ 1 coefficients of P (r)(X), namely, to 〈a(r)0 , . . . , a
(r)
d 〉

• COMMIT phase terminates;

4. Else (i < r):

• let f (i+1) = f
(i+1)

f(i),x(i) for f
(i+1)

f(i),x(i) defined in step 2 above;

• prover commits to oracle f (i+1)

• both parties repeat the COMMIT protocol with common input

– parameters (R, η, i+ 1)

– a paramterization of RS(i+1) 4= RS
[
F, L(i+1), ρ = 2−R

]
and L

(i+1)
0 ⊂ L(i+1),dim(L

(i+1)
0) =

η

and prover input f (i+1) defined at the beginning of this step;

14

Remark 3.1 (Adapting FRI to the family of smooth RS codes). If RS(0) is a smooth code of

blocklength 2k
(0)

(i.e., L(0) is a multiplicative group of order 2k
(0)

), the FRI protocol for RS(0) is
obtained from the protocol above by applying the following modifications to the COMMIT and QUERY
phases:

• define L
(i)
0 to be the multiplicative subgroup of L(i) of size 2η, i.e., the set of roots of the

polynomial X2η − 1

• define q(i)(X) = X2η (notice q(i) does not depend on i); observe x 7→ q(i)(x) is a 2η-to-1 map
on L(i) and its image is a (smooth) multiplicative group;

• let L(i+1) = q(i)
(
L(i)

)
(exactly as described in the protocol above), noticing L(i+1) is the

(smooth) multiplicative group of order 2k
(i+1)

= 2k
(i)−η;

• terminology: interpret the words “coset” to mean “multiplicative coset” and the term “di-

mension” to mean “base-2 logarithm of group order” (e.g., dim
(
L(i)

) 4
= log2

∣∣L(i)
∣∣); replace

the term “affine space” with “smooth group”;

3.3 The QUERY phase

During this phase the prover does not participate and the verifier merely checks that the prover
operated as specified above. Concretely, a single test of the verifier consists of sampling a uni-
formly random s(0) ∈ L(0), and computing iteratively s(i+1) = q(i)

(
s(i)
)
, notice s(i) ∈ L(i);

let S(i) denote the unique coset of L
(i)
0 in which s(i) is contained. (Using the notation above,

we have s(i+1) = yS(i) .) The verifier now accepts if and only if for all i < r it holds that

f (i+1)
(
s(i+1)

)
= interpolantf

(i)|
S(i)
(
x(i)
)
. When i < r the values f (i)(z) are queried directly by

the verifier, and in the terminal case (i = r) the verifier queries all coefficients of P (r)(X) from the
last prover message and interpolates this polynomial to reconstruct f (r).

15

FRI-QUERY:
verifier input:

• parameters R, η as defined in the COMMIT phase

• repetition parameter `

• sequence of rate-ρ RS-codes RS(0), . . . ,RS(r), where RS(i) = RS
[
F, L(i), ρ

]
and log2

∣∣L(i)
∣∣ =

k(i) = k(0) − i · η; (notice k(i) = dim
(
L(i)

)
);

• sequence of affine spaces L
(0)
0 , . . . , L

(r−1)
0 , each L

(i)
0 is of dimension η and contained in

L(i);

• transcript of verifier messages x(0), . . . , x(r−1) ∈ F

• access to oracles f (0), . . . , f (r−1)

• access to last oracle P (r)(X) =
∑d

j=0 a
(r)
j X

j for d = ρ · |L(r)| − 1;

Terminal function reconstruction:

• query a
(r)
0 , . . . , a

(r)
d ; (a total of d+ 1 ≤ 2η queries)

• let P ′(X)
4
=
∑

j≤d a
(r)
j X

j ;

• let f (r) be the evaluation of P ′(X) on L(r); (notice f (r) ∈ RS(r))

Repeat ` times: {
1. Sample uniformly random s(0) ∈ L(0) and for i = 0, . . . , r − 1 let

• s(i+1) = q(i)
(
s(i)
)

• S(i) be the coset of L
(i)
0 in L(i) that contains s(i)

2. For i = 0, . . . , r − 1,

• query f (i) on all of S(i); (a total of 2η queries)

• compute P (i)(X)
4
= interpolantf

(i)|
S(i) ; (notice deg

(
P (i)

)
< 2η)

3. round consistency: If for some i ∈ {0, . . . , r − 1} it holds that

f (i+1)
(
s(i+1)

)
6= P (i)

(
x(i)
)

(3)

then reject and abort;

}
Return accept

16

3.4 Main properties of the FRI protocol

The following distance measure will be used in our soundness analysis. It is similar to the relative
Hamming distance, only measured on blocks of symbols. Given a function f : S → Σ and S′ ⊂ S
we denote by f |S′ the restriction of f to domain S′. Given g : S → Σ, let f |S′ = g|S′ denote
equality in the space ΣS′ , i.e., this equality holds iff for each x ∈ S′ we have f(x) = g(x).

Definition 3.2 (Blockwise distance measure). Let S = {S1, . . . , Sm} be a partition of a set S and
Σ be an alphabet. The relative S-Hamming distance measure on ΣS is defined for f, g ∈ ΣS as the
relative Hamming distance over ΣS1 × . . .× ΣSm,

∆S (f, g)
4
= Pr

i∈[m]
[f |Si 6= g|Si] =

|{i ∈ [m] | f |Si 6= g|Si}|
m

. (4)

Thus, for F ⊂ ΣS let ∆S (g,F) = min
{

∆S (g, f) | f ∈ F
}

.

In our soundness analysis of the FRI protocol we use the blockwise distance on FL(i)
correspond-

ing to the partition of L(i) to cosets of L
(i)
0 ; recall both L(i), L

(i)
0 are affine spaces with L

(i)
0 ⊂ L(i),

and S(i) denotes the set of cosets of L
(i)
0 in L(i). To simplify notation we denote

∆(i) (f, g)
4
= ∆S

(i)
(f, g) (5)

In words, ∆(i) (·, ·) measures the fraction of cosets of L
(i)
0 in L(i) on which f and g do not agree

completely. Recalling RS(i) is a code of rate ρ we have

1− ρ ≥ ∆(i)
(
f (i),RS(i)

)
≥ ∆H

(
f (i),RS(i)

)
(6)

where ∆H (·, ·) denotes relative Hamming distance. The first inequality holds because there always
exists a polynomial of degree < ρ|L(i)| that agrees completely with f (i) on a ρ-fraction of cosets

of L
(i)
0 . The second inequality holds because if f (i) differs from g ∈ RS(i) on a δ-fraction of cosets

in S(i) then f and g differ on at most a δ-fraction of their entries because all cosets in S(i) are of
equal size.

The following theorem is a more detailed and precise version of Theorem 1.3.

Theorem 3.3 (Main properties of the FRI protocol). The following properties hold when the FRI
protocol is invoked on oracle f (0) : L(0) → F with rate parameter R and localization parameter η:

1. Completeness If f (0) ∈ RS(0) 4= RS[F, L(0), ρ = 2−R] and f (1), . . . , f (r) are computed by the
prover specified in the COMMIT phase, then the FRI verifier outputs accept with probability 1.

2. Soundness Suppose δ(0) 4= ∆(0)
(
f (0),RS(0)

)
> 0. Then with probability at least

1− 3|L(0)|
|F|

(7)

over the randomness of the verifier during the COMMIT phase, and for any (adaptively cho-
sen) prover oracles f (1), . . . , f (r), the QUERY protocol with repetition parameter ` outputs
accept with probability at most(

1−min

{
δ(0),

1− 3ρ− 2η/
√
|L(0)|

4

})`
(8)

17

Consequently, the soundness of FRI is at least

s−
(
δ(0)
) 4

= 1−

3|L(0)|
|F|

+

(
1−min

{
δ(0),

1− 3ρ− 2η/
√
|L(0)|

4

})` . (9)

3. Prover complexity The ith step of commit phase can be computed by a parallel random
access machine (PRAM) with concurrent read and exclusive write (CREW) in 2η + 3 cycles
— each cycle involves a single arithmetic operation in F — using 2|L(i)| + η processors and
a total of 4|L(i)| arithmetic operations over F.

Consequently, the total prover complexity is at most 6|L(0)| arithmetic operations, which can
be carried out in at most 4 log |L(0)| cycles on a PRAM-CREW with 2n+ 3 processors.

4. Verifier complexity Verifier communication during the COMMIT phase equals r field el-
ements; query complexity (during QUERY phase) equals `2ηr = `2η(log |L(0)| − R). On a
PRAM with exclusive read and exclusive write (EREW) with `r · 2η processors, the verifier’s
decision is obtained after 2η + 3 + log ` cycles and a total of ` · r · (4 · 2η + 6η + 1) arithmetic
operations in F.

Remark 3.4 (Tightness of soundness upper and lower bounds). For δ(0) ≤ 1−3ρ−2η/
√
|L(0)|

4 the
soundness bound nearly matches the upper bound of Claim 1.6. Closing the gap between these two
bounds for larger δ(0) remains an intriguing open problem.

3.5 Proof of Main Theorem 1.3

We now show that the Theorem above indeed proves our Main Theorem 1.3 and the remainder of
the paper is devoted to proving Theorem 3.3.

Proof of Main Theorem 1.3. Apply Theorem 3.3 with N = |L(0)| and k = k(0) = dim
(
L(0)

)
. Fix

η = 2 and ` = 1. Prover complexity follows immediately from Theorem 3.3, part 3. By construction
dim(L(i)) = dim(L(0))− iη and thus, using the geometric series formula, the total proof length is

|L(1)|+ . . .+ |L(r)| = |L(0)| ·
r∑
i=1

1

2iη
= |L(0)| ·

r∑
i=1

4−i < |L(0)|/3.

Round complexity is
r = b(k −R)/ηc ≤ k/2− 1

the last inequality follows because R ≥ η. This completes the proof of the first bullet (“prover”)
of Theorem 1.3.

Moving to the second bullet (“verifier”), query complexity is at most 2 logN for our selection
of η = 2 and the resulting value of r. The decision complexity of the verifier follows immediately
from Theorem 3.3, part 4 using the setting of r, η and `. This completes the proof of the second
bullet.

The lower bound on soundness (third bullet) follows from (9) by setting ` = 1; although (9) is
stated for the blockwise distance measure, the same bound holds also with respect to the relative
Hamming distance measure; this follows from (6).

18

Regarding the soundness upper bound (fourth bullet), it follows from (34) for any function f (0)

that is chosen to be δ-far from w ∈ RS(0) in both the Hamming distance measure and the blockwise
distance measure.

The parallelization bullet follows from Theorem 3.3, part 3. This completes the proof of Main
Theorem 1.3.

4 Proof of Theorem 3.3

We prove the items of Theorem 3.3 in the order stated there. The main technical challenge is that
of proving soundness lower bounds in Section 4.2.

4.1 Completeness — Part 1

The proof of the completeness claim follows from the following lemma.

Lemma 4.1 (Inductive argument). If f (i) ∈ RS(i) then for all x(i) ∈ F it holds that f
(i+1)

f (i),x(i)
∈

RS(i+1).

We complete the proof of completeness assuming the lemma above, then prove the lemma.

Proof of Theorem 3.3, item 1 (perfect completeness). If one applies the prover specified in the COM-
MIT phase to an arbitrary function, then for any i < r− 1 all round consistency tests pass because
the equality (3) checked by the verifier is fulfilled by the construction of f (i+1) from f (i) described
in step 2 of the COMMIT phase.

Thus we need only prove that the round consistency test passes also for i = r−1. By assumption
δ(0) = 0 so f (0) ∈ RS(0). Applying Lemma 4.1 inductively shows that f (r) ∈ RS(r) which means that
its interpolant is a polynomial of degree < ρ · |L(r)|. In this case the function f ′(r) extracted from
P (r)(X) in the “terminal function reconstruction” step is indeed equal to f (r) and hence all round
consistency tests pass for i = r − 1 as well. This completes the proof.

4.1.1 Proof of Lemma 4.1

For our proof, we need the following claim from [BS08, Section 6] and repeat its proof for self-
containment. We use capitalized letters like X,Y to denote formal variables and non-capitalized
ones like x, y to denote field elements.

Claim 4.2. For every f (i) : L(i) → F there exists Q(i)(X,Y) ∈ F[X,Y] satisfying

1. f (i)(x) = Q(i)
(
x, q(i)(x)

)
for all x ∈ L(i)

2. degX
(
Q(i)

)
< |L(i)

0 |

3. If f (i) ∈ RS[F, L(i), ρ] then degY
(
Q(i)

)
< ρ|L(i+1)|

Proof. Let P (i) = interpolantf
(i)

. Let F[X,Y] denote the ring of bivariate polynomials over F; order
monomials first according to total degree, then according to X-degree. Let

Q(i)(X,Y) = P (i)(X) mod Y − q(i)(X) (10)

19

be the remainder from dividing P (i)(X) by Y − q(i)(X). By definition, there exists R(X,Y) ∈
F[X,Y] such that

P (i)(X) = Q(i)(X,Y) +
(
Y − q(i)(X)

)
·R(X,Y).

For x ∈ L(i) and y = q(i)(x) the rightmost summand above vanishes, hence P (i)(x) equalsQ(i)(x, y) =
Q(i)

(
x, q(i)(x)

)
, implying item 1.

By the ordering chosen for monomials, the remainder Q defined in (10) satisfies

degX

(
Q(i)(X,Y)

)
< deg

(
q(i)
)

= |L(i)
0 |

and hence item 2 holds.
Finally, by the rules of division and the chosen monomial ordering,

degY

(
Q(i)

)
= b

deg
(
P (i)

)
deg

(
q(i)
) c = b

deg
(
P (i)

)
|L(i)

0 |
c < ρ|L(i+1)|

The inequality follows because |L(i+1)| = |L(i)|/|L(i)
0 | and f (i) ∈ RS(i), implying deg

(
P (i)

)
< ρ|L(i)|.

We conclude item 3 holds and this proves the claim.

Proof of Lemma 4.1. We use the notation from Claim 4.2. From item 3 of that claim it follows
that for any x(i) we have degY

(
Q(i)

)
< ρ · |L(i+1)|. We will thus prove

∀y ∈ L(i+1), f (i+1)(y) = Q(i)
(
x(i), y

)
(11)

and this implies deg
(
f (i+1)

)
≤ degY

(
Q(i)

)
< ρ · |L(i+1)|, as required.

To prove (11) fix y ∈ L(i+1) and let Sy ∈ S(i) satisfy q(i) (Sy) = {y}. By construction of f (i+1)

we have
f (i+1)(y) = interpolantf

(i)|Sy
(
x(i)
)
. (12)

By Claim 4.2, item 1,
∀x ∈ Sy, f (i)(x) = P (i)(x) = Q(i)(x, y) (13)

And because degX
(
Q(i)

)
< |Sy|, due to Claim 4.2, item 2, we conclude that

interpolantf
(i)|Sy (X) = Q(i)(X, y) (14)

as formal polynomials in X, hence evaluating both polynomials on x(i) gives equal values. Com-
bining this with (12) and (13) proves that (11) holds, and this completes the proof.

4.2 Soundness — Part 2

Soundness analysis is typically the most challenging aspect of proximity testing protocols; our case
is no different. First we provide a few needed definitions, and continue in Section 4.2.2 with a
statement of two main lemmas (Lemmas 4.3 and 4.4) that imply soundness. After completing the
proof of soundness in that section, we prove the two main lemmas in Sections 4.2.3 and 4.2.4.

20

4.2.1 Definitions — round consistency error and distortion set

Given oracles f (i) and f (i+1) produced in response to verifier randomness x(i), we shall use the
following terms and notation:

• inner-layer distance the ith inner-layer distance is the ∆(i)-distance of f (i) from RS(i),

δ(i) = ∆(i)
(
f (i),RS(i)

)
• round error For i > 0, the ith round error set is the subset of L(i) defined by

A
(i)
err

(
f (i), f (i−1), x(i−1)

) 4
=
⋃{

y
(i)
S ∈ L

(i) | interpolantf (i−1)|S
(
x(i−1)

)
6= f (i)

(
y

(i)
S

)}
and the ith round error err(i) is the probability that the round consistency test rejects f (i)

and f (i−1),

err(i)
(
f (i), f (i−1), x(i−1)

) 4
=
|A(i)

err|
|L(i)|

• closest codeword Let f̄ (i) denote the RS(i)-codeword that is closest to f (i) in the ∆(i) (·)-
measure, breaking ties arbitrarily. Let SB

(
f (i)
)
⊂ S(i) denote the set of “bad” cosets on

which f (i) and f̄ (i) disagree,

SB
(
f (i)
)

=
{
S ∈ S(i) | f (i)|S 6= f̄ (i)|S

}
. (15)

Let D(i) =
⋃
S∈S(i)B

S denote the subset of L(i) of elements that belong to some “bad” coset.

Notice that δ(i) < (1− ρ)/2 implies uniqueness of f̄ (i),S(i)
B and D(i).

• distortion set For ε > 0 the distortion set of f (i) is

B
[
f (i); ε

]
=
{
x(i) ∈ F | ∆H

(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
< ε
}

Notice the use of the Hamming distance measure above.

4.2.2 Proof of soundness

The following pair of lemmas will be needed to complete the analysis of soundness.

Lemma 4.3 (Soundness above unique decoding radius). For any ε ≥ 2η

|F| and δ(i) > 0

Pr
x(i)∈F

[
x(i) ∈ B

[
f (i);

1

2
·
(
δ(i)(1− ε)− ρ

)]]
≤ 2η

ε|F|
(16)

Lemma 4.4 (Soundness within unique decoding radius). If δ(i) < (1− ρ)/2 then

Pr
x(i)∈F

[
x(i) ∈ B

[
f (i), δ(i)

]]
≤ |L

(i)|
|F|

. (17)

Moreover, suppose that for i < r the sequences ~f =
(
f (i), . . . , f (r)

)
and ~x =

(
x(i), . . . , x(r−1)

)
satisfy

21

1. for all j ∈ {i, . . . , r} we have δ(j) < 1−ρ
2

2. for all j ∈ {i, . . . , r − 1} we have f̄ (j+1) = f
(j+1)

f̄ (j),x(j)

3. for all j ∈ {i, . . . , r − 1} we have x(j) 6∈ B
[
f (j); δ(j)

]
Then

Pr
s(i)∈D(i)

[
QUERY

(
~f, ~x
)

= reject
]

= 1 (18)

and consequently

Pr
s(i)∈L(i)

[
QUERY

(
~f, ~x
)

= reject
]
≥ |D

(i)|
|L(i)|

= δ(i) (19)

We are ready to prove the soundness of the protocol, in three steps. First, we define a sequence
of “bad” events E(0), . . . , E(r−1) that may occur (only) during the COMMIT phase. Second, we

bound from above the probability that some bad event occurs by 3|L(0)|
|F| , as stated in (7). Third and

last, assuming no bad event occurs, we bound from below the probability of the verifier rejecting
during the QUERY phase, proving this rejection probability is at least as stated in (8). Details
follow.

Proof of Theorem 3.3, item 2 (soundness). Set ε = 2η

|L(r/2)| ; for simplicity we assume r is even (using

ε = 2η

|L(dr/2e)| gives the same bounds but with a slightly messier analysis).

Part I — A sequence of bad events The ith bad event E(i) is defined thus:

• large distance: If δ(i) ≥ 1−ρ
2 then E(i) is the event

x(i) ∈ B
[
f (i);

1

2
·
(
δ(i)(1− ε)− ρ

)]

• small distance: If δ(i) < 1−ρ
2 then E(i) is the event

x(i) ∈ B
[
f (i), δ(i)

]
Assuming that event E(i) does not hold implies that for δ(i) < 1−ρ

2 ,

∆(i+1)
(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
≥ δ(i) (20)

and for δ(i) ≥ 1−ρ
2 ,

∆(i+1)
(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
≥ 1

2
·
(
δ(i)(1− ε)− ρ

)
≥ (1− ρ)(1− ε)

4
− ρ

2
≥ 1− 3ρ− ε

4
. (21)

We use δ0 to denote the rightmost term of (21) and summarize this by saying that when no E(i)

holds we have
∆(i+1)

(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
≥ min

{
δ(i), δ0

}
(22)

22

Part II — bounding the probability of a bad event occurring By Lemmas 4.3 and 4.4,
and by our choice of ε we have

Pr
[
E(i)

]
≤ max

{
2η

ε|F|
,
|L(i)|
|F|

}
≤


|L(i)|
|F| i ≤ r/2
|L(r/2)|
|F| i > r/2

so the probability that none of E(0), . . . , E(r−1) hold is at least

1−
∑
i≤r/2

|L(i)|
|F|

+
r|L(r/2)|

2|F|
> 1− 3

|L(0)|
|F|

.

The inequality above follows because r ≤ log |L(0)| and |L(r/2)| =
√
|L(0). We continue with the

proof assuming no E(i) holds.

Part III — bounding soundness when no bad event occurred There are two cases to con-
sider. The first and simpler case is when the sequences ~f =

(
f (0), . . . , f (r)

)
and ~x =

(
x(0), . . . , x(r−1)

)
satisfy the three assumptions of Lemma 4.4; In this case Lemma 4.4 immediately gives the desired
lower bound of δ(0) on rejection probability.

The other case is when the sequences ~f and ~x do not satisfy all conditions of Lemma 4.4. It
cannot be the case that both assumptions 1 and 2 hold while assumption 3 fails, because that
would imply that some event E(i) holds, contradicting our earlier assumption. Thus, it must be
the case that either assumption 1 or 2 of that lemma fails to hold for the sequences ~f, ~x, so there
exists some i ∈ {0, . . . , r − 1} for which either

1. δ(i) ≥ 1−ρ
2 , or

2. δ(i) < 1−ρ
2 and f̄ (i+1) 6= f

(i+1)

f̄ (i),x(i)

Abusing notation, let i < r be the largest integer satisfying either of the above conditions. Notice
D(i+1) is uniquely defined because δ(i+1) < 1−ρ

2 and hence f̄ (i+1) is unique. The following claim

says that the honest prover’s (i+1) message is at least δ0 from f̄ (i+1) in relative Hamming distance.

Claim 4.5.
∆H

(
f̄ (i+1), f

(i+1)

f (i),x(i)

)
≥ δ0

Proof. If δ(i) ≥ 1−ρ
2 then the assumption that E(i) doesn’t occur means that ∆H

(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
≥

δ0 and the claim clearly holds. Otherwise we are in the case that both δ(i) < 1−ρ
2 and f̄ (i+1) 6=

f
(i+1)

f̄ (i),x(i)
hold. To simplify exposition denote f

(i+1)

f̄ (i),x(i)
by g. Both f̄ (i+1) and g belong to RS(i+1),

hence are at least (1− ρ)-far from each other. The triangle inequality gives

1− ρ ≤ ∆H

(
f̄ (i+1), g

)
≤ ∆H

(
f̄ (i+1), f

(i+1)

f (i),x(i)

)
+ ∆H

(
f

(i+1)

f (i),x(i)
, g
)

(23)

By the assumption δ(i) < 1−ρ
2 we have ∆H

(
f

(i+1)

f (i),x(i)
, g
)
< 1−ρ

2 . Rearranging (23) gives

∆H

(
f̄ (i+1), f

(i+1)

f (i),x(i)

)
≥ ∆H

(
f̄ (i+1), g

)
−∆H

(
f

(i+1)

f (i),x(i)
, g
)
> (1− ρ)− 1− ρ

2
>

1− ρ
2

> δ0.

This completes the proof.

23

Our next claim is

Claim 4.6.
|A(i+1)

err ∪D(i+1)|
|L(i+1)|

≥ ∆H

(
f̄ (i+1), f

(i+1)

f (i),x(i)

)
. (24)

Proof. For all x 6∈ A(i+1)
err ∪D(i+1) we have

f̄ (i+1)(x) = f (i+1)(x) = f
(i+1)

f (i),x(i)
(x)

because the first equality holds for x 6∈ D(i+1) and the second for x 6∈ A(i+1)
err . But

Pr
x∈L(i+1)

[
f̄ (i+1)(x) 6= f

(i+1)

f (i),x(i)
(x)
]

= ∆H

(
f

(i+1)

f (i),x(i)
, f̄ (i+1)

)
so the claim holds.

Combining Claims 4.5 and 4.6 gives

|A(i+1)
err ∪D(i+1)|
|L(i+1)|

≥ δ0.

Consider s(i+1) used during the QUERY phase. If s(i+1) ∈ A(i+1)
err then the QUERY test rejects by

definition. If i + 1 = r then D(i+1) = ∅ by definition becuase f (r) ∈ RS(r) so in this case we have
already shown the rejection probability is at least δ0. Otherwise we are in the case that i+1 < r and
by choice of i, the sequences

(
f (i+1), . . . , f (r)

)
and

(
x(i+1), . . . , x(r−1)

)
which are both non-empty,

satisfy all three assumptions of Lemma 4.4. By the conclusion of that lemma, if s(i+1) ∈ D(i+1)

then the QUERY phase rejects, cf. (18). We have shown that the probability of error is at least the

probability that s(i+1) belongs to A
(i+1)
err ∪D(i+1) and this probability is at least δ0, completing the

proof of soundness.

4.2.3 Unique decoding radius — Proof of Lemma 4.4

Proof of Lemma 4.4. Recall f̄ (i) and SB
(
f (i)
)

are uniquely defined because δ(i) < 1−ρ
2 . For a bad

coset S ∈ SB
(
f (i)
)

let

X
(i)
S

4
=
{
x(i) ∈ F | interpolantf (i)|S

(
x(i)
)

= interpolantf̄
(i)|S

(
x(i)
)}

(25)

be the set of “misleading” values of x(i) on which interpolantf
(i)|S and interpolantf̄

(i)|S agree, even
though the two are distinct low-degree polynomials. We claim that

B
[
f (i), δ(i)

]
=

⋃
S∈SB(f (i))

X
(i)
S (26)

Indeed, by Lemma 4.1 we conclude that f
(i+1)

f̄ (i),x(i)
∈ RS(i+1). For all S 6∈ SB

(
f (i)
)

with yS = q(i) (S)

we have f
(i+1)

f (i),x(i)
(yS) = f

(i+1)

f̄ (i),x(i)
(yS). Since δ(i) is smaller than the unique decoding distance it

24

follows that f
(i+1)

f̄ (i),x(i)
is the RS(i+1)-codeword closest to f

(i+1)

f (i),x(i)
in Hamming distance. Therefore,

∆H

(
f

(i+1)

f (i),x(i)
,RS(i+1)

)
= ∆H

(
f

(i+1)

f (i),x(i)
, f

(i+1)

f̄ (i),x(i)

)
and the two functions agree on yS if and only if

either S 6∈ SB
(
f (i)
)

or S ∈ SB
(
f (i)
)

and x(i) ∈ X(i)
S . This shows that f

(i+1)

f (i),x(i)
disagrees with the

(unique) closest RS(i+1)-codeword, which is f̄
(i+1)

f (i),x(i)
, on all of

{
yS | S ∈ SB

(
f (i)
)}

if and only if

x(i) 6∈
⋃
S∈SB(f (i))X

(i)
S , proving (26).

With this equality in hand, we bound the right hand side of (26). Indeed, interpolantf
(i)|S and

interpolantf̄
(i)|S are distinct polynomials of degree less than |S|, so |XS | < |S| and hence

∣∣∣B [f (i); δ(i)
]∣∣∣ =

∣∣∣∣∣∣∣
⋃

S∈S(f (i))

XS

∣∣∣∣∣∣∣ < |S| ·
∣∣∣SB (f (i)

)∣∣∣ ≤ |L(i)|,

and this proves (17).
Next, consider the sequences ~f, ~x assumed in the Lemma. Assume for simplicity that f̄ (i) is

the zero function evaluated over L(i), by subtracting f̄ (i) from f (i) if this is not the case; denote by
0|L(i) this function. Then

f
(i+1)

f̄ (i),x(i)
= f

(i+1)

0|
L(i) ,x

(i) = 0|L(i+1)

so by assumption 2 of Lemma 4.4 we have f̄ (i+1) = 0|L(i+1) and similarly by induction we have
f̄ (j) = 0|L(j) for all j ∈ {i, . . . , r}. In particular, f (r) = 0|L(r) .

Consider the sequence
(
s(i), . . . , s(r)

)
defined in the QUERY phase, where s(i) ∈ D(i). Let j

denote the largest integer such that s(j) ∈ D(j). This j is well defined because s(i) ∈ D(i). Notice
j < r because by definition f (r) = 0|L(r) so D(r) = ∅. Assumption 3 of Lemma 4.4 together with

(26) implies that x(j) 6∈ ∪S∈S(j)X
(j)
S , so f

(j+1)

f (j),x(j)

(
s(j+1)

)
6= 0. But by definition of j we have

f (j+1)
(
s(j+1)

)
= f̄ (i+1)

(
s(j+1)

)
= 0. We conclude

f
(j+1)

f (j),x(j)

(
s(j+1)

)
6= f (j+1)

(
s(j+1)

)
which means that QUERY rejects the sequence

(
s(i), . . . , s(r)

)
. This proves (18), and thus implies

(19) because δ(i) =
∣∣D(i)

∣∣ /|L(i)|.

4.2.4 Beyond unique decoding radius — Proof of Lemma 4.3

To prove Lemma 4.3 we need the following improved version of Lemma 4.2.18 from [Spi95]. See
Appendix A for a proof sketch.

Lemma 4.7. Let E(X,Y) be a polynomial of degree (αm, δn) and P (X,Y) a polynomial of degree
((α + ε)m, (δ + ρ)n). If there exist distinct x1, . . . , xm such that E(xi, Y)|P (xi, Y) and y1, . . . , yn
such that E(X, yi)|P (X, yi) and

1 > max
{
δ + ρ, 2α+ ε+

ρ

δ

}
(27)

then E(X,Y)|P (X,Y).

25

Proof of Lemma 4.3. We shall prove the contrapositive, namely, if for some ε ≥ 2η

|F|∣∣B [f (i); 1
2 · (δ(1− ε)− ρ)

]∣∣
|F|

>
2η

ε|F|
(28)

then
∆(i)

(
f,RS(i)

)
< δ. (29)

We fix a few constants: Let n = |L(i+1)|, α = 1
2

(
1− ε− ρ

δ

)
, δ′ = δ ·α, B = B

[
f (i); δ′

]
, and m = |B|.

By definition, for every x ∈ B we have ∆H

(
f

(i+1)

f (i),x
,RS(i+1)

)
< δ′. Recall f̄

(i+1)

f (i),x
∈ RS(i+1) is the

codeword closest to f
(i+1)

f (i),x
, breaking ties arbitrarily.

Let C(X,Y) be the polynomial with degX(C) < m, degY (C) < ρN that agrees with f̄
(i+1)

f (i),x
for

each x ∈ B; this polynomial exists because, by definition, f̄
(i+1)

f (i),x
is an evaluation of a polynomial

of degree less than ρN . Let Q(i) be the polynomial corresponding to f (i) from Claim 4.2 as defined

in (10) and recall from item 2 of that claim that degX
(
Q(i)

)
< |L(i)

0 |; By definition |L(i)
0 | = 2η and

by assumption above 2η < εm, so degX
(
Q(i)

)
< εm. From item 1 of Claim 4.2 we deduce that for

all x ∈ F and y ∈ L(i+1) we have Q(i)(x, y) = f
(i+1)

f (i),x
(y). By assumption (28),

Pr
x∈B,y∈L(i+1)

[
C(x, y) 6= Q(i)(x, y)

]
≤ δ′. (30)

By construction αδ ≥ δ′, so there exists a non-zero polynomial

E(X,Y), degX(E) ≤ αm,degY (E) ≤ δN

that vanishes on all points (x, y) where x ∈ B, y ∈ L(i+1) and C(x, y) 6= Q(i)(x, y). The polynomial
E is known as the error locator polynomial [Sud92] because its zeros cover the set of error locations,
where Q deviates from being a low-degree polynomial.

Since degY (C) < ρ|L(i+1)| and degX(Q(i)) < 2η = εm, by [Spi95, Chapter 4] there exists a
polynomial P (X,Y) satisfying

degX(P) < (ε+ α)m and degY (P) < (ρ+ δ)n (31)

such that
∀x ∈ B, y ∈ L(i+1)P (x, y) = C(x, y) · E(x,) = Q(i)(x, y) · E(x, y) (32)

We conclude from (31), (32) that for every row y ∈ L(i+1) we have E(X, y)|P (X, y) and similarly
for every column x ∈ B we have E(x, Y)|P (x, Y). By (6) we have δ+ ρ ≤ 1, and by definition of α
we also have 2α + ε+ ρ/δ ≤ 1. So the assumption (27) of Lemma 4.7 holds. By the conclusion of
that lemma E(X,Y)|P (X,Y) as polynomials in the ring F[X,Y]. Let Q ≡ P/E. We conclude Q
agrees with Q(i) on every row y ∈ L(i+1) such that E(X, y) is non-zero. By the bound on degY (E),
the fraction of such rows is at least 1−δ. In other words f (i) agrees with some polynomial of degree

ρ|L(i)| on more than a (1 − δ)-fraction of cosets of L
(i)
0 in L(i), implying (29) and completing the

proof of the Lemma.

26

4.3 Prover complexity — Part 3

Consider the computation performed by the prover during the ith step of the protocol. At this
point the prover has already committed to f (i) : L(i) → F and has received x(i) ∈ F and needs to
compute f (i+1) : L(i+1) → F as explained in steps 2–4 of the COMMIT protocol.

During step 2, for each distinct coset Sy ∈ S(i), the prover needs to interpolate the polynomial
Py(X) defined there and evaluate it on x(i) to obtain f (i+1)(y) = Py

(
x(i)
)
. If x(i) ∈ Sy then

f (i+1)(y) = f (i)
(
x(i)
)

and the computation terminates in single step. Otherwise, using Lagrange
interpolation,

Py

(
x(i)
)

=
∑
α∈Sy

f (i)(α) ·
∏
β∈Sy

(
β − x(i)

)∏
β∈Sy\{α}(β − α)

= ZeroSy

(
x(i)
)
·
∑
α∈Sy

f (i)(α)

cα ·
(
x(i) − α

) (33)

where cα =
∏
γ∈Sy\{α}(γ − α) can be precomputed in advance on a PRAM with sufficiently many

processors because cα does not depend on f (i), x(i). The polynomial ZeroSy is linearized and has

η + 1 terms, hence can be valuated on x(i) via repeated squaring in 3η + 3 cycles in the PRAM-
CREW model (each cycle is a single arithmetic operation in F), using η processors and a total of
3η + 3 arithmetic operations: (i) η + 1 squarings to obtain the relevant powers of x(i), (ii) η + 1
multiplications and (iii) η+1 additions to evaluate the polynomial once the powers of x(i) are known.
The summation on the right hand side of (33) has 2η terms so it can be computed separately in
parallel using 2η processors and η + 2 cycles for a total of 4 · 2η+2 arithmetic operations. The
total PRAM-CREW number of cycles is 2η +O(1) using 2η processors and at most 4 (2η + η + 1)
arithmetic operations.

The calculation above refers to a single y ∈ L(i+1). Summing over all such y shows that the
ith step requires a total of |L(i)| + η processors, and is computed in 3η + 1 cycles using a total
of 3

(
|L(i)|+ η + 1

)
arithmetic operations. For i = r the function f (r) — which is evaluated on

L(r), |L(r)| ≤ 2η — needs to be interpolated; this can be done using 2η processors in 3η cycles
because deg

(
P (r)

)
< |L(r)| ≤ 2η (details omitted).

Summing over all r steps completes the proof of this part.

Remark 4.8 (Arithmetic complexity for smooth RS codes). For smooth codes, prover complexity
is somewhat smaller than mentioned above, because ZeroSy = X2η − ζ for a constant ζ depending
on Sy; i.e., ZeroSy has only 2 terms as opposed to η+ 1 terms in the additive case. Similar savings
ore obtained for the verifier arithmetic complexity (discussed next) in the smooth case. Notice,
howoever, that Theorem 1.3 sets η = 2 and hence the difference between arithmetic complexity in
the additive and smooth cases is minor.

4.4 Verifier complexity — Part 4

The unit of measurement for communication and query complexity is field elements of F. During
the COMMIT phase the verifier sends a total of r ≤ (k(0)−R)/η field elements. During the QUERY
phase, the verifier precomputes q(i)

(
s(i)
)

where q(i) is a linearized polynomial with η + 1 terms

whose coefficients are precomputed because they are independent of all verifier messages x(i) and
prover oracles f (i). Using the explanation above (for evaluating ZeroSy), each q(i)

(
s(i)
)

evaluation
costs 3(η + 1) cycles and arithmetic operations.

Having specified the query set s(i), the verifier now receives a total of ` · r · 2η field elements as
answers, and solves ` · r interpolation and evaluation problems of the kind described in (33). Using

27

the explanation provided in Section 4.3 we conclude that the verifiers work can be performed on a
PRAM with exclusive read and write (EREW) using 6(η+1) cycles for, requiring ` · r ·2η processors

and a total of 6` · r · (2η + η + 1) ≤ 6` · k(0)−Rη · (2η + η + 1) arithmetic operations.

5 Upper bounds on soundness — Proof of Claim 1.6

The proof of Claim 1.6 follows directly from the following lemma by fixing η = 2 and ` = 1.

Lemma 5.1. There exists a polynomial time algorithm P ∗ that, given f (0) and w ∈ RS(0) with
∆(0)

(
f (0), w(0)

)
= δ(0), produces interactively a sequence f (1), . . . , f (r) such that

• with probability 1 over the verifier randomness during the COMMIT phase, the verifier rejects
f (1), . . . , f (r) during the QUERY phase with probability at most δ(0),

• moreover, with probability at least (2η − 1)/|F| over the randomness of the verifier during the
COMMIT phase, the verifier accepts f (1), . . . , f (r) with probability 1 during the QUERY phase

Consequently, the soundness of FRI is at most

s+
(
δ(0)
) 4

= 1−
(

2η − 1

|F|
+
(

1− δ(0)
)`)

(34)

Proof. Given δ(0) ∈ (0, 1− ρ), partition S(0) into two sets: a set S ′ of fraction δ(0) and S ′′ = S \ S ′
of fraction 1− δ(0). Pick an arbitrary polynomial P of degree 2η − 1 that vanishes on a set of size
2η − 1 that is disjoint from

⋃
S∈S′ S. Let f (0) be defined as follows: for S ∈ S ′ let f (0)|S be the

evaluation of P on S and for S ∈ S ′′ let f (0)|S = 0. Furthermore, for i > 0 let f (i) = 0.
We claim f (0), . . . , f (r) satisfy the two bullets of Lemma 5.1. By construction, f (0) agrees with

0 on S ′′ therefore f (0) is precisely δ(0)-far from 0. Similarly by construction, only the 0th layer has
a positive round error err(0) = δ(0) and this proves the first bullet of Lemma 5.1. Finally, if x(0) is
a root of P , which happens with probability (2η − 1)/|F| over x(0) ∈ F, then f (0), f (1), . . . , f (r) are
accepted with probability 1 during the QUERY phase. This proves the second bullet of Lemma 5.1
and completes the proof.

References

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verifi-
cation and hardness of approximation problems. In Proceedings of the 33rd Annual Symposium
on Foundations of Computer Science, pages 14–23, 1992.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998. Preliminary version in FOCS ’92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of
NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS ’92.

[Bab85] László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, STOC ’85, pages 421–429, 1985.

28

[BBC+16] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis,
Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza. Com-
putational integrity with a public random string from quasi-linear PCPs. IACR Cryptology
ePrint Archive, 2016:646, 2016.

[BBGR16a] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. A security analysis of prob-
abilistically checkable proofs. Electronic Colloquium on Computational Complexity (ECCC),
23:149, 2016.

[BBGR16b] Eli Ben-Sasson, Iddo Bentov, Ariel Gabizon, and Michael Riabzev. A security analysis of prob-
abilistically checkable proofs. Electronic Colloquium on Computational Complexity (ECCC),
23:149, 2016.

[BBHR17] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity, 2017. Unpublished manuscript.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, pages 326–349,
2012.

[BCF+16] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and
Nicholas Spooner. On probabilistic checking in perfect zero knowledge. Electronic Colloquium
on Computational Complexity (ECCC), 23:156, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Proceedings of the
33rd Annual International Cryptology Conference, CRYPTO ’13, pages 90–108, 2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, 2014.

[BCG+16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
Short interactive oracle proofs with constant query complexity, via composition and sumcheck.
Electronic Colloquium on Computational Complexity (ECCC), 23:46, 2016.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete efficiency
of probabilistically-checkable proofs. In Proceedings of the 45th ACM Symposium on the Theory
of Computing, STOC ’13, pages 585–594, 2013.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-size zero
knowledge from linear-algebraic PCPs. In Proceedings of the 13th Theory of Cryptography
Conference, TCC ’16, pages 33–64, 2016.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs, pages
31–60. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time has two-
prover interactive protocols. In Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, SFCS ’90, pages 16–25, 1990.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC ’91, pages 21–32, 1991.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference
on Computational Complexity, CCC ’05, pages 120–134, 2005.

29

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006.

[BKK+16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. Constant
rate pcps for circuit-sat with sublinear query complexity. J. ACM, 63(4):32:1–32:57, 2016.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal
on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BSCG+] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Tinyram
architecture specification v2. 00, 2013. URL: http://scipr-lab. org/tinyram.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 4th Symposium on Innovations in
Theoretical Computer Science, ITCS ’12, pages 90–112, 2012.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[DG08] Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 613–622, 2008.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP
theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’04, pages 155–164, 2004.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Proceedings of the 6th Annual International Cryptology Conference,
CRYPTO ’86, pages 186–194, 1986.

[FS95] K. Friedl and M. Sudan. Some improvements to total degree tests. In Proceedings Third Israel
Symposium on the Theory of Computing and Systems, pages 190–198, Jan 1995.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Proceedings of the 32nd Annual International Conference
on Theory and Application of Cryptographic Techniques, EUROCRYPT ’13, pages 626–645,
2013.

[GKdO+17] Sivakanth Gopi, Swastik Kopparty, Rafael Mendes de Oliveira, Noga Ron-Zewi, and Shubhangi
Saraf. Locally testable and locally correctable codes approaching the gilbert-varshamov bound.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2073–2091, 2017.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Inter-
active proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 113–122, 2008.

[GS00] Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application to
proving the pcp theorem. SIAM Journal on Computing, 29(4):1132–1154, 2000.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

30

[HBHW17] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox, March 2017.

[IKW12] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product testers and
2-query pcps. SIAM Journal on Computing, 41(6):1722–1768, 2012.

[IMSX15] Yuval Ishai, Mohammad Mahmoody, Amit Sahai, and David Xiao. On zero-knowledge PCPs:
Limitations, simplifications, and applications, 2015. Available at http://www.cs.virginia.

edu/~mohammad/files/papers/ZKPCPs-Full.pdf.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-knowledge.
In Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego,
CA, USA, February 24-26, 2014. Proceedings, pages 121–145, 2014.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[KMRS16] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-correctable
and locally-testable codes with sub-polynomial query complexity. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 202–215, 2016.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero
knowledge. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 496–505, 1997.

[KR08] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Colloquium
on Automata, Languages and Programming, ICALP ’08, pages 536–547, 2008.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, second edition
edition, 1997.

[Max11] Gregory Maxwell. Zero knowledge contingent payment, 2011. [Online; accessed 13-October-
2017].

[Mic00a] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. Preliminary version appeared in FOCS ’94.

[Mic00b] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of Math-
ematics and Artificial Intelligence, 56:313–338, 2009.

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):29:1–
29:29, 2010.

[Ore33] O. Ore. On a special class of polynomials. Trans. Amer. Math. Soc., 35(3):559–584, 1933.

[Ore34] O. Ore. Contributions to the theory of finite fields. Trans. Amer. Math. Soc., 36(2):243–274,
1934.

[Pec16] M. Peck. A blockchain currency that beat s bitcoin on privacy [news]. IEEE Spectrum,
53(12):11–13, December 2016.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94, pages 194–203,
1994.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Info. Comput., 3(4):317–344, July 2003.

31

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf

[Raz95] Ran Raz. A parallel repetition theorem. In Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, STOC ’95, pages 447–456, 1995.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62,
2016.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[RS92] Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently and over
rational domains. In Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, 27-29 January 1992, Orlando, Florida., pages 23–32, 1992.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, Nov
1994.

[Spi95] Daniel A. Spielman. Computationally Efficient Error-Correcting Codes and Holographic Proofs.
PhD thesis, MIT, 1995.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. Preliminary version appeared
in STOC ’95.

[Sud92] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approximation
Problems. PhD thesis, UC Berkeley, Berkeley, CA, USA, 1992. UMI Order No. GAX93-30747.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Theory of Cryptography Conference, TCC ’08, pages 1–18,
2008.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them.
Commun. ACM, 58(2):74–84, 2015.

32

A Proof of Lemma 4.7

We restate Lemma 4.7 using the same notation as in [Spi96].

Lemma A.1. Let E(X,Y) be a polynomial of degree (αm, βn) and P (X,Y) a polynomial of degree
((α + δ)m, (β + ε)n). If there exist distinct x1, . . . , xm such that E(xi, Y)|P (xi, Y) and y1, . . . , yn
such that E(X, yi)|P (X, yi) and

1 > max

{
β + ε, 2α+ δ +

ε

β

}
(35)

then E(X,Y)|P (X,Y).

The difference between the version above and the original one is that (35) is replaced in [Spi96]
with

1 > α+ β + δ + ε (36)

So, to prove the statement above we guide the reader through the proof in [Spi96] (pages 97–98)
using the notation there and point out the modifications needed to use (35) instead of (36). Details
follow.

First, we do not assume β ≥ α as there. Next, the inequality

α+ β + δ + ε ≥ αm− a
m− a

+
δm− a
m− a

+
βn− b
n− b

+
εn− b
n− b

there is replaced with the two inequalities

β + ε ≥ βn− b
n− b

+
εn− b
n− b

and

2α+ δ +
ε

β
≥ 2

αm− a
m− a

+
δm− a
m− a

+
εn− b
βn− b

which hold because each term on the left hand side is less than 1, as follows from (35).
Finally, before the very last inequality on page 98 there, replace both (i) the use of (36) and

(ii) the assumption β ≥ α, with the assumption (35) to show

βmn > mn(βα+ βδ + αβ + αε)

To see that this inequality follows from (35), simply divide both sides by βmn. Therefore Lemma A.1,
the restatement of Lemma 4.7, holds as claimed.

B Improved concrete efficiency

Ben-Sasson et al. defined the concrete efficiency threshold (CET) as a way to formalize the “prac-
ticality” of a PCPP construction [BCGT13], and we use the generalization of this definition to the
IOPP setting below [BBGR16a]. The CET measure assigns a number (or∞) to each IOPP system
for a family of codes. Lower thresholds are considered better. The CET of an IOPP takes into
account both (i) the query complexity qε,δ needed to reject with probability ε words that are δ-far
from the code, and (ii) the proof overhead, i.e., the ratio of total proof length to message-length.

33

2−1 2−20 2−40 2−60 2−80 2−100 2−120
20

210
215
220
225
230
235
240
245
250
255
260

soundness error ε

th
re

sh
ol

d
va

lu
e

Concrete efficiency threshold

This work

PCPP [BBGR16a]

PCPP [BCGT13]

Figure 2: The concrete efficiency threshold for RS codes as a function of the soundness ε ∈ (2−1, . . . , 2−128). We
choose the same setting as [BCGT13], namely, code rate is ρ = 1/8 and the proximity parameter δ is a third of the
code distance, i.e., δ = (1− ρ)/3 = 7/24.

Thus, to improve (i.e., decrease) the concrete efficiency threshold, one should build IOPPs that
simultaneously decrease both qε,δ and total proof length.

Recall that a PCPP is a 1-round IOPP, hence the following definition applies to PCPPs as a
special case.

Definition B.1 (Concrete efficiency threshold). Fix an IOPP system S = (P,V) for a family of
error correcting codes C = {Ck} where Ck has message-length k and block-length N(k). Let `(k)
denote the IOPP proof length for Ck Let qε,δ(k) denote the minimal query complexity needed to
obtain soundness error ≤ ε for proximity parameter δ for Ck.

A family of error correcting codes C is said to have a concrete (soundness) efficiency threshold
tε,δ if for any code Ck ∈ C, k ≥ tε,δ it holds that

qε,δ(k) · N(k) + `(k)

k
< k.

Figure 2 compares the concrete efficiency threshold of our system to prior published works on
the subject [BCGT13, BBGR16a]. We vary the value of the soundness parameter ε, plotted on a
double logarithmic scale. As seen there, the thresholds of our new system are significantly better
(i.e., smaller) than the prior state of the art. We comment that for larger proximity parameters
the soundness bounds conjectured earlier give even better (smaller) threshold values8.

8E.g., for the maximal value of δ = 1 − ρ, the threshold derived from Conjecture 1.5 ranges between 210 for
soundness ε = 1/2 to 216 for soundness 2−128.

34

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

