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Abstract

We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) cir-

cuits, and a related model of Few-Parse-Trees (FewPT) circuits (which were recently introduced by

Lagarde, Malod and Perifel [LMP16] and Lagarde, Limaye and Srinivasan [LLS17]) and give the fol-

lowing constructions:

• An explicit hitting set of quasipolynomial size for UPT circuits,

• An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly many

parse tree shapes),

• An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when a

parameter of preimage-width is bounded by a constant.

The above three results are extensions of the results of [AGKS15], [GKST15] and [GKS16] to the setting

of UPT circuits, and hence also generalize their results in the commutative world from read-once

oblivious algebraic branching programs (ROABPs) to UPT-set-multilinear circuits.

The main idea is to study shufflings of non-commutative polynomials, which can then be used to

prove suitable depth reduction results for UPT circuits and thereby allow a careful translation of the

ideas in [AGKS15], [GKST15] and [GKS16].

1 Introduction

The field of algebraic complexity deals with classifying multivariate polynomials based on their hardness.

Typically, the complexity of a polynomial is measured by the size of the smallest circuit computing it (an

arithmetic circuit is a directed acyclic graph made up of internal nodes that are labeled with + or × and

leaves labelled with variables or constants from the field). The central question in this field is to construct
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an explicit family of polynomials ({Permn} is the top candidate) that requires large arithmetic circuits to

compute it. This is also called the “VP vs VNP” question (named after Valiant [Val79]), and thought of as

an algebraic analogue of the “P vs NP” question.

So far, the best lower bound we have for general arithmetic circuits computing an n-variate degree d

polynomial is a barely super-linearΩ(n logd) lower bound by Baur and Strassen [BS83]. Recent research

has focused on proving lower bounds for restricted classes of circuits, either by bounding the depth of

such circuits or by focusing on other syntactic restrictions. One such syntactic restriction is to consider

non-commutative circuits, where we assume that the underlying variables x1, . . . , xn do not commute. In

the non-commutative model, there is an inherent order in which elements are multiplied and this adds

restrictions on the way monomials can be computed (x y 6= y x here and hence x2 +2x y + y2 6= (x + y)2 =
x2 + x y + y x + y2). It is therefore natural to expect that it should be easier to prove lower bounds in this

model.

Nisan [Nis91] introduced the non-commutative model, specifically the non-commutative algebraic

branching programs (ABP). In his seminal paper, he showed that the non-commutative versions of the

determinant and permanent polynomials (among others) require exponential sized non-commutative

ABPs to compute them. In fact, using his technique, one could even reconstruct the smallest non-

commutative ABP given just oracle access to that polynomial (cf. [KS06])! Although we have exponen-

tial lower bounds for non-commutative ABPs, we do not have any non-trivial lower bounds for non-

commutative circuits. Hrubeš, Wigderson and Yehudayoff [HWY10] presented an approach via sum-

of-squares lower bounds but we do not have any non-trivial lower bounds for the class of general non-

commutative circuits.

Limaye, Malod and Srinivasan [LMS16] extended Nisan’s lower bound to non-commutative skew cir-

cuits, which are circuits where every multiplication gate has at most one child that is a non-leaf. Lagarde,

Malod and Perifel [LMP16] initiated the study of non-commutative unambiguous circuits, or Unique

Parse Tree (UPT) circuits. These circuits, and generalizations are the main models of study in this paper.

Arvind and Raja [AR16] also studied lower bounds for various subclasses of commutative set-multilinear

circuits. Some of the models they study also include analogues of UPT and FewPT circuits. They also

proved lower bounds for UPT and FewPT set-multilinear circuits, and also for other subclasses of set-

multilinear circuits called narrow set-multilinear circuits, interval set-multilinear circuits, the latter of

which assumes the sum-of-squares conjecture of Hrubeš, Wigderson and Yehudayoff [HWY10].

1.1 The model of study

A parse tree of a circuit is obtained by starting at the root, and at every + gate choosing exactly one

child, and at every × gate choosing all its children (formally defined in Definition 2.1). Informally, a

parse tree of a circuit is basically a certificate of computation of a monomial in a circuit. Lagarde, Malod

and Perifel [LMP16] introduced a subclass of non-commutative circuits called Unique Parse Tree (UPT)

circuits or unambiguous circuits where all parse trees of the circuit have the same shape (formally defined
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in Definition 2.2). The class of non-commutative UPT circuits subsumes the class of non-commutative

ABPs as any ABP can be expressed as a left-skew circuit. A related model of set-depth-∆ formulas was

studied by Agrawal, Saha and Saxena [ASS13] that is a subclass of UPT circuits where the underlying

parse trees are extremely regular1.

Lagarde, Malod and Perifel [LMP16] extended the techniques of Nisan [Nis91] to give exponential

lower bounds for UPT circuits. Subsequently, Lagarde, Limaye and Srinivasan [LLS17] extended the lower

bounds to the class of circuits with parse trees of not-too-many shapes (at most 2o(n) shapes).

In Figure 1, (a) is an example of a UPT circuit with (b) being the underlying parse tree shape; (c) is an

example of a circuit with two distinct parse tree shapes.

+
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+ +
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+

×

+
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+

× × ×

+ +
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Figure 1: Examples of circuits with restricted parse trees

1.2 Polynomial identity testing

A Polynomial Identity Test (PIT) is an algorithm that, given a circuit as input, checks if the circuit is com-

puting the zero polynomial or not. The standard Ore-DeMillo-Lipton-Schwartz-Zippel lemma [Ore22,

DL78, Sch80, Zip79] provides a simple randomized algorithm but the goal is to construct an efficient de-

terministic PIT. A stronger test is what is called a black-box PIT where we are only provided evaluation

access to the circuit. Hence, a black-box PIT is essentially equivalent to constructing a hitting set i.e., a set

of points (or matrices, in the case of non-commutative polynomials) H such that every non-zero poly-

nomial from the class of interest is guaranteed to evaluate to a nonzero value on some element a ∈ H .

PITs that use the structure of the circuit are called white-box PITs.

The task of constructing efficient PITs is intimately connected to the task of proving lower bounds

[HS80, KI04, Agr05]. Once we have a lower bound for a class C , it is natural to ask if we can also con-

struct efficient PITs for that class. Raz and Shpilka [RS05] gave the first deterministic polynomial time

white-box PIT for the class of non-commutative ABPs. Forbes and Shpilka [FS13] gave a quasipolyno-

mial (nO(logn)) size hitting set for non-commutative ABPs. This was achieved by studying a natural com-

mutative analogue of non-commutative ABPs, and this was the class of Read-Once Oblivious Algebraic

Branching Programs (ROABPs) where the variables are read in a “known order”.

1the formula is levelled, and all nodes at a level have the same fan-in
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The class of ROABPs is interesting in its own right owing to the connection with the “RL vs L” ques-

tion. In fact, much of the hitting set constructions for ROABPs has been inspired by Nisan’s [Nis92] pseu-

dorandom generator for RL (which has seed length O(log2 n)). As mentioned earlier, Forbes and Shpilka

gave a hitting set of size nO(logn) for polynomial sized ROABPs when the order in which variables are read

was known. Agrawal, Gurjar, Korwar and Saxena [AGKS15] presented a different hitting set for the class

of commutative ROABPs that did not need the knowledge of the order in which the variables were read.

Subsequently, Gurjar, Korwar, Saxena and Thierauf [GKST15] studied polynomials that can be computed

as a sum of constantly many ROABPs (of possibly different orders) and presented a polynomial time

white-box PIT, and also a quasipolynomial time black-box PIT for this class.

Lagarde, Malod and Perifel [LMP16], besides presenting lower bounds for non-commutative UPT

circuits, also gave a polynomial time white-box PIT for this class. This was extended by Lagarde, Limaye

and Srinivasan [LLS17] to a white-box algorithm for non-commutative circuits with constantly many

parse tree shapes (analogous to the result of [GKST15]). The question of constructing black-box PITs was

left open by them, and we answer this in our paper.

1.3 Our results

Polynomial Identity Testing

Our main results are hitting sets for the class of polynomials computed by UPT circuits and related

classes.

Theorem 1.1 (Hitting sets for UPT circuits). There is an explicit hitting set Hd ,n,s of at most (snd)O(logd)

size for the class of degree d n-variate homogeneous non-commutative polynomials in F〈x1, . . . , xn〉 that

are computed by UPT circuits of size at most s.

This result builds on the technique of basis isolating weight assignments introduced by [AGKS15] for

constructing hitting sets for ROABPs. Furthermore, we can also extend the hitting set to the class of non-

commutative circuits that have few shapes (analogous to [GKST15]’s hitting set for sum of few ROABPs).

Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting set Hd ,n,s,k

of size at most (s2k
nd)O(logd) for the class of n-variate degree d homogeneous non-commutative polyno-

mials in F〈x1, . . . , xn〉 that are computed by non-commutative circuits of size at most s consisting of parse

trees of at most k shapes.

Both the above theorems are fully black-box in the sense that it is not required to know the under-

lying shape(s). For the case of non-commutative ABPs (and more generally, ROABPs in a known order),

Gurjar, Korwar and Saxena [GKS16] presented a more efficient hitting set when the width of the ABP is

small. For UPT circuits, there is a natural notion of preimage-width of a UPT circuit (formally defined

in Definition 2.3) that corresponds to the notion of width of an ABP. We show an analogue of the hitting

set of Gurjar, Korwar and Saxena for the class of UPT circuits of small preimage-width if the underlying

shape of the parse trees is known.
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Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d ,T,w be the class of n-variate

degree d non-commutative polynomials that are computable by UPT circuits of preimage-width at most

w and underlying parse-tree shape as T . Over any field of zero or large characteristic, there is an explicit

hitting set Hn,d ,T,w of size wO(logd) poly(nd) for Cn,d ,T,w .

These hitting sets also translate to the natural commutative analogues of UPT set-multilinear circuits

etc. (formally defined in Definition 5.1).

Structural results

If f is a non-commutative polynomial of degree d and if σ ∈ Sd is a permutation on d letters, we define

the shuffling of f byσ (denoted by∆σ( f )) as the natural operation of permuting each word of f according

to σ.

The three PIT statements stated above begin with the following depth reduction statement about

UPT circuits.

Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial that is com-

putable by a UPT circuit of preimage-width w. Then, there is someσ ∈ Sd such that∆σ( f ) can be computed

by a UPT circuit of O(logd) depth and preimage-width at most O(w2).

The above theorem implies that ∆σ( f ) is computable by an ABP of quasipolynomial size. We also

show that this blow-up of quasipolynomial size is tight.

Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit n-variate degree

d non-commutative polynomial f that is computable by UPT circuits of preimage-width w = poly(n,d)

such that for every σ ∈ Sd , the polynomial ∆σ( f ) requires non-commutative ABPs of size (nd)Ω(lognd) to

compute it.

We also extend the lower bound of [LMP16] to give a polynomial computed by a skew circuit that

requires exponential sized UPT circuits under any shuffling. Details are in Appendix B.

1.4 Proof ideas

As mentioned, the starting point of all these results is the depth reduction. From a result of Nisan [Nis91],

the palindrome polynomial Pald is known to require ABPs of size 2Ω(d) even though it can be computed

by a polynomial sized UPT circuit. Therefore, Pald cannot be computed by a circuit of depth o(d/logd).

The key insight here is that even though Pald cannot be computed by small depth non-commutative

circuits, a shuffling of the palindrome is

∑
w1,...,wd∈[n]

xw1 xw1 xw2 xw2 · · ·xwd xwd =
d∏

i=1
(x1x1 +·· ·+xn xn) ,
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which is of course computable by an O(logd) depth UPT formula even. Hence we attempt to reduce the

depth under a suitable shuffling.

In order to establish the depth reduction (Theorem 1.4) we follow the strategy of Valiant, Skyum,

Berkowitz and Rackoff [VSBR83] and Allender, Jiao, Mahajan and Vinay [AJMV98] but make use of the

UPT structure (work with different frontier nodes and gate quotients) based on the underlying shape of

the parse trees. It was pointed out to us that the key ideas in our proof of depth reduction were used by

Arvind and Raja ([AR16]) for a commutative analogue of UPT circuits.

This depth reduction immediately yields that there is a quasipolynomial sized ABP computing a shuf-

fling of f . We show that this blow-up is tight (Theorem 1.5) by essentially following the proof of Hrubeš

and Yehudayoff [HY16] to separate monotone ABPs and monotone circuits in the commutative world.

In order to obtain hitting sets for UPT circuits, one could potentially just use the fact that there is

a quasipolynomial sized ABP computing a shuffling of f and just use the known hitting sets for non-

commutative ABPs [FS13] to obtain a hitting set of poly(nd w)O(log2 d). However, we directly work with

the UPT circuit and lift the technique of basis isolating weight assignments of Agrawal, Gurjar, Korwar

and Saxena [AGKS15] to this more general setting to obtain Theorem 1.1. Theorem 1.3 is a straightfor-

ward generalization of the ideas of Gurjar, Korwar and Saxena [GKS16] once we observe that the depth

reduction keeps the preimage-width small.

Theorem 1.2 essentially follows the same ideas of Gurjar, Korwar, Saxena and Thierauf [GKST15]. The

techniques of [GKST15] are general enough that once a circuit class has a characterizing set of dependen-

cies and a basis isolating weight assignment, there is a natural method to lift the techniques to work with

the sum of few elements from this class. [GKST15] use this for ROABPs and we use this for UPT circuits.

To summarize, once we obtain the depth reduction, much of the results in this paper is a careful

translation of prior work of [HY16], [AGKS15], [GKST15], [GKS16] to the setting of UPT (or FewPT) cir-

cuits. Consequently, this also generalizes the hitting sets of [AGKS15, GKST15, GKS16] from ROABPs to

UPT (or FewPT) set-multilinear circuits. Such a generalization was unknown prior to this work.

2 Preliminaries

2.1 Notation

• We use F〈x1, . . . , xn〉 to refer to the ring of polynomials in non-commuting variables {x1, . . . , xn}.

For a parameter d , we use F〈x1, . . . , xn〉deg=d to refer to the set of polynomials in F〈x1, . . . , xn〉 that

are homogeneous and of degree d . Similarly, F〈x1, . . . , xn〉deg≤d refers to the set of polynomials of

degree at most d .

• We use boldface letters x and y to denote sets of variables (the number of variables would be clear

from context). We shall also use [d ] to refer to the set {1,2, . . . ,d}.

• The paper would sometime shift between the commutative and the non-commutative domains.

We use x whenever we are talking about non-commutative variables, and y, z for variables in the
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commutative domain.

2.2 Basic definitions

UPT and FewPT circuits

Definition 2.1 (Parse trees). A parse tree T of a circuit C is a tree obtained as follows:

• the root of C is the root of T ,

• if v ∈ T is a × gate, then all the children in C are the children of v in T in the same order,

• if v ∈ T is a + gate, then exactly one child of v in C is a child of v in T .

The value of the parse tree T , denoted by [T ], is just the product of the leaf labels in T . ♦

Intuitively, a parse tree is a certificate that a monomial was produced in the computation of C (though

it could potentially be canceled by other parse trees computing the same monomial). Therefore, if f is

the polynomial computed by C , then

f = ∑
T is a parse tree

[T ].

Definition 2.2. (UPT and FewPT circuits) A circuit C computing a homogeneous polynomial is said to be

a Unique Parse Tree (UPT) circuit if all parse trees of C have the same shape (that is, they are identical

except perhaps for the gate names).

A circuit C that computes a homogeneous polynomial is said to be a FewPT(k) circuit if the parse trees

of C have at most k distinct shapes. ♦

Definition 2.3 (Preimage-width). Suppose C is a UPT circuit and say T is the shape of the underlying parse

trees. For a node τ ∈ T and a gate g ∈C , we shall say that g is a preimage of τ, denoted by g ∼ τ, if and only

if there is some parse tree T ′ of C where the gate g appears in position τ.

The preimage-width of a UPT circuit C is the largest size of preimages of any node τ ∈ T . That is,

preimage-width(C ) = max
τ∈T

∣∣{g ∈C : g ∼ τ}∣∣ . ♦

It is clear that if C is a UPT circuit of preimage-width w computing a homogeneous degree d poly-

nomial, then the size of C is at most d w . The preimage-width of a UPT circuit is a more useful measure

to study than the size of the circuit. A simple concrete example of this is that the standard conversion of

homogeneous ABPs to homogeneous circuits in fact yields UPT circuits. Furthermore, the width of the

ABP is directly related to the preimage-width of the resulting UPT circuit.

Observation 2.4. If f is computable by a width w homogeneous algebraic branching program, then f can

be equivalently computed by UPT circuits of preimage-width w 2.
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×p -products

Definition 2.5 (×p -products). For any d1,d2 ≥ 0 and p satisfying 0 ≤ p ≤ d2, define ×p as the unique

bilinear map ×p : F〈x1, . . . , xn〉deg=d1
×F〈x1, . . . , xn〉deg=d2

→ F〈x1, . . . , xn〉deg=d1+d2
that satisfies

xw1 · · ·xwd1
×p xv1 · · ·xvd2

= xv1 · · ·xvp xw1 · · ·xwd1
xvp+1 · · ·xvd2

. ♦

For instance, the usual multiplication (or concatenation) operation is just ×0.

Shuffling of a polynomial

Definition 2.6 (Shuffling of a non-commutative polynomial). Let Pd (x1, . . . , xn) ∈ F〈x1, . . . , xn〉deg=d be a

homogeneous degree d non-commutative polynomial. Given any permutation σ ∈ Sd over d-letters, we

can define the shuffling of Pd via σ as the unique linear map ∆σ : F〈x1, . . . , xn〉deg=d → F〈x1, . . . , xn〉deg=d

that is obtained by linearly extending

∆σ(xw1 · · ·xwd ) = xwσ(1) · · ·xwσ(d) . ♦

2.3 Basic lemmas

Canonical UPT circuits, and types of gates

We shall say that a UPT circuit C with underlying parse tree shape T is canonical if for every gate g ∈ C

there is some node τ ∈ T such that every parse tree of C involving g has g only in position τ. In other

words, every gate of the circuit has a unique type associated with it.

Lemma 2.7 ([LMP16]). Suppose if f ∈ F〈x1, . . . , xn〉 is a homogeneous, degree d, non-commutative poly-

nomial computed by a non-commutative UPT circuit of preimage-width w. Then, f can be equivalently

computed by a canonical UPT circuit of preimage-width w as well.

For a canonical UPT circuit where the parse trees have shape T , we shall say that g has type τ if τ ∈ T

is the unique node in T such that g ∼ τ.

Fix a τ ∈ T and let i be the number of leaves of the subtree rooted at τ, and let p be the number of

leaves to the left of τ in the inorder traversal of T . We shall then say that τ (or a gate g ∈C of type τ) has

position-type (i , p). The following lemma allows us to write the polynomial computed by the circuit as a

small sum of ×p -products.

Lemma 2.8 ([LMP16]). Let f be a polynomial computed by a canonical UPT circuit C of preimage-width

w and say T is the shape of the underlying parse trees. If τ ∈ T with position-type (i , p), then we can write

f as

f (x) =
w∑

r=1
gr (x)×p hr (x),
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where deg gr = i and deghr = deg( f )− i for all r = 1, . . . , w.

3 Depth reduction for UPT circuits

This section shall address Theorem 1.4, which we recall below.

Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial that is com-

putable by a UPT circuit of preimage-width w. Then, there is someσ ∈ Sd such that∆σ( f ) can be computed

by a UPT circuit of O(logd) depth and preimage-width at most O(w2).

It was pointed out to us that a very similar depth reduction was also proved by Arvind and Raja [AR16].

They showed that a commutative UPT set-multilinear circuit can be depth-reduced to a corresponding

quasi-polynomial sized O(logd) depth UPT set-multilinar formula via Hyafil’s [Hya79] depth reduction.

Using techniques similar to [VSBR83], one can obtain a polynomial sized circuit of depth O(logd) while

maintaining unambiguity. Though this can be inferred from the results in [AR16], we state and prove it

in the form needed for the non-commutative setting.

3.1 UPT ⊗-circuits

To prove the depth reduction, we will move to an intermediate model of UPT ⊗-circuits.

Definition 3.1 (UPT ⊗-circuits). The class of UPT ⊗-circuits is a generalization of homogeneous non-

commutative circuits in that the internal gates are + gates and ×p gates instead of the usual + and ×
gates. We shall also say that the circuit is semi-unbounded if all ×p gates have fan-in bounded by 2 (with

no restriction on + gates).

A parse tree for an ⊗-circuit is similar to parse trees in a general non-commutative circuit but the

internal nodes of the parse tree are labelled by + and ×p (with the p specified at each gate).

We shall say that an ⊗-circuit C is UPT if every parse tree is of the same shape, i.e. two parse trees in C

can differ only in the gate names. ♦

To prove Theorem 1.4, we shall first depth reduce the circuit to obtain an ⊗-circuit computing f of

O(logd) depth. Then, we will convert that to a UPT circuit that computes a shuffling of f .

Lemma 3.2 (Depth reducing to ⊗-circuits). Let f ∈ F〈x1, . . . , xn〉 be a homogeneous degree d polynomial

that is computable by a UPT circuit of preimage-width s. Then, f can be equivalently be computed by a

semi-unbounded UPT ⊗-circuit of preimage-width O(s2) and depth O(logd).

Proof. Let C be the UPT circuit computing f (x1, . . . , xn) and say T is the shape of the parse trees of C . For

any node τ ∈ T , let Fτ be the set of all gates in C whose position in T is τ. For two gates u, v ∈C , we shall

say that u º v if the place of u in T is an ancestor of the place of v in T . We shall abuse notation and use

u º τ to mean that u’s position in T is an ancestor of τ ∈ T . For a gate u ∈C , let [u] refer to the polynomial
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computed at that gate. Similar to [VSBR83, AJMV98], we define inductively the following notion of a gate

quotient for any pair of gates u, v ∈C :

[u : v] =



0 if u � v ,

1 if u = v ,

[u1 : v]+ [u2 : v] if u = u1 +u2,

[u1 : v] · [u2] if u = u1 ×u2 and u1 º v ,

[u1] · [u2 : v] if u = u1 ×u2 and u2 º v .

Claim 3.3. For any u ∈C , if τ ∈ T such that u º τ, then

[u] = ∑
w∈C
w∼τ

[w]×p [u : w] (3.4)

for a suitable p depending just on τ and the type of u. Furthermore, suppose u, v ∈ C with v

being a multiplication gate and if τ ∈ T such that u º τº v then

[u : v] = ∑
w∈C
w∼τ

[w : v]×p [u : w]. (3.5)

for a suitable p depending just on τ and the type of u and v.

We’ll defer this proof to later and first finish the proof of Lemma 3.2. With (3.4) and (3.5), we can construct

the ⊗-circuit C ′ for f just as in [VSBR83, AJMV98]. The circuit C ′ would have gates computing each [u]

and [u : v] for nodes u, v ∈ C with u º v and v being a multiplication gate. The wirings in C ′ is built by

appropriate applications of (3.4) and (3.5).

Let u ∈ C and say deg[u] = du . The plan would be to set up the computation in C ′ so that using an

O(1) depth computation, we can compute [u] using gates whose degrees are a constant factor smaller

than du . Consider any parse tree rooted at u, and starting from u follow the higher degree child. Let τ be

the last point on the path with degree ≥ du/2 (degree of its children will be < du/2). Applying (3.4),

[u] = ∑
w∼τ

[w]×p [u : w]

= ∑
w∼τ

([w1]× [w2])×p [u : w] where w = w1 ×w2.

Now observe that each of the terms on the RHS, [u : w], [w1], [w2] have degree at most du/2, as we

wanted. Furthermore, each coordinate of tuple ([u : w], [w1], [w2]) are all of the same type as we run

over all w ∼ τ.

We now need to show how to compute [u : v] for a pair u Â v . Say deg[u] = du and deg[v] = dv . For
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this, start with some parse tree rooted at u and walk down the path leading to the place of v , and let τ be

the last point on this path such that degτ≥ du+dv
2 . Using (3.5),

[u : v] = ∑
w∼τ

[w : v]×p [u : w]

= ∑
w∼τ

([w1]× [w2 : v])×p [u : w]

where w = w1 × w2 and w2 º v (the other possibility is identical). By the choice of τ, we have deg[u :

w],deg[w2 : v] ≤ du−dv
2 . However, the best bound we can give on deg[w1] is du −dv . Nevertheless, we can

apply (3.4) again on [w1] by finding a suitable τ′ ≺ w1 satisfying degτ′ ≥ deg w1

2 and write

[u : v] = ∑
w∼τ

([w1]× [w2 : v])×p [u : w]

= ∑
w∼τ

(( ∑
w ′∼τ′

[w ′]×p ′ [w1 : w ′]

)
× [w2 : v]

)
×p [u : w]

= ∑
w∼τ

∑
w ′∼τ′

(((
[w ′

1]× [w ′
2]

)×p ′ [w1 : w ′]
)× [w2 : v]

)×p [u : w]

By the choice of τ and τ′, each of the factors on the RHS have degree at most (du−dv )
2 as we wanted.

Furthermore, once again, all of the summands consists of similarly typed factors.

This naturally yields an ⊗-circuit computing f of depth O(logd) and size poly(s). Since all summands

consist of similarly typed factors, it follows that the circuit is UPT as well.

Proof of Claim 3.3. The proof is by induction. As a base case, suppose u ∼ τ. Then, [u] is just the sum of

the values of parse trees. Some of the parse trees use u. Of all nodes w ∈C such that w ∼ τ, only [u : u] = 1

and every other [u : w] = 0. Therefore, clearly [u] =∑
w∼τ[w] · [u : w].

Now suppose u Â τ and say we already know that [u′] = ∑
w∼τ[w]×p [u′ : w] for every u Â u′ º τ. If

u = u1 +u2, then

[u] = [u1]+ [u2]

=
( ∑

w∼τ
[w]×p [u1 : w]

)
+

( ∑
w∼τ

[w]×p [u2 : w]

)
= ∑

w∼τ
[w]×p ([u1 : w]+ [u2 : w])

= ∑
w∼τ

[w]×p [u : w].

Similarly, suppose [u] = [u1]× [u2]. We have two cases depending on whether u1 º τ or u2 º τ.
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If u1 º τ, then

[u] = [u1]× [u2]

=
( ∑

w∼τ
[w]×p [u1 : w]

)
× [u2]

= ∑
w∼τ

[w]×p ([u1 : w]× [u2])

= ∑
w∼τ

[w]×p [u : w].

If u2 º τ, then

[u] = [u1]× [u2]

= [u1]×
( ∑

w∼τ
[w]×p [u2 : w]

)
= ∑

w∼τ
[w]×p+degu1 ([u1]× [u2 : w])

= ∑
w∼τ

[w]×p+d1 [u : w].

Essentially the same proof works for (3.5) as well.

Lemma 3.6 (⊗-circuits to circuits for a shuffling). Let f ∈ F〈x1, . . . , xn〉 be a homogeneous degree d poly-

nomial that is computable by a UPT ⊗-circuit C ′ of size s. Consider the circuit C ′′ obtained by replacing

all ⊗ gates in C ′ by × gates. Then, C ′′ computes ∆σ( f ) for some σ ∈ Sd .

Proof. We shall prove this by induction. We need a slightly stronger inductive hypothesis which is that

the choice of permutation σ depends only on the shape of the parse trees in C ′.
Say u is the root of C ′. Suppose u is a + gate and say u = u1 +u2 +·· ·+ur . If u′ = u′

1 +·· ·+u′
r is the

resulting computation in C ′′ then by the inductive hypothesis, we know that there is a σ ∈ Sd such that

[u′
i ] =∆σ([ui ]). Therefore,

[u′] =
r∑

i=1
∆σ([ui ]) =∆σ([u]).

Suppose u = u1×p u2 with deg[u1] = d1 and deg[u2] = d2. Say u1 =∑
α∈[n]d1 aαxα and

∑
β∈[n]d2 bβxβ. Then,

[u] =∑
α,β aαbβ · xα×p xβ. If u′, u′

1 and u′
2 is the resulting computation in C ′′, then

[u′] = [u′
1]× [u′

2]

=∆σ1 ([u1])×∆σ2 ([u2]) for some σ1 ∈ Sd1 ,σ2 ∈ Sd2 ,

= ∑
α,β

aαbβ · (∆σ1 (xα)×∆σ2 (xβ))

= ∑
α,β

aαbβ ·∆σ(xα×p xβ) for some σ ∈ Sd ,

=∆σ([u])

Together, Lemma 3.2 and Lemma 3.6 yield Theorem 1.4. (Theorem 1.4)

The following corollary is immediate from the fact that any circuit of depth D and size s can be com-

puted by a formula of size sO(d) and hence an ABP of size sO(d).
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Corollary 3.7. If f ∈ F〈x1, . . . , xn〉 is a homogeneous degree d polynomial that is computable by a UPT

circuit of size s, then there is some σ ∈ Sd such that ∆σ( f ) is computable by a non-commutative algebraic

branching program of size sO(logd).

Furthermore, the shuffling σ that permits this can also be efficiently computed given the underlying

shape for the circuit computing f .

3.2 UPT circuits of constant width

For a UPT circuit C , we shall say that its width is w if for every node τ in the shape T , there are at most

w gates of C that have type τ. The following observation is evident from the proof of the above depth

reduction.

Observation 3.8. If C is a UPT circuit of width w, then the depth reduced circuit C ′ as obtained in Theo-

rem 1.4 has width O(w2).

This observation would allow us to yield a more efficient hitting set for the class of small width known

shape UPT circuits. Details are present in Section C.2.

4 Separating ROABPs and UPT circuits

Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit n-variate degree

d non-commutative polynomial f that is computable by UPT circuits of preimage-width w = poly(n,d)

such that for every σ ∈ Sd , the polynomial ∆σ( f ) requires non-commutative ABPs of size (nd)Ω(lognd) to

compute it.

The polynomial and the proof technique described here were introduced by Hrubeš and Yehudayoff

[HY16] to separate monotone circuits and monotone ABPs in the commutative regime. The polynomial

described here is a non-commutative analogue of the polynomial used by [HY16]. Much of the proof is

also the argument of [HY16] tailored to the non-commutative setting.

4.1 The polynomial

Let Td denote the complete binary tree of depth d (with 2d leaves) and let D = 2d+1−1 refer to the number

of nodes in Td . We shall say that a colouring γ : Td → Zm is legal if for every node u ∈ T , if v and w are

the children of u then γ(u) = γ(v)+γ(w) mod m.

Let v1, . . . , vD be the vertices of Td listed in an in-order manner (left-subtree listed inductively, then

the root, and then the right-subtree listed inductively). We now define the non-commutative polynomial

Pd (x1, . . . , xm) ∈ F〈x1, . . . , xm〉 of degree D = 2d+1 −1 as

Pd (x1, . . . , xm) = ∑
γ∈[m]D

γ is legal

xγ(v1)xγ(v2) · · ·xγ(vD ). (4.1)

13



Lemma 4.2 (Upper bound). For every m,d > 0, the polynomial Pd (y1, . . . , ym) can be computed by a non-

commutative UPT circuit of size O(m2d).

(Refer to Appendix A for a proof).

Theorem 4.3 (Lower bound). For every permutation σ ∈ SD , any non-commutative ABP computing the

polynomial ∆σ(Pd ) has width mΩ(d).

Hence for d = logm, we have that Pd (x1, . . . , xm) is computable by a UPT circuit of size O(m2 logm)

but for every σ ∈ SD the above theorem tells us that ∆σ(Pd ) requires ABPs of width mΩ(logm) to compute

it. The lower bound follows on exactly same lines as the [HY16]. A proof is present in Appendix A.

5 Hitting sets for non-commutative models

Commutative brethren of non-commutative models

This reduction to an appropriate commutative case was used by Forbes and Shpilka [FS13] to reduce

constructing hitting sets for non-commutative ABPs to hitting sets for commutative ROABPs (more pre-

cisely, to set-multilinear ABPs). They studied the image of the non-commutative polynomial under the

map Ψ : F〈x1, . . . , xn〉deg=d → F[y1,1, . . . , yd ,n] which is the unique F-linear map given by Ψ : xw1 · · ·xwd 7→
y1,w1 · · · yd ,wd .

For the model of non-commutative UPT circuits, the appropriate commutative model is a restriction

of set-multilinear circuits that we call UPT set-multilinear (UPT-SML) circuits.

Definition 5.1 (Set-multilinear circuits). Let y = y1 t ·· · t yd be a partition of the variables. A circuit C

computing a polynomial f ∈ F[y] is said to be a set-multilinear circuit with respect to the above partition

if:

• each gate g ∈C is labelled by a subset Sg ⊆ [d ] and g computes a polynomial over variables
⋃

i∈Sg
yi

where every monomial of [g ] is divisible by exactly one variable in yi for each i ∈ Sg ,

• if g is a + gate, then the subset that labels g also labels each of its children,

• if g is a × gate with g1 and g2 being its children, then the subsets Sg1 and Sg2 labelling g1 and g2

respectively is a partition of Sg , i.e. Sg = Sg1 tSg2 . ♦

We shall say the circuit C is UPT set-multilinear if every parse tree of C is of the same shape and iden-

tically labelled. That is, if g and g ′ are × gates labelled by a set S ⊆ [d ], and if g = g1 × g2 with S1 and S2

labelling g1 and g2, then the children of g ′ are also labelled by S1 and S2 respectively.

We shall say the set-multilinear circuit C is FewPT(k) set-multilinear if the circuit consists of parse

trees of at most k different shapes.
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A natural generalization that will be useful later is a multi-output UPT set-multilinear circuit, which

is a UPT set-multilinear circuit that potentially has multiple output gates, which are all labelled with the

same subset.

Forbes and Shpilka [FS13] showed that constructing hitting sets for these commutative models suf-

fices for the non-commutative models by a simple reduction (details in Section C.1). We shall there-

fore focus on these commutative models for the hitting set constructions. And since we have already

seen that such circuits can be depth reduced2 to O(logd) depth, it suffices to construct a hitting set for

O(logd)-depth UPT and FewPT set-multilinear circuits.

5.1 Preliminaries for PIT

Weight assignments and basis isolation

To construct hitting sets for ROABPs, Agrawal, Gurjar, Korwar and Saxena [AGKS15] defined the notion

of basis isolating weight assignments for associated vector spaces of polynomials. The description pre-

sented here is an adaptation of the approach of [AGKS15] to set-multilinear circuits of small depth.

Definition 5.2 (Basis Isolating Weight Assignment (BIWA)). A weight assignment is a function wt : y →
[M ]k , for some positive integer M, that can then be extended to all multilinear monomials over y via

wt

(∏
i∈S

yi

)
=

n∑
i∈S

wt(yi ). ♦

Let V be a vector space of polynomials in F[y], which can also be thought of as a matrix with a gener-

ating set of polynomials listed out as rows (with each column being indexed by a monomial in y).

Such a weight assignment wt is said to be a basis isolating weight assignment for V if there exists a

basis of its column space, indexed by B ⊆ Mons(y), such that

1. if m1,m2 ∈ B and m1 6= m2, then wt(m1) 6= wt(m2),

2. for every m ∉ B,

Vm ∈ span
{
Vm′ : m′ ∈ B , wt(m′) ≺ wt(m)

}
where by Vm we mean the column of V indexed by the monomial m and ≺ is the lexicographic

ordering on M k ⊂Nk .

Lemma 5.3 ([AGKS15]). Let V be a vector space of polynomials in F[y] and say f ∈V . If wt : y → [M ]k is a

2the shuffling just reorders the partition of the set-multilinear circuit
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BIWA for V , then if t = {t1, . . . , tk }

f (y1, . . . , yn) 6= 0 ⇐⇒ f (twt(y1), · · · ,twt(yn )) 6= 0

(where t(α1,...,αk ) is short-hand for tα1
1 · · · tαk

k ).

If f 6= 0 and deg( f ) ≤ d , then f (twt(y1), . . . ,twt(yn )) is a non-zero k-variate polynomial of degree at most

d M . Hence, the Schwartz-Zippel lemma would present a (d M +1)k sized hitting set.

Definition 5.4 (Separating small sets of monomials). Let S be an arbitrary set of monomials over y. We

shall say that a weight assignment wt : y →N separates S if for every distinct m,m′ ∈ S we have wt(m) 6=
wt(m′). ♦

Lemma 5.5 ([AB03]). Let S be an arbitrary set of r multilinear monomials of degree at most d over vari-

ables y = {
yi j : i ∈ [d ], j ∈ [n]

}
. For a prime p, let wp : y →N be a weight assignment given by

wp (yi , j ) = 2(i−1)n+( j−1) mod p.

Then for all but at most
(r

2

) ·n2 primes p, the weight assignment wp separates S.

BIWAs for subspaces and products

Agrawal, Gurjar, Korwar and Saxena [AGKS15] constructed BIWAs for polynomials computed by ROABPs.

The following two lemmas are slight abstractions of the key ideas in [AGKS15], so that they can also be

applied in our setting. For the sake of completeness, the proofs are provided in Section C.1.

Lemma 5.6 (BIWA for subspaces). Say V is a vector space of polynomials and suppose wt is a BIWA for V .

Then, if V ′ is a subspace of V , then wt is a BIWA for V ′ as well.

Lemma 5.7 (BIWA for variable disjoint products). Say V1 ⊆ F[y] and V2 ⊆ F[z] are two vector spaces of

polynomials over disjoint sets of variables, and of dimension at most s. Suppose

wt1 : y →Nk

wt2 : z →Nk

are BIWAs for V1 and V2 isolating bases B1 and B2 respectively. If w : y∪z →N is a weight assignment that

separates B1 ·B2 = {m1m2 : m1 ∈ B1 , m2 ∈ B2}. Then the weight assignment defined by

wt : y∪z →Nk+1

wt : yi 7→ (wt1(yi ), w(yi )) for all yi ∈ y,

wt : zi 7→ (wt2(zi ), w(zi )) for all zi ∈ z,
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is a BIWA for V =V1 ·V2 = span
{

f · g : f ∈V1 , g ∈V2
}
.

5.2 Hitting sets for UPT set-multilinear circuits

Theorem 5.8 (Hitting sets for UPT set-multilinear circuits). Let C be the class of n-variate degree d set-

multilinear polynomials (with respect to y = y1 t·· ·tyd ) that are computable by UPT set-multlinear cir-

cuits of preimage-width w and depth r . Then, for M = ((w
2

)
n2d +1

)2
, the set

H =
{

(b11, . . . ,bdn) : p ∈ [M ]r , ak ∈ A , bi j =
r+1∏
k=1

a2(i−1)n+( j−1) mod pi

k

}

is a hitting set for C of size poly(nd w)r .

The proof of this theorem is obtained by constructing what is called a basis isolating weight assign-

ment for polynomials simultaneously computed by a multi-output UPT-SML circuit, heavily borrowing

from the ideas in [AGKS15].

Proof. Suppose f (y) is a polynomial that is computable by a UPT set-multilinear circuit C with respect

to y = y1 t·· ·tyd and say C is of preimage-width size w and depth r .

Since C is a UPT set-multilinear circuit, let T be the shape of the parse tree. For each τ ∈ T , we define

the vector space

Vτ = span
{
[g ] : g ∈C , g ∼ τ} .

The following claim relates the vector space corresponding to nodes in T to the vector spaces corre-

sponding to the children.

Claim 5.9. If τ ∈ T labels a + gate and if τ′ is the unique child of τ, then Vτ ⊆Vτ′ .

If τ ∈ T labels a × gate and has children τ1 and τ2, then Vτ is a subspace of Vτ1 ·Vτ2 .

Proof. Suppose τ ∈ T labels a + gate and say τ′ is the unique child of τ in T . Pick an arbitrary

g ∈ C such that g ∼ τ. If [g ] = [g1]+ ·· · + [gs], then each gi ∼ τ′. Therefore, [gi ] ∈ Vτ′ and

[g ] = [g1]+·· ·+ [gs] implies that [g ] ∈Vτ′ . Since the choice of g was an arbitrary gate of type τ,

it follows that Vτ is a subspace of Vτ′ .

Say τ labels a × gate, and say τ1 and τ2 are the children of τ. Pick an arbitrary gate g ∈ C

with g ∼ τ. If [g ] = [g1]× [g2] then g1 ∼ τ1 and g2 ∼ τ2. But that implies that [g1] ∈ Vτ1 and

[g2] ∈ Vτ2 and therefore [g ] ∈ Vτ1 ·Vτ2 . Once again, since the choice of g was arbitrary, we get

Vτ is a subspace of Vτ1 ·Vτ2 . (Claim 5.9)

Define the multiplication height of any gate g , denoted by
∣∣g ∣∣×, as the largest number of × gates

encountered on a path from g to a leaf. Starting with the leaves, we shall build towards a BIWA for Vroot,

which by Lemma 5.3 also yields a hitting set.
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Let P be the set of the first (dn2
(w

2

)+1) primes. For each 0 ≤ k ≤ r and p = (p1, . . . , pk ) ∈ P k , define the

function

Ω(k)
p : y →Nk+1

Ω(k)
p : yi j 7→ ( j ,2(i−1)n+( j−1) mod p1, . . . ,2(i−1)n+( j−1) mod pk ).

The plan is to use Ω(k)
p to build BIWAs for each Vτ. For a τ ∈ T with |τ|× = k, let Sτ ⊆ [d ] be the subset of

indices labelling τ. Define wt(τ)
p to be the restriction ofΩ(k)

p to ∪i∈Sτyi :

wt(τ)
p :

⋃
i∈Sτ

yi →Nk+1

wt(τ)
p (yi j ) =Ω(k)

p (yi j ).

We shall prove, by induction, that for each 0 ≤ k ≤ r there is a p ∈ P k such that for every τ ∈ T with

|τ|× ≤ k, the weight assignment wt(k)
p is a BIWA for Vτ.

If τ was a leaf of T , then any such node just computes a variable. Clearly, wt(τ)
p : (yi j ) 7→ j is a BIWA

as it gives distinct weights to all variables of a partition. Hence, wt(τ)
p is a BIWA for all Vτ whenever τ is a

leaf.

If τ is not a leaf but |τ|× = 0, then neither τ nor its descendants are × gates. Hence, the subtree at τ

has a unique leaf ` and all the nodes along this path are + gates. By Claim 5.9, Vτ is a subspace of V` and

hence, by Lemma 5.6, wt(τ)
p = wt(`)

p is a BIWA for Vτ. That finishes the base case of k = 0.

Suppose we have proved the claim up to k −1. Let Tk be the set of all nodes of multiplication height

at most k that are × gates. By the inductive hypothesis, there exists p ∈ P k−1 such that wt(τ′)
p is BIWA for

all Vτ′ with
∣∣τ′∣∣× < k. Fix such a p. For each τ ∈ Tk , its children τ1,τ2 must have multiplication height at

most k −1. Since C is set-multilinear, the subset of indices that label τ1 and τ2 must be disjoint. Say S1

and S2 are the subsets of indices labelling τ1 and τ2 respectively.

Hence, by Claim 5.9, Vτ is a subspace of Vτ1 ·Vτ2 . By our inductive hypothesis, we know that wt(τ1)
p

and wt(τ2)
p are BIWAs for Vτ1 and Vτ2 respectively. Observe thatΩ(k−1)

p restricted to the appropriate subset

of variables is a refinement of the weight assignments wt(τ1)
p and wt(τ2)

p (as |τ1|× or |τ2|× could have been

smaller than k − 1). Nevertheless, if wt(τ1)
p and wt(τ2)

p are BIWAs for Vτ1 and Vτ2 respectively, then the

following weight assignments

wt1 :
⋃

i∈S1

yi →Nk wt2 :
⋃

i∈S2

yi →Nk

wt1 : yi j 7→Ω(k−1)
p (yi j ) wt2 : yi j 7→Ω(k−1)

p (yi j )

are also BIWAs for Vτ1 and Vτ2 respectively. By using Lemma 5.7, Lemma 5.6 and Lemma 5.5, besides
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perhaps
(w

2

)
n2 primes p ∈ P , the weight assignment defined by

wt :
⋃

i∈S1∪S2

yi →Nk+1

wt(yi j ) =
(wt1(yi j ),2(i−1)n+( j−1) mod p) if i ∈ S1,

(wt2(yi j ),2(i−1)n+( j−1) mod p) if i ∈ S2,

= (Ω(k−1)
p (yi j ),2i n+ j mod p)

is a BIWA for Vτ. For different τs in Tk there may a different set of
(w

2

)
n2 primes that we should ex-

clude. But since the set P of primes is at least
(w

2

)
n2d + 1, there is a prime p ∈ P for which wt(yi j ) =

(Ω(k−1)
p ,2(i−1)n+( j−1) mod p) is a BIWA for every Vτ where τ ∈ Tk . By extending p by p in the last coordin-

ate, this shows that there is a p′ ∈ P k such that for each τ ∈ Tk , the weight assignment wt(τ)
p′ is a BIWA for

Vτ.

To complete the inductive step, we also need to prove the same for τ ∈ T that are + gates with |τ|× = k.

Hence, there must be a × gate τ′ ∈ Tk that is a descendant of τ such that the path from τ to τ′ consists

only of + gates. Once again, this forces wt(τ)
p = wt(τ′)

p and Vτ is a subspace of Vτ′ . Hence, by Claim 5.9

and Lemma 5.6, it follows that wt(τ)
p = wt(τ′)

p is a BIWA for Vτ as well. And that completes the proof of the

inductive step.

Hence, if f is a polynomial computed by a preimage-width w UPT set-multilinear circuit of depth r ,

Ω(r )
p is a BIWA for Vroot. Furthermore, by the prime number theorem, we know that the

((w
2

)
n2d +1

)
-th

prime cannot be bigger than
((w

2

)
n2d +1

)2
. Hence, the constructed BIWA is in fact a map

Ω(r )
p : y → [M ]r+1

where M ≤ ((w
2

)
n2d +1

)2
. Therefore, by Lemma 5.3 and the Schwartz-Zippel lemma, if we pick a set A ⊆ F

with |A| > d · ((w
2

)
n2d +1

)2
, then

H =
{

(b11, . . . ,bdn) : p ∈ [M ]r , ak ∈ A , bi j =
r+1∏
k=1

a2(i−1)n+( j−1) mod pi

k

}

is a hitting set for preimage-width w depth r UPT set-multilinear circuits and |H | = poly(nd w)r .

5.3 Poly-sized hitting sets for constant width UPT circuits

Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d ,T,w be the class of n-variate

degree d non-commutative polynomials that are computable by UPT circuits of preimage-width at most

w and underlying parse-tree shape as T . Over any field of zero or large characteristic, there is an explicit

hitting set Hn,d ,T,w of size wO(logd) poly(nd) for Cn,d ,T,w .
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The proof is an easy extension of the ideas from [GKS16], the details of which are in Section C.2.

6 FewPT circuits

In this section we describe the black-box identity test for FewPT(k) circuits. The following lemma from

[LLS17] shows that this class is equivalent to polynomials computed by sum of k UPT circuits (of possibly

different shapes).

6.1 Preliminaries

Lemma 6.1. ([LLS17, Lemma 16]) Let f (x) be a polynomial computed by FewPT(k) circuit of preimage-

width w. Then f can be equivalently computed by a sum of k UPT circuits of preimage-width w each.

Like in [LLS17], we’ll refer to this class by Σk -UPT. We shall further qualify this notation to use

Σk -UPT(w) to denote the class of circuits that is a sum of k UPT circuits of preimage-width w .

From this lemma, we can focus our attention on constructing hitting sets for Σk -UPT-SML circuits.

The proof largely follows the ideas of Gurjar, Korwar, Saxena and Thierauf [GKST15]3.

Notation

Let y = y1 t·· ·tyd be a partition of the variables and let S = {
s1, . . . , sp

}
be a subset of [d ]. Define the set

of variables yS = ys1 ∪·· ·∪ysp and the set of monomials yS = ys1 ×·· ·×ysp . Also, define y−S = y \ yS and

y−S = y[d ]\S .

Definition 6.2 (Coefficient operator). Given a set-multilinear polynomial f = ∑
m∈y[d ] αmm of degree d,

for S ⊆ [d ] and a monomial m ∈ yS , define coeffm : F
[
y
]→ F

[
y−S

]
to be as follows.

coeffm( f ) = ∑
m′∈y−S

α(m·m′)m
′

where α(m·m′) is the coefficient of mm′ in f . ♦

Lemma 6.3. Let y = y1t. . .tyd be a partition and f (y) be a set-multilinear polynomial (with respect to the

above partition) computed by a UPT-SML circuit of preimage-width w and underlying parse-tree shape T .

Suppose g (y) is another set-multilinear polynomial (under the same partition) that cannot be computed

by a UPT-SML circuit of preimage-width w with the same shape T .

Then, there exists S ⊆ [d ] and R ∈ F[yS]1×w ′
, and P,Q ∈ F[y−S]w ′×1 with w ′ ≤ w2 such that:

• For each i ∈ [w ′], there is a monomial mi ∈ yS such that the i -th element of P and Q is coeffmi ( f )

and coeffmi (g ) respectively,

3[GKST15] constructed hitting sets for sums of ROABPs and we use similar techniques for sums of UPT circuits. Roughly
speaking, if we have a class C that has a characterizing set of dependencies for which we know how to construct BIWAs, then we
can also construct hitting sets for ΣkC .

20



• there is a vector Γ ∈ F1×w ′
of support size at most w +1 such that ΓP = 0 and ΓQ 6= 0,

• the coefficient space of R is full-rank, i.e. if we interpret R as a matrix over F by listing each of its w ′

entries as a column vector of coefficients, then this matrix has full column-rank.

• the vector of polynomials R is simultaneously computable by a UPT-SML circuit of preimage-width

at most w ′.

This lemma is a fairly natural and straightforward generalization of [GKST15, Lemma 4.5] and a proof

of this is provided in the appendix (Appendix D).

Lemma 6.4. Suppose f (y) is a non-zero polynomial computed by a Σk -UPT-SML(w) circuit. Suppose

wt : y → M r is a weight assignment that satisfies the following properties:

• wt is a BIWA for spaces of polynomials simultaneously computed by UPT-SML circuits of preimage-

width at most w(w +1),

• For any g in Σk−1 -UPT-SML(w(w + 1)), the polynomial g (y+ twt) ∈ F(t)[y] has a monomial with

non-zero coefficient that depends on at most ` distinct variables in y.

Then, the polynomial f (y+twt) has a monomial, depending on at most log(w(w+1))+` distinct variables

in y, with a non-zero coefficient.

This is essentially a restatement of [GKST15, Lemma 4.6, Lemma 4.8] and follows from their proof.

Unravelling the recursion, we get the following corollary.

Corollary 6.5. Let f (y) be a non-zero polynomial that can computed by a Σk -UPT-SML(w) circuit. Sup-

pose wt : y → M r is a BIWA for the class of polynomials simultaneously computed by UPT-SML circuits of

preimage-width at most w2O(k)
. Then, the polynomial f (y+ twt) ∈ F(t)[y] has a monomial with a non-zero

coefficient that depends on at most 2O(k) log w variables in y.

Once we are guaranteed to retain a monomial of small-support, we can construct a hitting set by

enumerating over all possible supports and applying the Schwartz-Zippel lemma [Ore22, DL78, Sch80,

Zip79] (or apply standard generators such as the Shpilka-Volkovich generator [SV15]). This completes

the proof of Theorem 1.2, which we restate below for convenience.

Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting set Hd ,n,s,k

of size at most (s2k
nd)O(logd) for the class of n-variate degree d homogeneous non-commutative polyno-

mials in F〈x1, . . . , xn〉 that are computed by non-commutative circuits of size at most s consisting of parse

trees of at most k shapes.

7 Open problems

An interesting open problem (at least to us) is whether we can give non-trivial hitting sets for the class

of non-commutative skew circuits. Lagarde, Limaye and Srinivasan [LLS17] provide a white-box PIT in
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some restricted settings when the skew circuits are somewhat closer to UPT (with some restriction on

what sort of parse trees they can have) but removing this restriction would be a great step forward.

Another issue is that the current construction of hitting sets for FewPT circuits (which build on

[GKST15]) incurs quasipolynomial losses at two different places. The first is in the construction of the

basis isolating weight assignment (BIWA), and we only know to construct that using quasipolynomially

large weights. The other is in a brute-force enumeration of all monomials of support O(log s). As a result,

even if at a later day we have a construction of a BIWA with polynomially large weights, this proof would

still only yield a quasipolynomially large hitting set for FewPT circuits. It would be interesting to see if

this brute-force enumeration could be circumvented.
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A Separating ABPs from UPT circuits

This section contains the proofs of the separation between ABPs and UPT circuits. Recall the definition

of the polynomial Pd (of degree D = 2d+1 −1).

Pd (x1, . . . , xm) = ∑
γ∈[m]D

γ is legal

xγ(v1)xγ(v2) · · ·xγ(vD ).

Upper bound

Lemma 4.2 (Upper bound). For every m,d > 0, the polynomial Pd (y1, . . . , ym) can be computed by a non-

commutative UPT circuit of size O(m2d).

Proof. Let G (d ,α) be the set of all legal colourings γ with v2d (root of Td ) satisfying γ(v2d ) = α. Now we

define Pd ,α(x1, . . . , xm) as

Pd ,α(x1, . . . , xm) = ∑
γ∈G (d ,α)

xγ(v1)xγ(v2) · · ·xγ(vD ).

Clearly, Pd (x1, . . . , xm) =∑
α∈[m] Pd ,α(x1, . . . , xm). Therefore we can now recursively write

Pd (x1, . . . , xm) = ∑
α,β∈[m]

Pd−1,α(x1, . . . , xm) · xα+mβ ·Pd−1,β(x1, . . . , xm), (A.1)

where α+m β= (α+β) mod m.

Now using (A.1) it is easy to see that if we have UPT circuits for Pd−1,α(x1, . . . , xm)s then a UPT cir-

cuit computing Pd (x1, . . . , xm) can be obtained and this follows directly by induction. Hence, repeated

application of (A.1) yields a UPT circuit computing Pd of size O(m2d).

Lower bound

As mentioned earlier, much of the lower bound argument is exactly along the lines of the proof of [HY16].

The modifications required from their proof are quite minor but we present the proof here for complete-

ness.

Theorem 4.3 (Lower bound). For every permutation σ ∈ SD , any non-commutative ABP computing the

polynomial ∆σ(Pd ) has width mΩ(d).
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Proof. Let us fix some σ ∈ SD and let Q(x1, . . . , xm) = ∆σ(Pd ). In order to show that Q requires ABPs of

large width, it suffices to show that there exists some 0 ≤ k ≤ D for which the partial derivative matrix,

given by

Mk (Q) = [m]k

[m]D−k

w

w ′

coefficient of xw · xw ′ in Q

has rank at least mΩ(d). We shall prove this by exhibiting an r ×r identity matrix as a submatrix in Mk (Q)

with r = mΩ(d). The k that we will work with would be the number whose binary expansion is 10101 · · · .
The relevance for this comes from the fact that the edge boundary of any subset V0 ⊆ Td is with |V0| = k

for such a k is reasonably large.

Definition A.2 (Isoperimetric profile of graphs). Given a graph G = (V (G),E(G)) and a subset of vertices

A ⊆V (G), edge isoperimetric profile of G is given by the following function eip(k) defined by

eipG (k) = min
{∣∣∣E(A, A)

∣∣∣ : A ⊆V (G), |A| = k
}

,

where E(A, A) is the set of edges with one end-point in A and the other outside. ♦

Lemma A.3. [HY16] If k ≤ D is the number whose binary expansion is 1010 · · · , then eipTd
(k) ≥ d

4 .

The relevance for this would become apparent shortly, but let us proceed for now. If there is indeed

an ABP for a shuffling of f , then the rows of Mk (Q) is just a partial colouring of a subset V0 ⊂ Td of size

exactly k. Similarly, the columns of Mk (Q) are partial colourings of V1 := Td \V0. Therefore Mk (Q)(xw ,xw ′)
is 1 only if the colouring of V0 given by xw and that of V1 given by xw ′ together form a legal colouring

of Td . Hence the task of finding an r × r submatrix of Mk (Q) reduces to finding colourings C1,C2, . . . ,Cr

of V0 and colourings C ′
1,C ′

2, . . . ,C ′
r of V1 such that the colouring Ci ◦C ′

j is legal if and only if i = j , for all

i , j ∈ [r ].

We will need the notion of pure nodes (as defined by [HY16]).

Definition A.4. (Pure nodes). For i ∈ {0,1}, a non-leaf node v in Vi is called said to be pure if there is a path

Π= (v, v1, v2, . . . , vk ) in Td where vk is a leaf that is a descendant of v, andΠ∩Vi = {v}. ♦

There may be multiple witnesses vk for the fact that v is a pure node. For each pure node, we shall

assign one leaf arbitrarily as its pure leaf. It is easy to see that the pure leaves are distinct for each pure

node.

Let the pure nodes in V0 be P0 and those in V1 be P1 and say P := P0 ∪P1. Let `(P ), `(P0) and `(P1)

be the pure leaves of P , P0 and P1 respectively.
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Lemma A.5. ([HY16, Claim 11]) |P | ≥ |E(V0,V1)|
4 .

Without loss of generality, we may assume that P0 is bigger than P1 and the above lemma, in con-

junction with Lemma A.3, gives that |P0| ≥ d/32. We are now ready to define our colourings C1, . . . ,Cr

and C ′
1, . . . ,C ′

r for r = m|P0| ≥ md/32.

Let L be the set of all leaves in Td . For each ci ∈ [m]|P0|, define C̃i : Td → Zm obtained by assigning

colour 1 to all leaves in L \`(P0), assigning ci to the leaves in `(P0) and extending it uniquely to the other

vertices of Td in order to make it legal. The partial colourings Ci and C ′
i be the restriction of C̃i to V0 and

V1 respectively.

Clearly, Ci ◦C ′
i = C̃i and hence is a valid colouring. Now consider Ci and C ′

j for i 6= j . There must exist

some leaf v ∈ `(P0) that gets different colours in Ci and C j and let u be the node in P1 that v was a pure

leaf of. We shall assume that u is minimal in the sense that any pure node u′ ∈ P1 that is a descendant

has all its leaves identically coloured in Ci and C j . But then, the colour of u in C̃i and in C̃ j cannot be the

same as exactly one leaf if u has a different colour in C̃i and C̃ j respectively. This would then imply that

Ci forces u to be given a colour different than what C ′
j assigns and hence Ci ◦C ′

j is not legal.

Therefore, this shows that the matrix Mk (Q) has an r×r identity submatrix with r ≥ md/32. Therefore,

any ABP computing Q must have width at least mΩ(d).

B Exponential lower bound under any shuffling

Here we give an explicit polynomial that has polynomial sized arithmetic circuits but requires exponen-

tial sized UPT circuits under any shuffling. A version of the hard polynomial appears in [LMP16]. They

show that the polynomial requires exponential sized UPT circuits and that it is efficiently computable by

what are known as skew circuits (see [LMP16] for a formal definition). Here we extend the lower bound

and show that it applies to any shuffling of the polynomial.

B.1 The polynomial

The hard polynomial we discuss is called the moving palindrome which is a variant of the palindrome

polynomial. The palindrome polynomial of degree d on n variables, as known, is defined as follows.

Pald (x1, . . . , xn) := ∑
w∈{x1,...,xn }d/2

w ·wR

where wR denotes the reverse of the word w .

Using this definition, we define the (n +1)-variate moving palindrome of degree D as follows.

Palmov
D (x1, . . . , xn , z) := ∑

0≤`≤D/2
z` ·Pal D

2
(x1, . . . , xn) · z

D
2 −`
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B.2 The lower bound

Similar to the matrix Mk defined in Appendix A for a commutative polynomial, define a partial derivative

matrix M(i ,p) for a non-commutative polynomial g . Here the (w, w ′) entry of M(i ,p) will be the coefficient

of w ×p w ′ in g , where deg(w) = i . We will show that M(i ,p) for Palmov
D has rank nΩ(D) for a range of types

(i , p), such that any UPT circuit computing any shuffling of Palmov
D must admit at least one of those types.

Then using the characterization from [LMP16], we will conclude the following theorem.

Theorem B.1. For any σ ∈ SD , a UPT circuit computing ∆σ(Palmov
D ) has nΩ(D) gates.

Proof. Let 2d be the degree of the palindrome, giving D = 4d . Also, let P`(x, z) = z`Pal2d (x)z2d−`. There-

fore Palmov
D =∑2d

`=0 P`(x, z) = f (x, z) (say). For P`, and for `< j1, j2 ≤ 4d −`, we will say that j1 and j2 are

dependent with respect to P` if all monomials in P` contain the same variable in positions j1 and j2. It

is easy to see that the criterion j1 + j2 = 2(d +`)+ 1 captures this relation. Define a dependency graph

G` = (V ,E`) with V = {1,2, . . . ,4d} such that ( j1, j2) ∈ E` if and only if j1 and j2 are dependent with respect

to P`. Let G = (V ,E) with E =∪`E`.

If [4d ] =V0 tV1 is a partition, let us define a matrix M̃V0,V1 ( f ) to be the one where rows and columns

are indexed by a partial assignment to the positions V0 and V1 respectively.

Claim B.2. Let [4d ] = V0 tV1 be a partition of the positions, and suppose that for some ` ∈ {0, . . . ,2d} we

have t edges in E` crossing the cut (V0,V1) in G`. Then, rank
(
M̃V0,V1 ( f )

)≥ nt .

Proof. In the polynomial P`, let Z` ⊆ [4d ] be the positions that are fixed to z. Consider the submatrix of

M̃V0,V1 where V0 ∩ Z` and V1 ∩ Z` are assigned to z. Observe that this submatrix is precisely M̃V ′
0 ,V ′

1
(P`)

where V ′
0 =V0 ∩Z` and V ′

1 =V1 ∩Z`.

If we have t edges crossing the cut (V ′
0,V ′

1) (none of the cut edges can be adjacent on Z`), then we

have a size t matching in (V ′
0,V ′

1). This means that fixing the variables in their V ′
0 end-points uniquely

fixes their V ′
1 end-points. Hence, it is clear that we have an nt ×nt identity submatrix and hence that the

rank of M̃V0,V1 ( f ) is at least nt .

The next claim shows that for any V0 in a fairly wide range of sizes, there will always be some ` with

G` exhibiting a large cut.

Claim B.3. For any set V0 ⊆ [4d ] of size k with d
6 ≤ k ≤ d

3 , there is some ` ∈ {0, . . . ,2d} such thatΩ(d) edges

in E` cross the cut (V0,V1).

Proof. Let V0 be a set of k positions with k ≤ d
3 . Let us partition the set of positions V = {1,2, . . . ,4d}

into S1 = {1, . . . ,k}, M1 = {(k +1), . . . , (2d −k)}, T1 = {(2d −k +1), . . . ,2d}, T2 = {(2d +1), . . . , (2d +k)}, M2 =
{(2d +k +1), . . . , (4d −k)} and S2 = {(4d −k +1), . . . ,4d}.

Now the possible choices for V0 can be split into the following (possibly overlapping) cases:
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1. V0 ∩T1 ≥ k
8 :

Note that the degree of any vertex in T1 is at least (2d −k), and that every even (or odd) vertex in

M1 is connected to every odd (or even) vertex in S2. Now V1 ∩M1 is at least 2d −k − (k − k
8 ) ≥ 2(d −

k). Total number of edges crossing (V0,V1) is therefore ≥ |(V0 ∩T1,V1 ∩M1)| ≥ 2
(

1
4 × (d −k)× k

8

)
=

Ω(dk). Therefore there exists an Ei that achieves the average Ω(k) =Ω(d) edges crossing the cut

(V0,V1).

2. V0 ∩S1 ≥ k
4 :

Consider the neighbourhood of V0 ∪S1 due to E0. All these positions are in T1. If more than k
8 of

them are in V0 then case 1 applies. Else we get that ≥ k
8 edges from E0 cross (V0,V1).

3. V0 ∩M1 ≥ k
4 :

Again, every even (or odd) position in M1 is connected to every odd (or even) position in T1, the

degree of every position in M1 is at least k, and |V1 ∩T1| ≥ k
8 . Therefore a total ofΩ(k2) edges cross

(V0,V1), thereby again giving us that some Ei achievesΩ(d) edges crossing (V0,V1).

Since the other cases (with T2,S2, M2) are symmetric to those discussed above, we can conclude the

statement of the claim.

In order to complete the proof, we just need to show that any UPT circuit computing a homogeneous

degree d polynomial, there will be a gate of position-type (i , p) with d
6 ≤ i ≤ d

3 .

Lemma B.4. For all 0 <α< 1
2 , any UPT circuit (with fan-in 2 × gates) computing a polynomial of degree

D contains a gate computing a degree i polynomial for some αD ≤ i ≤ 2αD.

Sketch of Proof. Let C be a UPT circuit computing a degree D polynomial with multiplication gates of

fan-in 2. Starting from the root of C , choose an arbitrary child at every addition gate and the child com-

puting a higher degree polynomial at every multiplication gate. As the degree never drops to a fraction

less than half in any step, we eventually reach an appropriate gate.

Now Lemma B.4 tells us that for any UPT circuit computing ∆σ(Palmov
D ), will have a gate of position-

type (i , p) with D
24 ≤ i ≤ D

12 . We can then apply Claim B.3 and then Claim B.2 to obtain an nΩ(D) lower

bound on the number of gates in C .
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C Hitting sets for UPT circuits

C.1 Commutative analogue of UPT circuits

Consider substitution mapΦ : {x1, . . . , xn} → F[y1,1, . . . , yd ,n](d+1)×(d+1) given by

Φ(xi ) =



0 y1,i 0 . . . 0 0

0 0 y2,i . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 yd ,i

0 0 0 . . . 0 0


, for all i ∈ [n].

To understand the effect of Φ on a homogeneous non-commutative polynomial f (x1, . . . , xn) of degree

d , defineΨ : F〈x1, . . . , xn〉deg=d → F[y1,1, . . . , yd ,n] as the unique F-linear map given by

Ψ : xw1 · · ·xwd 7→ y1,w1 · · · yd ,wd .

Lemma C.1 ([FS13]). Let f =∑
w aw xw ∈ F〈x1, . . . , xn〉 be a homogeneous degree d non-commutative poly-

nomial. Then, f under the substitution mapΦ (defined above) is given by

f ◦Φ= f (Φ(x1), . . . ,Φ(xn)) =


0 · · · 0 Ψ( f )

0 · · · 0 0
...

. . .
...

...

0 0 0 0


(d+1)×(d+1)

Similar to the above definition ofΨ, we define a shifted version of it calledΨa (for a parameter a ∈N)

asΨa : xw1 · · ·xwd 7→ ya+1,w1 · · · ya+d ,wd .

Observation C.2. If f ∈ F〈x1, . . . , xn〉deg=d1
and g ∈ F〈x1, . . . , xn〉deg=d2

, then for any a ∈N, we haveΨa( f ·
g ) =Ψa( f ) ·Ψa+d1 (g ).

In the case of [FS13], when f was computable by non-commutative ABPs, they showed that Ψ( f ) is

computable by an ROABP. In our setting of non-commutative UPT circuits, the following is the commu-

tative analogue.

Observation C.3. Let C be a UPT circuit computing a polynomial f ∈ F〈x1, . . . , xn〉 of size s and depth r .

Consider the commutative circuit C ′ where each leaf variable of type (1, p) that is labelled by xi is replaced

by yp+1,i . Then the circuit C ′ computesΨ( f ) and is UPT and set-multilinear with respect to y = y1t·· ·tyd

where yi =
{

yi , j : j ∈ [n]
}
.
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BIWAs for subspaces and products

Lemma 5.6 (BIWA for subspaces). Say V is a vector space of polynomials and suppose wt is a BIWA for V .

Then, if V ′ is a subspace of V , then wt is a BIWA for V ′ as well.

Proof. If B is a monomial basis of V that is isolated by wt, then the columns indexed by B span the

column space of V ′ as well. Starting with the columns of V ′ indexed by B , pick a minimum weight basis

B ′ according to wt, so that any column of V ′ that is outside B ′ is spanned by lower weight monomials

in B ′. By definition wt is a BIWA of V ′ isolating B ′, as all columns in B ′ get distinct weights and every

column outside B ′ is spanned by lower weight columns in B ′.

Lemma 5.7 (BIWA for variable disjoint products). Say V1 ⊆ F[y] and V2 ⊆ F[z] are two vector spaces of

polynomials over disjoint sets of variables, and of dimension at most s. Suppose

wt1 : y →Nk

wt2 : z →Nk

are BIWAs for V1 and V2 isolating bases B1 and B2 respectively. If w : y∪z →N is a weight assignment that

separates B1 ·B2 = {m1m2 : m1 ∈ B1 , m2 ∈ B2}. Then the weight assignment defined by

wt : y∪z →Nk+1

wt : yi 7→ (wt1(yi ), w(yi )) for all yi ∈ y,

wt : zi 7→ (wt2(zi ), w(zi )) for all zi ∈ z,

is a BIWA for V =V1 ·V2 = span
{

f · g : f ∈V1 , g ∈V2
}
.

Proof. Observe that by the definition of wt, wt(m1 ·m2) = (wt1(m1)+wt2(m2), w(m1 ·m2)) for any m ∈
Mons(y) and m′ ∈ Mons(z).

If V1 and V2 are expressed as matrices (with the generators listed as rows), then the matrix cor-

responding to V is just V1 ⊗V2, the tensor product. Let B1 = {m1, . . . ,mr } and B2 = {
m′

1, . . . ,m′
s

}
. We

shall prove that the weight assignment wt is a BIWA that isolates the natural spanning set B = B1 ·B2 ={
mi m′

j : i ∈ [r ] , j ∈ [s]
}

. Firstly, note that all the elements of B have distinct weights due to the presence

of the last coordinate from wt, which separates the r s monomials in B1 ·B2.

Now suppose m̃ = m ·m′ ∉ B for m ∈ Mons(y) and m′ ∈ Mons(z) and say without loss of generality

m ∉ B1. The column indexed by m̃ in V1 ·V2 is just the tensor product of the columns indexed by m in V1

and the column indexed by m′ in V2. But since wt1 is basis isolating for V1, the column of V1 indexed by
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m can be expressed as a linear combination of lower weight terms.

V1,m = ∑
wt1(mi )≺wt1(m)

ai ·V1,mi

=⇒ Vm̃ =V1,m ⊗V2,m′ = ∑
wt1(mi )≺wt1(m)

ai ·
(
V1,mi ⊗V2,m′

)
= ∑

wt1(mi )≺wt1(m)
ai ·Vmi m′

But notice that wt1(mi ) ≺ wt1(m) also implies that wt(mi m′) ≺ wt(mm′). Therefore, (repeating this argu-

ment on m′ if m′ ∉ B2) we can write any column with index outside B as a linear combination of columns

of smaller weight in B . Hence, wt is indeed a BIWA for V that isolates B .

C.2 Constant width UPT circuits

In this subsection we prove the existence of a poly(n,d) hitting set for UPT circuits of constant preimage-

width computing n-variate degree-d polynomials, when the shape of the circuit is known. The proof is

an easy extension of the ideas of [GKS16] to the UPT-SML circuits regime. We will construct a univariate

substitution map that preserves its nonzero-ness and has degree poly(n,d), which will imply a hitting

set naturally.

Say y = y1 t ·· · t yd and let f (y) be an nd-variate degree d polynomial computable by a UPT-SML

circuit (with respect to the above partition) of constant preimage-width. From Observation 3.8, we may

assume that the circuit has depth logd . We will need the following lemma for bivariates over large fields.

Lemma C.4. ([GKS16, Lemma 3.2]) Let f (y1, y2) =∑w
i=1 ui (y1)vi (y2) be a nonzero bivariate polynomial of

degree d over F. If char(F) = 0 or char(F) > d, then f (t w , t w−1 + t w ) 6= 0.

Suppose f (y) is computable by a circuit C that has shape T . Define the set of variables t = {tτ : τ ∈ T }.

We will begin by substituting t j
τi

for every yi j where the leaf in C computing polynomials over yi cor-

responds to τi in T . As long as we can, we will pick a multiplication gate τ that has its left and right

children (say τL and τR ) computing univariates in tτL and tτR respectively; and then substitute tτL ← t w
τ

and tτR ← t w
τ + t w−1

τ . Let us call this substitutionΦτ.

Lemma C.5. Consider the above iterative process of substituting some of the yi ’s by suitable polynomials

in t. Let Φ̃( f ) = f̃ (t,y) 6= 0 be the polynomial just before applying the substitution Φτ. Then f̃ ′ =Φτ( f̃ ) :=
f̃ (tτL ← t w

τ , tτR ← t w
τ + t w−1

τ ) 6= 0.
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Proof. From (3.4), we have

f = ∑
u∼τ

[u] · [root : u]

= ∑
u∼τ

[uL] · [uR ] · [root : u],

=⇒ Φ̃( f ) = ∑
u∼τ

au(tτL ) ·bu(tτR ) ·hu(y,t \ tτL , tτR ) 6= 0.

We may treat Φ̃( f ) as a bivariate polynomial in tτL , tτR over the field F(t \
{

tτL , tτR

}
) and apply Lemma C.4

to conclude thatΦτ(Φ̃( f )) will be nonzero if and only if Φ̃( f ) was nonzero.

Now for every leaf node in T , create a sequence which we will call its signature, by walking down from

the root to the leaf. Every time we pick the left child, we append L to the signature and every time we pick

the right child, we append R. For τ ∈ T , call the sequence sigτ = (a1 a2 · · · ar ). Let t be a fresh variable

and τi be the node corresponding to yi . Define

ΦL : t 7→ t w , ΦR : t 7→ t w + t w−1

Ψ : y → F[t ]

Ψ : yi j 7→Φa1 ◦Φa1 ◦ · · · ◦Φar (t j )

where (a1 · · ·ar ) = sigτi
. Observe that the procedure described above essentially executes the substitution

Ψ on y. We can then infer from Lemma C.5 that for any f (y) computable by UPT-SML circuits, f (y) 6=
0 ⇐⇒ f (Ψ(y)) 6= 0. This gives us the following theorem.

Theorem C.6. Let f (y) be a polynomial computed by an UPT-SML circuit of width w and depth r . Con-

sider the following substitutionΨ : y → F[t ] given by

Ψ : yi j 7→Φa1 ◦Φa2 ◦ · · · ◦Φar (t j ),

where the signature of the part yi is a1a2 · · ·ar . Then f (y) is non-zero if and only if f (Ψ(y)) is non-zero.

Now since the depth of the circuit is at most O(logd), if the width is constant, then the final degree of

f (Ψ(y)) is at most O(nwO(logd)), which is poly(n,d) if w =O(1). This finishes the proof of Theorem 1.3.

D Hitting sets for FewPT circuits

We will need the following fact about coefficient operators (defined in Definition 6.2).

Observation D.1 (Coefficients of UPT circuits are also UPT circuits). Suppose f (y) is a homogeneous

degree d polynomial that is computable by a UPT set-multilinear circuit with respect to y = y1 t ·· ·tyd

of preimage-width w. If S ⊆ [d ] and m is any monomial in yS , then the polynomial coeffm( f ) can also be

computed by a UPT set-multilinear circuit of preimage-width w.
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Sketch of Proof. Since the UPT-SML circuit C can be made canonical without loss of generality, we only

need to set the corresponding leaves in yS as 0 or 1 depending on whether the variable appears in m.

The following is an analogue of [GKST15, Lemma 4.5].

Lemma 6.3. Let y = y1t. . .tyd be a partition and f (y) be a set-multilinear polynomial (with respect to the

above partition) computed by a UPT-SML circuit of preimage-width w and underlying parse-tree shape T .

Suppose g (y) is another set-multilinear polynomial (under the same partition) that cannot be computed

by a UPT-SML circuit of preimage-width w with the same shape T .

Then, there exists S ⊆ [d ] and R ∈ F[yS]1×w ′
, and P,Q ∈ F[y−S]w ′×1 with w ′ ≤ w2 such that:

• For each i ∈ [w ′], there is a monomial mi ∈ yS such that the i -th element of P and Q is coeffmi ( f )

and coeffmi (g ) respectively,

• there is a vector Γ ∈ F1×w ′
of support size at most w +1 such that ΓP = 0 and ΓQ 6= 0,

• the coefficient space of R is full-rank, i.e. if we interpret R as a matrix over F by listing each of its w ′

entries as a column vector of coefficients, then this matrix has full column-rank.

• the vector of polynomials R is simultaneously computable by a UPT-SML circuit of preimage-width

at most w ′.

Proof. For an S ⊆ [d ], let yS = {m1, . . . ,mr } and y−S = {n1, . . . ,nt } in some order. Define M f ,S ∈ Fr×t such

that M f ,S(i , j ) is the coefficient of n j in coeffmi ( f ). Note that the i th row of M f ,S is the polynomial

coeffmi ( f ) written in the coefficient vector form.

For a type τ in a tree T , Sτ will denote the set of leaves of the node τ in T . Consequently, we will

also use just M f ,τ to mean M f ,Sτ . We will denote by B f ,τ a set of monomials from ySτ such that the rows

indexed by them in M f ,S will form a basis of the rows of M f ,S . Note that if τ has children τ1,τ2, then we

can ensure that our choice of B f ,τ satisfies B f ,τ ⊆ B f ,τ1 ×B f ,τ2 as the latter is clearly a spanning set. Using

such a basis B f ,τ, we can then write down a set of dependencies as below corresponding to f and τ.

∀m ∈ ySτ : coeffm( f ) = ∑
m′∈B f ,τ

γm,m′ coeffm′( f ). (D.2)

Using this, we can rewrite f in the following way for any τ ∈ T .

f = ∑
mk∈ySτ

mk

 ∑
m′

i∈B f ,τ

γi ,k coeffm′
i
( f )

= ∑
m′

i∈B f ,τ

( ∑
mk∈ySτ

γi ,k mk

)
coeffm′

i
( f )

f = ∑
m′

i∈B f ,τ

ui (ySτ)coeffm′
i
( f ) for some ui ∈ F[ySτ ]. (D.3)

Suppose τ ∈ T has two children τ1 and τ2 that share the same dependencies for g as well. That is,
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f = ∑
m′

i∈B f ,τ1

ui (ySτ1 )coeffm′
i
( f ),

g = ∑
m′

i∈B f ,τ1

ui (ySτ1 )coeffm′
i
(g ),

f = ∑
n′

j∈B f ,τ2

v j (ySτ2 )coeffn′
j
( f ),

g = ∑
n′

j∈B f ,τ2

v j (ySτ2 )coeffn′
j
(g ).

Combining them (and renaming the variables by dropping the ′s), we get

f = ∑
(mi ,n j )∈B f ,τ1×B f ,τ2

ui (ySτ1 )v j (ySτ2 ) ·coeffmi ·n j ( f ),

g = ∑
(mi ,n j )∈B f ,τ1×B f ,τ2

ui (ySτ1 )v j (ySτ2 ) ·coeffmi ·n j (g ).

Observe that if for all m ∈ B f ,τ1 ×B f ,τ2 we have

coeffm( f ) = ∑
m′∈B f ,τ

γm,m′ coeffm′( f ) , coeffm(g ) = ∑
m′∈B f ,τ

γm,m′ coeffm′(g ),

then this also forces that by (D.3), for τ:

f = ∑
mi∈B f ,τ

u′
i (ySτ)coeffmi ( f ) , g = ∑

mi∈B f ,τ

u′
i (ySτ)coeffmi (g ).

Since g is not computable by a UPT-SML circuit with underlying shape T this cannot happen for all

τ ∈ T . Let us pick the lowest τ (closest to the leaves; and say its children are τ1,τ2) such that for some

m ∈ B f ,τ1 ×B f ,τ2 we have

coeffm( f ) = ∑
m′∈B f ,τ

γm,m′ coeffm′( f ),

coeffm(g ) 6= ∑
m′∈B f ,τ

γm,m′ coeffm′(g ).
(D.4)

The choice of the vector of polynomials is now clear. If w ′ = ∣∣B f ,τ1

∣∣ · ∣∣B f ,τ2

∣∣≤ w2, then

R := (
ui (ySτ1 )v j (ySτ2 ) : (mi ,n j ) ∈ B f ,τ1 ×B f ,τ2

) ∈ F[ySτ ]1×w ′

P := (
coeffmi ·n j ( f ) : (mi ,n j ) ∈ B f ,τ1 ×B f ,τ2

)T ∈ F[y−Sτ ]w ′×1

Q := (
coeffmi ·n j (g ) : (mi ,n j ) ∈ B f ,τ1 ×B f ,τ2

)T ∈ F[y−Sτ ]w ′×1.

It is clear from the definition that the vectors P and Q are made up of coefficients of f and g . Also, (D.4)

provides a suitable vector Γ of support at most w +1 such that ΓP = 0 but ΓQ 6= 0.

It follows that the coefficient space of R is full-rank as the sets of polynomials
{
ui : i ∈ B f ,τ1

}
and{

v j : j ∈ B f ,τ2

}
are linearly independent and are on disjoint sets of variables.
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We only need to show that every entry of R can also be computed by a UPT-SML circuit of preimage-

width at most w2. To see this, observe that the set of polynomials
{
ui (ySτ1 ) : i ∈ B f ,τ1

}
spans the set{

coeffm( f ) : m ∈ y−Sτ1
}
, and similarly

{
v j (ySτ2 ) : j ∈ B f ,τ2

}
spans

{
coeffn( f ) : n ∈ y−Sτ2

}
. Since the di-

mension of these spaces is at most w , it follows that each ui (ySτ1 ) can be written as a linear combination

of at most w many coeffm( f )’s, and similarly each v j (ySτ2 ). Observation D.1 shows that each of the co-

efficient polynomials can also be computed by UPT-SML circuits of preimage-width at most w . Thus,

by computing each of the ui ’s and v j ’s separately, and then taking all w2 products, we have a UPT-SML

circuit of preimage-width at most w2 that simultaneously computes all the entries of R.
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