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Abstract

Let F be a finite alphabet and D be a finite set of distributions over F . A Gen-

eralized Santha-Vazirani (GSV) source of type (F ,D), introduced by Beigi, Etesami

and Gohari (ICALP 2015, SICOMP 2017), is a random sequence (F1, . . . , Fn) in Fn,

where Fi is a sample from some distribution d ∈ D whose choice may depend on

F1, . . . , Fi−1.

We show that all GSV source types (F ,D) fall into one of three categories: (1)

non-extractable; (2) extractable with error n−Θ(1); (3) extractable with error 2−Ω(n).

This rules out other error rates like 1/ log n or 2−
√
n.

We provide essentially randomness-optimal extraction algorithms for extractable

sources. Our algorithm for category (2) sources extracts with error ε from n =

poly(1/ε) samples in time linear in n. Our algorithm for category (3) sources extracts

m bits with error ε from n = O(m+log 1/ε) samples in time min{O(nm2m), nO(|F|)}.
We also give algorithms for classifying a GSV source type (F ,D): Membership in

category (1) can be decided in NP, while membership in category (3) is polynomial-

time decidable.

1 Introduction

Randomness extractors turn a weak source of randomness into almost uniform indepen-

dent random bits. One of the first classes of distributions that were considered in the

context of randomness extraction are Santha-Vazirani (SV) sources [SV86], also called

unpredictable-bit sources. An SV source is a sequence of random bits such that every bit

in the sequence has entropy bounded away from zero, even when conditioned on any pos-

sible sequence of previous bits. As already pointed out in [SV86], deterministic (seedless)

extraction of even a single almost unbiased bit from SV sources is impossible, although

these sources have entropy that grows linearly with their length.1
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In this work we consider deterministic extraction for a natural generalization of Santha-

Vazirani sources which was introduced by Beigi, Etesami, and Gohari [BEG15, BEG17].

A generalized Santha-Vazirani (GSV) source is specified by a pair (F ,D), where F is a

finite set of faces and D is a finite set of dice, each of which is a probability distribution

on F . (We will assume that each face is assigned positive probability by at least one die.)

A distribution (F1, . . . , Fn), where the Fis are F-valued correlated random variables, is

admissible by the source if it is generated by the following type of strategy: For each

1 ≤ i ≤ n, a die d ∈ D is chosen as a function of F1, . . . , Fi−1 and Fi is sampled according

to the distribution d.

The case |D| = |F| = 2 recovers the definition of SV sources. In this instance, the

dice are two-sided coins, one biased towards heads and the other one towards tails.

We call a GSV source (F ,D) extractable with error ε from n samples if there exists a

function Ext: Fn → {−1, 1} such that for every distribution (F1, . . . , Fn) in the source,

|E[Ext(F1, . . . , Fn)]| ≤ ε. We call a source extractable if for every error ε > 0 there exists

a sample size n for which the source is extractable with these parameters.

Beigi, Etesami and Gohari [BEG17] showed that randomness extraction from a GSV

source is possible assuming the following condition:

Definition 1. A GSV source (F ,D) satisfies the Nonzero Kernel Positive Variance

(NK+) condition if there exists a function ψ : F → [−1, 1] such that Ed[ψ(F )] = 0 and

Vard[ψ(F )] > 0 for every die d ∈ D.

Here, Ed and Vard denote expectation and variance with respect to the distribution of

die d. On the other hand, they showed that extractability from such sources necessitates

the following Nonzero Kernel (NK) condition:

There exists a nonzero ψ : F → [−1, 1] such that Ed[ψ(F )] = 0 for every die

d ∈ D.

In particular, when all faces of all dice have positive probability (an assumption called

“nondegeneracy” in [BEG17]), the (NK+) and (NK) conditions coincide, providing a

characterization of extractability for this class of sources. Their extractor requires Θ(1/ε3)

samples to achieve error ε.

There are, however, simple examples of GSV sources ((E1) and (E2) below) that

satisfy (NK) but not (NK+). The work [BEG17] does not address the extractability of

such sources.

In the setting of GSV sources, the existence of extractors does not appear to easily

follow from counting arguments, as is the case of other types of sources for which extraction

is known to be possible in principle and the focus is on efficient constructions, such

as affine sources [Bou07, Gab11], polynomial sources [DGW09, Dvi12] and independent

blocks [Bou05, CZ16].

Our Contributions

Our first contribution is a complete characterization of extractability from GSV sources.

To motivate our result, we first observe that the (NK) condition is, in general, insufficient
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for extractability. Consider, for instance the two-diced, three-faced GSV source described

by the distributions d1 = (0, 0, 1) and d2 = (1
2 ,

1
2 , 0). This source satisfies (NK) with the

witness ψ = (−1, 1, 0), but is clearly not extractable as the distribution in which d1 is

repeatedly tossed contains no entropy.

A slightly more interesting example is provided by the four-diced, three-faced GSV

source

d1 = (1
2 ,

1
2 , 0, 0) d2 = (0, 0, 1

3 ,
2
3) d3 = (0, 0, 2

3 ,
1
3). (E1)

This source also satisfies the (NK) condition (with ψ = (−1, 1, 0, 0)). However, it is not

extractable because it contains a “hidden” SV source (over two faces): If die d1 is tossed

away and the first two faces are removed, dice d2 and d3 now fail the (NK) condition.

These two examples suggest the following method for coming up with non-extractable

GSV sources: Start with any source that fails (NK), extend the dice with more faces of

zero probability, and add any number of dice that assign positive probability to the new

faces. To describe such sources, we introduce the following natural strengthening of (NK):

Definition 2. A GSV source (F ,D) satisfies the Hereditary Nonzero Kernel (HNK)

condition if for all subsets D′ ⊆ D there exists a nonzero witness ψ : F ′ → [−1, 1] such

that Ed[ψ(F )] = 0 for all d ∈ D′, where F ′ is the set of faces to which at least one die in

D′ assigns nonzero probability.

Clearly (HNK) is a necessary condition for extractability, because if (F ,D) fails (HNK)

then (F ′,D′) fails (NK). Our first theorem shows that (HNK) is also sufficient. Moreover,

it gives a universal upper bound on the number of samples:

Theorem 1. The following conditions are equivalent for a GSV source (F ,D):

1. (F ,D) satisfies HNK.

2. (F ,D) is extractable.

3. For every ε, (F ,D) is extractable with error ε from n = poly(1/ε) samples in time

linear in n.

In the course of proving Theorem 1 we introduce the analytic Mean Variance Ratio

(MVR) condition that turns out to be equivalent to HNK (Proposition 3). We show

that a quantitative variant of the MVR condition determines the best-possible quality

of extraction, up to a quadratic gap, even for GSV sources that are not extractable to

within arbitrary small error (Propositions 1 and 2).

It is natural to ask if poly(1/ε) samples are in general necessary for the extractor in

part 3 of Theorem 1. Our second result shows not only that this is the case, but completely

characterizes GSV sources that are extractable in a randomness-efficient manner.

Theorem 2. The following conditions are equivalent for a GSV source (F ,D):

1. (F ,D) satisfies NK +.

2. For every ε, (F ,D) is extractable with error ε from o(1/ε2) samples.
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3. For every ε and m, (F ,D) is extractable with error2 ε and output length m from

n = O(log(1/ε) +m) samples in time min{O(nm2m), nO(|F|)}.

The sample complexity of the extractor in part 3 of Theorem 2 is optimal up to the

leading constant: Ω(m) samples are necessary by entropy considerations, and Ω(1/ε)

samples are necessary for non-trivial sources3 by granularity considerations.

Condition NK+ is strictly stronger than condition HNK. For example, the source

d1 = (1
2 ,

1
2 , 0, 0), d2 = (1

4 ,
1
12 ,

1
3 ,

1
3), d3 = ( 1

12 ,
1
4 ,

1
3 ,

1
3). (E2)

satisfies HNK but not NK+.

Taken together, Theorems 1 and 2 completely classify non-trivial GSV sources into

three categories: (1) non-extractable, (2) extractable with error n−Θ(1), and (3) ex-

tractable with error 2−Ω(n), where n is the number of samples. This rules out the existence

of GSV sources of other error rates like 1/ log n or 2−
√
n.

Moreover, sources can be classified algorithmically: Condition HNK can be decided

by a coNP algorithm, while NK+ is polynomial-time decidable (see Proposition 6).

Figure 1 indicates the relations between the different conditions for extractability of

GSV sources uncovered in this work.

EXT(ε,O(log 1/ε))

MVD(ε, ω(ε2))

EXT(ε, o(1/ε2))

∀ε

∀ε

∀ε

NK

HNK

NK+

EXT(ε,∞)

MVR(ε)

EXT(O(
√
ε), poly 1/ε)

∀ε

∀ε

∀ε

Prop. 4

Var > ε−C
Prop. 1

Prop. 2

[BEG17]

[BEG17]

Prop. 3

Prop. 7

Prop. 8 E1

E2

Figure 1: A map of our results. Straight arrows are implications (the dashed ones are

immediate) and wiggly arrows are separations. EXT(ε, n) postulates extractability with

error ε from n samples. Lightly and darkly shaded boxes represent equivalent conditions

for extractability and randomness-efficient extractability, respectively.

2The error of an extractor that outputs multiple bits is the statistical (total variation) distance between

its output distribution and the uniform distribution.
3The exception consists of one-die GSV sources that admit an event of probability exactly half, for

which errorless extraction is possible.
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Proof Techniques

Our proofs rely on a combination of probabilistic, algorithmic, and analytic methods.

Feasibility of extraction The extractor of [BEG17] outputs the sign of ZT = ψ(F1) +

· · · + ψ(FT ) at the earliest time T when |ZT | exceeds some pre-specified threshold M .

Here, ψ is the witness for condition (NK+), which ensures that E[ψ(F )] is always zero

and Var[ψ(F )] is always positive. Therefore (Zt) is a martingale with growing variance,

and the analysis of [BEG17] shows that the process terminates by time n = O(1/ε3)

except with probability ε/2 when M is chosen as Θ(1/ε). Moreover, ZT must take value

in the range (−(M + 1),−M ] ∪ [M,M + 1), so by the optional stopping time theorem,

the bias of ZT is ε/2 when M = Θ(1/ε).

In case only the weaker (HNK) condition holds, Var[ψ(F )] could be zero for some dice

and the value of Zt may remain constant throughout the process. On the other hand,

(HNK) provides not one but many witnesses ψ, one for every subset of the dice. Propo-

sition 3 shows how all these witnesses can be combined into a single φ : F → [−1, 1] that

has positive variance with respect to all the dice, but may have nonzero expectation. By a

careful implementation of this strategy, it is ensured that the ratio |Ed[φ(F )]|/Vard[φ(F )]

can be made smaller than any pre-specified ε > 0. This is our Mean Variance Ratio

(MVR) condition. Moreover, Vard[φ(F )] can be lower bounded by εC for some constant

C that depends only on the GSV source.

To prove Theorem 1 we apply the extractor of [BEG17] to the function φ. As φ may

be biased with respect to some dice, (Zt) may no longer be a martingale, rendering the

optional stopping time theorem inapplicable. In Proposition 1 we demonstrate that the

conclusion of the [BEG17] analysis still applies in our context. Intuitively, the (MVR)

condition should imply that the variance of Zt grows, and does so at a faster rate than the

magnitude of its expectation. Therefore the stopping time should still be finite, and the

component of extraction error incurred by |E[ZT ]| should be small. Owing to dependencies

between the various steps, a rigorous implementation of these ideas requires substantial

care.

Quality and quantity of extracted bits For GSV sources that satisfy (NK+) the

extractor of [BEG17] inherently requires Ω(1/ε) samples: On the one hand, to ensure

termination with high probability the boundary threshold M can be at most n, but on

the other hand ZT may fall anywhere in the range (−(M + 1),−M ]∪ [M,M + 1), thereby

incurring an error of ε = Ω(1/M).4 To improve the sample complexity, our bit extractor

in Theorem 2 applies the update rule

Zt+1 = Zt +
ψ(Ft)

2
· (1− |Zt|)

and outputs the sign of Zn for n = O(log 1/ε). Under (NK+) the sequence (Zt) is still a

martingale, but now the range of Zt is restricted to the open interval (−1, 1). On average,

4A tempting alternative is for the “extractor” to simply output the sign of Zn after looking at some

predetermined number of samples. However, this “extractor” may incur error Ω(1) for almost any GSV

source.
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the deviation of the step size Zt+1 − Zt conditioned on Zt is smaller the closer Zt is to

one of the boundary points {−1, 1}. We show that the logarithm of 1/(1− |Zt|) grows by

a constant on average in every step and apply Azuma’s inequality to conclude that Zn is

within 2−Ω(n) of 1 or −1 with probability 1− 2−Ω(n). This ensures the bias of the output

is inverse exponential in the number of samples.

To extract multiple bits, the state Zt of the above process is extended to encode a

probability distribution over {0, 1}m. Initially Z0 is the uniform distribution. The distance

measure 1− |Zt| is replaced by a carefully chosen quantity Dt ∈ R2m which ensures that

Zt is a probability distribution that rapidly concentrates on a single entry in {0, 1}m,

which is the output of the extractor. Since (Zt) is a multi-dimensional martingale, the

output must be statistically close to uniform.

Lower bounds Beigi, Etesami, and Gohari [BEG17] proved that if a source fails the

(NK) condition, namely if for all ψ there exists a die d for which |Ed[ψ(F )]|/Vard[ψ(F )] =

Ω(1), then it is not extractable. In Proposition 2 we prove a quantitatively precise refine-

ment of this statement: If |Ed[ψ(F )]|/Vard[ψ(F )] ≥ ε, then the extraction error must be

at least Ω(ε). We conclude that extractability implies the (MVR) condition, which to-

gether with a compactness argument (see Proposition 3) gives (HNK), proving the “only

if” direction of Theorem 1.

While this consequence was already established in [BEG17] by other, combinatorial

methods, we obtain a further refinement that is used to prove the “only if” direction of

Theorem 2. In Section 3.3 we introduce the mean-variance divergence (MVD) condition,

which postulates that |Ed[ψ(F )]| < ε(Vard[ψ(F )]−δ) for all dice. In Proposition 8 we show

that if MVD fails then extraction with error ε requires Ω(1/δ) samples. In Proposition 7

we use linear-algebraic duality to show that if (NK+) fails then so does (MVD) with

δ = O(ε2), thereby completing the proof of Theorem 2.

2 A characterization of extractable GSV sources

In this Section we prove Theorem 1. The following analytic condition plays a central role

in the proof:

Definition 3. A GSV source (F ,D) satisfies the Mean-Variance Ratio condition with

parameter ε > 0 (MVR(ε)) if there exists a function ψ : F → [−1, 1] such that for every

die d ∈ D of a GSV source (F ,D),∣∣Ed[ψ(F )]
∣∣ < εVard[ψ(F )]. (MVR)

Proposition 1 in Section 2.1 shows that if a GSV source satisfies MVR(ε) then it is

extractable with error O(
√
ε) from poly(1/ε) samples. On the other hand, Proposition 2

in Section 2.2 shows that any GSV source that is extractable with error less than ε/10

(from any number of samples) satisfies MVR(ε). Thus the smallest ε for which MVR(ε)

holds measures the best-possible quality of extraction of a GSV source to within a square.

In the case when MVR(ε) holds for all ε > 0, the source is extractable. Surpris-

ingly, proposition 3 shows that ∀εMVR(ε) implies HNK. HNK, in turn, implies a slightly
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stronger form of ∀εMVR(ε), which together with Proposition 1 establishes the extractabil-

ity of HNK sources from ε−C samples, where C is a constant that depends only on the

source.

2.1 Feasibility of extraction

Proposition 1. If GSV source (F ,D) satisfies MVR(ε), then it is extractable from n

samples with error at most 3
√
ε+ 4/εvn+ O(ε), where v is the minimum of Vard[ψ(F )]

over all d ∈ D.

Proof of Proposition 1. Define random variables X1, . . . , Xn and Z0, . . . , Zn by Z0 = 0

and Zi = Zi−1 + Xi for i > 0, where Xi = 0 if |Zi| ≥ M , Xi = ψ(Fi) if |Zi| < M , Fi
(1 ≤ i ≤ n) is the i-th output of the GSV source sequence, and M = 1/

√
ε. Under this

definition, Zn is uniformly bounded by M + 1. The extractor outputs the sign of Zn.

To prove that the sign of Zn has small bias, we begin by lower bounding Var[Zn]. We

will use this lower bound to argue both that the expectation of Zn in absolute value and

that the probability that Zn remains in the range (−M,M) are small. These two facts

will allow us to conclude that the sign of Zn is almost unbiased.

Claim 1. Var[Zn] ≥ 1
2

∑n
i=1 E[Var[Xi|Zi−1]].

Proof. By the law of total variance we have

Var[Zi] = Var
[
E[Zi|Zi−1]

]
+ E

[
Var[Zi|Zi−1]

]
.

Furthermore,

Var
[
E[Zi|Zi−1]

]
= Var

[
Zi−1 + E[Xi|Zi−1]

]
= Var[Zi−1] + Var

[
E[Xi|Zi−1]

]
+ 2Cov

(
Zi−1,E[Xi|Zi−1]

)
.

Now we compute

Cov
(
Zi−1,E[Xi|Zi−1]

)
= E

[
(Zi−1 − E[Zi−1]) · E[Xi|Zi−1]

]
≥ −E

[
|Zi−1 − E[Zi−1]| · |E[Xi|Zi−1]|

]
≥ −E

[
(2M + 2) · εVar[Xi|Zi−1]

]
≥ −E

[
Var[Xi|Zi−1]/4

]
,

since |E[Xi|Zi−1]| ≤ εVar[Xi|Zi−1] in both cases |Zi−1| ≥M and |Zi−1| < M . Combining

the above three equations and noting that Var[E[Xi|Zi−1]] ≥ 0, we get

Var[Zi] ≥ Var[Zi−1]− 1

2
E
[
Var[Xi|Zi−1]

]
+ E[Var[Zi|Zi−1]].

We also have Var[Zi|Zi−1] = Var[Zi−1 +Xi|Zi−1] = Var[Xi|Zi−1]. Hence

Var[Zi] ≥ Var[Zi−1] +
1

2
E
[
Var[Xi|Zi−1]

]
.

The claim now follows by induction on n.
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To upper bound |E[Zn]|, we can write

|E[Zn]| ≤
n∑
i=1

E
[
|E[Xi|Zi−1|

]
≤

n∑
i=1

E
[
εVar[Xi|Zi−1|

]
≤ 2εVar[Zn] ≤ 2ε(M + 1)2. (1)

The first inequality is the triangle inequality. The second inequality follows from assump-

tion (MVR) when |Zi| < M , and the fact that E[Xi|Zi−1] is zero otherwise. The third

inequality follows from Claim 1.

Let p be the probability that |Zi| < M for all 1 ≤ i ≤ n, i.e., p = Pr
[
|Zi| < M, 1 ≤

i ≤ n
]
. Then

Var[Zn] ≥ 1

2

n∑
i=1

E
[
Var[Xi|Zi−1]

]
=

1

2

n∑
i=1

Pr
[
|Zi−1| < M

]
· E
[
Var[Xi|Zi−1]

∣∣ |Zi−1| < M
]

≥ 1

2
pnv,

where the first inequality follows from Claim 1, the second equality follows from the law

of conditional expectations, and the third inequality follows because the event |Zi−1| < M

contains, in particular the event |Zi| < M for all i of probability p, and conditioned on

|Zi| the conditional variance of Xi is the variance of ψ(Fi). Therefore,

p ≤ 2Var[Zn]

nv
≤ 2(M + 1)2

nv
. (2)

The bias of the extracted bit is at most

|Pr[Zn ≥ 0]− Pr[Zn < 0]| ≤ |p+ − p−|+ p, (3)

where p+ = Pr[Zn ≥M ] and p− = Pr[Zn ≤M ]. To upper bound |p+− p−|, we apply the

law of conditional expectations to E[Zn] to obtain that∣∣E[Zn]− (p+ − p−)M
∣∣ =

∣∣p+E[Zn −M |Zn ≥M ] + p−E[Zn +M |Zn ≤ −M ] + pE[Zn||Zn| < M ]
∣∣

≤ p+ + p− + pM

≤ pM + 1.

By the triangle inequality and (1),

|p+ − p−| ≤
1

M
·
(
E[Zn] + pM + 1

)
≤ 2ε

(M + 1)2

M
+ p+

1

M
.

By (3), the bias of the extractor is at most 2ε(M+3)+2p+1/M . Assuming, without loss

of generality, that ε < 1 and using (2) we obtain the desired bound for M = 1/
√
ε.
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2.2 Impossiblilty of extraction

Proposition 2. Let ε be a sufficiently small constant. Assume MVR(ε) fails for a source

(F ,D). Then (F ,D) is not extractable with error better than ε/10 from any number of

samples.

Proof of Proposition 2. Assuming MVR(ε) fails we will prove the following claim:

Claim 2. For every n, every extractor Ext: Fn → {0, 1}, and every 0 ≤ α ≤ 1, if

EA− [Ext] ≥ α for every strategy A−, then there exists a strategy A+ for which EA+ [Ext] ≥
α+ (ε/(1 + ε)) · α(1− α).

To derive the theorem from the claim, assume that E[Ext] ≥ α = 1/2 − ε/10 with

respect to every strategy. By Claim 2 there must then exist a strategy for which

E[Ext] ≥ 1

2
− ε

10
+

ε

1 + ε
· 1− ε2/100

4

which is at least 1/2 + ε/10.

Proof of Claim 2. We prove the claim by induction on n. When n = 0 the claim holds

by checking the cases Ext = 0 and Ext = 1. We now assume it holds for n− 1 and prove

it for n. Let d− be the choice of the first die that minimizes EA− [Ext]. Then

α ≤ Ed− [α(F )],

where α(f) is the advantage of Ext conditioned on the first outcome being f .

We now describe the strategyA+. By MVR(ε) applied to the function ψ(f) = α(f)−α,

there exists a die d+ such that

Ed+ [α(F )− α] ≥ εVard+ [α(F )]. (4)

The adversary A+ tosses this die first. She then plays the strategy that maximizes

EA+ [Ext] conditioned on the outcome of the first die. By our inductive assumption,

the conditional advantage of A+ when the first outcome is f must be at least α(f) +

(ε/(1 + ε)) · α(f)(1− α(f)) so that

EA+ [Ext] ≥ Ed+
[
α(F ) +

ε

1 + ε
· α(F )(1− α(F ))

]
.

We can write

Ed+
[
α(F ) +

ε

1 + ε
· α(F )(1− α(F ))

]
−
(
α+

ε

1 + ε
· α(1− α)

)
=
(

1 +
ε

1 + ε

)
Ed+ [α(F )− α]− ε

1 + ε
Vard+ [α(F )]− ε

1 + ε

(
Ed+ [α(F )2]− α2

)
. (5)

We can upper bound the last term by(
Ed+ [α(F )2]− α2

)
= Ed+ [α(F ) + α] · Ed+ [α(F )− α] ≤ 2Ed+ [α(F )− α]
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since all the αs are between zero and one, and the second term is non-negative because

by the minimality of d−, Ed+ [α(F )] ≥ Ed− [α(F )] ≥ α. We can therefore lower bound the

left hand size of (5) by(
1− ε

1 + ε

)
Ed+ [α(F )− α]− ε

1 + ε
Vard+ [α(F )]

which, by (4), must be non-negative. It follows that the advantage of A+ is at least

α+ (ε/(1 + ε))α(1− α), concluding the inductive step.

2.3 Proof of Theorem 1

Proposition 3. The following conditions are equivalent for a GSV source (F ,D):

1. For all ε > 0, (F ,D) satisfies MVR(ε): There exists a ψ : F → [−1, 1] such that

for all dice d, |Ed[ψ(F )]| < εVard[ψ(F )].

2. There exists a constant C such that for sufficiently small ε > 0, there exists a ψ :

F → [−1, 1] such that for all dice d, |Ed[ψ(F )]| < εVard[ψ(F )] and Vard[ψ(F )] ≥ εC .

3. (F ,D) satisfies HNK.

Proof. We will show that 1 implies 3 and 3 implies 2. This will establish equivalence as

2 is a stronger condition than 1.

1 implies 3: Assume that (F ,D) satisfies MVR(ε). This condition is hereditary, namely

if it holds for (F ,D) then it holds for all (F ′,D′) in the assumption of HNK. So in proving

3, we may and will assume, without loss of generality, that (F ′,D′) = (F ,D). We will

moreover assume (by scaling and flipping sign if necessary) that ψ attains the value 1.

Now consider an infinite decreasing sequence (εk) that converges to zero. By assump-

tion, for every k there exists a ψk such that |Ed[ψk(F )]| < εkVard[ψk(F )]. By the pigeon-

hole principle there must exist a face f for which the set of indices K = {k : ψk(f) = 1} is

infinite. By compactness of [−1, 1]F there must exist an infinite subset K ′ ⊆ K for which

the subsequence ψk over k ∈ K ′ converges to a limit ψ. Then ψ is nonzero as ψ(f) must

equal one. On the other hand, for every ε > 0 there exists a sufficiently large k ∈ K ′ such

that for every die d,

|E[ψd(F )]| ≤ |Ed[ψk]|+ ε ≤ εVard[ψk(F )] + ε,

so Ed[ψd(F )] must equal zero for every d.

3 implies 2: The proof is by strong induction on the number of dice |D| with C = 3·2|D|−3.

In the base case |D| = 1, all faces must be assigned nonzero probability by the unique die

d. Take any witness ψ for HNK. Then Ed[ψ(F )] = 0, but ψ must take nonzero value on

at least one of the faces, so Vard[ψ(F )] > 0. Condition 2 is then satisfied for sufficiently

small ε > 0.

For the inductive step, take any ψ that is a witness for HNK with respect to the whole

source (F ,D). Let D′ be the subset of dice d such that Vard[ψ(F )] = 0 and v be the

minimum of Vard[ψ(F )] over d 6∈ D′. Then D′ is a proper subset of D (otherwise, there is

10



a face that is assigned no probability by any die). If D′ is empty, condition 2 follows by

the same argument as in the base case. If not, then by the inductive hypothesis we can

choose ψ′ : F ′ → [−1, 1] such that

|Ed[ψ′(F )]| < (vε2/8) ·Vard[ψ(F )] and Vard[ψ(F )] ≥ (vε2/8)3·2|D′|−3. (6)

We will show that the function φ = ψ+ (vε/8) ·ψ′ satisfies the conclusion of condition

2. Here, ψ′ is naturally extended as a function on F by assigning zero on all inputs in

F \ F ′. The proof is by cases.

If d ∈ D′, then Ed[φ(F )] = (vε/8)Ed[ψ′(F )], while Vard[φ(F )] = (vε/8)2Vard[ψ
′(F )].

From these two equalities and (6) it follows that Ed[φ(F )] < εVard[φ(F )]. On the other

hand, Vard[φ(F )] ≥ (vε/8)2 · (vε2/8)3·2|D′|−3 ≥ ε3·2|D|−3 for sufficiently small ε.

If d 6∈ D′, then |Ed[φ(F )]| ≤ (vε/8)|Ed[ψ′(F )]| ≤ vε/8, while

Vard[ψ(F )] ≥ Vard[ψ
′(F )]− 2|Covd[ψ(F ), (vε/8) · ψ′(F )]|

= Vard[ψ
′(F )]− vε

4
· |Covd[ψ(F ), ψ′(F )]|

≥ Vard[ψ
′(F )]− vε

2

≥ v

2
,

where the last inequality follows from our definition of v. In particular, Vard[ψ(F )] ≥
ε3·2|D|−3 for sufficiently small ε. On the other hand, |Ed[ψ(F )]| ≤ vε/8 ≤ (ε/4) ·
Vard[ψ(F )], as desired.

Proof of Theorem 1. If (F ,D) satisfies HNK, then it also satisfies condition 2 of Proposi-

tion 3. By Proposition 1, (F ,D) is extractable with error O(
√
ε) + n/εC+1. The forward

direction follows by setting n = εC+1.5.

For the reverse direction, if (F ,D) fails to satisfy HNK, by Proposition 3, then it also

fails to satisfy MVR(ε) for some ε > 0. So by Proposition 2 it is not extractable.

Alternatively, the reverse direction of Theorem 1 can be derived from Theorem 6 of

[BEG17] because if (F ,D) fails (NHK) then it contains some (F ′,D′) which fails (NK).

3 Randomness-efficient extraction

In this Section we prove Theorem 2. In Section 3.1, we begin with improving the quality

of the extractor of [BEG17] for (NK+) GSV sources to exponentially small error. Then

in Section 3.2, we show how to improve the number of extracted bits and prove the

implication 1→ 3 in Theorem 2.

In Section 3.3 we state and prove a necessary condition for the quality of extraction

and use it to prove the remaining implication 2→ 1 in Theorem 2.
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3.1 An optimal bit extractor

Proposition 4. For every ε > 0, every GSV source that satisfies (NK+) is extractable

with error ε from O(log(1/ε)/v2) samples where v is the minimum of Vard[ψ(F )] over all

d ∈ D.

Proof of Proposition 4. Define random variables Z0, . . . , Zn by Z0 = 0 and Zt+1 = Zt +

(ψ(Ft)/2) · (1− |Zt|) where Ft (1 ≤ t ≤ n) is the t-th output of the GSV source sequence.

The extractor outputs the sign of Zn.

Under (NK+) the sequence (Zt) is still a martingale so that the expectation of Zn is

0. But now the range of Zt is restricted to the open interval (−1, 1). To prove that the

sign of Zn has small bias, we begin by showing on average, the logarithm of 1/Dt grows

by a constant on average in every step where Dt = 1−|Zt| is the distance between Zt and

its sign. Then we will use to argue the expectation of Dn is exponentially small. This

fact together with E[Zn] = 0 allows us to conclude that the sign of Zn is exponentially

close to unbiased.

Claim 3. E[ln(1/Dt)− ln(1/Dt−1) | D1, . . . , Dt−1] ≥ v/24.

Proof. Observe that, Dt = 1 − |Zt| ≤ 1 − sign(Zt−1) · Zt. By expanding Zt to Zt−1 +

(ψ(Ft)/2) ·Dt−1, and replacing 1− sign(Zt−1) · Zt−1 by Dt−1, it follows that

Dt ≤ (1− sign(Zt−1) · ψ(Ft)

2
) ·Dt−1. (7)

Because |Zt| ∈ (−1, 1) and Dt > 0, we obtain

E
[
ln
Dt−1

Dt

∣∣∣∣ D1, . . . , Dt−1

]
≥ E

[
− ln

(
1− sign(Zt−1) · ψ(Fi)

2

) ∣∣∣∣ D1, . . . , Dt−1

]
≥ E

[
sign(Zt−1) · ψ(Fi)

2
+

1

6

(
sign(Zt−1) · ψ(Fi)

2

)2
]

= E
[
sign(Zt−1) · ψ(Fi)

2

]
+

1

6
E
[(ψ(Fi)

2

)2
]

≥ 0 + v/24.

The second inequality follows from − ln(1− x) ≥ x+ x2/6 and that ψ(Ci)
2 ∈ (−1/2, 1/2),

the third equality follows from the linearity of expectation, and the last inequality follows

from Ed[ψ(F )] = 0, for all d ∈ D, and the definition of v.

Let us define variable Xt = ln(1/Dt) − (vt/24), for t = 0, . . . , n. By Claim 3,

E[Xt|D0, . . . , Dt−1] ≥ Xt−1 so that the sequence (Xt) forms a sub-martingale with re-

spect to D0, . . . , Dn. Moreover, because by triangle inequality, Dt = 1− |zt| ≥ Dt−1(1−
|ψ(Ft)

2 |) ≥ Dt−1/2 and by (7), Dt ≤ Dt−1(1 + 1
2), |Xt − Xt−1| is upper bounded by

c = ln 2 + v/24. By Azuma’s inequality, for any k ≥ 0

Pr[Xn −X0 ≤ −k] ≤ e−k2/2nc2 .
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Then by plugging in k = vn/12, X0 = 0 and c = ln 2 + v/24, we obtain Pr[Dn ≥
e−vn/12] = 2−Ω(v2n). Therefore E[Dn] = 2−Ω(v2n). And we can conclude |E[sign(Zn)]| ≤
E[Dn] + |E[Zn]| = 2−Ω(v2n) by triangle inequality.

3.2 Extracting more bits

We now explain how the extractor of the previous subsection can be modified to ex-

tract multiple bits. We will prove the following proposition, which is a more detailed

restatement of the implication 3→ 1 in Theorem 2.

Proposition 5. For every ε > 0 and m, every GSV source that satisfies (NK+) is

extractable with error ε and output length m from O((log(1/ε) +m)/v2) samples where v

is the minimum of Vard[ψ(F )] over all d ∈ D.

Extraction procedure. Let M = 2m. We describe how to output an almost uniform

distribution over [M ] given (NK+) GSV sources. Define random variables Z0, . . . ,Zn
over RM by Z0 = 1

M · 1 ∈ RM be the vector all of whose coordinates are 1/M and

Zt = Zt−1 +
ψ(Ft)

2
·Dt,

where Ft (1 ≤ t ≤ n) is the t-th output of the GSV source sequence and Dt ∈ RM is a

vector defined below. The extractor outputs the index of the largest coordinate in Zn.

Let si−1 : [M ] → [M ] be the function which on input j ∈ [M ] outputs the index

of the j-th smallest coordinate in zi−1 (so that zi−1[si−1(1)] ≤ zi−1[si−1(2)] ≤ · · · ≤
zi−1[si−1(M)]); Then di is given by

di[si−1(j)] = (−1)j · zi−1[si−1(j)], if 1 ≤ j ≤M − 1,

and di[si−1(M)] = −
∑M−1

j=1 di[si−1(j)].

As an example, consider m = 1. For each zt, if zt−1[1] ≤ zt−1[2], then dt[1] = −zt−1[1]

and dt[2] = zt−1[1], otherwise dt[2] = −zt−1[2] and dt[1] = zt−1[2]. The extractor

outputs 2 if zn[1] ≤ zn[2] otherwise output 1. This procedure simulates the extractor

in Proposition 4 by considering variable Zt = Zt[2] − Zt[1] instead and observing that

Zt = Zt−1 + ψ(F )
2 · (1− |Zt|).

Analysis. Our proof relies on following two claims. The first claim says the values of

zt are never negative and add up to one, so at each time they represent a probability

distribution over the M possibilities. The second claims says the total mass in this

probability distribution gets concentrated in only one of the M possibilities after reading

enough symbols from the GSV source.

Claim 4. For any 0 ≤ t ≤ n, zt[1] + · · ·+ zt[M ] = 1 and zt[j] > 0 for any j ∈ [M ]

Claim 5. For a sufficiently large constant C, and n ≥ C · (m+ log(1/ε))/v2, with prob-

ability at least 1− ε/2, Zn[Sn(M)] ≥ 1− ε/2.
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We first assume those two claims and prove Proposition 5.

Proof of Proposition 5. For any j ∈ [M ], the sequence of random variables Z0[j], . . . ,Zn[j]

forms a martingale because Ed[ψ(F )] = 0 for any d ∈ D. So that Zn[j] = Z0[j] = 1/M . By

Claim 4, zn is a probability distribution. Consider a modification Ext′ of our extractor

which outputs j with probability Zn[j] for any j ∈ [M ]. Then the output of Ext′ is

uniformly distributed over [M ], because for any j ∈ [M ], Ext′ outputs j with probability

E[Zn[j]] = 1/M .

Conditioned on Zn, the output of our extractor is different from Ext′ with probability

at most 1−Zn[Sn(M)]. Thus the error of our extractor is at most 1−E
[
Zn[Sn(M)]

]
. By

Claim 5 and Zn ≥ 0, for n = O((m+ log(1/ε2)/v2)), E
[
Zn[Sn(M)] ≥ (1− ε/2)2 ≥ 1− ε.

Proposition 5 follows.

Now we prove Claim 4 and 5.

Proof of Claim 4. We prove by induction on t. The base case holds by the definition of

z0. Moreover, assuming that coordinates of zt−1 sum to one, we find that zt[1] + · · · +
zt[M ] = 1 due to

∑M
j=1 dt[j] = 0. Also, zt > 0 follows from zt−1 > 0, |ψ| ≤ 1 and

that |dt[j]| ≤ zt−1[j] for all j ∈ [M ]. The latter inequality, when written in the form

|dt[st−1(j)]| ≤ zt−1[st−1(j)] is easy to verify: It is immediate for 1 ≤ j ≤ M − 1 and for

j = M we have

∣∣dt[si−1(M)]
∣∣ =

∣∣∣∣M−1∑
j=1

(−1)j · zt−1[st−1(j)]

∣∣∣∣ ≤ zt−1[st−1(M − 1)] ≤ zt−1[st−1(M)],

where the middle inequality comes from the fact that zt−1[st−1(j)]’s have been sorted and

zt−1 > 0 so that we can rewrite
∑M−1

j=1 (−1)j+1 ·zi−1[si−1(j)] and show 0 <
∑M−1

j=1 (−1)j+1 ·
zi−1[si−1(j)] ≤ zt−1[st−1(M − 1)] as follows.

zt−1[st−1(1)] +

M/2∑
j=2

(
zt−1[st−1(2j − 1)]− zt−1[st−1(2j − 2)]

)
> 0,

zt−1[st−1(M − 1)]−
M/2∑
j=2

(
zt−1[st−1(2j − 2)]− zt−1[st−1(2j − 3)]

)
≤ zt−1[st−1(M − 1)].

Proof of Claim 5. To prove Pr[Zn[Sn(M)] ≥ 1− ε/2] ≥ 1− ε/2, it is sufficient to show,

Pr
[
∃j0 ∈ [M ], s.t. ∀j 6= j0,Zn[j] ≤ ε

2M

]
≥ 1− ε/2. (8)

To show this, for any j ∈ [M ], we define the sequence X0[j], . . . ,Xn[j] where Xt[j] =

ln (1/Zt[j]), and the sequence Y0[j], . . . ,Yn[j] where Y0[j] = 0 and for t ≥ 1 Yt[j] =

Yt−1[j] + Xt[j]− E
[
Xt[j]

∣∣Xt−1[j], . . . ,X0[j]
]
.

Observe that the sequence of Y0[j], . . . ,Yn[j] forms a martingale. In addition, for any

j ∈ [M ] and 1 ≤ t ≤ n, |Yt[j]−Yt−1[j]| ≤ ln 3, because

Yt[j]−Yt−1[j] = Xt[j]−Xt−1[j] + E
[
Xt−1[j]−Xt[j]

∣∣Xt−1[j], . . . ,X0[j]
]
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and Xt[j] − Xt−1[j] = ln
(

1 + Dt[j]
Zt−1[j] ·

ψ(Ft)
2

)
∈ [ln 1

2 , ln
3
2 ] (|Dt[j]| ≤ |Zt−1[j]| has been

established).

By Azuma’s inequality, it holds that for any k, Pr[|Yn[j]| > k] ≤ e−k
2/2n(ln 3)2 . By

union bound, it holds that

Pr[∀j, |Yn[j]| ≤ k] ≥ 1−M · e−k2/2n(ln 3)2 . (9)

We claim that there exists j0 ∈ [M ] such that for any j 6= j0,

Xn[j]−Yn[j] ≥ nv

48
. (10)

Then (9) and (10) imply

Pr[∃j0 ∈ [M ], s.t. ∀j 6= j0,Xn[j] ≥ nv

48
− t] ≥ 1−M · e−k2/2n(ln 3)2 .

Plugging in k = nv/96, we obtain (8) for n ≥ C(m+log(1/ε)) where C ≥ max(96, 192(ln 3)2/v2)·
ln 2. It remains to prove (10). By expanding the recursive relation of Yt, for any t ≥ 1,

we have

Yt[j]−Xt[j] =

t−1∑
k=0

(
Xk[j]− E

[
Xk+1[j]

∣∣X0[j], . . . ,Xk[j]
])
. (11)

Intuitively, Yt[j]−Xt[j] accumulates the shifts of X0, . . . ,Xt−1 from being a martingale.

Now for any k we compute

Xk[j]− E
[
Xk+1[j]

∣∣X0[j], . . . ,Xk[j]
]

= E
[

ln
Zk+1[j]

Zk[j]

∣∣∣∣X0[j], . . . ,Xk[j]

]
= E

[
ln
(

1 +
Dk+1[j]

Zk[j]
· ψ(Fk)

2

) ∣∣∣∣X0[j], . . . ,Xk[j]

]
≤ −1

6
E
[(Dk+1[j]

Zk[j]
· ψ(Fk)

2

)2 ∣∣∣X0[j], . . . ,Xk[j]
]
,

where the second equation is by Zk+1[j] = Zk[j] + Dk+1[j] · ψ(Ck)
2 and the third equation

is because, by Taylor expansion, ln(1 + x) =
∑∞

`=1
(−1)`+1

`! x` and ln(1 + x) ≤ −x2

6 for x =
Dk+1[j]
Zk[j] ·

ψ(Ck)
2 ∈ (−1/2, 1/2) (note that we have already established |Dk+1[j]| ≤ |Zk[j]|).

Furthermore, for any k and j 6= sk[M ], because |dk+1[j]| = |zk[j]|, we find that

Xk[j]−E
[
Xk+1[j]

∣∣X0[j], . . . ,Xk[j]
]
≤ −1

6
E
[(ψ(Fk)

2

)2 ∣∣∣X0[j], . . . ,Xk[j]
]
≤ − v

24
, (12)

Because for every k, there exists at most a single j such that |dk+1[j]| 6= |zk[j]|. By

averaging argument, there exists at most a single j0, such that |dk+1[j]| 6= |zk[j]| happens

at least n/2 times for k = 0, . . . , n. For other j 6= j0, |dk+1[j]| = |zk[j]| happens at least

n/2 times. Thus by (12), (11), for any j 6= j0,

Yn[j]−Xn[j] ≤
∑

k:|dk+1[j]|=|zk[j]|

(− v

24
) +

∑
k:|dk+1[j]|6=|zk[j]|

0 ≤ − v

24
· n

2
= −nv

48
.

The desired conclusion follows.
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A more efficient implementation. A straightforward implementation of the extrac-

tor in Proposition 5 is simultaneous manipulation of 2m martingales, which requires time

nm2m. To extract ω(log n) number of bits, the extractor will run in super-polynomial

time which is inefficient.

We give a more efficient implementation of our extractor which orchestrates all the

2m martingale updates simultaneously in time min{nm2m, nO(|F|)}. When the number

of dice |F| is a constant, the extractor runs in polynomial time even for extracting linear

number of bits.

For every 0 ≤ t ≤ n, we use two lists (Lt,LLt) to keep track of martingales in Zt. LLt

keeps track of martingales who have been one of the largest martingales in last t steps.

And Lt keeps necessary information for other martingales. Every element in LLt is a

pair (v, tv) which represents a martingale with value v whose first time being the largest

martingale is in Ztv . Every element in Lt is a pair of (v, c(v)) where v is a value and c(v)

is the number of martingales in Zt (but not in LLt) with value v. In particular, we define

LL0 = ∅ and L0 = {(1/2m, 2m)}.
The main observation is that every martingale in Lt has been updated in a multiplica-

tive way where the multiplicative factor comes from a fixed set {1 ± ψ(f)/2 : f ∈ F}.
Thus the size Lt is at most

(t+2|F|
2|F|

)
= nO(|F|). Moreover, there are at most t martin-

gales in LLt and at most 2m martaingales in total. Therefore we will operate on at most

min(2m, nO(|F|) +n) objects in every step. In particular, sorting values among LLt−1 and

Lt−1 runs in min(m2m, nO(|F|)) and after that, the order of jth martingale with value v

in LLt−1 or a martingale in Lt−1 can be obtained in time min(2m, nO(|F|)).

Given LLt−1,Lt−1, it is sufficient to continue the update rule to obtain LLt,Lt. We

go over (v, c(v)) ∈ Lt−1 in order (increasing in v) and we derive at most two groups of

martingales with values v1 = v ·(1+ψ(f)/2) and v2 = v ·(1−ψ(f)/2). Moreover, knowing

the order in Zt−1 allows us to know the size of each group and to update (v1, c(v1)) and

(v2, c(v2)) in Lt accordingly. Updating values in LLt−1 is straightforward. In the end, if

the largest value v is in Lt (if several martingales have the same value, take the one with

highest order in step t− 1), then we move the martingale from LLt to Lt by adding (v, t)

into LLt and updating (v, c(v)) to (v, c(v)− 1) in Lt.

From LLn, we obtain the largest martingale in Zn. In order to track back its identity,

for t = 0, we define the order of all martingales by their indexes and for every 1 ≤ t ≤ n,

we define the order martingales with the same value in LLt by their orders in Zt−1. We

prove by strong induction that given the order of a martingale in Zt for 0 ≤ t ≤ n, we

can track back its order in Z0 which is its identify.

The base case is true for t = 0. Suppose it holds for t′ ≤ t− 1. Given a martingale in

LLt with value v, if tv ≤ t−1, we can apply induction hypothesis to track back the largest

one in Ztv . If tv = t, then we run our updating procedures on LLt−1 to identify the last

martingale in Lt whose value becomes v. Similarly, for any j, given the jth martingale

with value v in Lt, we run the updating procedures on Lt−1 to identify the jth martingale

whose value becomes v in Lt. Given Lt−1 and LLt−1, knowing its order among martingales

with the same value is sufficient to identify its order among all martingales in Zt−1. So

we can apply induction hypothesis to track back its identity in Z0.
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3.3 A lower bound on the quality of extraction

The implication 2 → 1 in Theorem 2 follows readily from Propositions 7 and 8 below.

These refer to an analytic condition that characterizes randomness-efficient extractability

called the mean-variance divergence (MVD) condition, which can be viewed as the suitable

analogue of the MVR condition in Section 2.

The kernel of GSV source (F ,D), denoted by KerD, is the set of all ψ : F → R such

that Ed[ψd(F )] = 0 for all dice d ∈ D.

Proposition 6. A GSV source (F ,D) satisfies (NK +) if and only if for every die d ∈ D
there exists a function ψd ∈ KerD that is not constant on the support of d.

Proof. The forward direction follows by setting all ψd to equal the witness ψ for the

(NK +) condition.

For the reverse direction, let ψ =
∑

d∈DNdψd where Nd are independent random

variables, each uniformly distributed over some finite set N ⊆ R of size more than |D|.
By linearity, ψ is in KerD. Moreover, for each die d and each possible choice of the values

Nd′ for d′ 6= d, the sum
∑
Ndψd can be constant on the support of d for at most one

choice of Nd (for if two such choices existed then ψd itself must be constant on the support

of d). Therefore, ψ is constant on d with probability at most 1/|N |. Since |N | > |D|, the

existence of an (NK +) witness ψ follows from the union bound.

Claim 6. If (NK +) fails for GSV source (F ,D) then there exists a die d ∈ D such that

for every pair of faces f∗, f∗ in the support of D there exists a function β : D → R such

that for all functions ψ : F → R,

ψ(f∗)− ψ(f∗) =
∑
d′∈D

β(d′) · Ed′ [ψ(F )]. (13)

Proof. If f∗ = f∗ the conclusion holds with β = 0. Otherwise, let Cd denote the linear

space of functions that are constant on the support of die d. By Proposition 6, if (NK+)

fails then there exists a die d for which all functions ψ ∈ KerD also belong to Cd, i.e.,

KerD ⊆ Cd. Then C⊥d ⊆ (KerD)⊥, where ⊥ indicates the dual subspace. The space

(KerD)⊥ is the span of the probability mass functions pmfd of all the dice. Therefore

every φ ∈ C⊥d can be written as a linear combination

φ =
∑
d∈D

β(d) · pmfd.

Then for every ψ : F → R,∑
f∈F

φ(f) · ψ(f) =
∑

d∈D,f∈F
β(d) · pmfd(f) · ψ(f) =

∑
d∈D

β(d) · Ed[ψ(F )].

The claim follows by specializing φ to the function that takes value 1 on f∗, −1 on f∗,

and 0 elsewhere. This function is dual to Cd.

The MVD(ε, δ) (mean-variance divergence) condition postulates that there exists a

function ψ : F → [−1, 1] such that for every die d ∈ D,∣∣Ed[ψ(F )]
∣∣ < ε(Vard[ψ(F )]− δ). (MVD)
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Proposition 7. If GSV source (F ,D) fails (NK +) then there exists a constant C such

that for every ε > 0, (F ,D) fails MVD(ε, Cε2).

Proof. Assume (F ,D) fails (NK +). Let d be the die stipulated by Claim 6 and C be the

maximum of (
∑

d′∈D|β(d′)|)2 over all pairs of faces f∗, f∗ in the support of d.

Towards a contradiction suppose that (F ,D) satisfies MVD(ε, δ). Then the wit-

ness ψ : F → [−1, 1] for MVD(ε, δ) must satisfy the conditions Vard[ψ(F )] > δ and

|Ed′ [ψ(F )]| < εVard′ [ψ(F )] for all dice d′ ∈ D. Let f∗ and f∗ be faces in the support of d

that maximize and minimize the value of ψ, respectively. By Claim 6, relation (13) holds

for some β that may depend on f∗ and f∗ but not on ψ. Then

√
δ <

√
Vard[ψ(F )] ≤ ψ(f∗)− ψ(f∗) =

∑
d′∈D

β(d′) · Ed′ [ψ(F )]

≤
∑
d′∈D
|β(d′)| · |Ed′ [ψ(F )]| <

∑
d′∈D
|β(d′)| · εVard′ [ψ(F )] ≤

√
Cε,

where the last inequality follows from the definition of C and the boundedness of ψ.

Therefore MVD(ε, δ) fails for δ = Cε2.

Proposition 8. Assume that (F ,D) fails MVD(ε, δ). Then every extractor with error

ε/20 for (F ,D) requires 1/8δ samples, assuming ε > 0 is sufficiently small.

Proof. The proof is a direct extension of the proof of Proposition 2. The main technical

tool is the following claim:

Claim 7. For every extractor Ext : Fn → {0, 1}, and every 0 ≤ α ≤ 1, if EA− [Ext] ≥ α

for every strategy A−, then there exists a strategy A+ for which

EA+ [Ext] ≥ α+
ε

1 + ε
·
(
α(1− α)− δn

)
.

The proof of Claim 7 is a notationally intensive direct extension of the proof of Claim 2.

We omit the details.

By Claim 7 it follows that for every ε > 0, if no strategy A− has error less than

α = 1/2− ε/20 against Ext then there exists a strategy A+ with advantage at least

E[Ext] ≥ 1

2
− ε

20
+

ε

1 + ε
·
(1− ε2/400

4
− 1

8

)
,

which is at least 1/2 + ε/20 for sufficiently small ε.

4 Open Questions

In this work, we completely classify GSV sources in terms of their extractability. We

point out the following questions for further investigation:

• Is the sample complexity of o(1/ε2) in part 2 of Theorem 2 tight? Example E2 gives

an upper bound of O(1/ε7). This non-NK+ extractable source satisfies MVR(ε)

with minimum variance ε2 for every ε (with witness ψ = (ε,−ε, 1,−1)), so O(1/ε7)

are sufficient for extraction error ε by Proposition 1.
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• The number of required samples in Theorem 1 is of the form ε−O(2|D|), where |D| is
the number of dice (see the proof of Proposition 3). Is this exponential dependence

in |D| necessary?

• The multi-bit extractor in Theorem 2 runs in time min(nm2m, nO(|F|)). Can the

dependence on the number of faces be improved, possibly by applying known seeded

extraction algorithms?

• Proposition 1 states that sources satisfying condition MVR(ε) admit extraction with

error O(
√
ε), while by Proposition 2 extraction error Ω(ε) is necessary. Can this

quadratic gap be narrowed?
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